Selective decontamination of the digestive tract in mechanically ventilated patients in the intensive care unit: a systematic review with Bayesian meta-analysis

5		
4	Naomi E	Hammond RN PhD ^{1,2} , John Myburgh MD PhD ^{1,3} , Ian Seppelt MD ^{1,10} , Tessa
5	Garside N	1D PhD ^{1,2} , Ruan Vlok MBBS ² , Sajeev Mahendran MD ² , Derick Adigbli MD PhD ^{1,2} ,
6	Simon Fin	fer MD ^{1,5} , Ya Gao MM ^{6,7} , Fiona Goodman BN ¹ , Gordon Guyatt MD PhD ⁸ , Joseph
7	Alvin Sant	$1^{1,9}$, Liam Yao MM ^{\prime} , Gian Luca Di Tanna
8	PhD ⁴ , Ant	hony Delaney MBBS PhD ^{1,2}
9		
10	Affiliat	tions
11	1.	Critical Care Program, The George Institute for Global Health and UNSW,
12		Sydney, Australia
13	2.	Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital,
14		Sydney, Australia
15	3.	Department of Intensive Care, St George Hospital, Kogarah, Australia
16	4.	Biostatistics and Data Science Division, Meta-Research and Evidence Synthesis,
17		George Institute for Global Health, University of New South Wales, Sydney,
18		Australia.
19	5.	The George Institute for Global Health, School of Public health, Imperial
20		College, London. England
21	6.	Evidence-Based Medicine Center, School of Basic Medical Sciences,
22		Lanzhou University, Lanzhou, China
23	7.	Department of Health Research Methods, Evidence, and Impact,
24		McMaster University, Hamilton, ON, Canada
25	8.	Department of Clinical Epidemiology and Biostatistics, McMaster University,
26		Hamilton, ON, Canada
27	9.	Intensive Care Unit, Wesley and Princess Alexandra Hospitals, Queensland,
28		Australia
29	10.	Department of Intensive Care Medicine, Nepean Hospital, Penrith, Australia
30 31	Drospero	Registration: CRD42022309825
32	riospero	
33	Correspon	nding author
34	Associate	Professor Anthony Delaney
35	adelaney	@georgeinstitue.org.au
36		
37	Key word	s: Selective decontamination of the digestive tract, invasive ventilation,
38	intensive	care, critically ill, antibiotic-resistant organisms
39		
4.0		

40 Word count: 2458

41 Key Points

- 42 **Question:** In mechanically ventilated adults in the intensive care unit, does the use of
- 43 Selective Decontamination of the Digestive Tract (SDD) reduce hospital mortality compared
- 44 to standard care?
- 45 **Findings:** In this systematic review and meta-analysis of 32 randomised trials that included
- 46 24 389 participants, there was an 99.3% posterior probability that SDD was associated with
- 47 reduced hospital mortality compared with standard care (risk ratio 0.91, 95% credible
- 48 intervals 0.82 to 0.99, moderate certainty).
- 49 Meaning: The use of SDD probably reduces hospital mortality in mechanically ventilated
- 50 adults in the ICU.

51	Abstract
52 52	Importance: The offectiveness of Selective Directive Decentemination (SDD) in
55 54	mechanically ventilated critically ill adults is uncertain
55	
56	Objective: To determine whether SDD reduces the risk of death in mechanically
57	ventilated adults in Intensive Care Units (ICUs) compared to standard care.
58	
59	Data sources: The primary search was conducted using MEDLINE, EMBASE and
60	CENTRAL databases until December 2021
61	
62	Study selection: Randomized clinical trials (RCTs) including adults receiving mechanical
03 64	ventilation in the ICO comparing SDD to standard care of placebo.
65	Data extraction and synthesis: Data extraction and risk of bias assessments were
66	performed in duplicate. The primary analysis was conducted using a Bayesian
67	framework.
68	
69	Main Outcomes and Measures: The primary outcome was hospital mortality. Subgroups
70	included SDD with an intravenous (IV) agent compared to SDD without. Secondary
71	outcomes included incidence of ventilator associated pneumonia (VAP), ICU acquired
72	bacteraemia, and incidence of positive cultures of antimicrobial resistant organisms (ARO).
73	
74	Results: From 32 RCTs, including 24,389 participants, 30 trials (24,034 participants)
75	contributed data to the primary outcome. The estimated relative risk (RR) for mortality for
76	SDD compared to standard care was 0.91 (95% credible interval (CrI) 0.82 to 0.99, l^2 =33.9%,
77	moderate certainty) with a 99.3% posterior probability that SDD reduced hospital mortality.
78	The beneficial effect of SDD was evident in trials with an IV agent (RR 0.84, 95% CrI 0.74 to
79	0.94), but not in trials without (RR 1.01, 95% Crl 0.91 to 1.11). SDD was associated with
80	reduced risk of VAP (RR 0.44, 95% CrI 0.36 to 0.54), and ICU acquired bacteraemia (RR 0.68,
81	95% CrI 0.57 to 0.81). Available data regarding the incidence of positive cultures of
82	antimicrobial resistant organisms was of very low certainty.
83	
84	Conclusion and relevance
85	The use of SDD probably reduces hospital mortality in mechanically ventilated adults in ICU.

