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Abstract

In this thesis I focus on the applications and relevance of orthogonal-

ity in various topics in machine learning. The theme of the thesis is

that different viewpoints of the concept of orthogonality and Hilbert

spaces in general can be utilised to improve the performance of ma-

chine learning algorithms, as well as inform development of new ones.

The approach taken focuses in part on the rich and interesting the-

ory of orthogonal polynomials, which are heretofore underutilised in

machine learning methods as a tool for feature construction

First, I look at a sparse Gaussian process schema relying on

appropriate construction of orthogonal basis functions, as well as

relevant theory that shows that orthonormality is an important feature

of the chosen sparse method. This yields a novel approach to feature

construction and sparse Gaussian process regression.

Next, I utilise orthogonality and an appropriately defined inner

product as a tool for a new form of interpretable feature construction in

problems with dynamic graphs. The approach centres on comparison

between graphs via an implicit measure of orthogonality of their

matching polynomials. This is applied to anomaly detection as a

guiding example, using a ”landmarks” strategy.

Finally, I propose a new type of Gaussian Cox process, which

yields application of orthogonal series estimate models in order to
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construct a rapid Bayesian inference scheme, bypassing the usual dif-

ficulties of the highly non-Gaussian likelihood. This is then extended,

through appropriate approximation schemata for higher-order Gaus-

sian moments, to stochastic classification models, yielding a rapid

and flexible stochastic classifier, whose predictions can be interpreted

as exact probabilities and yield direct uncertainty quantification. This

stands in contrast to standard models that train on degenerate distri-

butions to yield probabilistic predictions in an ad-hoc fashion.



Impact Statement

The work in this thesis may have impact in both academic and in-

dustrial settings. The approach developed in the first chapter should

improve predictive capability in any situation where Gaussian process

models are used. This could be widespread, given that Gaussian pro-

cess models are widely-used paradigm in general machine learning

problems. The computational cost of methods translates directly to

computing time, which has a cost both in financial and energy terms.

As a result it is not easy to quantify ex ante the potential impact of

the work in the first chapter. I expect to publish a paper based on

the material in this chapter over the course of the next year at a top

machine learning conference.

Graph-based methods have proliferated, and interpretability is a

key concern in many of these models. The work in the second chapter

should improve the interpretability of graph-based models, and so

could have impact in any situation where such models are used. This

could be widespread, given the increasing use of graph-based models

in many areas of machine learning. Again, it is not easy to quantify

ex ante the potential impact of the work in the second chapter. I also

expect to find an appropriate venue for publication of a paper based

on the material in this chapter over the course of the next year.

The work in the third chapter is more directly applicable to a
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specific industrial setting. Point process data is widespread in many

areas, and the computational efficiency exhibited by the method may

have many applications in industry. As noted in the thesis, the work

in this chapter comprises the basis of a paper that has been submitted

to a top machine learning conference, and I expect to receive feedback

in the next couple of months.

Because the thesis focuses on methodological development, the

impact of the work is likely to be felt in the medium to long term.

The work is likely to be of interest to researchers in machine learning

and statistics, and so the impact is likely to be felt in the academic

community more than in industry. However, I expect that review

feedback will provide examples of appropriate, unforeseen applications

of the methods described in the thesis.
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Notation

(X ,F ,ν): A measure space on a set X , with measure ν and an

appropriately-defined σ-algebra F .

E f [x]: The expection of a random variable x w.r.t the density f .

V f [x]: The variance of a random variable x w.r.t the density f .

Cov f [x,y]: The covariance between random variables x,y w.r.t the

density f .

k (x,x′): A kernel function describing the covariance between x and x′,

in the Gaussian process formulation.

DKL ( f || g): The Kullback-Leibler divergence from g to f .

GP: A Gaussian process.

θi: The random coefficient for the i-th basis function in the Gaussian

process.

φi: an element of an orthonormal basis.

λ : An eigenvalue of the Mercer kernel representation.

m: The number of basis functions in the truncation; i.e. the band-

width of a truncated kernel.

H: A Hilbert space of functions, endowed with an inner product ⟨·, ·⟩H.

Tk [ f ]: Operator applying kernel k to the function f .

x: A vector of inputs.

X : The space of inputs to a Gaussian process.

y: A vector of outputs/labels.
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Y: The space of outputs to a Gaussian process.

L2(ν): The space of square-integrable function, with inner product

constructed with measure ν.

l2: The space of square-integrable sequences.

A⊙B: The Hadamard product of two matrices A and B.

L: A linear moment functional.〈
L,xk〉: A moment linear functional applied to the monomial xk.

G: a graph, constructed of nodes and edges.

σ : a complete node sequence.

kν
m(·, ·): A Christoffel-Darboux kernel of order m with measure ν.

haf(A): the hafnian of a matrix A.

per(A): the permanent of a matrix A.

det(A): the determinant of a matrix A.

Sn: the set of all permutations of n elements.

µk: The k-th moment of a Linear moment functional.

w: A weight function for construction of an orthogonal basis.

ℓ(x): A positive-valued link function.

Ψ: An intensity measure.

ψ: An intensity (density) function.

N −Γ−1: A normal-inverse-gamma distribution.

η: A weighting parameter for the conjugate Bayesian model.

lhaf(A): the loop hafnian of a matrix A.

In: the set of all involutions of n elements.
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Chapter 1

Introduction

Orthogonality is a fundamental concept in many theoretical and

practical applications of statistical science and machine learning. The

concept of orthogonality is intertwined with the concept of the inner

product, which is usually described as a measure of the similarity

between two objects. The inner product is a fundamental concept in

linear algebra and its applications extend to more exotic mathematical

structures.

Spaces of objects endowed with an inner product are not limited

to classical vector spaces. Function spaces can be endowed with an

inner product, and so the concept of orthogonality can be extended

to functions. Constructing models using orthogonal functions is a

common practice in many fields, as it yields various advantages. To

state just two examples, in signal processing, the Fourier transform

decomposes a signal into a sum of orthogonal functions, which can

be used to analyze and process the signal (Rudin, 1976); in quantum

mechanics, the eigenfunctions of Hermitian operators form an orthog-

onal basis, which is used to represent quantum states (B. C. Hall,

2013).

In this thesis I present three applications of orthogonality to
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machine learning problems. First, I highlight the importance of or-

thonormality in the choice of basis for constructing sparse Gaussian

process models. Gaussian process models use the properties of the

Gaussian distribution to represent information about infinite dimen-

sional operators using finite dimensional matrices. Many applications

of Gaussian processes rely on approximations to the operator, but

ignore the extent to which this operator remains well-approximated by

a finite-dimensional counterpart. I show that, in one case of sparse

approximation in Gaussian process models, if the basis functions

used to represent the behaviour of the operator are not orthonormal,

the finite-dimensional approximation will be poor. I then present

a way to construct asymptotically orthonormal basis functions for

the Gaussian process, and show that this yields a sparse model

that is asymptotically exact. This yields a novel approach to feature

construction and sparse Gaussian process regression.

Next, I propose a method for embedding and comparing graphs

by calculating an orthogonal polynomial sequence for each graph.

Each graph yields a corresponding inner product, and graphs can

be compared based on their inner product embeddings in an inter-

pretable fashion. To do this I utilise the matching polynomial of a

graph. Certain graphs have matching polynomials that are also or-

thogonal polynomials. I show that by appropriate application of the

spectral theorem, we can construct an estimator for the measure of or-

thogonality of a given graph’s matching polynomial. I exhibit through

examples how graphs that have similar measures of orthogonality can

then be considered to be similar. This is applied to anomaly detection

as a guiding example, using a “landmarks” strategy that captures

anomalous graphs as differing excessively from a given baseline.
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Finally, I look at point process modelling. The standard ap-

proaches to Gaussian Cox point process modelling yield complex

likelihood functions, and much of the literature has considered ways

to render the problem tractable. I propose a new type of Gaussian Cox

process which yields a representation of the process as a sum of or-

thogonal functions, which in turn provides a rapid Bayesian inference

scheme, bypassing the usual difficulties of the highly non-Gaussian

likelihood. This is then extended, through appropriate approximation

schemata for higher-order Gaussian moments, to stochastic classifica-

tion models, yielding a flexible stochastic classifier whose predictions

can be interpreted as exact probabilities and yield direct uncertainty

quantification. This places the approach in contrast to standard

models that train on degenerate distributions to yield probabilistic

predictions in an ad-hoc fashion.



Chapter 2

Preliminaries

In this chapter, we present some of the preliminary concepts and

definitions that will be found throughout the thesis. The aim is to

provide sound theoretical background for the methods that will be

developed through the main chapters. Concepts specific to a given

chapter will be presented there; more general background is found in

the present chapter.

2.1 Stochastic processes
Stochastic processes are a fundamental concept in probability theory.

They link the analysis of given random variables to generalised col-

lections of random variables, providing the ability to model complex

random phenomena.

Definition 1 (Stochastic Process). A stochastic process f on X is a

collection of random variables { f (x)}, indexed by x in index set X .

In any given application, the interpretation of the index variable

will be key to the applicability of the stochastic process model. A

natural one-dimensional stochastic process model might have time as

the index variable, and a given realisation of the stochastic process
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is a function describing the development of some variable of interest

over time.

Naturally, stochastic processes are trivial unless some model of

dependence is constructed that describes the relationship between

the random variables that constitute the realisation of the process.

So-called second-order stochastic processes yield a form whose de-

pendence model is described by a covariance function

Definition 2. A second-order stochastic process is a stochastic process

f (x) on X such that

E
[

f (x)2]≤ +∞ ∀ x ∈ X

We also define the covariance function, which is will be all that is

necessary to describe the dependence model of the type of second-

order stochastic processes that we will work with in this thesis.

Definition 3. A covariance function c : X ×X → R is a function of two

arguments that is symmetric (c(x,x′) = c(x′,x)), and positive definite,

meaning that

N

∑
i=1

N

∑
j=1

c(xi,x j)αiα j ≥ 0

for any N, any x1,x2, ...,xN ∈ X and any αi ∈ R.

The two concepts are tied together by Loève’s theorem, which

constructs a bijection between second-order stochastic processes and

covariance functions.

Theorem 1 (Loève theorem (Loève, 1977)). A function c : X ×X → R is

the covariance function of a second-order stochastic process if and only
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if it is symmetric and positive definite.

2.2 Functional analysis
Various basic concepts from functional analysis will be used through-

out the thesis, and we present the preliminary ideas here. First, we

define a Hilbert space:

Definition 4 (Hilbert Space). A Hilbert space is an inner product space

that is complete with respect to the distance function implied by the

inner product.

That is, a vector space whose elements can be compared using the

inner product. Often covariance functions are described as kernels.

A kernel provides a generalisation of a positive definite matrix to an

infinite dimensional Hilbert space. Specifically, just as matrices are

used to represent operators on vector spaces, kernels are used to

represent operators on function spaces. The connection between

kernels and operators on such function spaces is to be found in the

concept of the Hilbert-Schmidt integral operator.

Definition 5 (Hilbert-Schmidt Operator). A Hilbert-Schmidt operator is

a bounded operator T :H→H acting on a Hilbert space H. On measure

space (X ,F ,ν) with measure ν, the Hilbert-Schmidt operator associated

with a kernel k is:

Tk [ f ] (x) =
∫
X

k (x,y) f (y)dν(y) (2.1)

Further to the discussion regarding the view of the Hilbert-

Schmidt as operator on function spaces, such operators can be viewed

to have eigenfunctions, which we define as follows:
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Definition 6. An eigenfunction of a Hilbert-Schmidt operator connected

to a kernel k and measure space (X ,F ,ν) is a function φ such that:

∫
X

k(x,x′)φ(x′)dν(x′) = λφ(x)

where λ is a scalar referred to as an eigenvalue of the operator.

Just as positive definite matrices can be diagonalised; that is,

written as the composition of a diagonal matrix of eigenvalues, and

a matrix formed of the eigenvectors, kernels can be written as the

composition of a set of eigenvalues and these eigenfunctions, a result

known as Mercer’s theorem. This will be central in much of the work

presented in this thesis.

Theorem 2 (Mercer Theorem (Mercer, 1909)). Given a kernel k : X ×

X → R, define the kernel operator

Tk[ f ](x′) =
∫
X

f (x)k(x,x′)dν(x) (2.2)

for the measure ν. Consider a sequence {φi} of normalised eigenfunc-

tions φi and eigenvalues λi > 0 of this operator:

∫
φi(x)k(x,x′)dν(x) = λiφi(x′)

where the sequence of eigenvalues {λi}∞

i=1 is positive, non-increasing

and absolutely summable. Then one can write the kernel function k(x,x′)

in terms of these eigenfunctions and eigenvalues:

k(x,x′) =
∞

∑
i=0

λiφi(x)φi(x′) (2.3)

The relation between Hilbert function spaces and kernels is to
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be found in the concept of the reproducing kernel Hilbert space. To

understand the relevance of the reproducing kernel Hilbert space, we

first present the Riesz representation theorem.

Theorem 3 (Riesz Representation Theorem). Let H be a Hilbert space

imbued with inner product ⟨x,y⟩. Denote its dual space (the space of

linear functionals operating on H) as H∗. Then, for every continuous

bounded linear functional z ∈H∗ there exists a unique element fz of H

such that:

z(c) = ⟨c, fz⟩ , for c ∈H.

That is, for any continuous linear functional defined on elements

of the RKHS H, there is an element fz of H such that application of the

functional z to an element c is equivalent to taking the inner product

between the element fz and c.

This motivates the reproducing kernel Hilbert space.

Definition 7 (Reproducing Kernel Hilbert Space). For some input space

X , a reproducing kernel Hilbert space Hk is a Hilbert space of functions

f : X → R such that the evaluation functional on Hk is a continuous

linear functional.

By the Riesz representation theorem (Theorem 3), for each x ∈ X

there exists an element k (·,x) ∈Hk such that evaluation of a function

f at x is

⟨ f ,k(.,x)⟩ = f (x).

Given the eigenrepresentation of the kernel (2.3) via eigenfunctions

{φi}∞

i=0 and eigenvalues {λi}∞

i=0, the reproducing kernel Hilbert space
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is then the space of functions:

Hk =

{
f : f (x) =

∞

∑
i=0

αiφi(x);
∞

∑
i=0

α2
i

λi
< ∞

}

with coefficients αi ∈R. If functions f ,g∈Hk have respective sequences

of coefficients { fi}∞

i=0 ,{gi}∞

i=0, then their reproducing kernel Hilbert

space inner product is defined:

⟨ f ,g⟩Hk
=

+∞

∑
i=0

figi

λi
.

The corresponding norm for the RKHS Hk is:

|| f ||Hk =
+∞

∑
i=0

f 2
i

λi
.

2.3 Gaussian processes

Gaussian processes offer a flexible approach to modelling prior belief

over functions. Given the above, we can now introduce the key use of

the above concepts that will appear in the work in this thesis.

The Gaussian process is a stochastic process with particularly

desirable properties.

Definition 8 (Gaussian Process). A Gaussian process is a stochastic

process f , on an index space X , such that any finite subset of values

{ f (x1), f (x2), ..., f (xn)} of f evaluated at a vector {x1,x2, ...,xn} ∈ X d, has

a joint Gaussian distribution. Denoting the index set X ⊆ Rn, and the
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output dimension o, define the functions

s : X → Ro,

k : X ×X → R+,

where k is a positive definite kernel function. A Gaussian process is

completely defined via its mean function s and covariance function k,

by:

E [ f (x)] = s(x)∀x ∈ X

Cov
[

f (x), f (x′)
]
= k
(
x,x′
)
.

If f is a sample from a Gaussian process with mean function s and

covariance function k, then we can write

f ∼ GP(s(·) ,k (·, ·)).

It is well known that the multivariate Gaussian distribution is

fully defined by its mean vector and covariance matrix. The Gaussian

process inherits this property in that it is fully defined by its mean

function s(·) and the covariance function k (·, ·).

2.3.1 Gaussian process as prior belief

The Gaussian process is useful as a mechanism for expressing prior

belief over function spaces (Rasmussen and C. K. I. Williams, 2018).

Much of the preliminary information in this section comes from that

book and the citations found therein. The choice of the mean function

and the kernel in the Gaussian process allows a practitioner to express
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specific prior belief about how the modelled function behaves.

The kernel regulates the differentiability class of the functions

that the Gaussian process can represent (Reade, 1992). For example,

the squared exponential kernel implies that a function drawn from

the Gaussian process will be infinitely differentiable. The Matérn

class, on the other hand, (Matern, 1960) allows one to control the dif-

ferentiability class of the functions drawn from the Gaussian process

by choice of its key parameter.

Examples of prior Gaussian process samples are presented in

Figure 2.1.

−6 −4 −2 0 2 4 6

−200

0

200

X

Y

GP prior samples

Figure 2.1: Samples from a prior Gaussian process under a squared expo-
nential kernel with length-scale parameter 1.

Kernel functions can be described as either stationary or non-

stationary. A stationary kernel k (x,x′) is one that is a function only

of the x− x′, and not the value locations. A further refinement of

stationary kernels are isotropic kernels, which are a function only of

a distance between their inputs. The squared exponential kernel is

an example of an isotropic stationary kernel.

A non-stationary kernel, however, cannot be expressed as a func-

tion of the distance between its inputs.
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Another subclass of kernels is the set of degenerate kernels. A

degenerate kernel is one whose Mercer representation is a finite sum

of functions. Machine learning methods that attempt to construct ap-

proximate representations of kernels by a finite sum of basis functions

yield a degenerate kernel. We highlight this distinction, because the

role of degenerate kernels is pervasive in the work presented herein.

A Gaussian process that does not use a degenerate kernel can be

described as infinite-dimensional; this describes the size of the space

of functions that the Gaussian process can represent, and is separate

from the dimensionality of the input vector to the sample functions.

In general, it is not possible to truly generate samples from an

infinite Gaussian process, and details on the standard process for

sampling from Gaussian processes are outlined in Chapter 3. However,

for finite-dimensional Gaussian processes, i.e. those connected to

degenerate kernels, sampling can be achieved in a simple fashion if

the Mercer representation of the kernel is available. This is a result

of the Karhunen-Loève theorem.

Theorem 4 (Karhunen-Loève Theorem, (Karhunen, 1947)). Suppose

that f (x) is a zero-mean square integrable stochastic process, with

continuous covariance function k : X ×X → R, over a measure space

(X ,F ,ν) for some measure ν. Then, k (·, ·) is a Mercer kernel. Denote

by {φi}∞

i=0 the eigenfunctions, and by {λi}∞

i=0 the eigenvalues of the

corresponding Hilbert-Schmidt operator Tk [·] (see (2.1)). Then there exist

random variables {θi}∞

i=0 such that:

f (x) =
∞

∑
i=0

θiφi(x) (2.4)

where the random variables {θi}∞

i=0 are uncorrelated, and θi has vari-



2.3. Gaussian processes 28

ance λi.

In Theorem 4 no reference is made to the degeneracy of the kernel.

However, if the kernel is degenerate, it is simple to generate a Gaussian

process sample as f (x) = ∑
m
i=0 θiφi(x). where θi ∼N (0,λi). It is easy to

see that this yields the correct covariance:

E
[

f (x) f (x′)
]
= E

[
m

∑
i=0

m

∑
j=0

θiθ jφi(x)φ j(x′)

]

=
m

∑
i=0

m

∑
j=0

E
[
θiθ j

]
φi(x)φ j(x′)

=
m

∑
i=0

m

∑
j=0

E
[
θ

2
i
]

δi jφi(x)φ j(x′) (2.5)

=
m

∑
i=0

λiφi(x)φi(x′)

= k(x,x′)

where (2.5) follows from the independence of θi,θ j.

2.3.2 Gaussian process as posterior belief

Updating from the Gaussian process prior to the posterior based

on observations yields what is referred to as the posterior Gaussian

process. Intuitively, the update formulae have the effect of restricting

the samples generated from the Gaussian process to be consistent

with the observations made. To appreciate this we first describe a

standard sampling regime. We assume a measure space (X ,F ,ν), and

that the practitioner has access to a set of observations D = {xi,yi}N
i=1,

where the input values {xi}N
i=1 are sampled from X according to ν.

The output values yi are assumed to be generated as the output of

some function f at the input points xi corrupted by Gaussian noise
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εi ∼N
(
0,σ2):

y = f (x)+ ε

where ε is a vector of Normally distributed random variables.

Given a kernel k and assuming a mean function constant at zero,

the posterior Gaussian process sample has mean function, evaluated

at test points x∗:

s(x∗) |D = k (x∗,X)(K(X ,X)+σ
2I)−1y (2.6)

and covariance function:

K(x∗)|D = k (x∗,x∗)− k (x∗,X)(K(X ,X)+σ
2I)−1k (X ,x∗) (2.7)

The above formulae, when used to generate posterior Gaussian

process sample, lead to sample functions as in Figure 2.2.
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Figure 2.2: Samples from a posterior Gaussian process with squared ex-
ponential kernel with length-scale parameter 1, conditioned on
observations at x =−2 and x = 3.5.
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2.3.3 Inference in Gaussian process models

Inference in Gaussian process models essentially refers to the method

by which one chooses the hyperparameters of the kernel. Since the

choice of the kernel affects the behaviour of the functions represented

by the Gaussian process, the choice of hyperparameters is crucial to

the performance of the Gaussian process model.

Such inference is typically performed using the marginal likeli-

hood function. In order to use the full likelihood function, one must

take into account the inputs, the observations, and the latent values

of the Gaussian process function f . These values are unknown, and

so one must integrate out the latent values f (Rasmussen and C. K. I.

Williams, 2018). This yields the marginal likelihood function:

−N
2

ln(2π)− 1
2

ln | K +σ
2IN | −

1
2

y′
(
K +σ

2)−1 y (2.8)

which depends only on the observed values.

The standard approach to selection of kernel hyperparameters

is to maximise the marginal likelihood function with respect to the

kernel hyperparameters. This is typically done using gradient-based

optimisation methods. Details of construction of the gradient of this

function can be found in Rasmussen and C. K. I. Williams (2018).

2.4 Orthogonal Polynomials
Another topic recurrent in the work in this thesis is that of orthogonal

polynomials. The standard introduction to orthogonal polynomials is

given in Chihara (2011) and sources therein. In many applications it is

necessary or desirable to maintain an orthonormal basis of functions.

This is particularly true in the context of Gaussian processes, where
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the Mercer representation of the kernel requires an orthonormal

sequence of eigenfunctions.

Chapter 3 will illustrate a connection between orthogonal poly-

nomials and Gaussian processes, wherein we develop a method for

generalising the construction of Mercer kernels by constructing basis

functions from orthogonal polynomials.

In Chapter 4, we present a use of orthogonal polynomials to

construct embeddings of graph structure, and an application of this

approach to embedding dynamic sequences of graphs.

Orthogonal polynomials also see much use in random matrix

theory. Distributions over random matrices are usually confined

to spaces of unitarily equivalent matrices; that is, matrices that

differ only by an orthogonal transformation. Distributions over such

matrices are said to be invariant under unitary transformations, and a

specific distribution over eigenvaluess described as a unitary ensemble

(Deift, 2000). In that setting, the k-point correlation function of the

point process describing the eigenvalues of the matrix is given by the

determinant of a Gram matrix of a kernel formed using the orthogonal

polynomials associated with the given distribution. This is known as

the Christoffel-Darboux kernel (Tao, 2012).

The Christoffel-Darboux kernel also plays a role in approxima-

tion theory (Lasserre, Pauwels, and Putinar, 2022). Data from a

given distribution can be used to calculate sequences of orthogonal

polynomials. Conversely, the orthogonal polynomials can be used to

construct the Christoffel-Darboux kernel, which provides information

about the measure of orthogonality. This connection will be used

extensively in Chapter 4.

We begin with the concept of the linear moment functional, the
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standard point of departure for an analysis of orthogonal polynomials.

Whilst in most cases, such polynomials will be defined with respect

to a distribution (or at least, a general measure on a measure space),

they technically only require the definition of a functional mapping

polynomials to real numbers. We mostly follow the notation used by

Chihara (2011).

Definition 9 (Linear Moment Functional). Define L to be a function

on the vector space of polynomials P. We write application of L to a

polynomial P(x) ∈ P as:

⟨L,P(x)⟩

For a sequence µ = {µn}∞

n=0, L is called a linear moment functional if it

has the following two properties:

• L maps the monomials to the sequence µ; i.e.
〈
L,x j〉 = µ j.

• L is linear; i.e. ⟨L,aP1(x)+bP2(x)⟩ = a⟨L,P1(x)⟩+b⟨L,P2(x)⟩.

A linear moment functional can be characterised as positive defi-

nite, depending on its behaviour when applied to everywhere-positive

polynomials (Chihara, 2011). However, to avoid unnecessary inter-

mediate definitions we define positive definiteness of linear moment

functions directly in terms of the Hankel determinants of appropriately

defined moment matrices.