86 Evidence regarding its effect on antimicrobial resistance is of very low certainty.

87 Background

88 Selective Decontamination of the Digestive Tract (SDD) is a preventive infection control 89 strategy that usually comprises the administration of non-absorbable, topical antimicrobial 90 agents to the oropharynx and upper gastrointestinal tract, with or without the 91 administration of a short-term course of broad-spectrum intravenous antibiotics. 92 Since the 1980s, advocates have encouraged the use of SDD in mechanically ventilated 93 patients treated in the Intensive Care Unit (ICU), primarily to reduce the incidence of ventilator-associated pneumonia.¹ While a body of evidence suggesting reductions in 94 hospital mortality and ventilator associated pneumonia exist^{2,3} concerns regarding the 95 impact of SDD on the development of antibiotic resistance have left international guideline 96 panels⁴⁻⁶ reluctant to recommend SDD and clinicians reluctant to implement in practice.^{7,8} 97 98 Evidence from randomized clinical trials (RCTs), including the Ecological Effects of Decolonisation Strategies in Intensive Care (RGNOSIS)⁹ study and the Selective 99 100 Decontamination of the Digestive Tract in the Intensive Care Unit (SuDDICU) study have recently added substantive weight to the body of evidence.¹⁰ To provide an updated 101 102 summary of current evidence, we conducted a systematic review and meta-analysis 103 addressing the effect of SDD compared to standard care on hospital mortality and other 104 relevant outcomes in mechanically ventilated patients treated in the ICU.

105

106 Methods

- 107 We conducted a systematic review according to a pre-specified published protocol,¹¹
- 108 registered at the international prospective register of systematic reviews (PROSPERO
- 109 CRD42022309825) and report the review in accordance with the Preferred Reporting Items
- 110 for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement.¹²

111 Eligibility criteria

- 112 We included RCTs and cluster-randomized controlled trials (cRCTs) that recruited ICU
- 113 patients of whom ≥75% were invasively ventilated and compared the administration of SDD
- 114 using antibacterial and/or antifungal agents to the upper gastrointestinal tract, stomach or
- 115 proximal small bowel, with or without the administration of systemic antibiotics to standard
- 116 care or placebo. Trials that administered only oral antiseptic agents as the intervention were
- 117 excluded. Trials that included the routine use of topical antiseptic agents were included in
- 118 the standard care comparator. We included all reports including studies only reported as
- 119 abstracts, with no language restriction.

120 Search Strategy

- 121 We systematically searched MEDLINE, EMBASE, and the Cochrane Central Register of
- 122 Clinical Trials (CENTRAL), from inception to December 20, 2021.
- 123 The search strategy included multiple medical subject heading (MESH) terms and keywords
- 124 to identify critically ill patients, mechanical ventilation and Selective Digestive
- 125 Decontamination (SDD) or Selective Oral Decontamination (SOD), combined with sensitive
- 126 filters to identify randomized clinical trials¹³ including cluster and cross over randomized
- 127 controlled trials. We limited the search to adult human studies. We contacted experts and
- 128 conducted manual searches of reference lists of included studies and other systematic
- 129 reviews. The supplement provides details of the electronic search strategy.

130 Study selection

- 131 Using the COVIDENCE reference management system¹⁴, a minimum of two investigators
- 132 independently screened all identified references for inclusion based on the study title and
- 133 abstract. A minimum of two reviewers reviewed for inclusion the full text of articles deemed
- 134 possibly eligible. We resolved disagreement during the review process by discussion or if
- 135 necessary, consultation with a third reviewer.

136 Data collection

137 Three investigators independently extracted data from each included trial using a

- 138 standardized data collection form. We extracted all available data as outlined in the
- 139 protocol, including characteristics of the included studies, design (RCT or cRCT), details of
- 140 the enrolled population including demographics, illness severity, details of the intervention
- 141 including oral and systemic agents, dose and duration and comparison group information
- 142 including use of topical antiseptics. We did not impute missing data. Continuous variables
- 143 presented in formats not readily amenable to pooling were converted to mean and standard
- 144 deviation according to published methods.¹⁵ For the SuDDICU trial¹⁰, we had access to the
- 145 study data prior to publication. We resolved discrepancies in the data extracted by
- 146 discussion or, if necessary, adjudication by a fourth reviewer.
- 147 **Risk of bias assessment**
- 148 Two investigators with no affiliation with the included trials independently assessed risk of
- 149 bias of for each of the included trials using the DistillerSR, 'Tool to Assess Risk of Bias in
- 150 Randomized Controlled Trials'¹⁶ modified to include items specific to cluster randomized
- 151 trials developed by three of the authors (AD, NEH, GG) and reported in the supplement.

152 Disagreements were resolved by discussion and if necessary, consultation with a third

153 reviewer.

154 Outcomes

155 The primary outcome was hospital mortality. For trials where hospital mortality was not

- 156 reported, we used the closest approximation reported. Data were collected for the
- 157 following secondary outcomes: mortality at longest follow-up, incidence of ventilator
- associated pneumonia, duration of mechanical ventilation, ICU and hospital length of stay.
- 159 We attempted to collect data regarding the incidence of positive cultures of antibiotic
- 160 resistant organisms using data as reported in the included trials and the incidence of
- 161 *Clostridioides difficile* at both a unit level and an individual patient level.

162 Subgroup analyses

163 There were three pre-specified subgroups for the primary outcome.¹¹ We compared trials 164 where the intervention consisted of SDD with oral and/or enteral agents only compared 165 with SDD that included oral, enteral, and intravenous agents, with the specified hypothesis

166 that there would be a greater reduction in mortality in trials that included intravenous

167 — agents as a component of the intervention. We compared trials conducted in surgical ICUs

- 168 vs. medical ICUs vs. trauma ICUs vs. mixed population/ICUs, with the specified hypothesis
- 169 that there would be a greater reduction in mortality in trials conducted in surgical ICUs. We
- 170 also compared individual patient compared to unit level randomization (i.e., cluster and
- 171 cluster/cluster-cross-over) with the specified hypothesis that there would be a greater
- 172 reduction mortality in trials that randomized individual patients. When results suggested
- 173 possible subgroup effects, we used the ICEMAN¹⁷ guidelines to assess their credibility.

174 Data synthesis

- 175 The primary analysis used a Bayesian random effects model. We performed sensitivity
- 176 analyses examining treatment effects using different priors including vague and weakly-
- 177 informative priors on effect and heterogeneity parameters¹⁸ and, in addition, a frequentist
- 178 random-effects model using Hartung-Knapp-Sidik-Jonkman¹⁹ and Der-Simonian Laird
- estimates of the between-study variance. The full description of priors has been reported in
 the protocol.¹¹
- 181 As some of the included trials are cluster randomized trials, we prospectively adjusted the
- 182 raw data for the design effect by using an effective sample size approach, defined as the
- 183 original sample size divided by the design effect.²⁰

- 184 We present results as risk ratios (RR) for binary outcomes and mean differences (MD) for
- 185 continuous outcomes. Along with the pooled estimates of effect sizes and 95% credible
- 186 intervals (CrI) for the Bayesian meta-analysis, we reported 95% confidence intervals (CI) for
- 187 the frequentist model.
- 188 We assessed quantitative heterogeneity by reporting the posterior estimates of the
- 189 heterogeneity parameter (tau) with its 95% credible interval, the prediction interval²¹ of the
- 190 intervention pooled effect size and evaluating the proportion of total variability due to
- 191 heterogeneity rather than due to sampling error (I^2) .
- 192 Small-study effects were assessed by visual assessment of the contour-enhanced funnel
- 193 plots and formal Egger's regression test.
- 194 All statistical analyses were performed using R (for the Bayesian meta-analysis using the
- 195 package bayesmeta²²) and Stata 17 (StataCorp LLC, College Station, TX, USA).
- 196 Confidence in the cumulative evidence
- 197 We used the Grading of Recommendations Assessment, Development, and Evaluation
- 198 (GRADE) approach to assess the overall certainty of evidence that SDD compared with
- 199 standard care improves each outcome measure to any degree.²³ We rated certainty in non-
- 200 zero effects of SDD.
- 201

202 Results

- We retrieved 6,569 records. Figure 1 presents the results of the search and reasons for trial
 exclusion. The 32 eligible trials^{9,10,24-53} included 24,389 participants. Table 1 (and Table S1)
 present the characteristics of included trials.
- 206 Risk of Bias
- Table S2 presents the risk of bias assessments. No trials were adjudicated as low risk of bias in all domains. The risk of bias was adjudicated as low for 28/30 trials contributing data
- 209 regarding hospital mortality. We rated down the certainty in other outcomes due to risk of
- 210 bias (Table S2 and Table 3).

211 **Primary outcome**

- 212 There were 30 trials (24,034 participants) that contributed data to the primary outcome.
- 213 Using a Bayesian random effects model with vague priors, the pooled estimated risk ratio
- 214 for hospital mortality for SDD was 0.91 (95% CrI 0.82 to 0.99, Tau=0.10, I²=33.9%) compared
- to standard care, with an 99.3% posterior probability that SDD was associated with lower
- 216 hospital mortality (Figure 2, Table 2). The certainty in the evidence was adjudicated as

- 217 moderate (Table 3). The results were similar for the sensitivity analyses using semi-
- 218 informative priors and the specified frequentist methods (Figure 2, Table 2; Table S3). There
- 219 was no evidence of small study effects on visual inspection of the funnel plot (Figure S1a) or
- the Egger test (Figure S1a).

221 Subgroup analysis

222 The primary outcome of hospital mortality was assessed in three subgroups (Table 2, and 223 Figures S2-S4). There was evidence that the pooled estimate for mortality was different for 224 trials that included an intravenous agent as a component of SDD (RR 0.84, 95% Crl 0.74 to 225 0.94) compared to those with no intravenous agents (RR 1.01, 95% Crl 0.91 to 1.11) as 226 shown in Figure S2. We judged the credibility of the potential effect modification as moderate to high certainty. There was evidence that the pooled estimate for mortality was 227 228 different for cluster-randomized (RR 1.0, 95% Crl 0.79 to 1.2) compared versus individual 229 patient randomized trials (RR 0.85, 95% CrI 0.77 to 0.94) as shown in Figure S3. We judged 230 the credibility of the potential effect modification as low. Details of the credibility

- assessments are presented in the supplement. There was no evidence of a differential
- 232 estimate of treatment effect in trials comparing surgical, trauma, and mixed ICU
- 233 populations, with no data available from medical ICUs (Figure S4). Data were not available
- 234 to permit an assessment of the potential differential effect of study design (cluster
- randomized compared to individual patient randomized trials) on the estimated incidence of
- 236 positive cultures for antimicrobial resistant organisms.