Definition 10 (Positive Definite Linear Moment Functional). Define a

linear moment functional L to be a mapping from the space of polynomi-

als P to complex numbers: L :P →C. Such a linear moment functional is

uniquely defined by the system L[x j] = µ j, for some sequence
{

µ j
}∞

i=0. A
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linear moment functional L with moment sequence µ = {µi}∞

i=0 is called

positive definite if the following inequality holds for all i:

Hn ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 ... µi

µ1 µ2 ... µi+1

µ2 µ3 ... µi+2

... ... ... ...

µi µi+1 ... µ2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 ∀ i (2.9)

The linear moment functional construction however can be devel-

oped by representing the functional as a Stieltjes integral. That is, we

can equate linear moment functionals with integrals like:

〈
L,xk

〉
=
∫
R

xkdν(x) (2.10)

for an appropriate measure ν. This is a result of the representation

theorem for moment functionals (Chihara, 2011).

Given the concept of the linear moment functional, the notion of

an inner product on the space of polynomials can be defined. This

is how we can consider the concept of the orthogonal polynomial

sequence; without a concept of inner product on polynomials, such

a concept would not be feasible. The linear moment functional con-

cept does not require in and of itself an integral representation. As

shown by Chihara (2011), this integral representation is a result of

the representation theorem for moment functionals, which shows

that for a given linear moment functional as defined above, there

exists an appropriate distribution function ν that yields the integral

representation as in 2.10. However, construction of an inner product

on polynomials is valid without this integral representation via a
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purely algebraic consideration of the ring of polynomials (Lang, 2002).

Specifically, it is valid to write the inner product of two polynomials

as:
〈
L,PiPj

〉
since the product of two polynomials is again a polyno-

mial. Thus, it is possible to construct an inner product on spaces

of polynomials using a linear moment functional as defined above

without yet needing to consider integrals or measures.

We can thus define the orthogonal polynomial sequence:

Definition 11 (Orthogonal Polynomial Sequence). Suppose a moment

linear functional L. An Orthogonal Polynomial Sequence (OPS) is a

sequence of polynomials {Pn} s.t.: for all integers n, m:

• Pn(x) is a polynomial of degree n,

• ⟨L,Pn(x)Pm(x)⟩ = 0, n ̸= m

•
〈
L,P2

n (x)
〉
̸= 0.

and its normalised counterpart:

Definition 12 (Orthonormal Polynomial Sequence). Given a linear

moment functional L, an orthonormal polynomial sequence {Pn} is a

polynomial sequence such that

• {Pn} is an OPS;

•
〈
L,P2

n (x)
〉
= 1.

A key property of orthogonal polynomials is the three-term recur-

rence (Chihara, 2011; Ding and Trogdon, 2021).

Theorem 5 (Orthogonal Polynomial Recurrence (Chihara, 2011)). Let

L be a linear moment functional with corresponding moment sequence

{µi}i=0. Let {Pn(x)}∞

n=0 be an OPS with respect to L. Then there exist
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sequences of coefficients, {βn}n=0, βn ∈R, and {γn}n=0, γn ∈R+ such that

the following three-term recurrence holds for {Pn(x)}∞

n=0,

P−1(x) = 0,

P0(x) = 1,

Pn(x) = (x−βn)Pn−1(x)− (γn)Pn−2(x). (2.11)

The inverse of this property is also true, and is known as Favard’s

Theorem (Chihara, 2011).

Theorem 6 (Favard’s Theorem (Favard, 1935)). Let {βn}n=0 be an

arbitrary real sequence, and {γn}n=0 be a sequence of positive real

numbers. Let {Pn(x)}∞

n=0 be a polynomial sequence such that P0(x) = 1,

and following the recurrence:

Pn(x) = (x−βn)Pn−1(x)− γnPn−2(x).

where we write P−1(x) = 0 so the recurrence holds for all n. Then

{Pn(x)}∞

n=0 is an orthogonal polynomial sequence (OPS); and there is

a unique moment functional L s.t. ⟨L,1⟩ = γ1 and
〈
L,Pj(x)Pk(x)

〉
= B jδ jk

for some constant B j depending on the order of the polynomial.

This implies that the space of orthogonal polynomials is dense,

in the sense that perturbations to the recurrence coefficients lead

to a sequence of polynomials that is still orthogonal with respect

to some measure. Understanding the effect of perturbation of the

recurrence coefficients on the measure of orthogonality is a topic of

active research (Ding and Trogdon, 2021).

This result will be used thoroughly in the present thesis. In Chap-

ter 3 it will allow us to construct, given information on a distribution
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(or measure) ν, a sequence of orthonormal basis functions. In Chap-

ter 4, it will allow us to consider specific sequences of polynomials

defined to represent properties of graphs. This will allow us to ex-

tract structural information about sequences of graphs for a general

graph feature construction method, and detect anomalous graphs as

a result.



Chapter 3

Favard Kernels for Sparse

Gaussian Process Models

3.1 Introduction

The Gaussian process models presented in Chapter 2 are a power-

ful tool for conducting both classification and regression problems

(Rasmussen and C. K. I. Williams, 2018), as well as more exotic appli-

cations such as in modelling robotic dynamics (Deisenroth and Ras-

mussen, 2011), normalising flows for generative modelling (Maroñas

et al., 2021), reinforcement learning applications (Strens, 2000; Fan,

Chen, and Wang, 2018), and Bayesian optimisation (Brochu, Cora,

and Freitas, 2010).

As noted in the preliminary section, the standard approach to

inference over the hyperparameters of the kernel function is achieved

by optimising the marginal likelihood of the Gaussian process model.

This relies on the conditioning property of Gaussian processes. This

is the fact that conditioning only on the observations, i.e. a finite

subset of the possible inputs to the unknown function, inference is

the same as if one had taken the rest of the unobserved function into
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account.

The optimisation of the marginal likelihood (2.8) is however a

non-trivial task in big data settings. It requires the evaluation, at

each optimisation step, of both the inverse and the determinant of

the covariance matrix of the Gaussian process, which is of dimension

N×N, where N is the number of data points. Both these operations

are of complexity O
(
N3), which is prohibitive in settings where large

sample sizes are available.

Furthermore, the generation of posterior samples carries a similar

complexity, given that the standard approach requires generation of

the Cholesky decomposition of the covariance Gram matrix, evaluated

at the datapoints. The result is that sparsification techniques for

Gaussian process models are highly desirable.

Classical approaches to the problem of speeding up Gaussian

process inference include variational methods, such as (Titsias, 2009),

which constructs a variational approximation of the posterior, and

selects in practice an appropriate subset of the observed data to be

used as inducing points. The resulting model is then optimised using

the variational lower bound on the marginal likelihood.

The concept of selection of inducing points in the domain of the

Gaussian process is extended to the spectral domain by the Variational

Fourier Features method (Hensman, Durrande, and Solin, 2018). The

approach here projects the Gaussian process onto a windowed Fourier

basis.

This manages to speed up inference by lowering the rank of the

corresponding covariance matrix; if the number of inducing points

m << N, then the high computational complexity of the optimisation

of the Gaussian process marginal likelihood can be avoided. The
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complexity of this method is on the order of O
(
m2N

)
for initial compu-

tation, and then O
(
m3). This is equivalent to the method outlined in

this chapter.

Another approach (Rahimi and Recht, 2007) follows the observa-

tion noted above that the kernel represents an inner product on an

appropriately defined space. The Random Fourier Feature technique

uses randomised sampling and Bochner’s theorem (Puckette and

Rudin, 1965) to generate “Fourier” features, whose inner product is

in expectation equal to the kernel. The method achieves good approxi-

mation performance (Hoang et al., 2020), but appears to require large

feature counts e.g. m≈ 5000 to achieve good performance (Rahimi and

Recht, 2007).

Methods that utilise the spectral properties of the kernel, both

as a matrix and an operator, have also been considered. The idea

is to use projections of the kernel onto a finite dimensional basis

(Trecate, C. K. Williams, and Opper, 1999). Such methods can often

achieve complexity linear in the sample size (Solin and Särkkä, 2020;

Daskalakis, Dellaportas, and Panos, 2022). Another approach is to

use the Nyström method (Girolami, 2002; Rasmussen and C. K. I.

Williams, 2018), which attempts to construct approximately orthogo-

nal features by noting that the Hilbert-Schmidt operator formulation

(see Section 2.1) can be thought of as an appropriately defined ex-

pectation. The method generates approximate features by sampling

from the appropriate input density ν, and then generating vector

evaluations from the orthogonal basis that would form the Mercer

eigenfunction expansion of the kernel under ν. However, as noted by

Flaxman, Teh, and Sejdinovic (2017), the result differs whether one

includes the observed data points in the constructed basis or not,
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and this has to be taken into account when utilising that method.

The quintessential spectral approach is, where available, to utilise

the Mercer eigenfunction expansion of the kernel (Zhu et al., 1998;

Fasshauer, 2012a). If the eigenfunction expansion is available, then

the properties of the Gaussian process modelled using such a kernel

approximation are state-of-the-art (Braun, 2006; Daskalakis, Del-

laportas, and Panos, 2022). In general this decomposition is not

available for arbitrary kernels and measures, as they rely on the

solutions to difficult integral equations.

One approach to solve this problem (Daskalakis, Dellaportas,

and Panos, 2022) is to utilise a neural network training phase that

learns the mapping from the input space to a space on which the

inputs are Gaussian-distributed; however, this training phase likely

induces complexity great enough that the sparsity gains are lost. More

recent approaches (Cunningham et al., 2023) essentially ignore the

problem of orthonormality of the features, and instead use B-splines

to construct features that can be used to construct the Gaussian

process samples, to achieve sparse kernel matrices.

In this chapter we present a method that utilises a Mercer kernel

construction with focus on the necessity that the basis functions be

orthonormal with respect to the input distribution. The motivation for

this is to be found in Theorem 7. This theorem shows that a necessary

and sufficient condition for the eigenvalues of the kernel matrix to

be consistent with the eigenvalues of the covariance operator of the

Gaussian process is that the basis functions be orthonormal with

respect to the input distribution. Previous work has only yielded the

sufficiency of this condition (see Braun, 2006).

As we note in Section 3.3, the importance of the orthonormality
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of the projected basis has been largely ignored in the literature. The

only work that appears to have attempted to look at this in depth is by

C. K. I. Williams and Seeger (2000), in the context of SVM classification

models. In the literature on Gaussian process sparsification, there

is much attention paid to the convergence of the operators that are

being approximated, but little attention paid to the convergence of the

corresponding finite-dimensional representations of those operators.

The work in this chapter aims to address this gap in the literature.

3.2 Related Work
The approach to GP sparsification presented by Solin and Särkkä

(2020) views the kernel as a pseudo-differential operator. This oper-

ator can be written as a formal series of Laplace operators, and the

kernel can be approximated using the eigenfunctions of these Laplace

operators on some given space. These eigenfunctions are in essence

orthogonal with respect to a uniform input measure. The authors also

note that it is possible to consider the inner products in terms of an

input density, stating that the approximation error in the technique

they propose will be small if the input measure is close to constant in

the region of the data. Difficulties in constructing the eigenfunctions

of the weighted linear operator implied by an input density in that

manner mean that we expect our method to prove useful in such

situations. Our method does not require explicit statement or consid-

eration of boundary conditions, nor requires that the input density be

close to uniform around the data. Furthermore, the scalar version of

their approach is connected to the eigenfunctions of a Sturm-Liouville

operator. However, as has been known for almost a century (Bochner,

1929), the only polynomial solutions to this differential equation are



3.3. Motivation 42

the classical orthogonal polynomials. Our approach essentially gen-

eralises that technique by allowing for (quasi-)polynomial functions

that are orthogonal with respect to more exotic measures than those

corresponding to the classical orthogonal polynomials, and therefore

we consider our method to sit complementary to the Hilbert-space

methods described by Solin and Särkkä (2020).

Recent work has also achieved O
(
m3) (see Cunningham et al.,

2023) which construct the basis functions as a set of B-splines. Their

approach however suffers from problems in high-dimensions, and

currently only approximates Matérn kernels. Since our approach can

include representations of Matérn kernels, the squared exponential

kernel, and non-stationary kernels, we believe that our approach

can be considered competitive to theirs. We also explicitly take into

account the orthogonality of the basis functions with respect to the

input measure, which avoids divergence of the matrix eigenvalues

from the operator eigenvalues (see Theorem 7).

3.3 Motivation

We assume a measure space (X ,F ,ν); and an output space Y. The

measure ν describes the distribution from which inputs x ∈ X are

drawn, and the practitioner is provided with a joint sample (x,y) ∈

XN×YN. where N is the sample size. The output vector is assumed to

have been generated as y = f̂ (x)+ ε, where f̂ : X →Y is an unknown

function, and ε ∈ YN is a zero-mean Gaussian distributed noise vector.

It is assumed that the practitioner aims to construct a Bayesian model

over the unknown function, in the form of a Gaussian process.
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3.3.1 Gaussian processes

Assume a kernel function k :X ×X →R, and a mean function s :X →R.

We can denote that a random function is generated as a sample from

a Gaussian process by writing: f ∼ GP(s(·) ,k (·, ·)).

3.3.1.1 Applying Mercer’s theorem

For a given kernel k and input measure ν, by Mercer’s theorem (Theo-

rem 2), (Mercer, 1909), the kernel can be written

k
(
x,x′
)
=

∞

∑
i=0

λiφi(x)φi(x′) (3.1)

where the functions φi : X → R are an orthonormal sequence with re-

spect to ν. Depending on the measure, and specifically depending on

the properties of the decay of its moments, this sequence of functions

may constitute a basis in L2(ν) (Deift, 2000; Chihara, 2011). The

eigenvalues λi are non-negative and decreasing in i. If the represen-

tation in terms of orthonormal basis functions is available, then an

approximate Gaussian process likelihood can be written as:

L(x,y) =− N
2

ln(2π)− 1
2

ln |ΦΛΦ
′+σ

2IN | (3.2)

− 1
2

y′
(
ΦΛΦ

′+σ
2)−1 y

where Φ is an N×m matrix of basis functions evaluated at the inputs;

Λ is a diagonal matrix comprising the perator eigenvalues {λi}m
i=0; σ2

is the variance parameter of the noise variable ε; IN is an N×N identity

matrix. The idea is that we can approximate the Gaussian process

kernel using a finite sum of m basis functions, as the decay of the

eigenvalues λi will allow us to truncate the sum in Equation 3.1 to a

finite sum. When the marginal likelihood written in this form, it is then
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possible to speed up the evaluation of the Gaussian process likelihood

via the Woodbury-Sherman-Morrison (WSM) formulae (Rasmussen

and C. K. I. Williams, 2018):

|ΦΛΦ
′+σ

2IN |= σ
2N |Λ||Λ−1 +σ

−2
Φ
′
Φ| (3.3)

(ΦΛΦ
′+σ

2IN)
−1 = σ

−2IN−σ
−2

Φ
(
σ

2
Λ
−1 +Φ

′
Φ
)−1

Φ
′. (3.4)

Note that the inverse and determinant terms in the above formulae

are of complexity O
(
m3), where m is the number of basis functions

used in the degenerate Mercer decomposition approximation.

This is the key to the approach taken to several sparse Gaus-

sian process models (Wilson et al., 2020; Cunningham et al., 2023;

Daskalakis, Dellaportas, and Panos, 2022). Usage of the WSM formu-

lae allows the likelihood to be evaluated in O
(
mN2) time. However, in

the method presented in the current chapter, and those by Hensman,

Durrande, and Solin (2018) and Cunningham et al. (2023), the basis

functions and therefore the matrix Φ′Φ are calculated beforehand

which allows us to achieve O
(
m3) time complexity in the repeated

likelihood evaluation step. This yields large gains when m << N.

However, in many cases these eigenfunctions are not available.

The reason for this is that the integral equation that defines the eigen-

functions φi is often not solvable analytically. Classic examples are the

case of the squared exponential kernel under Gaussian-distributed

inputs (Zhu et al., 1998; Fasshauer, 2012b), and the Matérn kernel

under uniform inputs (Daskalakis, Dellaportas, and Panos, 2022).
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3.3.1.2 Classic example

To aid the exposition, we present the classic example of the squared

exponential kernel under Gaussian-distributed inputs. The standard

smooth exponential kernel with l > 0 and σ2 > 0 is defined as

k
(
x,x′
)
= σ

2 exp
(
−||x− x′||2

2l2

)

where || · || is the Euclidean norm. Under the assumption of Gaussian

input measure with mean 0, with precision α > 0, the corresponding

decomposition of the kernel is given by (Zhu et al., 1998)

φi(x) = diHi(
√

2cx)exp
{
−(c−α)2}

where Hi represents the i-th Hermite polynomial, di is a normalising

coefficient, c =
√

α2 +2αl and these basis functions are orthonormal

with respect to the zero-mean Gaussian distribution with precision α.

As noted above, in order to utilise the advantages of the Mercer

decomposition for a given kernel it is necessary to calculate the eigen-

functions and eigenvalues {φi,λi}i=0 that fulfill the following equation:

Tk [φi] (x′) :=
∫
X

k
(
x,x′
)

φi(x)dν(x) = λiφi(x′).

Because of the difficulty of this integral for arbitrary measures, it

might seem natural to ignore the dependence on the input measure

and simply use the standard Gaussian input Mercer decomposition,

without concern for the input distribution. We will show that this

method is not valid and will lead to non-representative learnt distri-

butions.
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We also consider a more conceptual aspect of Gaussian process

models. The Gaussian process is a prior over functions, and the

associated covariance function describes essentially an operator on

functions (via (2.1)). The usefulness of the Gaussian process is based

on the conditioning property of the Gaussian distribution (Rasmussen

and C. K. I. Williams, 2018). Specfically, the Gaussian process repre-

sents an infinite-dimensional distribution on function evaluations, but

conditioning on a finite number of points yields a finite-dimensional

Gaussian distribution. This is the key to the computational tractabil-

ity of Gaussian process models, as we can essentially ignore the

infinite-dimensional nature of the process and reach the same con-

clusions by conditioning on the observed values.

In this way, learning the parameters of the Gaussian process is

equivalent to learning the operator on function spaces represented

by the kernel. This operator is represented in finite dimensions by

using a matrix. Naturally, one would expect that the covariance

matrix should converge in some sense to the same operator as the

covariance function. It has been shown elsewhere (Braun, 2006) that a

sufficient condition for such a convergence is that the eigenfunctions

of the covariance operator are orthonormal with respect to the input

distribution. However, we now present an extension to this theorem

showing that orthonormality is a necessary and sufficient condition

for such convergence.

Theorem 7 (Eigenvalue Consistency). Suppose (X ,F ,ν) a measure

space with ν absolutely continuous with respect to Lebesgue measure.

Assume we can sample from X , to generate x = {xi}N
i=0. Let {φi}m

i=0 be

a sequence of functions φi : X → R Construct the matrix K = 1
N ΦΛΦ′
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where Λ is a diagonal matrix with Λii = λi, and Φi j = φ j(xi). The i-th

decreasingly ordered eigenvalue of a matrix A is denoted λi(A). Then,

as N→ ∞, and for i ∈ {1,2, ...,m},

|λi−λi(K)|
λi

→a.s. 0

if and only if {φi}m
i=0 are orthonormal w.r.t ν, and where by →a.s. we

denote almost sure convergence.

Proof. Proof in Appendix B.

This theorem essentially states that the use of incorrect orthonor-

mal basis functions decouples the Gaussian process model from the

underlying operator on function spaces. In Figure 3.1, we present

empirically the effect of an incorrect input distribution on estimators

of the kernel eigenvalues. Estimators for the kernel eigenvalues can

be constructed by scaling the first m eigenvalues of the kernel matrix

by 1
N .

The results in Figure 3.1 show that the (scaled) finite dimensional

representation of the kernel as an operator will not converge to the

true operator if the basis functions are not orthonormal. This will

be especially egregious when it comes to evaluate models by compar-

ison of the covariance matrix; distance measures between Normal

distributions such as the Kullback-Leibler divergence will produce

incorrect or misleading values when applied to comparisons between

Gaussian processes.

To clarify this point, note that convergence in probability of the

covariance matrix eigenvalues implies convergence of both its trace

and its determinant. The Kullback-Leibler divergence between two
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Figure 3.1: Eigenvalue consistency failure in non-orthonormal basis func-
tions. The first 20 eigenvalues of 1

N Φ′ΛΦ evaluated at a sample
of size 1000 under different input distributions, where Φ is the
“Fasshauer” basis, orthogonal with respect to a Normal distri-
bution. The red line represents the eigenvalue estimates under
the correct input distribution, which is N (0,0.25); the blue line
is the correct set of eigenvalues. The black line (”Linear input
distribution”) shows the eigenvalues of the kernel matrix evalu-
ated at evenly spaced samples, and the green line is calculated
under a sample distributed according to a Gamma distribution.

d−dimensional multivariate Normal distributions with the same mean

is given by

DKL (N1 || N2) =
1
2

(
TrK−1

N2
KN1−d + log

detKN2

detKN1

)
.

where TrA denotes the trace of a matrix A; detA denotes the determi-

nant of a matrix A; and KNi denotes the covariance matrix of a mul-

tivariate Normal distribution. The terms in this expression depend

directly on the eigenvalues of the matrices KN1 and KN2. Comparison

between Gaussian processes, by comparing the finite-dimensional

covariance matrices using the Kullback-Leibler divergence will be

misleading if the eigenvalues of the covariance matrix do not converge

to the eigenvalues of the covariance operator.

In Figure 3.2, we present the effect on the KL-divergence between
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two d-dimensional Gaussian random variables; one with covariance

matrix approximated by the Mercer approximation, and one with the

full kernel. In this case the Mercer approximation is constructed us-

ing the correct eigenfunctions. In Figure 3.3, we present the effect on

the KL-divergence between two Gaussian random variables; one with

covariance matrix approximated by the Mercer approximation, and

one with the full kernel, where now the Mercer approximation matrix

uses inputs from a Gamma(5,5) distribution. This clarifies that, despite

attempting to approximate the same operator, the Mercer approxi-

mation using incorrect eigenfunctions can lead to finite-dimensional

representations that are very different. This will need to be taken

account in comparison of any sparse Gaussian process models.
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Figure 3.2: KL divergences of the approximate kernel matrix from the true
kernel matrix under a Gaussian input distribution. The approx-
imate kernel matrix is calculated using the “Fasshauer” basis
with 20 basis functions. The true kernel matrix is calculated
using the Gaussian kernel with length-scale 1.0. We generate
1000 Gaussian-distributed input samples, and calculate the
KL divergence from the approximate to the true kernel matrices
for each of these samples. The resulting KL divergences are
plotted as a histogram. The input distribution is the correct
distribution (N (0,0.25)).
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Figure 3.3: KL divergence of the approximate kernel matrix from the true
kernel matrix under a Gamma(5,5) input distribution. The ap-
proximate kernel matrix is calculated using the “Fasshauer”
basis with 20 basis functions. The true kernel matrix is cal-
culated using the Gaussian kernel with length-scale 1.0. We
generate 1000 Gamma-distributed input samples, and calcu-
late the KL divergence from the approximate to the true kernel
matrices for each of these samples. The resulting KL diver-
gences are plotted as a histogram. The input distribution is
Gamma(5,5).

3.4 Method

We now present a method for achieving fast Gaussian process training

whilst capturing orthonormality of the basis functions. We begin with

the definition of a truncated reproducing kernel Hilbert space (RKHS).

Definition 13 (Truncated Reproducing Kernel Hilbert Space). For

some input space X ⊂ R, and a measure ν on X , define a sequence

of functions φi : X → R, such that {φi}m
i=0 are orthonormal with respect

to ν. Define λ = {λi}m
i=0 to be a strictly positive, decreasing sequence

of real numbers. A truncated reproducing kernel Hilbert space Hm
k is

a reproducing kernel Hilbert space (RKHS) comprising the space of

functions f : X → R:

Hm
k =

{
f : f (x) =

m

∑
i=0

αiφi(x)

}
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with coefficients αi ∈ R. We call m the order of Hm
k . The truncated

reproducing kernel Hilbert space inner product between functions f ,g ∈

Hm
k , with respective sequences of coefficients { fi}m

i=0 ,{gi}m
i=0, is defined

as:

⟨ f ,g⟩Hm
k
=

m

∑
i=0

figi

λi
.

Given the measure space (X ,F ,ν), and the kernel k, denote the

corresponding RKHS as Hm
k where m is the dimension of the space.

Define a mean function s ∈Hm
k , so that s(x) = ∑

m
i=0 siφi(x) for {si}m

i=0 real.