237 Secondary outcomes

- Table 2, Table 3, and Table S3 present the results of all secondary outcomes with
- assessment of small study effects presented in Figure S1b-k. Compared to standard care,
- 240 SDD was associated with a reduced risk of VAP (RR 0.44, 95% Crl 0.36 to 0.54, very low
- 241 certainty (Figure S5)), a reduced risk of ICU acquired bacteraemia (RR 0.68 95% Crl 0.57 to
- 242 0.81, low certainty (Figure S6)), a reduction in the duration of MV (mean difference -0.73
- 243 days, 95% CrI -1.3 to -0.09 days, moderate certainty (Figure S7)), and duration of ICU
- admission (mean difference -0.86, 95% CrI -1.73 to 0 days, low certainty (Figure S8)). There
- was no effect on duration of hospital stay (mean difference -0.52 days, 95%Crl -2.2 to 1.2
- 246 days, moderate certainty (Figure S9)).
- 247 The pooled estimated risk ratio for mortality at longest follow-up for SDD compared to
- standard care was 0.93 (95% Crl 0.86 to 1.00) (Figure S10). Only two trials^{26,33} provided
- 249 additional data regarding mortality beyond hospital discharge.

250 Data were unavailable at a unit level to facilitate a pooled analysis of the effect of SDD on 251 the emergence of antimicrobial resistant organisms; available data are qualitatively summarised in Table S4. None of the three cluster randomised trials^{9,10,25} reported an 252 253 increase in positive cultures of antimicrobial resistant organisms at a unit level. 254 Of the studies that reported data at an individual patient level, data were available to 255 provide a pooled estimate of the incidence of positive cultures of antimicrobial resistant 256 organisms, (estimated RR 0.65, 95% Crl 0.46 to 0.92, very low certainty, Figure S11)), 257 incidence of positive cultures of methicillin resistant staphylococcus aureus (estimated RR 258 1.06, 95% CrI 0.56 to 1.98, very low certainty, (Figure S12)), and vancomycin resistant 259 enterococcus (estimated RR 0.62, 95% Crl 0.18 to 2.1, very low certainty, (Figure S13)). The 260 pooled estimated RR for Clostridioides difficile was 0.52 (95% Crl 0.15 to 1.80, (Figure S14). Table S4 summarizes data not amenable to pooling. Fourteen trials ^{26,29-33,37,38,41,45,46,49,50,53} 261 262 reported no increase in detection of antimicrobial resistant organisms from clinical or surveillance cultures, six^{34,35,39,42,48,51} reported an increase in antimicrobial resistant 263 organisms detected, and nine^{24,27,28,36,40,43,44,47,52} did not report the incidence of detection of 264 265 antimicrobial resistant organisms.

266

267 **Discussion**

268 In this systematic review and meta-analysis, we found that the use of SDD in mechanically 269 ventilated patients in the ICU is probably associated with a reduced risk of hospital 270 mortality. This reduction in mortality was evident in trials that included an intravenous 271 agent as a component of the intervention. We also found evidence that the use of SDD may 272 result in a reduced incidence of ventilator-associated pneumonia, and ICU acquired 273 bacteraemia, however this evidence was of lower certainty. We found that SDD was 274 probably associated with a small reduction in the duration of mechanical ventilation, but 275 little or no reduction in the duration of ICU admission. We found no evidence that SDD was 276 associated with an increase in the incidence of antimicrobial resistant organisms, however 277 the effect of SDD on the emergence of antimicrobial resistant organisms remains very 278 uncertain. 279 The findings of reduced risk of mortality and incidence of ventilator-associated pneumonia

are consistent with the results of a recent Cochrane review.³ The addition of two recent

trials has more than doubled the sample size, increasing confidence in the primary finding of

a reduction in mortality associated with the use of SDD. Concern that the widespread use of

broad spectrum antibiotics might promote antimicrobial resistant organisms has been a
barrier to the adoption of SDD.^{7,8} In keeping with previous literature,^{7,9} we found no
evidence to support the concern, but the available evidence is of very low certainty and is
insufficient to rule out that possibility.

Our review has several strengths. We followed current best practice guidelines for the conduct and reporting of systematic reviews.^{12,17,23} The inclusion of recent large trials has substantially increased the number of included participants, allowing the assessment of a broader range of outcomes than have been previously reported.³ Limitations of our review relate primarily to the identification of antimicrobial resistant organisms. Consistent with previous trials,^{9,25} the prevalence of antimicrobial resistance was uniformly low,

- consequently the results may not be applicable in healthcare settings with a higher rate ofantimicrobial resistance.
- 295

296 Our results present clinicians with evidence that the use of SDD is probably associated with 297 a reduction in mortality. The absence of evidence of increased antimicrobial resistance with 298 the use of SDD in these trials, the majority of which have a relatively short duration of 299 follow-up does not exclude such an effect in the longer term. For those clinicians or health 300 policy decision makers planning to implement SDD as a standard of care, caution is required 301 to ensure that this is done in conjunction with systematic microbiological surveillance and 302 monitoring of resistance patterns. Future research should focus on quantifying any effect on 303 antimicrobial resistance; clearly defining the risks and benefits of a potentially life-saving 304 intervention.

305

306 **Conclusions**

The use of SDD probably reduces hospital mortality in mechanically ventilated adults in the
 ICU. Available evidence regarding its effect on antimicrobial resistance is of very low
 certainty.