By definition, the elements ofHm
k can be written as linear combinations

of the functions φi, so we will often refer to φi as basis functions,

without special regard for the specific function space.

A Gaussian process f ∼ GP(s(·) ,k (·, ·)) can be written:

f (x) =
m

∑
i=0

θiφi(x) (3.5)

where θi ∼ N (si,λi). This is a result of Theorem 4. Given the basis

functions, generation of Gaussian process samples can be achieved

by generating the coefficients {θi}m
i=0.

The method we present allows for application of this orthonormal

basis decomposition for arbitrary input distribution settings. We will

need to acquire sequences of orthonormal functions with respect to

essentially arbitrary input measures with finite moments. This is

made possible via the application of Favard’s theorem (Theorem 6,

see Section 2.4).

The theorem provides us with a simple method for construction

orthonormal basis functions. Provided we can calculate the recur-
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rence coefficients for a given distribution, it is possible to generate

the basis functions. Construction of recursive formulae for these

coefficients, and analysis of the conditioning of the mapping from

moments of the measure ν to coefficients has been carried out by

Gautschi (1982, and 2004). Asymptotics of orthogonal polynomials

are considered by Deift et al. (1999) and more recently by Ding and

Trogdon (2021) in connection to random matrix theory.

The following theorem clarifies the usefulness of the orthogonal

polynomial approach to Gaussian process modelling.

Theorem 8. Assume (X ,F ,ν) a measure space with a measure ν, and

that the moments {µi}i=0 of ν fulfil Carleman’s condition; ∑
+∞

n=0 µ
− 1

2n
2n =+∞.

Then, there exists an orthonormal sequence of functions φi : X → R of

the form φi(x) = diPi(x)w
1
2 (x) for i ∈ N, where:

• di ∈ R+ is a normalising constant;

• Pi a polynomial Pi : X → R belonging to an OPS {Pi(x)}∞

i=0 which is

orthogonal w.r.t to the measure with density w(x)dν(x);

• w is any square-integrable weight function w : X → R such that

w(x)≤ 1,

and, if the support of ν is compact, then the functions {φi} form a basis

in L2[wdν ].

Proof. Proof in Appendix B.

The remarks regarding the weight function are important, because

they allow us to control the extreme behaviour of polynomials far from

the region containing their roots. The form described in Theorem 8

is found in the construction of Tronarp and Karvonen (2022), who
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construct basis functions for specific kernels and measures. In this

way, the method we describe generalises their as our functional forms

encompass the ones found in their constructions.

Under the sampling paradigm described at the beginning of the

previous section, for large N we can construct basis functions that

are approximately orthonormal with respect to the input distribution

ν as follows.

For general measures ν, define the sequence of power moments

{µi}∞

i=0 =
∫
X xidν, assuming that ν is such that all these moments exist.

Define the Hankel determinants:

Hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 ... µn

µ1 µ2 ... µn+1

...

µn µn+1 ... µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.6)

H ′n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 ... µn−2 µn

µ1 µ2 ... µn−1 µn+1

...

µn−1 µn ... µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.7)

Using these, write the coefficient recurrence formulae (Gautschi,

1982):

βn =
H ′n
Hn
−

H ′n−1

Hn−1
(3.8)

γn =
HnHn−2

H2
n−1

. (3.9)

We will construct an approximately orthonormal sequence using
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the empirical counterparts of these Hankel determinants,

Ĥn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ̂0 µ̂1, ..., µ̂n

µ̂1 µ̂2, ..., µ̂n+1

...,

µ̂n µ̂n+1 ..., µ̂2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.10)

Ĥ ′n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ̂0 µ̂1, ..., µ̂n−2 µ̂n

µ̂1 µ̂2, ..., µ̂n−1 µ̂n+1

...,

µ̂n−1 µ̂n ..., µ̂2n−3 µ̂2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.11)

We then use these to construct empirical versions of the recurrence

coefficients, written

β̂
N
n =

Ĥ ′n
Ĥn
−

Ĥ ′n−1

Ĥn−1
(3.12)

γ̂
N
n =

ĤnĤn−2

Ĥ2
n−1

. (3.13)

We present a simple convergence theorem that shows that, using

the empirical coefficient definitions above, we can construct an asymp-

totically orthonormal sequence that, given the result of Theorem 7

will lead to convergent eigenvalue estimators.

Theorem 9. Given an absolutely continuous measure ν on a space

X ⊂ R, denote its monomial moments by {µi}∞

i=0. Define the Hankel

determinants as in (3.6), (3.7). From these define the recurrence co-

efficients (3.8), (3.9). By Theorem (6), construct the OPS {Pi}∞

i=0 using

{βi}∞

i=1 ,{γi}∞

i=1.

Denoting the sample moments µ̂ j, construct the Hankel matrices con-

structed from these as Ĥn, Ĥ ′n and the resulting empirical recurrence
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coefficient sequences β̂ , γ̂. Via Favard’s theorem, use these to construct{
P̂i(x)

}
i=0, the corresponding empirical orthogonal polynomial sequence.

Then, as N→ ∞, P̂i(x)→p Pi(x), for all i.

Proof. Proof in Appendix B.

An initial approach to construction of a Gaussian process model

consists first of calculating the empirical moments µw
j = 1

N ∑
N
i=0 x j

i w(xi)

and apply Theorem 9. However, in practice we use the modified

moment Chebyshev method, described by Gautschi (2004). The

standard approach to construction orthogonal sequences on vec-

tor spaces, given an appropriate inner product, is the Gram-Schmidt

process. However, this process is numerically unstable. As explained

by Gautschi (2004), the modified moment Chebyshev method achieves

the same result whilst using a more numerically stable process, which

avoids the calculation of the especially ill-conditioned determinant

formulae (3.6), (3.7).

3.4.1 Parameter Learning and Order Selection

3.4.1.1 Parameter learning

Construction of a kernel, given an orthonormal basis {φi}m
i=0, requires

selection of a sequence of eigenvalues. As explained elsewhere (Reade,

1984; Reade, 1992; Kanagawa et al., 2018), the behaviour of the eigen-

values of the covariance operator has direct effects on the behaviour

of samples. Specifically, the rate of decay of the eigenvalues specifies

the smoothness of the Gaussian process sample functions, in terms

of their differentiability class.

Kernel choice therefore directly affects the space of functions

that are representable by a given Gaussian process, and this effect
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depends on the behaviour of the operator eigenvalues. It is in a sense

equivalent to choose either a given kernel or a specific eigenvalue

sequence, as both represent the (strict) prior belief over the class of

functions that the Gaussian process is capable of representing. For

example, the eigenvalues of the squared exponential kernel decay

exponentially, and the eigenvalues of the Matérn kernel decay at a

polynomial rate (Kanagawa et al., 2018).

We parameterise Favard kernels by choosing a decreasing func-

tion ζβ : N→ R+, indexed by a vector of hyperparameters β ∈ B ⊂ Rd,

where d is some number of parameters. The eigenvalues {λi} are

constructed by evaluating the function λi = ζβ (i) which are then used

as the eigenvalues for the Favard kernel. The parameters β are chosen

by maximisation of the marginal likelihood (3.2) via gradient-based

optimisation.

Following similar notation to that from (Rasmussen and C. K. I.

Williams, 2018), the derivative of the kernel matrix with respect to a

given parameter is then given by

∂K
∂β

=
m

∑
i=0

∂λi

∂β
φi(x)φi(x′).

and we use the term ∂K
∂β

to calculate the gradient of the likelihood

with respect to β in the standard likelihood optimisation method.

3.4.1.2 Order Selection

The order, or dimension m, of the reproducing kernel Hilbert space

is a key parameter in the construction of the kernel. One approach

to selection of m is that of Trecate, C. K. Williams, and Opper (1999).

That method selects the order of the kernel by choosing m such that
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“signal” for the (m+1)-th basis function is outweighed by observation

noise. In the notation above, this means m∗ = minm m s.t. λm+1 < σ . In

our setting, however, the noise parameter σ must be estimated, and its

estimate depends on m. We attempted to use the approach by (Trecate,

C. K. Williams, and Opper, 1999), but it did not converge to a unique

choice of m∗. Specifically, selecting the m∗ according to the prescribed

rule, and then re-estimating the noise variance parameter, yields a

noise variance parameter that is smaller than the “next” eigenvalue

term. Instead, we present an iterative approach to order selection,

based on the following theorem.

Theorem 10. Suppose a measure space (X ,F ,ν), random variable

X ∼ ν and a sample from a Gaussian process f ∼ GP(0,k(·, ·)). Define

H as the reproducing kernel Hilbert space for k (·, ·). Assume that f

belongs to Hm∗
k , a projection of H onto a finite set of basis functions

{φi}m∗
i=0 orthonormal w.r.t. ν. Assume there are data {xi,yi}N

i=0 s.t. that

yi = f (xi) + εi for some noise εi ∼ N (0,σ2). Denote by m̂ the chosen

order of a Gaussian process model trained on the data; by Eε [·] the

expectation taken w.r.t. the distribution of ε; and by σ̂2 a consistent

estimator of the noise parameter σ2. Then, for any δ > 0, there exists

N∗ > 0 s.t. Eε

[
σ̂2]≤ σ2 +δ +ηm where ηm ≥ 0 and ηm = 0 when m̂ = m∗,

for all N > N∗.

Proof. Proof in Appendix B.

This theorem indicates that an iterative process to selecting m

can be carried out as follows. First, estimate σ̂2 conditional on the

order m̂ beginning at e.g. m̂ = 2. Denoting this conditional estimator

as σ̂2(m̂), when m̂≤ m∗, we can expect that σ̂2(m̂) approaches σ from

above, and then begins increasing again when m̂ > m∗. Thus one can
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choose m̂ = minm m s.t. σ̂2(m+1)> σ̂2(m).

3.4.2 Order selection examples

In this section we present the application of this order selection

method to two synthetic datasets. We generate true functions

f = ∑
m∗
i=0 θiφi, written as the sum of m∗ ∈ {8,12} basis functions. We

generate inputs x∼N (0,5) and noise as ε ∼N (0,0.5). Then, outputs

are constructed as

y = f (x)+ ε

for a sample size of N = 1000. Using the same basis functions,we

construct a Favard kernel with a sequence of eigenvalues {λi}m̂
i=0 for

different orders m̂. In case 1, the eigenvalues are the same as those as

derived by Fasshauer (2012b) for the smooth exponential case, and in

case 2, we construct eigenvalues that are written: λi =
(

α

i+ξ

)κ

where

α,ξ are hyperparameters, and κ is a decay parameter that regulates

the rate of decay of the eigenvalues. We refer to these as “polynomial”

eigenvalues because they exhibit polynomial decay of degree κ.

The likelihood is then optimised to choose parameters of the eigen-

values in each case. Starting with m̂ = 3, we optimise the likelihood

until convergence of σ . Then, we increase m̂ by 1 and repeat the

process. For the purposes of exposition, we continue this until m̂ = 25.

Figures 3.6, 3.7 show the results of the application of this ap-

proach to the “polynomial” eigenvalues, and Figures 3.4 and 3.5

show the results of this process in the “exponential” case. Whilst

the change in the noise parameter estimate is small at the minimum

(due to scaling, it is not obvious on the graph), it is positive after the
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minimum. Therefore, the diagrams below illustrate the validity of

method outlined in section 3.4.1. Furthermore, as one would expect

from Theorem 10, this growth is larger for polynomial eigenvalues, as

the bias term ηm is the sum of larger “extra” eigenvalues, because the

polynomial eigenvalues decay more slowly than those in the exponen-

tial (“Fasshauer”) case. In all cases presented below, the true noise

parameter is σ2 = 0.5, and the dashed vertical line corresponds to the

true value, m∗.
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Figure 3.4: Noise parameter estimates for exponential eigenvalues. True
order: m∗ = 8.
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Figure 3.5: Noise parameter estimates for exponential eigenvalues. True
order: m∗ = 12.
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Figure 3.6: Noise parameter estimates for polynomial eigenvalues. True
order: m∗ = 8.
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Figure 3.7: Noise parameter estimates for polynomial eigenvalues. True
order: m∗ = 12.

3.5 Posterior Sampling

The standard method (Rasmussen and C. K. I. Williams, 2018) for

generating Gaussian process samples involves the construction of the

Cholesky decomposition of the covariance matrix. One chooses an

ordered sequence of test points x = {xi}T
i=0 and generates the Gram

matrix K = k (x,x′) by evaluating the kernel at the test points, and cal-

culate its Cholesky decomposition K
1
2 . Next, one generates a random

standard Normal vector z, and construct f = K
1
2 z. This yields in f an

approximate Gaussian process sample, and this is the method by

which the examples in Figure 2.1 were generated.
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Sampling from the posterior is achieved in a similar fashion. There

the covariance matrix used is the posterior covariance matrix (2.7),

and the same Cholesky decomposition approach is used. However, cal-

culation of the Cholesky decomposition is computationally expensive,

with O
(
T 3) time-complexity. This can be prohibitive when generating

large numbers of “fine” samples (i.e. high T ).

The Karhunen-Loève expansion (Karhunen, 1947) of a Gaussian

process sample in the truncated reproducing kernel Hilbert space

provides a simple method to sample from a Gaussian process. There

are several useful aspects of this viewpoint of stochastic processes is

that sample generation is simple and rapid; as well as providing direct

access to function evaluations at any potential input point, as well

as differentiability of samples. This is useful in hierarchical models

where one may want to differentiate with respect to a parameter

through a generated Gaussian process sample. Furthermore, the

Favard kernel basis functions follow by construction a three-term

recurrence; this allows for efficient evaluation of Gaussian process

samples via the Clenshaw algorithm (Clenshaw, 1955).

However, there are serious downsides to this approach. The

full basis function representation of a stochastic process requires a

countably infinite number of basis functions to completely represent

the sample. Our limitation to a truncated RKHS means that the

method proposed in this chapter is technically exact, but the behaviour

of the Gaussian process model is affected as a result. As we can see

in Figure 3.8 the samples generated exhibit a decay far from the

data. This is the result of using degenerate kernels (Rasmussen

and Candela, 2005). Technically the model represents both a prior

belief of a constant, zero-valued mean function and a prior belief of
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a constant, zero-valued variance. This is interpreted as the model

exhibiting very high confidence about its zero-mean prior. In practice,

it is often desirable to avoid this collapse when this does not represent

the true belief of the practitioner. In the literature, this phenomenon

has been referred to as variance starvation (Mutny and Krause, 2018;

Calandriello et al., 2019; Wilson et al., 2020).

In thie section we propose an approach to avoiding this variance

starvation phenomenon. The technique we describe is an extension

of a technique presented by Wilson et al. (2020). For clarity, note that

a posterior Gaussian process sample, evaluated at a vector of test

points x∗ can be written:

fy = f ∗+ k (x∗,x)
(
K +σ

2IN
)−1

(y− f ) (3.14)

where here, fy is the sample from the Gaussian process posterior,

evaluated at a set of test points, y is the vector of observed function

values, K the kernel Gram matrix evaluated at the sample x, and f , f ∗

represent the value of of the prior sample evaluated at the data points

and the test points respectively.

What (3.14) makes clear is that the posterior sample can be

decomposed into a prior component and a posterior, data-informed

component. This is essentially Matheron’s rule applied to Gaussian

process samples (Wilson et al., 2020).

The approach taken by Wilson et al. (2020) is to write these prior

and posterior components in different bases, based on a random

Fourier feature approach (Rahimi and Recht, 2007). This relies on

Bochner’s theorem to construct an approximation to the inner product

represented by the kernel as long as the appropriate spectral density
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is used to generate the features. However, Bochner’s theorem is not

useful here as it applies to stationary kernels. Our Mercer-type Favard

kernels are non-stationary, since they cannot be written as a function

only of the distance between inputs.

As a result, in this section we present a method based on Yaglom’s

theorem (Yaglom, 1987), (Genton, 2001). This extends Bochner’s the-

orem to non-stationary kernels, by extending the spectral distribution

to 2-dimensions.

Theorem 11 (Yaglom’s Theorem, (Yaglom, 1987), (Genton, 2001)). A

non-stationary kernel k (x,y) is positive definite if and only if it has the

form:

k (x,y) =
∫
Rd

∫
Rd

cos(2π(ω1x−ω2y))F(dω1,dω2)

where F represents a positive bounded symmetric measure.

We now show how we can construct appropriate features for

a complex Gaussian process prior to acquire a stochastic process

that covaries appropriately. First, we define non-stationary random

Fourier features:

Definition 14 (Non-stationary random Fourier features). Assume

a method to sample from FΩ1,Ω2(ω1,ω2) is available. Generate a sam-

ple {ωi1,ωi2}R
i=0 ∼ FΩ1,Ω2(ω1,ω2), and a sample {bi}R

i=0 ∼ Unif [0,2π]. We

define, for i ∈ {1,2, ...,R}, two sets of non-stationary random Fourier
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features:

φ
NS
i = cos(ωi1x+bi)+ cos(ωi2x+bi),

φ
′NS
i =

 cos(ωi1x+bi), i odd,

cos(ωi2x+bi), i even,

and present the following theorem.

Theorem 12. Assume a symmetric, non-stationary kernel k :X ×X →R.

By Theorem 11, it has a 2-d spectral density FΩ1,Ω2(ω1,ω2). Define fea-

tures
{

φ NS
i
}R

i=0 ,
{

φ
′NS
i

}R

i=0
as in Definition 14. Define a complex Gaus-

sian process h(x):

h(x) = f(x)+ jg(x)

where f(x) = ∑i θiφ
NS
i (x); g(x) = ∑i θ ′i φ

′NS
i (x); θi,θ

′
i ∼N (0,1), and j =

√
−1

is the imaginary unit. Then,

E
[
h(x)h(x′)

]
= k
(
x,x′
)
.

Proof. Proof in Appendix B.

Given observations, Algorithm 1 allows us to construct complex

Gaussian process

h(x∗)+φ(x∗)ΛΦ
′ (

ΦΛΦ
′+σ

2IN
)−1

(y−h(x))

where φ(x∗) is a 1×m vector of the m basis functions evaluated at

the test point x∗. Conditioning on the observations, the posterior
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Gaussian distribution for function weights is:

N
(
µθ |y,Kθ |y

)
where:

µθ |y = (Φ′Φ+σ I)−1
Φ
′y

Kθ |y = (Φ′Φ+σ I)−1

where as above Φ is the N×m matrix of basis functions evaluated

at the data points. We can use these weights to generate the poste-

rior component of the sample, and sample the weights for the prior

component as described in Theorem 12 and Algorithm 1.

Application of this method yields results as in Figure 3.8. The blue

line is the ground truth; the red line represents the real component of

the now complex Gaussian process model. As a result, the Gaussian

process is able to maintain the variance far from the data that one

might desire from a general functional prior.
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Figure 3.8: Standard posterior samples from a Favard kernel GP.
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Figure 3.9: Example of posterior sample augmentation with the complex
GP setup outlined in Section 3.5.

Using the features defined in Definition 14 it is possible to generate

Gaussian process priors with covariance consistent with the (non-

stationary) Favard kernel. Naturally, in order to use the method

described above it is necessary to estimate the spectral density of the

kernel; this process is described in Algorithm 1.

To summarise, we conduct a Fast Fourier transform (FFT) of the

Favard kernel, which yields the spectral density evaluations at a grid

of points which we refer to as nodes. To get the weights on the different

sine basis functions, we could sample from the spectral density at

these nodes. However, doing so will yield a set of weights that will

induce periodicity in any generated sample functions, because the

frequencies will be rational multiples of each other. In order to avoid

the resulting periodicity that will occur, we use these weights to

construct a Gaussian mixture model:

m

∑
i=1

wiN (µi,vi) .
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where the mean of each component normal distribution comprising

this mixture is one of the nodes from the FFT, and the standard

deviation is the same as half the distance between nodes, and the

weights are the values of each node in the spectrum given by the FFT.

Samples from this Gaussian mixture then approximate the spectral

density of the kernel. Another approach deals with this periodicity

by sampling from a mixture of uniform distributions centred at these

nodes and with width equal to half distance between nodes, covering

the frequency domain in a set of squares. This approach yields an

approximating kernel similar to the non-stationary spectral kernel

method (Remes, Heinonen, and Kaski, 2017).

3.6 Simulation studies

3.6.1 Simulated Data

In this section we present some simple examples of the Favard kernel

method in comparison to the Mercer approach. In Figure 3.10, we

present an example of the Favard vs Mercer basis. The eigenvalues

are the same, with the same parameters applied to each. The inputs

are sampled from a Gamma(3,3) distribution and the outputs are gen-

erated by a test function with added Gaussian noise. The lines above

and below the posterior mean represent the 5% and 95% quantiles

over 5000 random samples from the posterior, for normalised input

data.
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Figure 3.10: Comparison of the uncertainty in the Mercer case and the
Favard case. The inputs are sampled from a Gamma(3,3) distri-
bution; the outputs are generated by a test function with added
Gaussian noise, where the function is 1.5sin(x/2)+0.5cos(2x)+
x/8 and the noise is distributed according to N(0,0.1). The
weight function on the Favard generated basis is exp(−x2/4);
the eigenvalues are the same between the two cases.Presented
are 5% and 95% quantiles of random GP samples for the Mer-
cer(in red) and Favard cases (in blue) as well as posterior
means (dashed lines, Mercer in red, Favard in blue).

In Figure 3.11, we present the same example, but with the Fourier

sampling for the Favard case, which clarifies its role in representing
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uncertainty far from the data.
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Coverage of credible sets: Non-stationary Fourier posterior sampling

Figure 3.11: Comparison of the uncertainty in the Mercer case and the
Favard case with Fourier posterior sampling as in Section 3.5
with Gaussian mixture approximation to the spectral distribu-
tion. The inputs are sampled from a Gamma(3,3) distribution;
the outputs are generated by a test function with added Gaus-
sian noise, where the function is 1.5sin(x/2)+ 0.5cos(2x)+ x/8
and the noise is distributed according to N(0,0.1). The weight
function on the Favard generated basis is exp(−x2/4); the eigen-
values are the same between the two cases. Presented are 5%
and 95% quantiles of random GP samples for the Mercer(in
red) and Favard cases (in green), where posterior samples have
been generated as in Section 3.5 as well as the posterior mean
for the Favard case (black).
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3.6.2 Real data comparisons

In this section we present the application of the method to subsets of

two publicly available datasets; the Wine data set at the UCI Machine

Learning Repository, (Frank and Asuncion, 2010) and a Formula 1

dataset (see https://ergast.com/mrd/db). All experiments were run

on an Arch Linux system with a Ryzen 3900X, with 64Gb of RAM.

No explicit graphics processing power was necessary. Both of these

exhibit cases where the input distribution differs from a Normal distri-

bution, and we utilise these examples to demonstrate the importance

of appropriate choice of basis.

In both cases, we arbitrarily choose an order of m = 10, and train

a Gaussian process using a standard “Mercer” kernel with Gaussian

assumed input (as in the “Fasshauer” example in the paper), and a

“Favard” kernel with constructed orthonormal basis, via the Gautschi

modified moments (Gautschi, 1982) method, with weight function

w(x) = exp(−x2/4). Data is normalised for training; this leads to a

trivial alteration to the recurrence coefficients, of the constructed

orthogonal polynomials (Chihara, 2011), and allows one to keep m

lower, since the basis functions are aligned over the data.

In each cases, the kernel hyperparameters are learned using the

whole dataset, and then subsets of the dataset are used for validation.

The log predictive densities in the “Favard” case are marked F , and

those in the “Mercer” case are markedM.

3.6.2.1 UCI Wine Dataset

From the UCI Wine quality dataset, we present both a one-dimensional

and two-dimensional regression example. For the one-dimensional

example, we choose as input the “total sulphur”, and predict “free

https://ergast.com/mrd/db
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sulphur”. For the two-dimensional example, we choose as inputs

“total sulphur” and “free sulphur”, and predict “residual sugar”. We

take a random subsample of size 600 of the input data as conditioned

observations for the Gaussian process posterior. Using this Gaussian

process conditioned on these observations, we take a random subset

of size 50 of the remaining observations, as a test set, and calculate

the log predictive density over function values at these points, evalu-

ated at the true values. These give a measure of predictive success

of the Gaussian process. We repeat this process for 1000 random

subsamples, and the histogram of Figure 3.12 below displays the

differences in log predictive density between the Mercer and Favard

kernels at these random subsamples. Where the difference is posi-

tive, the Favard kernel predicts better than the Mercer kernel; this

illustrates the better predictive ability of the use of an appropriate

basis.
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Figure 3.12: Log-predictive density differences between Favard and Mercer
kernel approaches on the UCI Wine Quality Dataset (see text
for the details of the regression). The histogram shows the
differences in log predictive density between the Favard and
Mercer kernels at random subsamples of the data. Positive
values represent subsamples at which the Favard kernel pre-
dicts better than the Mercer kernel.
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Figure 3.13: Two-dimensional Log-predictive density differences between
Favard and Mercer kernel approaches on the UCI Wine Qual-
ity Dataset (see text for the details of the regression). The
histogram shows the differences in log predictive density be-
tween the Favard and Mercer kernels at random subsamples
of the data. Positive values represent subsamples at which
the Favard kernel predicts better than the Mercer kernel.

3.6.2.2 Formula 1 Dataset

The Formula One data contains very non-Gaussian input distribu-

tions, so we considered it to be a good example for exhibition of the

benefits of the Favard kernel approach. Here we take as inputs the

pit stop times, and as output the count of pit stops. The pit stop
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times exhibit a strong multimodal distribution. For this dataset, we

take a random subsample of size 800 of the input data as conditioned

observations for the Gaussian process posterior. Using this Gaussian

process conditioned on these observations, we take a random subset

of size 50 of the remaining observations, and calculate the log pre-

dictive density over function values at these points, evaluated at the

true values. We repeat this process for 1000 random subsamples, and

the histogram below displays the difference in log predictive density

between the Mercer and Favard kernels.
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Figure 3.14: Log-predictive density differences between Favard and Mercer
kernel approaches on the Ergast Formula 1 Dataset (see text
for the details of the regression). The histogram shows the
differences in log predictive density between the Favard and
Mercer kernels at random subsamples of the data. Positive
values represent subsamples at which the Favard kernel pre-
dicts better than the Mercer kernel.

3.7 Conclusion

In this chapter we have presented a method for constructing Gaussian

process models from orthonormal sequences of basis functions in

sampling regimes of iid inputs, and proposed a solution to the problem
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of appropriate posterior sampling in the non-stationary setup. This

approach unfortunately does not lend itself directly to models for

Bayesian optimisation (e.g. Thompson sampling), since the input

distribution is the distribution that results from the sequence of

activation functions.

As presented, the method only explicitly deals with 1-d problems,

and implicitly with multidimensional problems where the input mea-

sure is a product measure. In that case, it is simple to construct

orthonormal sequences via a tensor product on the one-dimensional

basis, since the corresponding inner product calculations decompose

into products of integrals.

In future work we aim to extend this to multidimensional models

with general measures via the use of multivariate orthogonal polyno-

mials. We also aim to investigate error bounds relating to the Gaussian

process resulting from the use of an approximate orthonormal basis

as described herein. We believe that our proposed method constitutes

a valid and applicable technique to scaling Gaussian process models

for input measures with non-finite support.
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Data: A Mercer kernel k (x,y) = ∑
m
i=0 λiφi(x)φi(y), feature count

R, frequency count N
Data: A sequence of left-input points: x = {x1,x2, ...,xN}.
Data: A sequence of right-input points: y = {y1,y2, ...,yN}.
Result: A Gaussian process sample h s.t. E [h(x)h(y)] = k (x,y)
Ψ1 = FFT (φi(x)) ;
Ψ2 = FFT (φi(y));
Λ = diag(λ1,λ2, ...λN);
P = Ψ1ΛΨ′2;
Flatten P to a vector p;
Normalise elements of p by ∑

N2

i=0 pi to create probability vector
p;

for r← 0 to to R do
Sample integer i from probability distribution p;
Sample noise (e1r,e2r) uniformly from [−0.5,0.5]2;
ωr1← (i mod N);
ωr2← (i divfloor N);
ωr1← ωr1 + e1r;
ωr2← ωr2 + e2r;

end
for r = 0 to 2R do

br ∼Uni f [0,2π];
θ̂ ′r ∼N (0,1);
if r ≤ R then

θ̂r ∼N (0,1);
θ̂R+r = θ̂r;
φ̂ NSRFF

r (z) = 1√
R

cos(ωr1x+b);
end
else

φ̂ NSRFF
r (z) = 1√

R
cos(ωr2x+b);

end
θr = θ̂r + jθ̂ ′r;

end
return ∑

2R
r=0 θrφ̂

NSRFF
r (z)

Algorithm 1: Fourier feature prior GP sampling from non-
stationary Mercer form kernels



Chapter 4

Feature Construction for

Anomaly Detection in Dynamic

Graphs

4.1 Introduction

In many modern data science problems, there are examples of datasets

whose relations can best be described using a graph; Google search

famously relies on a graph representation of the internet to rank web-

pages (Page et al., 1999), and social networks such as Facebook and

Twitter can be represented as graphs of users and their connections.

In certain cases, dynamic graphs are an appropriate model for a

given data set. By this we mean a sequence of graphs, where each

graph represents a snapshot of the data at a given time. For example,

in a social network, the connections between users may change over

time, and so a dynamic graph is a natural model for such a dataset.

In this chapter, we present a method for constructing features

that can be used for clustering and anomaly detection in dynamic

sequences of weighted or unweighted, undirected graphs.
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In general, the anomaly detection problem consists of identifying

examples in a dataset that can be considered to be abnormal or anoma-

lous in some sense; such outliers can be considered detrimental to

training data or can represent a problem in e.g. some manufacturing

process.

One approach to anomaly detection in graphs is the feature-based

approach (Akoglu, Tong, and Koutra, 2015); in this approach, features

are constructed from the graph data, and then anomalies are identified

by considering the values of these features.

A downside to the “feature-based” approach is that the features

constructed are often not able to capture structural properties of

graphs. For example, there are node-level properties, such as the

degree of a graph’s nodes; edge-level properties, such as summary

statistics on weights, or global properties, such as the number of

connected components in a graph. On the other hand, features that

capture the structure of a graph can be hard to interpret; an example

is the characteristic polynomial of the graph adjacency matrix, and

corresponding eigenvalues and eigenvectors. Whilst this can capture

structural properties of a graph, it is not always clear how to interpret

such features; the interpretation of a graph adjacency as an operator

on vectors is not clear, so its spectrum, which describes the behaviour

of the matrix on vectors in its invariant spaces, are an even more

abstract concept for discussing the structural properties of a graph.

The key feature of the approach laid out in this chapter is that it

provides an unsupervised method for feature construction that can

capture the general structure of a graph. Furthermore, in certain

circumstances it is capable of capturing anomalies that spectral meth-

ods are incapable of capturing. It relies on the the graph matching
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polynomial, which in its coefficients captures the general structure

behaviour of the graph. A connection between this polynomial and a

corresponding reproducing kernel Hilbert space produces a natural

embdding for graphs into the set of L2(ν) spaces.

4.2 Related Work

4.2.1 Anomaly Detection

Anomaly detection has a long history in the machine learning litera-

ture. Applied to graphs, various anomaly detection algorithms have

arisen, with different applications requiring different approaches. For

relevant work, we focus on methods pertaining to dynamic graphs,

as that is the natural setting for the method we propose. However, a

comperehensive review of anomaly detection for graphs can be found

in Akoglu, Tong, and Koutra (2014). Density-based methods (Stein-

wart, Hush, and Scovel, 2005) attempt to construct a probabilistic

model over graphs, and ascribe a density value to a given graph or

some feature. Graphs with low density according to the model are

considered anomalous. This approach requires an explicit model, but

can also be done using some form of empirical density estimation.

This method is often used on some latent space constructed from

graph features. However, this can be hard to interpret if the latent-

space mapping is learnt, as in the case of Goyal and Ferrara (2018)

as opposed to hand-constructed.

Feature-based methods extract features from graphs and con-

struct time series of feature values; general-purpose anomaly detec-

tion algorithms can be applied to these feature values in order to

capture anomalous graphs. Standard features might include the dis-
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tribution of node degrees or the eigenvalues of the adjacency matrix.

However, as noted by Akoglu, Tong, and Koutra (2014), better methods

appear to utilise more graph structure and often are not computable

in polynomial time. The implication is that simpler features (such as

some metric of node connectivity) may not capture enough information

to correctly distinguish anomalousness graphs.

General-purpose graph anomaly detection methods may then

compare either consecutive graphs, or use a “landmark” strategy that

compares all constructed features to a key baseline graph feature

value. Then, graphs that diverge in distance from such a baseline

are considered anomalous. Many such feature approaches have been

developed; but the main ones that are pertinent for comparison are

parameter-free methods for weighted and unweighted dynamic graphs.

To present these alternatives, we focus on the examples from the

literature review by Akoglu, Tong, and Koutra (2015), which provides

a comprehensive look at the relevant methods.

Although our feature construction method can be used in general

regression tasks, we focus on anomaly detection in dynamic graphs.

The setting is that the practitioner observes a sequence of graphs,

usually on a fixed set of nodes, and wants to detect periods in which

anomalous graphs occur. As noted by Akoglu, Tong, and Koutra

(2015), the main approaches can be divided into four categories;

feature-based, decomposition-based, community-based and window-

based methods.

Two relatively computationally complex methods are the max-

imum common subgraph (MCS) distance and the graph edit dis-

tance (GED). The MCS distance between two graphs is defined as

d(G,H) = 1−m(G,H)/M(G,H) where m(G,H) is the size of the maximum
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common subgraph between graphs G and H, and M(G,H) is the size of

the union of the graphs. It is known that calculation of the maximum

common subgraph is NP-hard(Barrow and Burstall, 1976), by its

relation to the maximum clique problem. These measure the size of

the maximum common subgraph between two graphs.

The graph edit distance measures the number of edit operations

to get from one graph to another; close graphs will have low cost

of transformation between them. In general, this approach is not

computationally efficient; in certain cases the compuation of the

graph edit distance is equivalent to the maximum common subgraph

problem (Bunke, 1997).

A quintessential spectral approach to the problem is known as the

λ -distance (Shoubridge et al., 2002). This method compares graphs

by the distance between the vectors of top-k eigenvalues of the adja-

cency matrix. Whilst it is generally simpler to calculate the distance

between e.g. vectors of eigenvalues of the adjacency matrix, it is not

clear that this is a good measure of graph similarity. Firstly, we do

not consider that this approach yields generally interpretable compar-

isons. Admittedly, calculation of the eigenvalues of this matrix is likely

to be computationally efficient, but there is a lack of interpretability.

Naturally, the use of matrix eigenvalues places this approach in the

category of spectral graph theory methods.

We consider such approaches to complement our method, as the

characteristic polynomial is another graph invariant (Shi et al., 2016).

However it is not always simple to interpret the spectral properties

of the adjacency matrix (or the Laplacian) as an operator on vectors.

Furthermore, graphs may be cospectral but between them anoma-

lous; spectral methods will therefore not be able to capture these
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differences.

Diameter distance (Gaston, Kraetzl, and Wallis, 2006) can also be

used to compare graphs. This approach calculates a metric of graph

diameter constructed as the average eccentricity over the graph’s

vertices. Then, graph diameter distance is the absolute value of the

difference between the graph diameter of two graphs. As noted by

the authors, this approach aims to capture structural properties of

graphs. However it is not clear how well it can differentiate between

similar graphs as the constructed graph diameter metric includes

an averaging over vertices; this may lead to aggregation of relevant

information for anomaly or change detection.

Finally, GraphScope (Sun et al., 2007) operates by constructing

partitions of a sequence of graphs on-line; the decision function for

whether a graph should be included in a given partition is based

on the encoding cost of the new graph given the graphs in a given

segment. This provides a change-point detection method. According

to the authors, the results agree with intuition; this is taken to

justify the approach to cluster (partition, in the language of the paper)

construction.

The approach outlined in this chapter to feature construction

shares properties with each of these methods. We rely on a relatively

intuitive argument for the feature construction and graph compari-

son method, in that our approach compares graphs to graphs with

idealised structure. We intepret anomalous graphs as differing from

non-anomalous graphs according to the extent that they deviate from

this idealised structure. Whilst this is not formally rigorous, the

empirical experiments bear out the intuition for the method. Our

method also has relatively high computational complexity. This is
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an unfortunate side effect of the approach to capturing whole-graph

structure, and methods such as the GED and MCS also suffer from

this problem.

4.2.2 Matching Polynomials

Our work relies on the use of the matching polynomial, a useful graph

invariant. The concept originated in chemistry where it has been used

to model the placement of oxygen molecules on lattices (Heilmann and

Lieb, 1972). The connection between certain graph configurations and

specific orthogonal polynomials was an early observation by Heilmann

and Lieb (1972). An early form of the Christoffel graph kernel we

present here was introduced in that paper. Further work analysing

other properties of the matching polynomial has also been carried

out (Farrell, 1979; Farrell, 1980; Farrell and Wahid, 1986), including

generative methods that invert the mapping from graph to matching

polynomial.

Useful theoretical results have been developed by Christopher. D.

Godsil (1981a), relating to the Hermite polynomials and the so-called

Complement theorem; and asymptotic statistical properties of match-

ing polynomials (Christopher. D. Godsil, 1981b). It is important to

note that the characteristic polynomial and matching polynomial of

a graph are identical if and only if the graph is a forest (Shi et al.,

2016, see Theorem 5.3.1). As a result, there exist cospectral graphs,

i.e. having the same characteristic polynomial, with different match-

ing polynomials. Examples of such graphs are presented in Section

4.7.1.2.

The computational intractability of the matching polynomial was

also an early observation (Jerrum, 1987). Specifically, computation
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of the matching polynomial is #P-hard, which can informally be de-

scribed as the counting problem equivalent of the NP-hard class of

decision problems. Via connections to the computation of the matrix

permanent, FPRAS (fully polynomial-time randomized approximation

scheme) for this problem have been developed. However, the size

of the constant terms in the polynomial complexity unfortunately

are likely very large. Justification for this belief has been provided

by Newman and Vardi (2020), who present an implementation of an

FPRAS for the calculation of the permanent of a matrix, and show

that the point at which the FPRAS beats the naı̈ve approach, the

time taken to calculate the permanent is infeasible (on the order of

400,000 years) in both cases. Since there is an equivalence between

the matching polynomial of a bipartite graph and the calculating of

the permanent of its adjacency matrix, this result is also applicable

to the matching polynomial of a graph in certain cases, and without

detailed analysis of this problem for matching polynomials, we expect

our method to remain confined to cases of small dynamic graphs.

However, we provide a relatively fast implementation in Rust (Matsakis

and Klock, 2014) that utilises a CPU word-size representation of each

graph node in order to best utilise hardware capabilities. We also

provide a fast approximation method for calculation of the matching

polynomial based on the Barvinok estimator (Barvinok, 1999).

Furthermore, the methods we outline are not only valid for match-

ing polynomials as a graph invariant. As noted by Christopher. D.

Godsil (1992), the characteristic polynomial also exhibits a Christoffel

kernel property, and the resulting kernel could be used to construct

a graph measure embedding as outlined below. However, the charac-

teristic polynomial does not exhibit the same recurrence that yields
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their interpretation as orthogonal polynomial sequences.

4.3 Preliminaries: Graph theory
We now present preliminary theory and definitions with the relevant

graph theory concepts for the next chapter.

Definition 15 (Graph). A graph is a pair G = ⟨V,E⟩ where V is a set of

nodes (equiv. vertices) and E is a set of edges, that connect elements

of V .

In all cases, the graphs in this chapter will be simple graphs:

graphs with no edges from nodes to themselves, and no sets of multiple

edges between a given pair of nodes. Associated with a graph is the

concept of a matching, or a dimer arrangement.

Definition 16 (Dimer). A dimer is a pair of nodes, connected by an

edge.

Definition 17 (Matching). Given a simple graph G, a m-matching (or

m-dimer arrangement) is a set of m dimers placed on the edges of G

such that no two dimers share a node. A perfect matching on a graph

G of 2k nodes is a k-matching on that graph; i.e. one that covers all the

nodes.

To clarify these concepts, we present in Figure 4.1 an example of

a matching on a graph.

Definition 18 (Matching Polynomial). The matching polynomial of a

simple graph G is the polynomial

Q(G;x) =
⌊n/2⌋

∑
m=0

(−1)mMmxn−2m (4.1)

where Mm is the number of m-matchings in G.
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Figure 4.1: A 3-matching on a graph of 6 vertices. Red edges are in the
matching; black edges are not.

The matching polynomial is a graph invariant (Cvetkovic et al.,

1988); i.e. a property of a graph that does not change depending

on the representation of the graph. They were originally defined by

Heilmann and Lieb (1972) in the setting of monomer-dimer systems

as an approach in chemistry to describe the behaviour of molecules

laid on a surface. There they note some of the useful properties of

certain matching polynomials, some of which we will utilise in the

method described in this chapter.

4.4 Model
The method presented in this chapter relies on a connection between

the matching polynomial of a graph, and sequences of orthogonal

polynomials. For definitions and results relating to orthogonal poly-

nomials, see Chapter 2. Firstly, we note the vertex-deletion recurrence,

a property unique to the matching polynomial (Christopher David

Godsil, 2017). Denoting the graph with node v removed by G− v, the

vertex removal recurrence is written:

Q(G;x) = xQ(G− v;x)−
n

∑
i=0

wi,vQ(G− v− i;x) (4.2)

where wi,v is the weight of the edge between v and i. To illustrate the

connection between matching polynomials and orthogonal polynomi-
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als, we present a simple result which shows the relation between the

structure of a graph and its matching polynomial. We will require the

definition of a complete node sequence:

Definition 19 (Complete node sequence). A complete node sequence

σ on a graph of n nodes is a sequence of nodes v1,v2, . . . ,vn such that

vi appears exactly once for each i ∈ {1, . . . ,n}. The i-th element of a

complete node sequence σ is denoted by σi.

Graphs for which the matching polynomial is an element of an

orthogonal polynomial sequence often exhibit some specific structure.

In this section we present a theorem that allows us to utilise this idea

to compare the matching polynomial of a graph to a given orthogonal

polynomial sequence, and this will allow for general description of

graph structure and a method for graph comparison.

The classic examples of this (Heilmann and Lieb, 1972) are the

matching polynomials of the cycle graph, and the complete graph.

The cycle graph on n nodes, has matching polynomial recurrence:

Q(Cn;x) = xQ(Cn−1;x)−2Q(Cn−2;x)

which is the recurrence relation for the following:

Q(Cn;x) = 2Tn(x/2)

where Tn is the n-th Chebyshev polynomial of the first kind, orthogonal

with respect to a scaled Beta distribution.

Another classical example is that of the complete graph:

Q(Kn;x) = xQ(Kn−1;x)− (n−1)Q(Kn−2;x)
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which is the recurrence relation for the Hermite polynomials, orthog-

onal with respect to the Gaussian distribution.

Favard’s theorem, in fact, gives us a generalisation of these obser-

vations, which we present as the following theorem.

Theorem 13. Given a simple graph G, and a complete node sequence

σ of G, denote by Gσ the sequence of graphs Gσ = {G,G1,G2, ...Gn}, where

Gi is the graph obtained by removing nodes σ1,σ2, . . .σi from G. If, in

the matching polynomial vertex-deletion recurrence (4.2), written out

for Gi ∈ Gσ , the summands in the summation term are independent of

the index of summation i, then the sequence of matching polynomials

{Q(Gi;x)}n
i=0 is orthogonal with respect to some measure ν.

Proof. Proof in Appendix B.

In this chapter we will use these properties to build a method for

evaluating the distance of a given graph from e.g. the fully connected

graph, via the relation between a given matching polynomial and a

corresponding sequence of orthogonal polynomials.

This relation is clarified in Theorem 14 below. Preliminary to

this theorem however, we present some further definitions relating to

orthogonal polynomial sequences.

Definition 20 (Christoffel-Darboux Kernel). Given a sequence of poly-

nomials {Pi}∞

i=0, orthonormal with respect to a measure ν, the Christoffel-

Darboux kernel of order m associated with {Pi}∞

i=0 is defined as

kν
m(x,y) =

m

∑
i=1

Pi(x)Pi(y) (4.3)

A useful property, dependent on the three-term recurrence asso-

ciated with orthogonal polynomials, is that the Christoffel-Darboux
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kernel can be rewritten in a useful form.

Lemma 1 (Christoffel-Darboux kernel formula). Given a sequence of

orthonormal polynomials {Pi}∞

i=0 orthogonal with respect to a measure

ν, the Christoffel-Darboux kernel of order m associated with {Pi}∞

i=0 can

be written:

kν
m(x,y) =

γm

γm+1

Pm+1(x)Pm(y)−Pm(x)Pm+1(y)
x− y

where γi is the leading coefficient for Pi.

Proof can be found in (Chihara, 2011). Taking the limit as x→ y,

yields the useful confluent form:

kν
m(x,x) =

γm

γm+1
P′m+1(x)Pm(x)−P′m(x)Pm+1(x)

where P′i (x) is the derivative of Pi(x).

Corresponding to this confluent form of the Christoffel-Darboux

kernel is the Christoffel function:

Definition 21 (Christoffel function). Given a Christoffel-Darboux ker-

nel kν
m(·, ·), the associated Christoffel function Γν

m(x) is the reciprocal of

its diagonal:

Γ
ν
m(x) =

1
kν

m(x,x)
.

This function provides a connection between a given orthogo-

nal polynomial sequence and its measure of orthogonality (Lasserre,

Pauwels, and Putinar, 2022). The method described in this chapter

will exploit this connection to produce an feature of graphs that can

be used to mark out anomalous examples in a given dataset, relative

to a given landmark graph.

A final definition for this chapter is what we define as the graph
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Christoffel kernel. This is connected to ideas even in the original

work of Heilmann and Lieb (1972), and is a useful tool for the method

described in this chapter.

Definition 22 (Graph Christoffel-Darboux Kernel). Given a simple

graph G, and its deck DG = {G1,G2, ...,Gn}, where Gi is the graph G with

vertex i removed, the graph Christoffel-Darboux kernels are defined:

ki
G(x,y) =

Q(G;x)Q(Gi;y)−Q(Gi;x)Q(G;y)
x− y

(4.4)

with the corresponding graph Christoffel functions defined Γi
G(x) =

1
ki
G(x,x)

We are now equipped to present the main result of this section,

which is the following theorem. This clarifies the connection between

a given graph matching polynomial and sequences of orthogonal poly-

nomials. It relies essentially on the spectral theorem for l2 sequences,

and describes the ability to “rotate” a given sequence of matching

polynomials into an orthogonal one.

Theorem 14. Let G be a simple graph with n nodes, and σ a complete

node sequence of G. Denote by kσ1
G (x,y) the graph Christoffel-Darboux

kernel corresponding to the graph Gσ1 as in Definition 22, where Gσ1 is

the graph obtained by removing σ1 from G. Then, there exist a measure ν

and a sequence of n = m+1 orthogonal polynomials {Pi}m+1
i=0 orthonormal

with respect to ν, such that Pm+1 = cQ(G;x) for some constant c and

ki
G(x,y) = kν

m(x,y).

Proof. Proof in Appendix B.

The theorem essentially states that the matching polynomial of a

graph is an element of some orthogonal polynomial sequence; and the
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approach in this chapter is to compare graphs between themselves

via comparison of their orthogonal polynomials. However, it is not

necessarily clear how to compare orthogonal polynomials directly.

Work on perturbation of orthogonal polynomials is an active area

of research in analysis (Deift, 2000; Ding and Trogdon, 2021). The

approach developed in that vein of research is based on comparison of

the Steiltjes transform of the measures of orthogonality. In this work

we take a simpler approach that has not yielded specific guarantees,

but allows empirically for a useful unsupervised method of comparing

graphs. The key point that is noted by Ding and Trogdon (2021) and

analysed previously by (Gautschi, 1986) is that the orthogonal poly-

nomials themselves are sensitive to perturbations in the moments of

the measure of orthogonality. This is described as the result of the

poor conditioning of the mapping between moments and orthogonal

polynomial coefficients. Small perturbations in the moments of the

measure lead to large perturbations in the coefficients of the corre-

sponding orthogonal polynomials; this naturally leads to difficulty

in comparison between given orthogonal polynomals, as seemingly

“distant” orthogonal polynomials, in terms of their coefficients, may

represent close measures of orthogonality.

As a result it is necessary to capture this variation between mea-

sures using a more robust tool. This is provided by the Chebyshev-

Markov-Steiltjes inequalities.

Lemma 2 (Chebyshev-Markov-Stieltjes Inequalities (Lasserre,

Pauwels, and Putinar, 2022)). Denote by kν
m the Christoffel-Darboux

kernel of order m corresponding to a measure ν. Select a value z such

that Pm−1(z) ̸= 0 where Pi is the orthonormal polynomial of degree i with
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respect to ν. Construct the Christoffel numbers {β1,β2, . . . ,βm} as the

roots of the polynomial kν
m(z, ·). Then, the following inequalities hold:

∑
i:βi<x

Γ
ν
m−1(βi)≤ Fν(z)≤ ∑

i:βi≤x
Γ

ν
m−1(βi) (4.5)

where Fν is the distribution function associated with the measure ν.