- 310
- 311
- 312
- 313
- 314

315 Funding and Acknowledgment statement

- 316 Funding support from National Health and Medical Research Council of Australia Emerging
- 317 Leader Investigator Grant provided to NHammond. National Health and Medical Research
- 318 Council of Australia Leadership Investigator Grant provided to J Myburgh and B Venkatesh. S
- 319 Finfer is supported by a Practitioner Fellowship from the National Health and Medical
- 320 Research Council. There was no funding provided for the work. N Hammond, J Myburgh, I
- 321 Seppelt, S Finfer, F Goodman are all writing committee members of the SuDDICU trial which
- 322 is included in this meta-analysis. No other conflicts were identified.
- 323

324 Author contributions

- 325 Concept and design: Hammond, Myburgh, Di Tanna, Garside, Vlok, Mahendran, Adigbli,
 326 Finfer, Goodman, Guyatt, Venkatesh, Seppelt, Delaney
- 327
- Acquisition, analysis or interpretation of the data: Hammond, Garside, Vlok, Mahendran,
 Adigbli, Gao, Yao, Delaney
- 330
- 331 Drafting of the manuscript: Hammond, Myburgh, Finfer, Seppelt, Venkatesh, DiTanna,
 332 Guyatt, Delaney
- 333
- Critical revision of the manuscript for important intellectual content: Hammond, Myburgh,
 Garside, Vlok, Mahendran, Adigbli, Gao, Yao, Santos, Finfer, Goodman, Guyatt, Venkatesh,
 Seppelt, Di Tanna, Delaney
- 337
- 338 Statistical analysis: Di Tanna, Santos, Delaney
- 339
- 340 Supervision: Delaney, Di Tanna, Myburgh, Hammond
- 341342 Anthony Delaney and Gian Luca Di Tanna had full access to all of the data in the study and
- 343 take responsibility for the integrity of the data and the accuracy of the data analysis

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020
 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For
 more information, visit: http://www.prisma-statement.org/

383 Figure 2: Forest Plot for hospital mortality for the comparison between SDD v Standard

384 care (a). Cumulative incidence plot for the posterior probability of the RR for mortality for

SDD compared to Standard care (b)

3'**a)**

	S	DD	Co	ntrol		Risk ratio	Weight
Study	Dead	Alive	Dead	Alive		with 95% CI	(%)
Unertl K et al., 1987	5	14	6	14		0.88 [0.32, 2.40]	0.9%
Kerver A et al., 1988	14	35	15	32		0.90 [0.49, 1.65]	2.0%
Ulrich C et al., 1989	15	33	28	24		0.58 [0.36, 0.95]	2.8%
Rodriguez-Roldan J et al., 1990	4	9	5	10		0.92 [0.31, 2.73]	0.8%
Aerdts S et al., 1991	2	15	6	33		0.76 [0.17, 3.41]	0.4%
Blair P et al., 1991	24	137	32	138		0.79 [0.49, 1.28]	2.9%
Gaussorgues P et al., 1991	29	30	29	30		1.00 [0.69, 1.44]	4.1%
Pugin J et al., 1991	10	28	11	30		0.98 [0.47, 2.04]	1.5%
Cockeril F et al., 1992	11	64	16	59		0.69 [0.34, 1.38]	1.6%
Gastinne H et al., 1992	88	132	82	143		1.10 [0.87, 1.39]	6.2%
Jacobs S et al., 1992	14	22	23	20		0.73 [0.44, 1.19]	2.8%
Rocha L et al., 1992	10	37	24	30		0.48 [0.26, 0.89]	2.0%
Korinek A et al., 1993	27	69	21	74		1.27 [0.78, 2.09]	2.8%
Wiener J et al., 1995	11	19	15	16		0.76 [0.42, 1.37]	2.1%
Quinio B et al., 1996	13	63	10	62		1.23 [0.58, 2.63]	1.4%
Abele-Horn M et al., 1997	11	47	5	25		1.14 [0.44, 2.97]	0.9%
Palomar M et al., 1997	10	31	13	29		0.79 [0.39, 1.59]	1.6%
Verwaest C et al., 1997	89	355	40	167		1.04 [0.74, 1.45]	4.5%
Sanchez-Garcia M et al., 1998	51	80	66	74		0.83 [0.63, 1.09]	5.4%
Bergmans D et al., 2001	30	57	59	80		0.81 [0.57, 1.15]	4.3%
Krueger W et al., 2002	52	213	75	187		0.69 [0.50, 0.93]	4.9%
Pneumatikos I et al., 2002	5	26	7	23		0.69 [0.25, 1.94]	0.8%
de Jonge E et al., 2003	113	353	146	322	-	0.78 [0.63, 0.96]	6.7%
Camus C et al., 2005	39	91	41	85		0.92 [0.64, 1.33]	4.1%
de La Cal M et al., 2005	6	47	15	39		0.41 [0.17, 0.97]	1.1%
Stoutenbeek C et al., 2007	42	159	44	156		0.95 [0.65, 1.38]	4.0%
de Smet A et al., 2009	1249	2700	632	1358	•	1.00 [0.88, 1.13]	8.3%
Wittekamp B et al., 2018	1661	2645	782	1326	•	1.04 [0.97, 1.11]	9.2%
Papoti S et al., 2019	8	27	8	29		1.06 [0.45, 2.51]	1.1%
SuDDICU, 2022	753	2038	928	2263	•	0.93 [0.82, 1.04]	8.4%
Bavesian: Vague priors						0.91[0.82_0.99]	
Bayesian: Semi-informative priors						0.92[0.85_0.99]	
Frequentist: Sidik_lonkman					_	0.88[0.80_0.97]	
Frequentist: DerSimonian_I aird					X	0.92[0.86_0.98]	
requestion Deromoniun-Lanu					Favours SDD Favours co	ntrol	
				1/8	1/4 1/2 1 2	4	
						-	

387

SDD: Selective Digestive Decontamination. CI: Confidence intervals (Credible intervals for Bayesian estimates). Dark blue box represents point estimate. Dark blue line represents confidence intervals. Green and light blue diamond: the width represents all trials pooled estimate confidence interval and the middle point the point estimate.