Note that the confluent form of the Christoffel kernel implies

that the the m-th and (m− 1)-th orthogonal polynomials are highly

informative for the measure of orthogonality, because they capture

all the information from the polynomials below. It is also known that

the inequalities (2) are convergent (Lasserre, Pauwels, and Putinar,

2022), in the sense that the left and right hand sides converge to the

same value as m→ ∞.

We can regulate the variation in orthogonal polynomial coeffi-

cients caused by variation of the moments of the measure of or-

thogonality by utilising the Chebyshev-Markov-Steiltjes inequalities;

changes in the measure of orthogonality will be captured in variations

in the corresponding graph Christoffel functions.

We can thus construct, given a graph G, and a complete node

sequence σ , an embedding into the space of measures by constructing

the function:

Γ
G
m−1(x) =

1
kσ
G (x,x)−Q(Gσ ;x)2

and as a result the measure estimate:

ν̂G,v(x) = ∑
i:βi≤x

Γ
G,v
m−1(βi) (4.6)

As shown by Lasserre, Pauwels, and Putinar (2022), this is a consis-
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tent estimator of the distribution function of the measure of orthog-

onality of the sequence of orthogonal polynomials. that has as n-th

and n−1-th elements the matching polynomial of a given graph and

the matching polynomial of the graph with one node removed.

4.5 Feature Construction

We can now describe the method for constructing feature embeddings

for graphs, and present their application to unsupervised anomaly

detection in graphs. Having constructed the Christoffel function

(See Definition 22) for a given graph, and the corresponding measure

estimate (4.6), we can compare a graph with another by calculating an

appropriate distance between their measure estimates. Given that the

measure estimate is a right-continuous, increasing step function, it is

itself a valid distribution function for a measure, with support equal to

{βi}n
i=0. In order to compare such measures, a distance function that

does not require equality of support will be useful. A good example is

the squared Maximum Mean Dispersion (Gretton et al., 2007).

Definition 23. Denoting a pair of measures ν1, ν2, the maximum mean

dispersion (MMD) between ν1,ν2, given a function set F is defined:

MMD(ν1,ν2,F) = sup
f∈F

(Eν1 [ f ]−Eν2 [ f ])

where F is a set of functions { f ||| f ||H ≤ 1} and H is a Hilbert space of

functions induced by a reproducing kernel k. The squared MMD is then

given by:

MMD(ν1,ν2,F) = Eν1 [k (x,x)]
2 +Eν2 [k (y,y)]

2−2Eν1,ν2 [k (x,y)]
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This allows us to construct a simple distance function on this

embedding of graphs. Another valid metric, often used in the literature

(see e.g. Gao and Kleywegt, 2016; Kolchinsky and Tracey, 2017) would

be the Wasserstein distance, given that it can handle distributions

that do not have common support.

Denoting the normalised measure estimate constructed for a

graph G with n nodes, indexed by node i, by ν̂ i
G, we denote a vector

whose elements are the points in its discrete support by β ∈ Rn, and

its corresponding vector of probabilities p. Similarly, denote by β̃ the

support of a chosen base measure (such as the Christoffel function

measure estimate for the Normal distribution) and by p̃ the corre-

sponding vector of probabilities. Then the squared Maximum Mean

Dispersion between two measure estimates is given by:

MMD2(ν̂ , ν̂ ′) =∑pp′⊙ k (β ,β )

+∑ p̃p̃′⊙ k
(

β̃ , β̃
)

−2∑pp̃′⊙ k
(

β , β̃
)
.

where ⊙ denotes the Hadamard product; p′ the transpose of the

probability vector p, and ∑ denotes summation over all elements of

the matrix.

This value constitutes a useful, structure-capturing feature for

general dynamic graph tasks, such as anomaly detection, clustering,

and other general regression problems. We present how it can be

used for anomaly detection, clarifying the general idea in the form of

Algorithm 2.

Having constructed the representation described above, it is pos-

sible to compare graphs by comparing their (MMD) distances to a
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Data: sequence of graphs {Gi}
Data: base comparison graph G0
Function get measure estimate(G, v):

µ ← get matching polynomial(G) ;
µ ′← get matching polynomial(G - v) ;
r← calculate roots(µ) ;
k← christoffel kernel(µ,µ ′) ;
c← 1

k ;
ν̂ ← cum sum(c (r))/∑i c(ri) ;
return ν̂ ;

Procedure detect anomalies({Gi}, G0, ε):
a← [0]×N ;
ν̂0← get measure estimate(G0) ;
for i← 0 to N do

MMD← MMD(ν̂0, ν̂) ;
if MMD ≥ ε then

a[i]← True ;
end

end
return a;

Algorithm 2: Anomaly detection algorithm. Returns an array of
indices of the graphs deemed anomalous.

given base graph with specific behaviour. Multivariate features can be

constructed by comparing simultaneously to multiple base measure

estimates.

4.6 Computation

4.6.1 Theory

We now discuss the computation of the Christoffel measure estimates

as in (4.6). The computational complexity of their construction is

dominated by the computation of the matching polynomials of the

given graphs. The standard approach (Stein and Joyner, 2005) to

computation of the matching polynomial follows the edge-removal
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Q(G;x)

Q(G− e;x)

Q(G− e− e′;x) Q(G− e− v−u;x)

Q(G− v−u;x)

Q(G− v−u− e;x) Q(G− v−u− v′−u′;x)

Figure 4.2: Example of a subset of the computational tree for the match-
ing polynomial. At each node is a matching polynomial, and
each polynomial is the sum of its children. The root of the
tree is the matching polynomial of the graph G; the leaves will
be monomials. Computation of the matching polynomial can
thus be achieved recursively, by travelling down the tree and
incrementing the coefficient of the k-th order term in the match-
ing polynomial by one for each leaf node whose corresponding
graph has k nodes.

recurrence (Christopher David Godsil, 2017):

Q(G;x) = Q(G− e;x)−Q(G− v1− v2;x) (4.7)

Specifically, this can be used to compute the matching polynomial

as follows. Firstly, we alter (4.7) to read

Q(G;x) = Q(G− e;x)+Q(G− v1− v2;x).

This is equivalent to (4.7), but the signs of the coefficients have

been flipped. Since the signed matching polynomial can be acquired

from the signless matching polynomial by a simple flipping of some

of the coefficient signs, we can recursively compute the matching

polynomial by noting that the signless recurrence (4.6.1) implies a

binary computational tree. We present a clarifying diagram in Figure

4.2. Each node represents a matching polynomial of some graph
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G′, and has children consisting of the matching polynomials of the

graphs G′− e and G′− v−u where v,u are the nodes connected by the

edge e. The leaves of this tree are graphs that have no edges, i.e.

are disjoint unions of isolated nodes. The matching polynomial of a

disjoint union of n unconnected nodes is simply the monomial xn. This

means that one can calculate the matching polynomial of a graph

by recursively traversing this tree; when a leaf is reached, simply

increment the corresponding monomial term in the polynomial by

1. Once this process is complete, we flip the corresponding terms

(every fourth order, including terms that have zero coefficient) in the

resulting polynomial to obtain the signed matching polynomial.

The resulting algorithm exhibits complexity of O (2n), where again

n is the number of nodes. However, we can take advantage of the

Godsil complement theorem (Christopher David Godsil, 2017) to speed

up calculation in dense graphs; this yields complexity on the order of

O
(

2n/2
)

as the depth of the relevant computational tree is at maximum

n/2.

Theorem 15 (Godsil Complement Theorem, (Christopher David Godsil,

2017)). Given a graph G with matching polynomial Q(G;x), and the

complement of G written as G, write the matching polynomial as

Q(G;x) = θ
′x

where θ denotes the vector coefficients of the polynomial in the mono-

mial basis x = (1,x,x2, ...).

Correspondingly write the matching polynomial for the graph comple-
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ment G as

Q(G;x) = θ
′x

Denoting the Hermite basis by h≡ (h0,h1, ...) where hi is the i-th Hermite

polynomial.

Then,

Q(G;x) = θ
′h.

Essentially, this means that, on a densely connected graph, we

can calculate the matching polynomial of the complement graph, and

then use the Godsil complement theorem to calculate the matching

polynomial of the original graph by writing the same polynomial with

respect to the basis formed by the Hermite polynomials.

The standard approach is to calculate the density of the graph,

defined as 2|E|
|V |(|V |−1) , and if it is above 0.5, to calculate the matching

polynomial of the complement graph instead. This can in fact be ap-

plied recursively, so that reaching a node in the binary tree such that

the density of the graph at that node is greater than 0.5, the resulting

matching polynomial will be calculated as the Hermite polynomial of

the complement graph.

4.6.1.1 Weighted Graphs

We can also extend the method to weighted graphs. In this case,

the matching polynomial is defined via the edge removal recurrence

(Cvetkovic et al., 1988) as:

Q(G;x) = Q(G− e;x)−w(e)Q(G− v1− v2;x) (4.8)
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where wi, j is the weight of the edge between nodes i and j. Note that

this yields the same matching polynomial as in the vertex-removal

recurrence (4.2).

In Section 4.7 we present an example of application of the weighted

matching polynomial method to the real Wikipedia visitation data.

4.6.1.2 Large Graphs

The method described above exhibits exponential computational com-

plexity in the number of nodes. We have found graphs that have

suboptimal density (i.e., most nodes are connected to about half of

all the nodes in a graph) to be very slow even at around n≈ 30. As a

result it is necessary to find another approach to calculation of the

matching polynomial that can be applied to larger graphs.

First, we present Lemma 3, originally presented without proof by

Christopher David Godsil (2017):

Lemma 3 ((Christopher David Godsil, 2017)). Let G be a graph with

n nodes. Define an augmented graph B = G ∪Kr, where Ḡ is the com-

plement of G, and Kr is a complete graph on r vertices, for r < n. The

number of perfect matchings on B is equal to r!M(n−r)/2, where M(n−r)/2

is the number of (n− r)/2-matchings on G.

Proof of Lemma 3. In the notation of the lemma, B is a graph that is G

with r additional vertices, each of which is connected to every vertex

in G. Any perfect matching covers all the vertices of B by definition,

and therefore must include a set of r edges, each covering one of the r

additional vertices. The other side of each of these edges covers one of

r of the vertices in G. Hence, the remaining n− r vertices are covered

by a set of n−r
2 edges, which comprises a n−r

2 -matching on G. Fixing

this n−r
2 -matching on G, there are r! ways to permute the edges that
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connect the new r vertices to the remaining r vertices in G. Hence,

there are r!M(n−r)/2 perfect matchings on B.

This hints at an approach to calculating the matching polynomial

of a graph. As explained by Rudelson, Samorodnitsky, and Zeitouni

(2016), the number of perfect matchings of an undirected graph can

be calculated by taking the hafnian of its adjacency matrix:

Definition 24 (Hafnian of a matrix). The hafnian of a 2k×2k matrix A

can be defined as

haf(A) = ∑
σ∈τ

2k

∏
i=1

Ai,σ(i)

where τ is the set of derangements σ of 2k elements such that σ2 is the

identity.

The hafnian of a matrix is, similarly to the calculation of the

permanent, not tractable (Valiant, 1979). However, we propose an

approximation to this using the Barvinok estimator of the hafnian

(Barvinok, 1999).

The Barvinok estimator is a Monte Carlo method that utilises the

properties of the determinant to construct an unbiased estimator of

the hafnian of a matrix. We present the unbiasedness of this estimator

as a theorem:

Theorem 16. Denote by A a matrix, and by Z a random, skew-

symmetric matrix such that the upper triangular entries of Z are in-

dependent Gaussian random variables with mean 0 and variance 1.

Define A2 to be the matrix that contains the element-wise square root of

the matrix A.

Construct the estimator α (A) = det(Z⊙A2). Then, E [α (A)] = haf(A).
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Proof. Proof in Appendix B.

The Barvinok estimator of the hafnian is presented originally by

Barvinok (1999), without proof of unbiasedness. We include a proof

in order to clarify the approach to the construction of the estimator;

see Appendix B.

4.6.1.3 Control variates

In testing, however, it was noticed that for more densely connected

graphs, the resulting estimator was correspondingly more noisy. This

arguably can lead to failure to maintain sensitivity for anomaly detec-

tion.

One approach is to again use Theorem 15 to calculate the haf-

nian of the complement graph, which will be less dense and therefore

subject to less noise. However, this may require use of very large-

order Hermite polynomials, whose coefficients become large enough

to cause overflow problems even on modern 64-bit systems. Specifi-

cally, the coefficients of the Hermite polynomials are related to the

double factorial, numbers (A001147 in the OEIS) which naturally

grow factorially. The largest factorial that can be represented in a

64-bit integer is 20!, so the Hermite polynomials of high order can end

up with overflows on coefficients. As a result, we propose a control

variate approach to the construction of the Barvinok estimator of the

hafnian.

When constructing Monte Carlo estimators, it is often possible to

improve the efficiency of the estimator by using a control variate. A

control variate is a random variable that is correlated with the random

variable of interest, and whose expectation is known. Such control

variates can then be used to reduce the variance of the estimator
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(Dellaportas and Kontoyiannis, 2012).

Assume we have a random variable z ∈ Rd, where z∼ F for some

dimension d, and distribution function F. Suppose an arbitrary

continuous function g : Rd → R whose expectation we would like to

calculate. The standard Monte Carlo estimator would be to construct

samples zi ∼ F and take the sample mean to get an estimator µ̂:

µ̂ =
1
N

N

∑
i=0

g(zi)

If we take a different function f : Rd → R such that we know the

expectation EF [ f (z)], we can construct a new estimator that uses the

control variate f to create an improved estimator µ̂∗:

µ̂
∗ =

1
N

N

∑
i=0

(g(zi)−a( f (zi)−EF [ f (z)])

where a is a coefficient chosen to minimise the variance of the esti-

mator.

Essentially this coefficient is chosen to orthogonalise the control

variate with respect to the random variable of interest. The variance

of the estimator is then minimised; this is a property of least-squares

estimators (Hayashi, 2000). Essentially, it replicates the result of

applying the Gram-Schmidt process (Mayers, Golub, and Loan, 1986)

to the random variable of interest and the control variate; such that

all the variance in the estimator is from factors not accounted for in

the control variate. Naturally, we can add as many control variates for

which we have the exact expectation, to further improve the variance

of the final estimator. A natural control variate for the estimator is the

matrix permanent of the random matrix Z. The Barvinok estimator



4.6. Computation 104

control variate is written

β (Z) = det(Z) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

Zi,σ(i)

and by taking its expectation:

E [β (Z)] = E [det(Z)]

= ∑
σ∈Sn

I [σ ∈ τ]

= #{permutations in τ}

To see which permutations are in this set, we can use cyclic notation.

The number of permutations of 2k elements is 2k!. Writing a given

permutation out, we note that the permutations σ such that σ2 = Id

can be written as a set of k composed 2-cycles; i.e. by wrapping pairs

of elements in k pairs of brackets. Each of the k! rearrangements of

the brackets is equivalent; as well as the in-pair rearrangements of

the paired elements. Thus, the resulting count of the permutations

in τ is (2k)!
k!2k .

4.6.2 Implementation

In order to facilitate the use of the matching polynomial in general

graph machine learning tasks, we have a library, written in Rust

(Matsakis and Klock, 2014) with Python bindings to allow for ease

of use. The software is designed to better utilise the behaviour of

modern CPUs to achieve high efficiency. The software is available at

https://github.com/wegreenall/matching_poly_lib.

https://github.com/wegreenall/matching_poly_lib
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4.6.2.1 Binary representation of graphs

A standard way to conduct operations on graphs is via the adjacency

matrix. However, the adjacency matrix in essence contains redundant

information. Furthermore, it requires storage on the order of n2 inte-

gers, each of which captures only a zero or one. In order to allow the

CPU to conduct the necessary calculations as fast possible, the library

represents graphs in a different format. Initial implementations using

ready-made graph representations such as from the NetworkX library

(Hagberg, Schult, and Swart, 2008) would regularly lead to memory

overflows on my computer.

We represent a graph adjacency as a set of up to 64 64-bit integers.

This is because the CPU operates directly on registers that are 64

bits in length. This means that the operations on the matrix rows

or columns can be reduced to simple bitshifts or masks, utilising

far fewer clock cycles. Specifically, we represent a graph as a set of

integers, with leading bit set to 1. For example, the graph whose

adjacency matrix is written

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

0 1 1 0 0

1 0 1 0 0

is represented as the set of integers (29,14,7,2,1).

As standard in construction of adjacency representations, the

existence of a 1 in an off diagonal position (i, j) denotes an edge

between the node i and the node j. In our representation, a bit set on
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the “diagonal” (or as the leading bit) denotes the existence of a node

in the graph.

Continuing our clarifying example, note that the binary represen-

tation of the integers (29,14,7,2,1) is:

1 1 1 0 1

0 1 1 1 0

0 0 1 1 1

0 0 0 1 0

0 0 0 0 1

This is the upper-triangle of the adjacency matrix above, with leading

bits set to 1, marking that the node on that row is still in the graph.

Removal of the i-th node requires zeroing of the i-th row, and AND-ing

of all integers with FFFF XOR (1 << i), where << represents the left

shift operator. Removal of an edge between nodes i and j requires just

the latter operation on the i-th row, masked with FFFF XOR (1 << j).

In this way we can speed up the operations required for the

calculation of the matching polynomial using the edge-removal re-

currence (4.7) greatly; avoiding the overhead of maintaining a more

complex graph representation as in e.g. the NetworkX Library (Hag-

berg, Schult, and Swart, 2008). This means our implementation is

likely the state-of-the-art in calculating the matching polynomial of a

graph.
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4.7 Experiments

4.7.1 Synthetic data

To present the feature construction method for anomaly detection, we

have both synthetic and real-world datasets. We generate random

graphs using several “standard” models, selecting a fixed number of

these graphs to be anomalous. The aim is to identify the anomalous

graphs; i.e. the ones that have different structure to the others. Since

the method is unsupervised, we do not require any labels for the

anomalous graphs, and there is no formal “training” phase. The

features for comparison are constructed from the Christoffel measure

estimate for each graph. We compare the Christoffel measure estimate

for each graph with a specific base measure estimate, and use the

resulting distance to decide whether a graph is “anomalous” or not.

To create Figure 4.3(a), 400 graphs were generated, where each

graph is a complete (i.e., fully connected) graph with a single random

edge removed from each node; this is the “standard” graph. We then

select 40 of these graphs to be anomalous, and set these to be complete

graphs with 4 edges removed at random from each node. We use as

a base measure the fully connected graph with no edges removed.

An increase in the distance between the base measure estimate (as

marked by an increased value of the MMD value) indicates that the

graph is “further” from the fully connected graph.

In Figure 4.3(b), we use the same approaches to generation of the

standard graphs as well as the anomalous graphs. The only concep-

tual difference is that now we compare the measure estimate for each

graph with that of the path graph. This provides the interpretation

that, when the MMD values decrease, the graph can be described as
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“more path-like”. It is clear from the diagram, comparing the locations

of the true anomalous graphs and the spikes in the MMD values,

that the negative spikes mark the graphs that are anomalously more

path-like in the data set.
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Figure 4.3: Application to a synthetic sequence of graphs. Standard graphs
are generated as complete graphs, with a single, random edge re-
moved from each node. Anomalous graphs are complete graphs
with 4 edges removed at random from each node. Anomalous
graphs are marked as blue vertical lines at the anomalous “in-
dices”, while green lines denote MMD values. Top: The base
measure is the complete graph with no edges removed, so we
interpret anomalies to be less “fully connected” than the stan-
dard graphs, since the MMD increases at anomalies. Bottom:
The base measure is the path graph; this yields the interpreta-
tion that the anomalous graphs are more “path-like” than the
standard graphs, since the MMD decreases at the anomalies.
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4.7.1.1 Large Graphs

As described in Section 4.6.1.2, we require a special approach to

larger graphs to be able to tame the complexity through appropriately

constructed approximations. We present an example of this in Figure

4.4.
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Figure 4.4: Application of the Barvinok estimator described in Section
4.6.1.2. The base measure is that for the fully connected graph;
the base graphs are fully connected of size 80, and the anoma-
lous graphs are path graphs of size 80 with 40 edges removed
at random.

4.7.1.2 Cospectral Graphs

A further benefit to our approach is that it is in many cases able to

capture anomalies that other methods cannot. To present this, we

have an example of a constructed data set that exhibits an ability

to observe anomalies in cospectral graphs. We use the approach

taken by Christopher. D. Godsil and McKay (1982)(see example “a”

in that paper) to construct cospectral graphs. The standard graph

is a polygon graph of size 2k with an extra node added; this node is

connected to k of the nodes of the polygon, in clockwise order. The
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base comparison measure is the Christoffel measure estimate for this

non-anomalous graph. The anomalous graphs are constructed in

the same way, but the extra node is connected to k random nodes.

The graphs constructed in this way are by construction cospectral

(Christopher. D. Godsil and McKay, 1982). Since the graphs are

cospectral, spectral methods are incapable of differentiating between

any of these graphs. Furthermore, each of the graphs in the dataset

exhibit the same connectedness, so averaging over node properties

to summarise the graph also fails to detect anomalies. Whilst this

example is deliberately constructed, it highlights the ability of the

approach outlined in this chapter to capture certain anomalies that

other methods will fail to capture.
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Figure 4.5: Application of the method to a sequence of cospectral graphs. All
graphs are a polygon of size 2k with an added node. The added
node is connected to k nodes in clockwise order (for standard
graphs) or random order for anomalous graphs. Anomalous
graphs are marked as blue vertical lines at the anomalous
“indices”, while green lines denote MMD values. All graphs
are cospectral, so spectral methods are unable to differentiate
between them. The base measure is the measure estimate for
an element from the non-anomalous graph set.
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4.7.2 Weighted Graphs

To show how the method can also be applied to weighted graphs,

we use the wikivital mathematics dataset (UCI, 2021). This dataset

records the daily visitor numbers to a large number of Wikipedia

pages, with the general theme of topics in mathematics. In order to

test this approach, a subset relating to statistics topics was selected,

containing 29 nodes, and the number of visitors to each page was

recorded for each day in the period from 16th March 2019 to 15th

March 2021. The resulting dataset therefore is representable as a

sequence of node-weighted graphs, where the weight of each node

is the number of visitors to the corresponding Wikipedia page. To

capture this weighting in a format that matches the requirements

of the method, the weight of the nodes adjacent to a given edge are

averaged, and the edge is ascribed the resulting value. Because these

numbers can be large, we take the logarithm of the weight of each

edge. The result is a sequence of edge-weighted graphs, to which we

apply the feature construction method.
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Figure 4.6: Wikipedia statistics article graph embeddings
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Figure 4.7: Comparison of base measure estimates for Wikivital Stats arti-
cles graph data. Blue: The base measure used is the standard
base measure for the Wikipedia data; i.e. the implicit measure
estimate for the connectivity graph, with no weights. as a result
it is equivalent to the Wikipedia graph with e visitors, since we
use log weights as the metric to avoid excessive weight values.
Red: The base measure used is the measure estimate corre-
sponding to a path graph on the same nodes. We can thus
interpret larger “red” values as being more path-like. Green The
base measure used is the measure estimate corresponding to
a complete graph on the same nodes. We can thus interpret
larger green values as being like more “fully connected” graphs.

The result can be seen in Figure 4.6. The base measure is the

Christoffel measure estimate for the graph with no visitors. As a

result, higher MMD values indicate that the graph is “further” from

the graph with no visitors; this provides the interpretation that the

graphs have more visits when this value is higher. The weekly periodic

behaviour in visitor numbers is clearly visible, as well as less busy

periods in summer and at Christmas. Furthermore, different choices

of base measure will yield different interpretations of the MMD values.

Examples of this are presented in Figure 4.7.
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4.8 Conclusion

We have presented a novel method for intepretable feature construction

and anomaly detection on sequences of dynamic graphs. We have

shown that this method is able to detect anomalies in cases that

spectral methods cannot be used, and also flexibly captures various

different forms of anomaly, depending on the chosen base measure.

Furthermore, the method allows one to test different “base cases” for

a given sequence of graphs without recomputing some new aspect of

the graphs in the dataset.

One of the downsides to this method is that it is that the compu-

tational complexity is quite high. This is endemic to methods that

attempt to utilise the structure of the graph on the whole (Akoglu,

Tong, and Koutra, 2014), and our Barvinok estimator method at-

tempts to go someway towards alleviating this problem. It is likely

that further work in this direction could lead to more effective expan-

sion for larger graphs, or perhaps applying the method herein after a

dimension reduction step.

Another downside is the lack of rigour in the arguments behind

interpretability of the method. Specifically, description of graphs as

more e.g.“path-like” is somewhat vague, and its evidence is empirical

rather than theoretical. Without formal theory of the perturbation

of orthogonal polynomials, it is questionable whether a graph truly

is “path-like”. However, the theory on perturbations of orthogonal

polynomials is extremely niche and not very accessible. Future work

will aim to bring these theoretical tools to bear on the problem.

Further work should also focus on understanding of other graphs

with orthogonal polynomial measures. A natural direction of research
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would be to look into generating graphs with a given (orthogonal)

matching polynomial. Favard’s theorem means that there are a con-

tinuum of orthogonal polynomials, and it seems reasonable that there

should be a corresponding continuum of graphs with orthogonal

matching polynomials, allowing for arbitrary “landmark” association;

i.e. deliberate construction of graphs with a given base measure.



Chapter 5

Superposition Gaussian Cox

Processes

5.1 Introduction

Stochastic point process models such as the Gaussian Cox process

(Cox, 1955) suffer from an intractability in the likelihood function.

This comes from the fact that the intensity is modelled as a stochastic

Gaussian process. The Poisson process, given the realisation of the

stochastic intensity, has an integral in its likelihood that integrates

out uncertainty induced by the region of space observed but not

containing points. To get a valid marginal likelihood function, the

practitioner must integrate out both this uncertainty and the uncer-

tainty resulting from the (Gaussian) stochastic process sample. As

a result, it requires a double integration; first integrating over the

intensity function, and then over the uncertainty in the intensity

function.

This intractability has yielded much literature that aims to over-

come it. Many approaches centre on the utilisation of specific proper-

ties of the link function to yield a tractable version of the corresponding
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integrals. The link function is used to transform the latent Gaussian

process to a positive-valued function as required by the standard

definition of the Gaussian Cox process.

If the link function is the square function ℓ(x) = x2, the process

is known as a permanental process (McCullagh and Møller, 2006);

this is because its k-point correlation function is the permanent of

an appropriately defined matrix. Such a process exploits Hilbert

space methods which redefine the corresponding integral as the norm

of the latent function (Flaxman, Teh, and Sejdinovic, 2017; Walder

and Bishop, 2017) and yields tractability via the representer theorem

(Kimeldorf and Wahba, 1970; Schölkopf, Herbrich, and Smola, 2001)

which provides a way to express the sought-after function as a specific

sum of a sequence of kernel functions.

The other classic approach is the log-Gaussian Cox process

(Møller, Syversveen, and Waagepetersen, 1998), which uses the ex-

ponential function ℓ(x) = exp(x) as its link function. The resulting

process yields a very simple form for the k- point correlation func-

tion. However, estimation focuses on discrete approximation of the

likelihood integrals, construction of gradient estimates (Choiruddin

et al., 2020) or more complex MCMC approaches (Peter J. Diggle et al.,

2013; Taylor and Peter J Diggle, 2014).

Other approaches propose different link functions, such as the

sigmoidal Gaussian Cox process (Adams, Murray, and MacKay, 2009;

Donner and Opper, 2018), focusing on Bayesian MCMC approaches

that require e.g. a Laplace approximation of the posterior; or utilise

variational inference to approximate the posterior (Lloyd et al., 2015;

Aglietti et al., 2019).

The methods described above can also induce certain unsatisfac-
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tory artefacts in regions of the the estimated Cox process intensity

model; see John and Hensman (2018) for details. A clear example of

such bias is that of nodal lines (John and Hensman, 2018) which are

regions (curves, when mapping spatial data) where the intensity is

zero along arbitrary lines. This does not map to specific information

about the behaviour of the point process. We aim to circumvent these

problems by a slight redefinition of the Cox process that provides

such artefacts with interpretable meaning.

A further problem that has not been adequately handled in the

literature is the natural lack of identifiability in the standard Gaussian

Cox process model. Specifically, the intensity function is modelled

as a stochastic process, and the data are viewed as points from an

inhomogeneous Poisson process conditional on a realisation of this

stochastic intensity function. Since the process is latent, and ostensi-

bly a single sample has been observed, there is nothing in the data

that allows the practitioner to differentiate between a highly random,

zero-mean intensity realisation, or a realisation that has a strong prior

mean component with a small random component. Our approach is

able to handle this explicitly, via selection of a prior parameter that

regulates the prior weight ascribed to either variation or mean, since

only problem or domain knowledge can help to distinguish between

these settings unless multiple realisations have been observed.

Finally, the approaches above have been utilised to construct

stochastic classification models (McCullagh and Jie Yang, 2006a; J.

Yang, Miescke, and Mccullagh, 2012; Matthews and Ghahramani,

2014). The approach taken in this small but concise literature is to

model the classification problem as viewing realisations of different

marked point processes. The items to be classified (e.g., images of dogs
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or cats) can be modelled as events in an appropriately defined space,

to which point process models can be applied. The benefit of such

an approach is that the classification model yields exact probabilistic

predictions, in contrast to standard approaches where uncertainty

quantification is either done by mapping predictions to the simplex

to yield predictions that have the form of probability distributions;

or more recently through conformal prediction (Lei and Wasserman,

2014). In our case, uncertainty quantification is inherent to the

output of the classifier. As we show in this chapter, it is also capable

of capturing highly non-linear behaviour in classification problems.

We define the superposition Gaussian Cox process model by

assuming that the intensity function is a superposition of point pro-

cesses defined on regions over which the intensity is positive. The

great advantage of such an approach is that by avoiding the non-linear

link functions of the log-Gaussian and permanental Cox processes we

can directly exploit the rich theoretical developments of the Gaussian

processes. In particular, we can approximate the latent intensity

process via a linear combination of basis functions in a space of

square-integrable functions avoiding the double-intractability prob-

lem. This allows us to solve the identifiability of the Gaussian Cox

process models by viewing it as a Bayesian inference problem with

informative prior specifications. A further important advantage is

that by achieving fast and reliable inference of the intensity process,

we can also construct a stochastic classification model.

In summary, our new modelling and inferential strategy offers a

new approach to inference for non-homogeneous point processes that:

(i) sidesteps entirely the intractability of the likelihood; (ii) produces an

extremely computationally efficient inference procedure; (iii) requires
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no training or expensive MCMC inference phase; (iv) directly handles

the lack of identification in point process models by allowing a prior

specification of the weighting between mean and variance in the

latent modulating Gaussian Cox process; and (v) yields a stochastic

classification model that produces direct probabilistic predictions

avoiding ex post uncertainty quantification.

At the time of writing, the material in this chapter forms the base

of a paper currently under submission at a machine learning confer-

ence. Code for generation of the diagrams comparing the approach

outlined in this chapter to other methods was written by my co-author

on the paper submitted to said conference, Apostolis Kapetis. All other

parts are my own work.

5.2 Motivation

We assume that we have available data {xi}N
i=0 consisting of N points

in X ⊆ Rd, and that the data are generated according to an inho-

mogeneous point process, and we aim to model uncertainty over

the corresponding intensity by placing a prior distribution over the

intensity function using a Gaussian Cox process.

The standard approach, as mentioned above, is to use the follow-

ing model for the data-generating process.

Definition 25 (Gaussian Cox Process). A Gaussian Cox Process is

a stochastic Poisson process, for which the density of the intensity

measure is a transformed sample function from a Gaussian process
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(GP), i.e.

P{N(S) = n|ψ}= Ψ(S)n

n!
e−Ψ(S),

ℓ(ψ(s))−1 ∼ GP(s(·) ,k (·, ·))

where ℓ(·) is an invertible link function; ψ is the intensity function; Ψ

is the intensity measure; s(·) represents the prior mean function of the

Gaussian process; and k (·, ·) its covariance function or kernel; S ⊂ X

the set containing the observed points; and N(S) denotes the number of

points found in S.

The choice of link function naturally has major ramifications

regarding the behaviour of samples from this model, and induces

certain biases that may be undesirable. For example, the standard

link functions, namely the exponential function exp(·) and the square

function, both enforce positivity of the resulting intensity function.

This does yield a valid intensity function, but it also induces a bias

in the sense that points at which the latent function f goes negative

induces arbitrary zeroes in the intensity function.

Given such a model, the practitioner aims to select appropriate

hyperparameters of the kernel in order to get reasonable behaviour

from the model. This is usually achieved by maximising the marginal

likelihood of the data, having integrated out the latent function f . The

log-likelihood function of an inhomogeneous Poisson process is given

by

logL(x1,x2, ...,xN) =
N

∑
i=0

logψ(xi)−
∫

S
ψ(s)dν(s)

where ν is usually taken to be the Lebesgue measure. Since the
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marginal likelihood also requires a second integration over the stochas-

tic intensity ψ, the marginal likelihood in such models is often referred

to as doubly-intractable. This motivates the need for a new inferential

strategy.

5.3 Method
We propose a modification of the standard Gaussian Cox process

that allows us to utilise alternative methods to estimate the hyperpa-

rameters. We call our method for estimation the Orthogonal Series

Gaussian Cox Process (OSGCP), and we call the model the superposi-

tion Gaussian Cox process.

Definition 26 (Superposition Gaussian Cox Process). Assume a com-

pact measure space (X ,F ,ν), with measure ν. Denote by f a sam-

ple function from a Gaussian process with Mercer kernel k such that

k (0,0)′′ > 0, and a mean function s(·). Define the sets S =
{

S1,S2, ...,Sp
}

where Si⊆X are open and disjoint and are defined such that f (x)> 0 for

all x∈ Si. Since f is continuously differentiable, we can define a series of

point processes on each of Si by an intensity function ψi(x) = f (x)I [x ∈ Si]

with corresponding intensity measure Ψi(A) =
∫

A ψi(x)dν. Therefore,

there are now p disjoint point processes. A superposition Cox process

is the superposition of these disjoint point processes, and the superpo-

sition theorem (J. F. C. Kingman, 1975) states that this superposition

is itself a Poisson process with intensity measure Ψ(A) = ∑
p
i=1 Ψi(A) for

A ∈ X .

A clarifying example can be seen in Figure 5.1. The main benefit

of the superposition Gaussian Cox process formulation is that it

allows us to sidestep the issue of the doubly-intractable likelihood.
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Figure 5.1: Examples of the Cox process model outlined in this chapter.
Note the difference between this and using max(0, ·) as a link
function. We denote the Gaussian process sample as f (x) and
the superposition sample as f+(x).

The aim is to treat the problem as inference over the properties of

the full latent function f . Furthermore, negative values of the latent

function, when sampled, are not forced to positive values as they are

not transformed by a link function as in the usual approach to Cox

processes; instead they directly represent the information that the

point process realisation yielded no points in that region, and avoid

the artificial “nodal lines” phenomenon (John and Hensman, 2018).

A consequence of this is that the inference can be sped up greatly.

Just as the permanental process allows for a specific interpretation

of the RKHS norm of the intensity as the integral component in the

model likelihood, the superposition Gaussian Cox process allows for

an alternative interpretation of the model likelihood. We use this

to construct an approximate likelihood model that offers a conju-

gate Bayesian approach to the problem. As a result, estimation and

inference can be performed in a fraction of the time, and it is this com-

putation benefit that motivates the use of the superposition Gaussian

Cox process; details of this speedup can be seen in Section 5.6.

Associated with the kernel k is a reproducing kernel Hilbert space
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of functions

Hk =

{
g : g =

∞

∑
i=0

giφi;
∞

∑
i=0

g2
i

λi
< ∞

}
,

where φi are the orthonormal eigenfunctions of k with corresponding

eigenvalues λi (Rasmussen and C. K. I. Williams, 2018). Assuming

that {φi}∞

i=0 form a basis in L2(ν), the space of square-integrable

functions with measure ν, we can define

ψi(·) =
∞

∑
j=0

ψ
(i)
j φ j(·), i ∈ {0,1, ..., p} , (5.1)

for ψ
(i)
j ∈ R, by the Karhuenen-Loève theorem (Kanagawa et al., 2018).

Thus, the intensity measure Ψ has an intensity function

ψ(·) =
p

∑
i=0

ψi(·) =
p

∑
i=0

∞

∑
j=0

ψ
(i)
j φ j(·)

=
∞

∑
j=0

p

∑
i=0

ψ
(i)
j φ j(·) (5.2)

=
∞

∑
j=0

ξ jφ j(·),

where in the last sum, ξ j = ∑
p
i=0 ψ

(i)
j is the sum of the coefficients for

the given eigenfunction φ j in each of the disjoint intensities.

Definition 27 (Orthogonal coefficient estimator). Suppose that we

have a sequence of orthonormal functions {φi}∞

i=0, φi : X → R, that form

an orthonormal basis in L2(ν). Assume that there is a sample {xi}N
i=0

from a point process available, with intensity function f . An estimator

We define the orthogonal coefficient estimator for basis function j in

the representation of the intensity function f with respect to the basis
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functions {φi}∞

i=0 as

ξ̂ j =
N

∑
i=0

φ j(xi). (5.3)

We first present Campbell’s theorem (J. Kingman, 2005) as a

lemma. Notation is taken almost directly from (J. Kingman, 2005).

Lemma 4 (Campbell’s Theorem, (J. Kingman, 2005)). Suppose a

Poisson point process on X with intensity measure Ψ, and with a

sample of points {xi}N
i=1. Let g be a measurable function on X . Then,

the sum ∑
N
i=0 g(xi) converges if and only if

∫
X

min(|g(x)|,1)dΨ(x)< ∞.

Then,

E

[
N

∑
i=0

g(xi)

]
=
∫
X

g(x)dΨ(x). (5.4)

and

V

[
N

∑
i=0

g(xi)

]
=
∫
X

g(x)2dΨ(x).

We now show how Campbell’s theorem allows us to construct an

unbiased estimator for the intensity function coefficients.

Theorem 17. Assume Ψ is the intensity measure for a superposition

Gaussian Cox process, with intensity function ψ, and denote by {φi}i=0

the sequence of basis functions φi as in Definition 27. Then,

ψ(x) =
∞

∑
j=0

ξ jφ j(x).
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Denote by ξ̂ j the orthogonal coefficient estimator for ξ j, as in Definition

27. Then,

E
[
ξ̂ j

]
= ξ j.

Theorem 17 shows that the superposition Gaussian Cox process

yields a valid orthogonal series estimator (Kimeldorf and Wahba, 1970;

Kronmal and Tarter, 1968), and that the resulting estimator can be

written as a sum of the eigenfunctions associated with the kernel k.

The key to our proposed method is the switch of summation order

in (5.2), valid by the Karhuenen-Loève theorem. Its relevance is that in

our case, there is no need to construct or identify the sets Si, i = 1,2, ...

as would be necessary if applying our method to density estimation.

In that case the corresponding component supported on Si would

need to be weighted by the number of points in Si; different choices

of S would yield different estimators. In our case the inference is the

same regardless of the specific structure of the sets {Si}p
i=0.

5.3.1 Model Setup

We now present a method for learning a superposition Gaussian Cox

process model. For a given kernel k, the method above requires the

construction of the basis functions of k with respect to the implicit

measure ν on the measure space (X ,F ,ν). As noted elsewhere in

the literature (Zhu et al., 1998; Fasshauer, 2012b), this is in general

intractable. Normally, one selects a kernel, and retrieves the appro-

priate basis functions and eigenvalues given the measure ν. However,

rather than pre-select a kernel and aim to find its eigenfunctions and

eigenvalues, we select an appropriate orthonormal basis and allow
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the model to learn the eigenvalues freely. This is a similar approach

to that presented in Chapter 3.

We assume that the data are a finite subset of X , and we consider

the GP(s(·) ,k (·, ·)) where the kernel has Mercer decomposition k (x,y) =

∑
∞
i=0 λiφi(x)φi(y). Since the superposition Cox process does not require

the Hilbert space to be infinite dimensional, we will restrict to a finite

order m and work in the truncated Hilbert space. Assume that we

have available the functions {φi}m
i=0. Following Theorem 17 and (5.1),

we can construct ψ̂, an orthogonal series estimator for the intensity

function.

Here it is important to note that the Gaussian Cox process mod-

elling problem is ill-posed. Specifically, it is not generally possible

to differentiate points generated by a point process with a random

intensity that has a specific mean function s(·) from points generated

by a point process with a zero-mean Gaussian process generating

its intensity function. To clarify this, suppose a Gaussian process is

such that its mean function can also be written as a sum of the basis

functions. Then, by the linearity of Gaussian random variables and

the Karhunen-Loève theorem, the latent Gaussian process sample

can be written as

f (x) =
∞

∑
i=0

θiφi(x) =
∞

∑
i=0

(si +
√

λizi)φi(x) (5.5)

for mean coefficients si and kernel eigenvalues λi. Here, θi denotes

a random coefficient for basis function φi, zi is a standard-normally

distributed random variable, and we assume the coefficients are such

that all sums converge.

Given a single realisation of θi, it is not possible to separately
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identify si from
√

λizi. This corresponds to the intuitive fact that, for a

single realisation of a Gaussian process, we cannot tell whether this

realisation was the result of small-valued random coefficients and

large mean coefficients, or large-valued random coefficients and small

mean values. The former case implies that the realisation generating

the observations is representative in its location; the latter implies

that the realisation is representative in its length-scale. It is naturally

impossible to distinguish between these two extremes given only a

single realisation, and this must be put down to prior understanding

of the problem setting.

The natural choice to handling this lack of identifiability is a

conjugate Bayesian approach, which will weight values according to

prior belief between the “large random coefficient” view and the “small

random coefficient” view.

5.3.2 A Bayesian approach

To construct a Bayesian approach to this problem, we first note that,

by Theorem 17, the orthogonal coefficient estimators are unbiased

for the coefficients of each basis function in the given realisation of

f . They also exhibit observation noise as a result of the variance in

the specific locations of the point process; for a given realisation of f ,

there are many different possible realisations of the inhomogeneous

Poisson process. We assume that the data generating mechanism

that produced ξ̂i is a set of linear models of the form

ξ̂i = si +
√

λizi +σiεi i = 0,1, ...,m, (5.6)
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where σiεi is mean-zero observation noise with standard deviation σi

and the unknown vector of parameters is (si,λi,σi). Clearly, this is a

non-identifiable model but it will produce proper posterior distribu-

tions if we place informative priors on the parameter vector.

The distribution of σiεi is not available since it depends on the

unknown f . We assume that this distribution is Gaussian. We tested

this normality assumption with a small experiment in which we

generated data from the ground truth intensities exhibited in Figures

5.2, 5.3, and 5.4. Kolmogorov-Smirnov tests against normality were

performed for 20 basis functions from 5000 realisations of the Poisson

process and only one sample rejected the null at 5%. See Section 5.4

for more details.

The assumed Gaussianity of the observation noise allows us

to construct the likelihood function of (5.6) as a product of Gaus-

sians since each ξ̂i follows a Gaussian with mean si and variance

σ2 + λi. The conjugate prior for the mean and variance in a stan-

dard Gaussian linear regression model is a Gaussian-inverse Gamma

distribution N −Γ−1(µ,η ,α,β ); see, e.g. Bernardo and Smith (2009).

This approach means that inference is essentially instant, given that

it merely requires evaluation of the corresponding posterior mean val-

ues given the observation data. For each of the orthogonal coefficient

estimators we have one observation. The corresponding hyperpa-

rameter updates are therefore µ ′i =
ηiµi+ξ̂i

ηi+1 , η ′i = ηi +1, α ′i = αi +
1
2 , and

β ′i = βi +
ηi

ηi+1(ξ̂i−µi)
2, with posterior means given by

E [si] =
ηiµi + ξ̂i

ηi +1
(5.7)

E
[
λi +σ

2
i
]
=

β ′i
α ′i −1

.
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All that remains is selection of the parameters of the prior density. We

set the prior mean parameter µi to zero as an uninformative choice.

The prior interpretation of α is that 2α is the number of prior obser-

vations, which exhibited non-normalised sample variance equal to 2β .

For identification of the three parameters si, λi and σi, we assume at

minimum three observations, so we set αi =
3
2 following the minimum

necessary sample principle of Novick and W. J. Hall (1965). For βi we

can utilise the fact that we have an estimator of the observation noise

as a result of Campbell’s theorem (Lemma 4) and provide an empirical

Bayes estimator. Thus, we can construct an unbiased estimate of the

variance of the orthogonal coefficient estimator with V̂ (ξ̂i) =∑
N
j=0 φ 2

i (x j),

and we set β = V̂ (ξ̂i). The unbiasedness of this estimate is a direct

result of Campbell’s theorem being applied to φ 2. Under this descrip-

tion of the prior specification, this is equivalent to posterior values

with β = 0.0. Shifting the posterior mean estimator for the variance to

get an estimator of the eigenvalues yields

λ̂i =
β ′i

α ′i −1
−

N

∑
j=0

φ
2
i (x j).

Substituting in the hyperparameter updates yields the following ele-

gant equations for posterior mean estimates of the mean coefficients

and the eigenvalues:

ŝi =
ξ̂i

ηi +1
, λ̂i =

ηi

ηi +1

(
ξ̂i

)2
(5.8)

which clarify the roles of the hyperparameter ηi as weighting between

the two possible prior settings. In our numerical examples we chose

a fixed ηi = η for all i. The “posterior mean” presented in Figure 5.2 is
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Figure 5.2: Comparison of 4 methods on synthetic function λ1(x) in Adams,
Murray, and MacKay (2009). The presented curve is the poste-
rior mean estimate in each case. OSGCP is constructed using
η = 0.12, α = 1.5, β = 2.0, µ = 0, and m = 8. See Section 5.6 for
details on how this figure was constructed.

constructed as a sum of the basis functions using equation (5.7) as

the coefficients.

Turning now to the interpretation of the ηi parameters, we note

that the relevance of the mean component and the eigenvalue (or

variance) component of the latent process is likely to depend on the

problem setting. For example, in looking at forestry data, it is likely

that one aims to learn how the latent intensity changes over a given

region of space, and take this to inform the change one can expect

elsewhere. It does not seem of interest to learn the posterior mean of

where the trees actually are, unless for example the forester is of the

belief that the trees will grow back in roughly the same locations. On

the other hand, in a classification setting as described in Section 5.7,

the object of interest is the location of the intensity, and it is assumed

that the corresponding intensity likely has low variance and resides

close to its mean, so that the information learnt from the classifier is

useful for labelling new observed items.
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5.4 Basis function coefficient Gaussianity

We first present a simple experiment to justify our approach to

modelling the basis function coefficient observation noise using a

Gaussian distribution. In order to justify our approach to mod-

elling the basis function coefficient observation noise in this way,

we used Kolmogorov-Smirnov tests against the normal distribution.

For each of the synthetic functions, we generate 5000 samples from

the corresponding intensity function with the standard thinning ap-

proach. We then compare the distribution of the coefficients for

each of 20 basis functions to see if they are statistically different

from the Gaussian distribution. The basis functions are of the form

φi = ciPi(2x− (a+b)/(b−a))w1/2(x), where Pi denotes the i-th Chebyshev

polynomial of the second kind; w(x) =
√

1− x2 denotes the weight func-

tion; and ci is a normalising coefficient based on the moments of the

Wigner semicircle distribution, so that the orthonormality condition∫ b
a φi(x)φ j(x)dx = δi j is satisfied. This makes {φi}m

i=0 an orthonormal

set on (a,b) ⊂ R. The results are found in Table 5.1, for the three

synthetic intensity functions described in the text; λ1, λ2 and λ3 re-

spectively. Each row of each table presents the KS-statistic and the

p-value against a normal distribution for the value of the orthogonal

coefficient estimator, calculated for 5000 different realisations of the

Poisson process using the respective table’s corresponding intensity

function.

5.5 Experiments

In this section we present both synthetic- and real-data experiments

exhibiting the method.
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Table 5.1: KS-test results for synthetic function basis coefficients (see Sec-
tion 5.6 for explanation and functional form.)

λ1 λ2 λ3
i KS-statistic p-value KS-statistic p-value KS-statistic p-value

0 0.0160 0.1553 0.0079 0.9145 0.0216 0.0184
1 0.0108 0.5986 0.0100 0.7003 0.0087 0.8397
2 0.0072 0.9554 0.0108 0.6013 0.0128 0.3823
3 0.0093 0.7765 0.0070 0.9643 0.0089 0.8239
4 0.0130 0.3672 0.0187 0.0597 0.0097 0.7303
5 0.0110 0.5808 0.0101 0.6779 0.0075 0.9422
6 0.0075 0.9404 0.0084 0.8651 0.0090 0.8085
7 0.0068 0.9719 0.0065 0.9826 0.0080 0.9026
8 0.0104 0.6514 0.0116 0.5118 0.0128 0.3861
9 0.0063 0.9883 0.0096 0.7430 0.0099 0.7039
10 0.0084 0.8676 0.0113 0.5410 0.0139 0.2889
11 0.0084 0.8732 0.0084 0.8678 0.0090 0.8117
12 0.0103 0.6569 0.0108 0.5953 0.0050 0.9996
13 0.0075 0.9411 0.0066 0.9817 0.0071 0.9602
14 0.0083 0.8795 0.0098 0.7203 0.0048 0.9998
15 0.0094 0.7648 0.0073 0.9518 0.0080 0.9035
16 0.0072 0.9541 0.0069 0.9703 0.0092 0.7878
17 0.0070 0.9647 0.0063 0.9886 0.0106 0.6264
18 0.0077 0.9294 0.0089 0.8168 0.0063 0.9888
19 0.0074 0.9469 0.0163 0.1378 0.0093 0.7778

5.5.1 Synthetic Data

In the following experiments, we run three different one-dimensional

models, and present the effect of the η parameter on the model. In

Figures 5.2, 5.3, and 5.4, we present three examples of application

of the model to synthetic data. The examples are taken from the

literature (Flaxman, Teh, and Sejdinovic, 2017; Walder and Bishop,

2017).