The upper subplots display the cumulative posterior distribution, with the y-axis corresponding to the probability the RR is less than or equal to the value on the x-axis sizes. The lower subplot displays the entire posterior distribution, with the bold, vertical line indicating the median value and the area highlighted in blue indicating the percentile-based 95% credible interval.

b)

Table 1: Included study characterisitcs

Study	Year	Design	Centres	Participants	Population	SDD	Control	Ventilated	Primary Outcome
Unertl	1987	Individual	1	39	Mixed	Oral: q6h for duration of intubation	Standard	100%	Colonization and
		patient			medical	 polymyxin B 15mg, gentamicin 24mg, 	care		respiratory infection
		RCT			surgical	amphotericin B 300mg			
						Enteral: q6h for duration of intubation			
						 polymyxin B 25mg, gentamicin 40mg 			
Kerver	1988	Individual	1	96	Mixed	Oral: q6h until orophryangeal and tracheal	Standard	100%	Prevention of
		patient			medical	cultures negative	care		colonization
		RCT			surgical	 polymyxin E 2%, tobramycin 2%, 			
						amphotericin 2%			
						Enteral: q6h until orophryangeal and tracheal			
						cultures negative			
						Polymxin E 200mg, tobramycin 80 mg,			
						amphotericin B 200mg			
						Intravenous: 5 days			
	1000			100		Cetotaxime 50-70mg/kg/day		0.001	
UIrich	1989	Individual	1	100	Mixed	Oral: did until potentially pathogenic organism	Standard	80%	Prevention of ICU
		Patient			medical	could no longer be isolated	care		acquired infection
		RCI			Surgical	 polymyxin E 2% norfloxacin 2%, amphotericin 2% 			
						Enteral: qid until potentially pathogenic organism			
						could no longer be isolated			
						 polymyxin E 100mg, tobramycin 80mg, 			
						ampnotericin 500mg			
						organism could no longer be isolated			
						Trimothonrim E00mg			
Rodriguez-	1990	Individual	1	28	Mixed	Oral: d6h	Placebo	100%	Colonization and
Roldan	1550	patient	-	20	medical	 Polymyzin E 2% tobramycin or netilmicin 2% 	1 100000	100/0	infection in the
		RCT			surgical	amphotericin B 2%			respiratory system
Aerdts	1991	Individual	1	56	Mixed	Oral: 1g g6h	Standard	100%	Lower respiratory tract
		patient	_		medical	Amphotericin 2% Norfloxacin 2% Polymixin	Care		infection
		RCT			surgical	E 2%			
					_	Enteral: qid via NGT			

						 Polymxin E 200mg, Norfloxacin 50mg, amphotericin B 500mg Intravenous: tds for 3 days Cefotaxime 500mg 			
Blair	1991	Individual patient RCT	1	331	Mixed medical surgical	 Oral: qid for duration of ICU ORAL Polymxin, 2% tobramycin, 2% amphotericin 2% Enteral: qid for duration of ICU Polymxin 100mg, Tobramycin 80mg, amphotericin 500mg Intravenous: 4 days Cefotaxime 50mg/kg/day 		93%	Infection
Gaussorgues	1991	Individual patient RCT	1	118	Mixed medical surgical	 Enteral: qid for duration of ventilation gentamicin 20mg, colistin 36mg, vancomycin 50mg, amphotericin B 500mg 	Standard care	100%	Nosocomial bacteraemia
Pugin	1991	Individual patient RCT	1	79	Surgical	 Oral: 6 times daily for duration of ventilation Polymyxin B sulfate 37.5mg, neomycin 250mg, vancomycin 250mg 	Placebo	100%	Ventilator associated pneumonia
Cockerill	1992	Individual patient RCT	1	150	Mixed medical surgical	 Oral: qid for duration of ICU Gentamicin 2%, polymxin B 2%, nystatin 1x10⁵U/g Enteral: qid for duration of ICU Gentamicin 80mg, Polymyxin B 100mg, Nystatin 2 million units Intravenous: tds for 3 days Cefotaxime 1g 	Standard care	84.7%	Infection rates
Gastainne	1992	Individual patient RCT	15	445	Mixed medical surgical	 Oral: 3g qid for duration of ventilation colistin sulfate 2%, tobramycin 2%, amphotericin B 2% Enteral: qid for duration of ventilation colistin sulfate 100mg, tobramycin 80mg, amphotericin B qid100mg 	Placebo	100%	Mortality at day 60
Jacobs	1992	Individual patient RCT	1	76	Mixed medical surgical	 Oral: qid for duration of ventilation polymyxin E 2%, tobramycin 2%, amphotericin 2% 	Standard care	100%	Nosocomial pneumonia