5.6 Comparison
We compare our method to Variational Bayesian Point Process (VBPP)

(Lloyd et al., 2015), Laplace Bayesian Point Process (LBPP) (Walder

and Bishop, 2017) and Reproducing Kernel Hilbert Space method
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(RKHS) (Flaxman, Teh, and Sejdinovic, 2017). For the methods relying

on the use of inducing points (LBPP and VBPP), we use 32 inducing

points. For both VBPP and RKHS we use the squared exponential

kernel, while for the LBPP we use the cosine based kernel, provided

by the authors. Since both LBPP and VBPP infer kernel’s hyperpa-

rameters via optimization, we choose initialization points matching

the properties of the ground truth intensity function i.e the scale and

the smoothness. For LBPP, following Rasmussen and C. K. I. Williams

(2018), we update the posterior mean at each optimization step for

the kernel hyperparameters. For the RKHS method, following the

authors, hyperparameters are selected via cross validation.

In all cases, our basis functions are of the form φi (z) = ciPi(z)w1/2(z),

where z = (2x− (a+ b))/(b− a)), for domain lower and upper bounds

(a,b), where Pi denotes the i-th Chebyshev polynomial of the second

kind; w(x) =
√

1− x2 is a weight function; and ci a normalising coeffi-

cient derived from the inner product on the Chebyshev polynomials.

Multi-dimensional bases are constructed from the tensor product of

these functions φi, i = 0,1,2, ...m with m = 15d for dimension d.

5.6.1 Synthetic Datasets

For generating the synthetic datasets we use three different inten-

sities proposed by Adams, Murray, and MacKay (2009) as follows.

λ1(x) = 2e−(x/15) + e−((x−25)/10)2
,X = [0,50]; λ2(x) = 5sin(x2) + 6,X = [0,5],

and λ3(x) is the piecewise linear shown in Figure 5.4 over the do-

main X = [0,100]. Performance comparisons were based on (i) mean

squared error (MSE) calculated as the sum of squared differences

between vectors constructed by evaluating the true intensity and the

appropriate predictive function for each model evaluated at an evenly-
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spaced set of inputs, (ii) computational time-to-train in seconds and

(iii) and empirical coverage (EC) (Leininger and Gelfand, 2015) which

is a likelihood-free method for comparing point process models. To

calculate EC, we first generate a data sample for each of the intensities

by thinning. For each Bayesian method we generate 100 sample inten-

sities, and for each of these we generate a point process sample. For

the RKHS method we use only the learnt mean function.We then gen-

erate 5000 random subsets of the domain, and count the number of

points ascribed to each of the sets by the data and the samples. This

difference between counts is called the predictive residual (Leininger

and Gelfand, 2015). We square these numbers and take their mean

to get the EC.

Figure 5.2 depicts estimates of λ1(x) with different estimation

methods. The true intensity is constructed by generating a point

process realisation on the domain [0,50] via thinning (J. F. C. Kingman,

1975). In Figures 5.3 and 5.4, we present 1− d examples using

16 and 8 basis functions respectively. It is clear that our method

captures higher frequency behaviour than the other methods. The

presented function in these cases is the estimate of the latent sample

f . The corresponding intensity, from the superposition Gaussian Cox

process, is implicit as its positive component.

Table 5.2 presents results for each intensity measure which

demonstrate that OSGCP clearly outperforms other methods in terms

of computational efficiency, whereas it performs at least as well in

terms of MSE and EC.
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Figure 5.3: The presented curve is the posterior mean estimate in each
case for the synthetic function λ3 as described in the text. Ours
(OSGCP) is constructed using η = 0.12, α = 1.5, β = 2.0, µ = 0,
and m = 8.

Table 5.2: Metrics for synthetic data.

λ1(x) λ2(x) λ3(x)
MSE EC time(s) MSE EC time(s) MSE EC time(s)

OSGCP 0.099 8.845 0.002 9.610 4.9454 0.004 0.167 95.96 0.002
VBPP 0.165 13.509 3.81 11.006 6.612 3.86 0.354 59.44 3.82
LBPP 0.083 10.558 0.36 10.873 17.160 0.05 0.151 106.416 0.18
RKHS 0.129 16.1604 27.32 10.149 12.905 17.31 0.206 29.167 35.37

5.6.2 Real World Datasets

We present application of our method to the Redwood and the White

Oak datasets (Baddeley, Rubak, and Turner, 2016). Figure 5.5 shows

the learnt posterior mean function using OSGCP on the Redwood

Dataset. RKHS required expensive cross-validation, which was aided

only by the relatively low number of data points. The LBPP method

required a slow optimisation step with relatively complex gradient con-

struction and we found non-trivial to get the optimisation to converge

properly with lots of tuning. In Figure 5.6, we present comparison

of our method applied to the Redwood dataset. We use only a few
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Figure 5.4: The presented curve is the posterior mean estimate in each
case for the synthetic function λ2 as described in the text. Ours
(OSGCP) is constructed using η = 0.12, α = 1.5, β = 2.0, µ = 0i,
and m = 16. See text for details on other methods.

Table 5.3: Metrics for real world datasets

Redwood White Oak
EC time(s) EC time(s)

OSGCP 5.85 0.006 12.8094 0.006
VBPP 6.079 6.34 16.301 8.75
LBPP 418.225 1.24 1758.123 1.98
RKHS 10.103 961.4 186.602 1043.5

basis functions m = 82 to show that our method is able to capture finer

structure at similar smoothness to the other methods. We would tend

to expect a higher order in order to better capture high-frequency be-

haviour. The same phenomenon can be observed in Figure 5.7. Whilst

these diagrams provide a subjective view of method performance, we

feel that our method is better able to capture nuanced behaviour in

the point process, and at a fraction of the computational cost.
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Figure 5.5: The learnt posterior mean estimate on the Redwood dataset
(Adams, Murray, and MacKay, 2009). Parameters for generating
this figure were µ = 0.0,α = 1.5,β = 2.0,η = 0.12, and m = 202.

Figure 5.6: Redwood dataset method comparison. In each case we present
the posterior mean or predictive mean function as prescribed in
each paper. From top to bottom: Our method; VBPP Method
(Lloyd et al., 2015); RKHS Method (Flaxman, Teh, and Sejdi-
novic, 2017); and LBPP Method (Walder and Bishop, 2017).
Note that we are able to capture finer structure, at order m = 102.
The other methods do not reflect high-frequency behaviour. We
are able to retrieve more higher frequency behaviour by increas-
ing the order; see Figure 5.5 for an example.
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Figure 5.7: White Oak dataset method comparison. In each case we present
the posterior mean or predictive mean function as prescribed in
each paper. From top to bottom: Our method; VBPP Method
(Lloyd et al., 2015); RKHS Method (Flaxman, Teh, and Sejdi-
novic, 2017); and LBPP Method (Walder and Bishop, 2017).
Note that we are able to capture finer structure, at order m = 102.
The other methods do not reflect high-frequency behaviour. We
are able to retrieve more higher frequency behaviour by increas-
ing the order.
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5.7 Classification
We now present how the above model can be used to construct a

stochastic classification model as considered by (McCullagh and Jie

Yang, 2006a). The key idea is that in classification problems, one can

think of the feature vector realisations as points on an appropriately

defined space, such that the classification problem essentially be-

comes an intensity estimation problem. This interpretation is made

simple by the concept of the marked Poisson process (J. Kingman,

2005), and the colouring theorem.

This interpretation of point processes as a classification model has

been developed in a small but concise literature (McCullagh and Jie

Yang, 2006a; J. Yang, Miescke, and Mccullagh, 2012; Matthews and

Ghahramani, 2014). In this section we present an extension of that

approach that takes advantage of the simplicity of our superposition

Gaussian process model to avoid some of the computational issues

present in those approaches.

First, we present the classification framework based on marked

Point processes as presented by McCullagh and Jie Yang (2006a). We

then present our extension to this via our construction that allows

for the calculation of the relevant conditional probabilities.

Definition 28 (Classification). A classification problem is a tuple

⟨U ,X ,Y⟩

where U is a space of units u which are examples or events that can be

described as belonging to different classes; a feature function x : U →X ,

which maps units to features, and a labelling function y : X →Y, which

maps features to labels. The set of labels Y is a finite set {y1,y2, . . . ,ym}.
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The aim of the practitioner is to find a rule for deciding, given

feature values x(u) of some new unit u, which class y it belongs to.

The approach to this problem, as outlined by McCullagh and Jie

Yang (2006a), is to consider the observed data x∈S ⊂X as a realisation

of a set of point processes in X . Specifically, we associate with each

class y a Gaussian Cox process Py on S. This can be interpreted as a

marked point process; i.e. a point process where at each point x ∈ X

there is a mark y ∈ Y.

We can thus, given such a dataset and the assumption regarding

the point process data generating process, calculate conditional dis-

tributions of classes given the data. We first introduce the moment

measure of a point process. This is also referred to as the n-point

product density.

Definition 29. Suppose P a Cox process on S with intensity function

ψ. The moment measure of P is the measure µ on Sn, evaluated at a

point x = {x1,x2, ...,xn}, is written:

µ(x) = E

[
n

∏
i=1

ψ(xi)

]

This function, evaluated at x, is the expected number of events in

a volume dnx around x.

Following McCullagh and Jie Yang (2006a), (J. Yang, Miescke, and

Mccullagh, 2012), the probability, of a new unit u∗ being in class y

given the observed data is written:

p(y(u∗) = y|x) =
µy(x∪{x(u∗)})

µy(x)
(5.9)

where µy denotes the moment measure for the point process associated
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with the class y.

The above expression is relatively simple in the case of the log-

Gaussian Cox process (Matthews and Ghahramani, 2014); and less so

for the permanental process (J. Yang, Miescke, and Mccullagh, 2012).

In our case, however, we treat the sample function f at the input

points directly at the intensity, since at the points where the data is

found, the intensity is identical to the sample function. In order to

calculate the appropriate class probabilities, we need to calculate the

numerator and denominator of the expression (5.9). To do this, we

need to calculate the moment measure of the process at the union

of the data points and the test points, as well as at the data points.

This latter expression is given by

µ(x) = E [ψ(x1)ψ(x2)...ψ(xn)] . (5.10)

This is the expectation of the product of the intensity function at the

observed points. For a zero-mean Gaussian process, this expression

is given by Isserlis’ theorem (Isserlis, 1918), known to physicists as

the Wick formula; we state it here.

Theorem 18 (Isserlis’ Theorem (Isserlis, 1918)). Suppose Z ∼N (0,Σ)

a multivariate, n-dimensional Gaussian random variable. Then,

EN [Z1Z2...Zn] = ∑
σ∈P2

n

∏
B∈σ

Σi,σ i

where P2
n is the set of derangements σ such that σ2 = Id, and Zi is the

i-th component of the random vector Z.

Note that the expression in the theorem is the hafnian of the

covariance matrix Σ (see Chapter 4 for more on the hafnian).
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In our case, however, the intensity is not a zero-mean Gaussian

process; we are interested in using the posterior GP to calculate the

moment measure, and the posterior mean is informed by our orthog-

onal series estimate; i.e. it is not zero. As a result, we must adapt the

above to our case. There exists an extension to the above theorem, due

to Withers (1985). First however we define the loop hafnian (Björklund,

Gupt, and Nicolás Quesada, 2019; Nicolas Quesada, 2019).

Definition 30 (Loop hafnian of a matrix). The loop hafnian of a k× k

matrix A can be defined as

lhaf(A) = ∑
σ∈π

k

∏
i=1

Ai,σ(i)

where π is the set of involutions on k elements. The involutions are the

permutations σ such that σ2 is the identity.

Note the difference with the hafnian in that the loop hafnian

includes permutations that can be written as a product of both 1-

cycles and 2-cycles; the corresponding set in the definition of the

hafnian includes only permutations that can be written as 2-cycles

(i.e., derangements whose square is the identity).

We now present a theorem which will allow us to calculate the

moment measure of the posterior GP intensity.

Theorem 19. Suppose Z ∼N (µ,Σ) a multivariate, n-dimensional Gaus-

sian random variable. Construct the matrix Σ̂ with entries:

Σ̂i, j =


µi i = j

Σi, j i ̸= j
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That is, the covariance matrix Σ with its diagonal having been replaced

by the mean vector µ. Then,

EN [Z1Z2...Zn] = lhaf(Σ̂).

Proof. Proof in Appendix B.

We can thus calculate the moment measure of the posterior GP

intensity, by constructing Σ̂ as in Theorem 19, with the mean vec-

tor calculated from the posterior mean, and the covariance matrix

calculated from the posterior covariance.

As in the case of the hafnian presented in Chapter 4, computation

of the loop hafnian is intractable for large matrices. The state-of-the-

art algorithm for calculating the loop hafnian is due to Björklund,

Gupt, and Nicolás Quesada (2019). Quoting from that paper: “Despite

our highly optimized algorithm, numerical benchmarks on the Titan

supercomputer with matrices up to size 56 × 56 indicate that one

would require the 288000 CPUs of this machine for about a month

and a half to compute the hafnian of a 100 × 100 matrix.”

In order to save the practitioner the expense of such a computation

for the purposes of our classification algorithm, we propose a Barvinok-

type estimator of the loop hafnian in order to calculate the moment

measure. We construct the estimator and show its unbiasedness in

the following theorem.

Theorem 20. Denote by A a k× k matrix, and by Z a random, skew-

symmetric matrix such that its upper triangular entries are independent

Gaussian random variables with mean 0 and variance 1. Define the
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estimator:

α(A) = det((Z + Ik)⊙A2)

where A2 is the matrix with entries defined


√

Ai j i ̸= j

Aii i = j,

and where Ik denotes the k× k identity matrix.

Then, E [α(A)] = lhaf(A).

Proof. Proof in Appendix B.

Given the above, we can construct an estimator to the moment

measure by generating matrices as in Theorem 19. Specifically, given

the sample x = {xi}N
i=0 and corresponding the intensity function esti-

mate ψ̂, we construct the matrix K̂ as follows:

K̂i j[x] =


ψ̂(xi) if i = j√

k
(
xi,x j

)
i ̸= j

Then, applying Theorems 19 and 20, we can calculate the moment

measure of the posterior GP intensity as

µ̂(x) = α(K̂). (5.11)

In practice, we generate for example 10,000 iterations of α(K̂), and

construct an estimate with improved variance by taking the average

of these determinants; this can be achieved rapidly on modern GPUs.

Furthermore, we can apply the control variate approach outlined in
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Chapter 4 to reduce the variance of the estimator, since the control

variate on the random component of Z is the same.

The resulting estimator of the class probability (5.9) at a new

point u∗ is then given by:

p̂(y(u∗) = y|x) =
µ̂y(x∪{x(u∗)})

µ̂y(x)
(5.12)

5.8 Experiments: Classification
In this section we present some simple experiments to demonstrate

the operation of the proposed method for classification problems. In

Figure 5.8 we show a 1-dimensional example that allows us to visualize

the effect of changing η on the resulting classification probabilities.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Figure 5.8: One-dimensional example of a classification problem. Curves
shown are probability estimates as constructed using the Barvi-
nok estimator outlined in this chapter. Intensities are given
by scaled Gamma distributions with different parameters;
class 1 has intensity 100×Gamma(8,1); class 2 has intensity
100×Gamma(3,1). Solid line: Prior hyperparameters are µi = 0.0,
α = 1.5, β = 0.0, η=0.01. Dashed line: Prior hyperparameters
are µi = 0.0, α = 1.5, β = 0.0, η=0.02. Note the effect of increasing
the weighting parameter η leads to less certain estimates.

We also present a 2-dimensional example in Figure 5.9 which

highlights the natural ability of the method to capture non-linearities

without specific feature construction nor especial kernel design. The
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idea for the checkerboard also found in the original papers by McCul-

lagh and Jie Yang (2006b). For methods applied to density estimation,

see (Ghalebikesabi et al., 2023), where it is pointed out that popu-

lar neural network based approaches, such as masked autoregres-

sive flows (Papamakarios, Murray, and Pavlakou, 2017) and rational

quadratic neural spline flows (Durkan et al., 2019) can struggle in

such small-data density estimation problems.
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Figure 5.9: Application of the proposed point process classification method
to a two-dimensional example. The presented function, pre-
sented as a contour plot, is the normalised probability ascribed
to the class here whose observations are denoted with red
crosses.

5.9 Conclusion
In this chapter we have presented a novel method for modelling point

process data. This was achieved by definition of a new type of Gaus-

sian Cox process, which allowed us to utilise the properties of the in-
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duced inhomogeneous Poisson process in combination with the prop-

erties of orthogonal series estimators to directly construct a Bayesian

prior on the weight-space view of the latent Gaussian process, which is

not feasible in the standard permanental or log-Gaussian Cox process

models.

This yields a method for estimation that allowed for direct expres-

sion of prior weighting between mean-function and kernel eigenvalues,

which map directly to the prior weighting for standard Gaussian ran-

dom variables in Bayesian analysis. This yields a method that requires

no training stage, and deals directly with the heretofore underexplored

problem of identification of the latent Gaussian process in the Cox

process model. For example if the aim is to learn how the Cox process

varies in space, then prior weighting can lean towards emphasizing

the role of the eigenvalues; if the aim is to learn how the data behave

in the specific region of observation, then prior weighting can lean

towards emphasizing the role of the mean function. It is not possible

to identify these two separate aspects with a single Cox process sam-

ple, a fact that has not apparently been explicitly dealt with in the

relevant literature.

We also extended this to classification problems, following the

stochastic classification approach of McCullagh and Jie Yang (2006b).

Normally this would be intractable, but our Barvinok-type estima-

tor approach, connecting the loop hafnian to the higher moments

of Gaussian random variables, allowed us to construct a tractable

stochastic classifier to sit alongside the permanental process classi-

fier and the log Gaussian Cox process classifier, which yield actual

probabilistic predictions rather than merely generating output values

on the simplex. As a result we have a classification method that is
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able to flexibly capture strongly non-linear decision boundaries with

no tuning required.



Chapter 6

Conclusion

We have presented three applications of orthogonality to machine

learning problems. First, we highlighted the importance of orthonor-

mality in the choice of basis for constructing sparse Gaussian process

models. Gaussian process models use the properties of the Gaus-

sian distribution to represent information about infinite dimensional

operators using finite dimensional matrices. Many applications of

Gaussian processes rely on approximations to the operator, but ignore

that extent to which this operator remains well-approximated by a

finite-dimensional counterpart. We showed that, in one case of such

sparse approximation, if the basis functions used to represent the

behaviour of the operator are not orthonormal, the finite-dimensional

approximation will be poor. We then presented a way to construct

asymptotically orthonormal basis functions for the Gaussian process,

and showed that this yields a sparse approximation that is asymptot-

ically exact. This yields a novel approach to feature construction and

sparse Gaussian process regression.

Future work on this topic should focus on application of the

multivariate orthogonal polynomial literature to the construction

of these basis functions. The standard approach to multivariate
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problems involves the construction of the tensor product of univariate

basis functions. However, as Theorem 7 this is only really valid

for cases where the input variables are independent. Future work

should extend the present work to utilise the literature on multivariate

orthogonal polynomials (Xu, 1994a; Xu, 1994b).

Secondly, we showed an application of orthogonality to graph em-

beddings. Associated with every graph is a sequence of polynomials,

and we showed that there exists a measure on the input space of

these polynomials such that the given sequence is orthogonal. By

comparing these measures, we can compare the graphs in a given se-

quence, and we showed how this could be applied this to an anomaly

detection problem.

Future work in this area could improve the computation of match-

ing polynomials for weighted graphs by acquiring e.g. a complement

theorem for weighted graphs. This would allow for improved computa-

tion of the matching polynomial for denser weighted graphs. Further

work should also look into improved estimation for the matching

polynomial coefficients for larger graphs. The noise in the Barvinok

estimator approach we outlined in Section 4.6.1.2 is quite high, and

it would be beneficial to look at more stable estimators that either use

better control variates, or look into equivalent formulations that yield

the same information without the limitations on the graph size due to

computational complexity. Finally, long-term work should look into

applying the theory of perturbation of orthogonal polynomials to the

graph matching polynomial, in order to better formalise the approach,

whose effectiveness we have only demonstrated empirically.

Finally in Chapter 5, we presented a use of orthonormal bases to

construct rapid estimators for Gaussian Cox process models. This
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sidestepped the usual computational complexity of these models, and

provided a method to construct a classification model that produces

probabilistic predictions. This contrasts it with standard approaches

to classification, which typically merely construct classification bound-

aries.

The approach we have demonstrated is valid for Poisson pro-

cess data; specifically, data that does not exhibit interaction between

points. This means it is not valid for a general range of spatial point

process data. Future work should look into extending the approach

to more general point process data that includes point interactions in

the form of repulsion or clustering. This maybe achieved by noting

that the determinantal point process and permanental point process

(McCullagh and Møller, 2006; Kulesza and Taskar, 2012; Hough et al.,

2009), which yield repulsion and clustering respectively, may benefit

either from kernel sparsification methods, or combined modelling

of the determinantal and permanental point processes. using the

Barvinok estimators utilised in this thesis.
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Lemmas

Lemma 5 (Favard’s Theorem (Favard, 1935)). Let {βn}n=0 be an arbi-

trary real sequence, and {γn}n=0 be a sequence of positive real numbers.

Let {Pn(x)}∞

n=0 be a polynomial sequence such that P−1(x) = 0; P0(x) = 1,

and following the recurrence:

Pn(x) = (x−βn)Pn−1(x)− γnPn−2(x).

Then {Pn(x)}∞

n=0 is an orthogonal polynomial sequence (OPS); and there

is a unique moment functional L s.t. ⟨L,1⟩ = γ1 and
〈
L,Pj(x)Pk(x)

〉
= Biδ jk

for some constant Bi depending on the order of the polynomial.

We can get an equivalent form written in the language of operators

on sequences as follows. Rearranging the three-term recurrence above,

there exist an,bn such that

xPn(x) = anPn(x)+bnPn+1(x)+bn−1Pn−1(x).

We can rewrite this as

AP = xP (A.1)
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where A is the infinite-dimensional tridiagonal matrix:



a0 b0 0 0 0 0

b0 a1 b1 0 0 0

0 b1 a2 b2 0 0

0 0 b2 a3 b3 0
. . . . . . . . . . . . . . . . . .


and P is the infinite-dimensional column vector:



P0(x)

P1(x)

P2(x)

P3(x)
...


The content of Favard’s theorem is then that any polynomial sequence

that fulfills (A.1) is an orthogonal polynomial sequence with respect to

some measure ν.

Lemma 6 (Ostrowski’s Theorem (Braun, 2006)). Denote by λi(A) the

operator that returns the i-th descending ordered eigenvalue of a square

matrix A. Let Λ be a symmetric m×m matrix and Φ a non-singular n×m

matrix. For 1≤ i≤ m, there exists some δi ≥ 0 such that:

λm(Φ
′
Φ)≤ δi ≤ λ1(Φ

′
Φ)

and:

λi(ΦΛΦ
′) = δiλi(Λ)
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Lemma 7 (von-Neumann trace inequality (Carlsson, 2021)). For

any N ×N matrices A,B, with decreasingly ordered singular values

a1,a2, ...,aN, b1,b2, ...,bN respectively,

|tr(AB) | ≤
N

∑
i=1

aibi

with equality if and only if A,B share the same singular vectors.



Appendix B

Proofs

B.1 Proofs: Chapter 3
Proof of Theorem 7. For the forward direction, assume that {φi} are

orthonormal. Note that a result of Ostrowski’s theorem (Lemma 6) is

that

λ1

(
1
N

Φ
′
Φ

)
λi(Λ)≥ λi

(
1
N

ΦΛΦ
′
)
≥ λm

(
1
N

Φ
′
Φ

)
λi (Λ)

⇒
(

λ1

(
1
N

Φ
′
Φ

)
−1
)

λi (Λ)≥ λi

(
1
N

ΦΛΦ
′
)
−λi ≥

(
λm

(
1
N

Φ
′
Φ

)
−1
)

λi (Λ)

Since {φi} are orthonormal w.r.t to ν, 1
N [Φ

′Φ]i j →
∫
X φi(x)φ j(x)dν = δi j

by the law of large numbers. This means the eigenvalues λi(
1
N Φ′Φ)

converge to 1, and the eigenvalues λ ( 1
N ΦΛΦ′) converge to λi by the

squeeze theorem.