						Enteral: qid for duration of ventilation			
						• polymyxin E 100mg, tobramycin 80mg,			
						amphotericin 500mg			
						Intravenous: tds for 4 days			
						Cefotaxime 50mg/kg/day			
Rocha	1992	Individual	1	101	Mixed	Oral: qid for duration of ICU	Placebo	100%	Prevention of
		patient			medical	• Polymyxin E 2%, tobramycin 2%,			nosocomial infection in
		RCT			surgical	amphotericin B 2%			the ICU
						Enteral: qid for duration of ICU			
						• polymyxin E 100mg, tobramycin 80mg,			
						amphotericin 500mg			
						Intravenous: 4 days			
						Cefotaxime 2g/day			
Korinek	1993	Individual	2	191	Neurosurgical	Oral: qid for duration of ventilation (max. 15 days)	Placebo	100%	Infection rate
		patient				 polymyxin E 2%, Tobramycin 2%, 			
		RCT				amphotericin 2%, vancomycin 2%			
						Enteral: qid for duration of ventilation (max. 15			
						days)			
						polymyxin E 100mg, tobramycin 80mg,			
						amphotericin 500mg			
Langlois-	1995	Individual	1	97	Trauma	Oral: qid for duration of ventilation or	Placebo	100%	Duration of
Karaga		patient				commencement of enteral nutrition			hospitalization and cost
		RCT				 colistin, gentamicin, amphotericin B 			of antibiotherapy
						Enteral: qid for duration of ventilation or			
						commencement of enteral nutrition			
						colistin, gentamicin, amphotericin B			
Wiener	1995	Individual	1	61	Mixed	Oral: qid for duration of intubation	Placebo	100%	Nosocomial infection
		patient			medical	• polymyxin E 2%, gentamicin 2%, nystatin			
		RCT			surgical	100,000 units			
						Enteral: gid for duration of intubation			
						polymyxin E 100mg, gentamicin 80mg, nystatin 2			
0.111	1000		4	1.10	.		Dia d	4000/	
Quinio	1990	nationt	1	148	irauma	Oral: 15mi did until 24 nours post extubation or	Placebo	100%	Nosocomial intection
		patient				commencement of enteral feeding			
		KCI				 Colistin sulfate 2%, gentamicin 2%, 		1	

Abele-Horn	1997	Individual	1	88	Mixed	amphotericin B 2% Enteral: qid until 24 hours post extubation or commencement of enteral feeding • Colistin sulfate100mg, gentamicin 80mg, amphotericin B 500mg Oral: q6h for duration of ventilation • Amphotericin 2% Tobramycin 2% Polymycin	Standard	100%	Colonisation and
		RCT			surgical	E 2% Intravenous: tds for 3 days • Cefotaxime 2g			
Palomar	1997	Individual patient RCT	10	83	Mixed medical surgical	 Oral: q6h for duration of ventilation or 40 days polymyxin E 2%, tobramycin 2%, amphotericin 2% Enteral: q6h for duration of ventilation or 40 days polymyxin E 2%, tobramycin 2%, amphotericin 2% Intravenous: tds for 4 days Cefotaxime 1g 	Standard care	100%	The prophylaxis of nosocomial infection
Verwaest	1997	Individual patient RCT	1	578	Surgical	 Oral: qid for duration of ICU Ofloxacin 2%, amphotericin B2% OR polymyxin 2%, tobramycin 2%, amphotericin 2% Enteral: duration of ICU ofloxacin 200mg bd and amphotericin 500mg qid OR Polymyxin E 1 MU, tobramycin 80mg, amphotericin 500mg Intravenous: for 4 days Ofloxacin 200mg OR cefotaxime 1g qid 	Standard care	100%	Colonization, incidence of infection and mortality
Sanchez- Garcia	1998	Individual patient RCT	5	271	Mixed medical surgical	 Oral: q6h gentamicin 2%, Polymyxin E 2%, amphotericin B 2% Enteral: q6h gentamicin 80mg, polymyxin E 100mg, 	Placebo	100%	Ventilator associated pneumonia

						amphotericin 500mg			
						Intravenous: daily for 3 days			
						Ceftriaxone 2g			
Bergmans	2001	Individual	3	226	Mixed	Oral: q6h	Placebo	100%	Ventilator associated
		patient			medical	• Gentamicin 2%, Colistin 2%, Vancomycin 2%			pneumonia
		RCT			surgical				
Krueger	2002	Individual	2	527	Surgical	Oral: q6h for duration of ICU	Placebo	92.6%	Incidence and time of
		patient				• gentamicin 24mg, polymyxin B 15mg, ±			onset of infection,
		RCT				vancomycin 37.5mg			incidence and time of
						Enteral: q6h for duration of ICU			onset of severe organ
						• gentamicin 40mg, polymyxin B 25mg, ±			dysfunctions and
						vancomycin 62.5mg			mortality
						Intravenous: bd for 4 days			
						Ciprofloxacin 400mg			
Pneumatikos	2002	Individual	1	61	Trauma	Oral: Continuous infusion of 2ml/hr	Placebo	100%	Tracheal colonization
		patient				• polymyxin E 73mg, tobramycin 73mg,			and ventilator
		RCT				amphotericin B 500mg in 500ml 0.9% saline			associated pneumonia
De Jonge	2003	Individual	1	934	Mixed	Oral: qid 0.5g	Standard	85.3%	Acquired colonization
		patient			medical	• Polymyxin E 2%, Tobramycin 2%,	care		by any resistant strain
		RCT			surgical	Amphotericin B 2%			and mortality
						Enteral: qid			
						 Polymyxin E 100mg, Tobramycin 80mg, 			
						Amphotericin B 500mg			
						Intravenous: qid for 4 days			
						Cefotaxime 1g			
Camus	2005	Individual	3	256	Mixed	Oral: qid for duration of ventilation	Placebo	100%	Acquired infection
		patient			medical	• 45mg Polymyxin E, 30mg Tobramycin			
		RCT			surgical	Enteral: qid for duration of ventilation			
						• 75mg Polymyxin E, 50mg Tobramycin			
de La Cal	2005	Individual	1	107	Burns	Oral: qid 0.5g	Placebo	76.6%	Mortality and
		patient				• Polymyxin E 2%, tobramycin 2%,			endogenous pneumonia
		RCT				amphotericin B 2%			
						Enteral: qid 10ml			
						Polymyxin B 100mg, Tobramycin 100mg,			
						Amphotericin B 500mg			