For the reverse direction, it is sufficient to show that at least

one eigenvalue fails to converge if the functions {φi}m
i=0 are not or-

thonormal. First, we show that orthogonality alone does not achieve

convergence. Then, we extend to the case when the basis functions

are not orthogonal. Suppose that the {φi}m
i=0 are orthogonal but not
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orthonormal. To simplify notation, define Φ̂′Φ̂ = limN→∞
1
N Φ′Φ. Orthog-

onality of the basis functions implies that Φ̂′Φ̂ is diagonal. The result

is trivial if λ1(Φ̂′Φ̂) < 1 or λm(Φ̂′Φ̂) > 1, by the application of the last

inequality above. To consider the case when λ1(Φ̂
′Φ̂) > 1 > λm(Φ̂

′Φ̂),

by the properties of the determinant (via the Sylvester determinant

identity), the non-zero eigenvalues of the product AB of two matrices

A,B, are equal to those of BA; so that limN→∞ λi(
1
N ΦΛΦ′) = λi(Λ

1
2 Φ̂′Φ̂Λ

1
2 ).

The matrix Λ
1
2 Φ̂′Φ̂Λ

1
2 is diagonal, because it is the matrix product of

diagonal matrices. This means that we have λi(
1
N ΦΛΦ′) = λi(Λ) only if

(Φ̂′Φ̂) = I. , i.e. the basis functions are orthonormal.

Now, suppose that the {φi}m
i=0 are not orthogonal. Showing that

the trace of 1
N ΦΛΦ′ fails to converge to tr(Λ) is sufficient to show that

at least one eigenvalue fails to converge, a fortiori. Note that since

the basis functions are not orthogonal, Φ̂′Φ̂ is not diagonal. By the

properties of the trace, tr
( 1

N ΦΛΦ′
)
= tr

( 1
N ΛΦ′Φ

)
. It is thus sufficient

to show that tr
( 1

N ΛΦ′Φ
)
→ tr(Λ). We proceed by contradiction, and

use a recent extension to the implications of the von-Neumann trace

inequality (Carlsson, 2021). Suppose tr
(
ΛΦ̂′Φ̂

)
= tr(Λ). Then by

Lemma 7, we have:

tr(Λ) = tr
(
ΛΦ̂
′
Φ̂
)

(B.1)

≤| tr
(
ΛΦ̂
′
Φ̂
)
|≤

m

∑
i=0

λiλi(Φ̂
′
Φ̂). (B.2)

where we have (B.1) by assumption, and (B.2) by the von-Neumann

trace inequality. We also have

tr(ΛIm) =
m

∑
i=0

λi. (B.3)
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By Lemma 7, we have equality in (B.2) if and only if Λ, Im share the

same eigenvectors. Since Λ and Im are both diagonal, (B.2) and (B.3)

imply that Im and Φ̂′Φ̂ share the same eigenvectors, by the assumption

that tr
(
ΛΦ̂′Φ̂

)
= tr(Λ). By assumption the basis functions are not

orthogonal, so the matrix Φ̂′Φ̂ is not diagonal, and thus its eigenvectors

do not point along the axes.

We therefore have a contradiction. As a result, the eigenvalues

λi(
1
N Φ′ΛΦ)→ λi if and only if the basis functions are orthonormal.

Proof of Theorem 8. For a measure ν with moments {µi}∞

i=0, we refer

to the sum ∑
∞
i=0 µ

−2i
2i = ∞ as the Carleman sum for measure ν. Since,

by assumption, the moments {µi}∞

i=0 fulfill Carleman’s condition, the

measure ν is the solution to a determinate moment problem (Chihara,

2011). By the Radon-Nikodym theorem, we denote by wdν the measure

ζ such that ζ (A) =
∫

A w(x)dν. where w = dζ

dν
. By the fact that w≤ 1, the

Carleman sum for wdν upper bounds that of ν term-by-term. As a

result, wdν is also the solution to a determinate moment problem.

By Theorem 6.1 composed with Theorem 3.3 of (Chihara, 2011),

the corresponding moment functional is therefore positive definite,

so there exists an orthogonal polynomial sequence {Pi}∞

i=0 orthogonal

with respect to the measure wdν. By the determinacy of wdν, and

by Deift (2000, Corollary 2.50), the polynomials are dense in L2[wdν ].

Suppose now that the support of ν is compact. For a function f :X →R,

such that f can be written f = gw1/2 for g ∈ L2[wdν ] and ε > 0, by the

Stone-Weierstrass theorem there exists a polynomial g∗, of order m∗,

such that supx∈supp(ν) |g(x)− gm∗(x)| < ε. Then there is way to write it

as g∗ = ∑
m∗
i=0 gidiPi for some coefficients gi and normalising constants ci,

which means there is way to write fm∗ =∑
m∗
i=0 giciPiw1/2 =∑

m∗
i=0 fiφi. Hence,
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the functions {φi}∞

i=0 form a basis in L2[wdν ].

Proof of Theorem 9. Convergence of P̂i(x) to Pi(x) is equivalent to conver-

gence of the corresponding recurrence coefficients. Since the sample

D is iid, µ̂ j →p µ j by the law of large numbers. Ĥn is a continuous

polynomial function of the sample moments µ̂ j,{ j = 1,2, ...,2n}. By the

continuous mapping theorem (Hayashi, 2000, Lemma 2.3), Ĥn→p Hn.

Since this polynomial is not identically zero, its set of zeroes has

Lebesgue measure zero (Mityagin, 2020). As a result, the functions

for the coefficients (3.8), (3.9). are defined with probability 1, since the

denominators are zero with probability 0. As a result, β̂n→p βn, γ̂n→p γn,

so P̂i(x)→ Pi(x).

Proof of Theorem 10. Since f̂ is in the projection Hm∗
k , it can be writ-

ten f̂ = ∑
m∗
i=0 θ̂iφi. We can write a consistent estimator for the noise

parameter:

σ̂
2 =

1
N

N

∑
i=1

(yi−
m̂

∑
j=0

θ̂ jφ j(xi)

)2


=
1
N

N

∑
i=1

( m∗

∑
j=0

θ jφ j(xi)+ εi−
m̂

∑
j=0

θ jφ j(xi)

)2


which has the same limit in probability as any other consistent esti-

mator for the noise parameter. If m̂ < m∗, we can write this as:

=
1
N

N

∑
i=1

( m̂

∑
j=0

(θ j− θ̂ j)φ j(xi)+ εi +
m∗

∑
j=m̂+1

θ jφ j(xi))

)2
 (B.4)
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or, if m̂≥ m∗, we can write this as:

=
1
N

N

∑
i=1

(
m∗

∑
j=0

(θ j− θ̂ j)φ j(xi)+ εi−
m̂

∑
j=m∗+1

θ̂ jφ j(xi))

)2

(B.5)

where by θ̂ we mean the vector of posterior mean coefficients. We

begin with the case when m̂ < m∗. Expanding the square and taking

expectations with respect to εi we get:

Eε

[
σ̂

2]= 1
N

N

∑
i=1

( m̂

∑
j=0

(θ j− θ̂ j)φ j(xi)

)2

+σ
2

+
m∗

∑
j=m̂+1

(
θ jφ j(xi)

)2

−2
m∗

∑
j=0

(θ j− θ̂ j)φ j ∑
j=m̂+1

θ jφ j(xi)

)

=
1
N

N

∑
i=1

(
m̂

∑
k=0

m̂

∑
j=0

(θ j− θ̂ j)(θk− θ̂k)φ j(xi)φk(xi)

)
(B.6)

+σ
2

+
1
N

N

∑
i=1

(
m∗

∑
j=m̂+1

θ jφ j(xi)

)2

−2
1
N

N

∑
i=1

m̂

∑
j=0

(θ j− θ̂ j)φ j(xi)
m∗

∑
j=m̂+1

θ jφ j(xi) (B.7)

By orthonormality of φ j, and by consistency of Bayesian estimators,

for any δ there exists a sample size N∗1 such that the term (B.6) is less

than δ/2 for all N ≥ N∗1 . Similarly, there exists a sample size N∗2 such

that (B.7) is less than δ/2 for all N ≥ N∗2 , since none of the terms in

the product of the sums shares a φ j.
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Define N∗ = max{N∗1 ,N∗2}. Then, for all N ≥ N∗, we can write

Eε

[
σ̂

2]= 1
N

N

∑
i=1

(
m̂

∑
j=0

(θ j− θ̂ j)φ j(xi)
2 +σ

2 +
m∗

∑
j=m̂+1

θ
2
j φ j(xi)

2

−2
m∗

∑
j=0

(θ j− θ̂ j)φ j(xi) ∑
j=m̂+1

θ jφ j(xi)

)

≤ σ
2 +δ +

m∗

∑
j=m̂+1

θ jφ j(xi)
2 ∀ N ≥ N∗.

Following a similar approach for when m̂≥ m∗, we can write

Eε

[
σ̂

2]≤ σ
2 +δ +

1
N

N

∑
i=1

m∗

∑
j=0

θ jφ j(xi)
2 ∀ N ≥ N∗.

Define ηm̂ = 1
N ∑

N
i=1 ∑

m∗
j=m̂+1 θ jφ j(xi)

2, when m̂<m∗, and ηm∗ =
1
N ∑

N
i=1 ∑

m̂
j=m∗+1 θ jφ j(xi)

2,

when m̂≥ m∗. Define further:

ηm =

 ηm∗ m̂≥ m∗

ηm̂ m̂ < m∗
(B.8)

Substituting this into (B.4), we have

Eε

[
σ̂

2]≤ (σ2 +δ +ηm
)
∀ N ≥ N∗.

Proof of Theorem 12. Denoting the imaginary unit by j, The covari-
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ance between two values of the complex gp h is given by:

E
[
h(x)h(x′)

]
=Eω

[
Eb
[
Eθ

[
h(x)h(x′) | ω,b

]
ω
]]

=Eω

[
Eb
[
Eθ

[
(f(x)+ jg(x))(f(x′)+ jg(x′)) | ω,b

]
| ω
]]

=Eω

[
Eb
[
Eθ

[
f(x)f(x′) | ω,b

]
| ω
]]

+ jEω

[
Eb
[
Eθ

[
g(x)f(x′) | ω,b

]
| ω
]]

+ jEω

[
Eb
[
Eθ

[
g(x′)f(x) | ω,b

]
| ω
]]

−Eω

[
Eb
[
Eθ

[
g(x)g(x′)) | ω,b

]
| ω
]]

=Eω

[
Eb
[
Eθ

[
f(x)f(x′) | ω,b

]
| ω
]]

−Eω

[
Eb
[
Eθ

[
g(x)g(x′)) | ω,b

]
| ω
]]

where the complex terms are dropped in the last equation by the law

of iterated expectations and the fact that the coefficients θi,θ
′
i are

uncorrelated.
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Taking each of these terms separately,

Eω

[
Eb
[
Eθ

[
f(x)f(x′) | ω,b

]
| ω
]]

=Eω

[
Eb

[
Eθ

[
R

∑
i=0

θiφ
NS
i (x)

R

∑
i=0

θiφ
NS
i (x′) | ω,b

]
| ω

]]

=Eω

[
Eb

[
R

∑
i=0

φ
NS
i (x)φ NS

i (x′) | ω

]]

=Eω

[
Eb

[
R

∑
i=0

1
R

cos(ωi1x+b j)cos(ωi1x′+b j) | ω

]]

+Eω

[
Eb

[
R

∑
i=0

1
R

cos(ωi1x+b j)cos(ωi2x′+b j) | ω

]]

+Eω

[
Eb

[
R

∑
i=0

1
R

cos(ωi2x+b j)cos(ωi1x′+b j) | ω

]]

+Eω

[
Eb

[
R

∑
i=0

1
R

cos(ωi2x+b j)cos(ωi2x′+b j) | ω

]]

By the properties of the cosine function,

Eω

[
Eb
[
cos(ωi jx+bi)cos(ωikx′+bi) | ω

]]
=Eω

[
Eb

[
1
2
(
cos(ωi jx+ωikx′+2bi

)]
| ω
]

+Eω

[
1
2
(
cos(ωi jx−ωikx′

)
)

]
=Eω

[
1
2
(
cos(ωi jx−ωikx′

)
)

]

for j,k ∈ {1,2}, i ∈ {1, ...,R}, where the last equality holds because

bi ∼Unif[0,2π] and, by the law of iterated expectations, the first term

vanishes. Substituting this into the corresponding terms above, we
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get:

Eω

[
Eb
[
Eθ

[
f(x)f(x′) | ω,b

]]]
=Eω

[
R

∑
i=0

1
2R

cos(ωi1(x− x′))

]
(B.9)

+Eω

[
R

∑
i=0

1
2R

cos(ωi1x−ωi2x′)

]
(B.10)

+Eω

[
R

∑
i=0

1
2R

cos(ωi2x−ωi1x′)

]
(B.11)

+Eω

[
R

∑
i=0

1
2R

cos(ωi2(x− x′))

]
(B.12)

By Bochner’s theorem (Rahimi and Recht, 2007), the terms (B.9)

and (B.12) are stationary kernels, whose spectral densities are the

marginal densities of ω1,ω2 respectively. By Yaglom’s theorem (The-

orem 11), the terms (B.10) and (B.11) are non-stationary kernels

following the spectral density FΩ1,Ω2(ω1,ω2). As a result, we get a final

expression:

Eω

[
Eb
[
Eθ

[
f(x)f(x′) | ω,b

]
| ω
]]

=
1
2

kω1

(
x,x′
)
+

1
2

k
(
x,x′
)
+

1
2

k
(
x′,x
)
+

1
2

kω2

(
x,x′
)

(B.13)

where by kω j (x,x
′) we denote a stationary kernel whose spectral density

is the marginal density of the random variable ω j. Using similar

reasoning for g, we get:

Eω

[
Eb
[
Eθ

[
g(x)g(x′) | ω,b

]
| ω
]]

=
1
2

kω1

(
x,x′
)
+

1
2

kω2

(
x,x′
)

(B.14)
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Subtracting (B.14) from (B.13) gives:

Eω

[
Eb
[
Eθ

[
f(x)f(x′) | ω,b

]
| ω
]]

−Eω

[
Eb
[
Eθ

[
g(x)g(x′) | ω,b

]
| ω
]]

=
1
2

kω1

(
x,x′
)
+

1
2

k
(
x,x′
)
+

1
2

k
(
x′,x
)
+

1
2

kω2

(
x,x′
)

−
(

1
2

kω1

(
x,x′
)
+

1
2

kω2

(
x,x′
))

=
1
2

k
(
x,x′
)
+

1
2

k
(
x′,x
)

=k
(
x,x′
)

where the last equality holds because since the kernel is symmetric.

B.2 Proofs: Chapter 4

Proof of Theorem 13. If the summands in the summation term in (4.2)

are independent of i, then the vertex removal recurrence can be

written:

Q(G;x) = xQ(G− v;x)−wv′Q(G− v− v′;x)

for some weight wv and arbitrary vertex v′ ∈ G− v. Now, apply Favard’s

theorem (Lemma 5).

Proof of Theorem 14. We begin with the existence of the measure ν

and its corresponding orthogonal polynomials. Using the notation in

the theorem statement, the matching polynomial recurrence can be
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written:

Q(G;x) = xQ(Gσ1;x)− ∑
v∈Gσ1

Q(Gσ1− v;x)

⇒Q(G;x)+ ∑
v∈Gσ1

Q(Gσ1− v;x) = xQ(Gσ1;x)

The summation term is a polynomial of order n−2 since it is the sum

of n−1 polynomials of order n−2. Since the polynomials are a basis

for the space of polynomials of order n−2, we can write this system:

H̃Q̃ = xQ̃

where H̃ is a lower Hessenberg matrix, and Q̃ is the vector of match-

ing polynomials, corresponding to the graphs in the complete node

sequence σ . In fact, we can extend this to an operator on l2, the space

of square-summable sequences, by appending an arbitrary sequence

of polynomials to Q̃ and corresponding coefficients to H̃ to get:

HQ = xQ

for Q a sequence of polynomials such that the i-th polynomial is the

matching polynomial Q(Gσi;x) if i < n, the matching polynomial Q(G;x)

if i == n, and any arbitrary polynomial otherwise.

On this sequence, multiplication by the independent variable is

thus equivalent to application of the operator H. The spectral theorem

for multiplication operators Reed and Simon (1972)[see Theorem VII.3]

states that multiplication operators are unitarily equivalent to self-
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adjoint operators, so we can write:

HQ =UAU−1Q = xQ (B.15)

where U denotes a unitary operator, and A is a self-adjoint operator.

Note that for the space of polynomials, the operator of multiplica-

tion by the independent variable x trivially has a cyclic vector; that is,

a vector ψ such that the span of ψ,xψ,x2ψ... is complete for the space

of polynomials. Therefore, by Stone (1932)[Theorem 7.13], the self

adjoint operator A has a tridiagonal representation, and we can write:

AU−1Q = xU−1Q (B.16)

⇒ AP = xP (B.17)

As a result, we can write P = U−1Q. By Favard’s theorem 5 is a se-

quence of orthogonal polynomials for some measure ν. We have there-

fore shown existence of the measure and corresponding orthogonal

polynomials.

Given this, suppose the measure νσ is available. we can thus

write the Christoffel-Darboux kernel kν
m(x,y) for the orthonormal poly-

nomials {Pi}m+1
i=0 as:

kν
m(x,y) =

d
c

Pm+1(x)Pm(y)−Pm(x)Pm+1(y)
x− y

(B.18)

where c,d are the normalising constants of the polynomials Pm and

Pm+1 respectively. Apply the Gram-Schmidt process to the polynomials
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Q(G;x),Q(Gσ ;x)... etc, so that:

Pm+1(x) = cQ(G;x)

Pm(x) = d [Q(Gσ1;x)−acQ(G;x)]

Substituting into (B.18) we obtain:

kν
m(x,y) =

d
c

Pm+1(x)Pm(y)−Pm(x)Pm+1(y)
x− y

=
d
c

cQ(G;x)d [Q(Gσ ;y)−acQ(G;y)]
x− y

− d [Q(Gσ ;x)−acQ(G;x)]cQ(G;y)
x− y

=
d
c

cQ(G;x)dQ(Gσ ;y)− cQ(G;y)dQ(Gσ ;x)
x− y

= d2kσ
G (x,y)

where a is the orthogonalising factor between Q(G;x) and Q(Gσ ;x), and

normalise νσ such that d = 1. Therefore,

kν
m(x,y) = kσ

G (x,y).

Proof of Theorem 16. The determinant det(α(A)) can be expanded as

follows:

det(α(A)) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

α(A)i,σ(i)

= ∑
σ∈Sn

sgn(σ)
n

∏
i=1

(−1)I[i>σ(i)]Zi,σ(i)A2i,σ(i)

where Sn is the set of permutations of {1, . . . ,n} and the indicator

function I [i > σ(i)] terms capture whether the value is above or below
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the diagonal. Opening the terms in the sum, we get:

det(α(A)) = ∑
σ∈Sn

sgn(σ)
(
(−1)I[1>σ(1)]Z1σ(1)...(−1)I[2k>σ(2k)]Z2kσ(2k)

)
·

n

∏
i=1

A2(i,σ(i))

Firstly, note that the terms Zi j have an extra negative sign if j < i,

by the skew-symmetric property of Z; the number of extra signs is

precisely the number of crossings of the permutation σ , so the sgn(σ)

is cancelled. The determinant becomes:

det(α(A)) = ∑
σ∈Sn

(
Z1σ(1)Z2σ(2)...Z2kσ(2k)

) n

∏
i=1

A2(i,σ(i))

Since the diagonal of Z is 0, the elements Zii zero out the summand.

The only permutations that remain are the derangements (permuta-

tions without fixed points). Taking the expectation, any permutation

such that Ziσ(i) is not also matched with Zσ(i)i will have an expectation

of 0, since the elements of Z are independent otherwise. This must

be true of all the elements in the product
(
Z1σ(1)Z2σ(2)...Z2kσ(2k)

)
, since

otherwise the expectation of the whole term is 0. The permutations

corresponding to non-zero terms therefore contain both Aiσ(i) and

Aσ(i)i. Since the matrix A2 is symmetric, A2(i,σ(i)) = A2(σ(i),i), and since

the elements used are square roots, the resulting captured values are

A2(i,σ(i))A2(σ(i),i) = Ai,σ(i).

The above argument is equivalent to saying that any non-zero

term derangement maps i→ σ(i), and σ(i)→ i; or, stated otherwise,

σ2 = Id. Hence, the set of kept permutations is precisely the set τ.
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B.3 Proofs: Chapter 5

Proof of Theorem 17.

E
[
ξ̂

]
= E

[
N

∑
i=0

φ j(xi)

]

=
∫
X

φ j(x)dΨ(x) (B.19)

=
∫
X

φ j(x)ψ(x)dν(x)

=
∫
X

φ j(x)
∞

∑
k=0

ξkφk(x)dν(x)

=
∞

∑
k=0

ξk

∫
X

φ j(x)φk(x)dν(x)

=
∞

∑
k=0

ξkδk j

= ξ j.

where we have B.19 by Lemma 4.

Proof of Theorem 19. By Theorem 1.1 in Withers (1985), the mean

EN [Z1Z2...Zn] can be written ∑
⌊n/2⌋
k=0 ∑σ∈In µσ(1)µσ(2)...µσ(n−2k)Σσ(k)σ(k+1)Σσ(2k−1)σ(2k).

where In is the set of involutions on the set n, which is the set of

permutations σ such that σ2 is the identity. Equivalently, they can

be written only as the composition of 1-cycles and 2-cycles. The term

in the summand of the loop hafnian of a matrix A is written:

n

∏
i=1

Ai,σ(i). (B.20)

Since the permutation σ in the loop hafnian definition can be written

as a composition of 1-cycles and 2-cycles, the product (B.20) has

terms either Ai,i or Ai,σ(i). Placing the mean vector µ on the diagonal of

Ai,i thus yields precisely the formula described by Withers (1985).
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Proof of Theorem 20. The determinant det(α(A)) can be expanded as

follows:

det(α(A)) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

αi,σ(i)

= ∑
σ∈Sn

sgn(σ)
n

∏
i=1

(−1)I[i>σ(i)]Zi,σ(i)A2i,σ(i)

where Sn is the set of permutations of {1, . . . ,n} and the indicator

function I [i > σ(i)] terms capture whether the value is above or below

the diagonal. Opening the terms in the sum, we get:

det(α(A)) = ∑
σ∈Sn

sgn(σ)
(
(−1)I[1>σ(1)]Z1σ(1)...(−1)I[2k>σ(2k)]Z2kσ(2k)

)
·

n

∏
i=1

A2i,σ(i)

Firstly, note that the terms Zi j have an extra negative sign if j < i,

by the skew-symmetric property of Z; the number of extra signs is

precisely the number of crossings of the permutation σ , so the sgn(σ)

is cancelled. The determinant becomes:

det(α(A)) = ∑
σ∈Sn

(
Z1σ(1)Z2σ(2)...Z2kσ(2k)

) n

∏
i=1

A2(i,σ(i))

Since the diagonal of Z is 1, the elements Zii are captured in per-

mutations where i = σ(i). The permutations that remain are the

derangements (permutations without fixed points). Taking the ex-

pectation, any permutation such that Zi,σ(i) is not also matched with

Zσ(i),i will have an expectation of 0, since the elements of Z are in-

dependent otherwise. This must be true of all the elements in the
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product
(
Z1,σ(1)Z2,σ(2)...Z2k,σ(2k)

)
, since otherwise the expectation of the

whole term is 0. The permutations corresponding to non-zero terms

therefore contain both Ai,σ(i) and Aσ(i),i, or terms Ai,i as noted above.

Since the matrix A2 is symmetric, A2(i,σ(i)) = A2(σ(i),i), and since the

elements used are square roots, the resulting captured values are

A2(i,σ(i))A2(σ(i),i) = Ai,σ(i)

The above argument is equivalent to saying that any non-zero term

derangement maps i→ σ(i), and σ(i)→ i. This includes values where

i→ i. Stated otherwise, σ2 = Id. Hence, the set of kept permutations

is precisely the set of involutions π.
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Loève, Michel. (1977). Probability Theory. 4th ed. Graduate texts in

mathematics ; 45-46. New York: Springer-Verlag.
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