						Intravenous: tds for 4 days			
						Cefotaxime 1g			
Koeman	2006	Individual	5	258	Mixed	Oral: 0.5g qid	Standard	100%	Time to ventilator
		patient			medical	Colistin 2% chlorhexidine 2%	care		associated pneumonia
		RCT			surgical				
Stoutenbeek	2007	Individual	17	401	Trauma	Oral: 0.5g qid	Standard	100%	Mortality at 3 months
		patient				• Polymyxin E 2%, tobramycin 2% amphotericin	Care		
		RCT				В 2%			
						Enteral: 10mLs qid			
						 polymyxin E 100mg, tobramycin 80mg, 			
						amphotericin 500mg			
						Intravenous: qid for 4 days			
						Cefotaxime 1g			
deSmet	2009	Cluster	13	5939	Mixed	Oral: qid	Standard	91.5%	28-day mortality
		cross over			medical	 Polymyxin E 2%, Tobramycin 2%, 	care		
					surgical	Amphotericin B 2%			
						Enteral: qid			
						 Polymyxin E 100mg, Tobramycin 80mg, 			
						Amphotericin B 500mg			
						Intravenous: qid for 4 days			
						Cefotaxime 1g (SDD group only)			
Wittekamp	2018	Cluster	13	6414	Mixed	Oral: qid	Standard	100%	Incidence of ICU-
		Cross-			medical	• 0.19 million units of colistin sulfate, 10 mg of	Care		acquired
		Over			surgical	tobramycin sulfate, and 0.1 million units of			BSI with multi-drug
						nystatin			resistant Gram-negative
						Enteral: qid			bacteria
						• 1.9 million units of colistin sulfate, 80 mg of			
						tobra- mycin sulfate, and 2.0 million units of			
			-			nystatin			
Papoti	2019	Individual	1	72	Mixed	Oral: tds for 10 days	Standard	100%	Prevention of infection
		patient			medical	Colistine, fluconazole	care		related ventilator
		RCI			surgical				associated
	2022	Cluster	10	5092	Mixed	Quel ach far duration of contilation	Chandard	100%	Complications and VAP
SUDDICU	2022	Cluster	19	5982	ivilxed	Ural: yon for duration of ventilation	Standard	100%	Hospital mortality
		cross-			medical	 U.5g of oral paste containing 10mg collistin, 	care		

Over	surgical	10mg tobramycin and 125,000 international	
		units of nystatin	
		Enteral: q6hr	
		• 100mg colistin, 80mg tobramycin and 2x106	
		international units of nystatin	
		Intravenous: daily for 4 days	
		 third-generation cephalosporin or 	
		ciprofloxacin	

RCT: Randomised clinical trial. VAP: ventilator associated pneumonia. BSI: Blood stream infections. Qid: four times a day. Q6h: every 6 hours. Participant number for Wittekamp reported as numbers

402 used from CHX arm (control) and SDD/SOD arms. Control arm for Wittekamp was the randomised CHX arm as most sites used this as standard of care prior to randomisation.

403 **Table 2: Outcomes**

	Trials	Participants	l ²	Effect measure	95% Crl					
	Pri	mary outcome	•							
Hospital mortality (BMA – Vague priors)	30	24,034	33.9%	RR = 0.91	0.82 to 0.99					
Hospital mortality (BMA – semi-informative priors)	30	24,034	31.2%	RR = 0.92	0.85 to 0.99					
Hospital mortality (Hartung-Knapp-Sidik-Jonkman)	30	24,034	56.4%	RR = 0.88	0.80 to 0.97*					
Hospital mortality (Der Simonian-Laird)	30	24,034	20.3%	RR = 0.92	0.86 to 0.98*					
Secondary Outcomes										
Mortality at longest time point	30	24,034	22.9%	RR = 0.93	0.86 to 1.00					
Duration of MV (days)	20	20,733	22.2%	MD = - 0.73	-1.32 to -0.09					
ICU length of stay (days)	24	23,198	52.1%	MD = -0.86	-1.73 to 0					
Hospital length of stay (days)	5	18,592	2.1%	MD = -0.52	-2.2 to 1.2					
Incidence of VAP	22	3619	36.2%	RR = 0.44	0.36 to 0.54					
Incidence of ICU acquired bacteraemia	21	22,076	18.9%	RR= 0.68	0.57 to 0.81					
C. Diff infection	3	12,322	7.0%	RR = 0.52	0.15 to 1.80					
Culture of any ARO	5	12,841	16.1%	RR = 0.64	0.45 to 0.91					
Positive MRSA culture	5	13,240	30.4%	RR = 1.06	0.52 to 2.11					
Positive VRE culture	3	13,287	6.1%	RR = 0.62	0.18 to 2.1					
	Subgroup analys	sis for the primary outc	ome							
Cluster cross-over	3	18,335	70.6%	RR = 1.0	0.79 to 1.2					
Individual patient randomised	27	5699	12.3%	RR = 0.85	0.77 to 0.94					
SDD with no intravenous agent *	14	11,037	9.4%	RR = 1.01	0.91 to 1.11					
SDD with intravenous agent *	17	12,997	30.4%	RR = 0.84	0.74 to 0.94					
Surgical ICUs	5	1,544	44.2%	RR = 0.92	0.67 to 1.30					
Trauma ICUs	4	717	34.8%	RR =0.84	0.48 to 1.37					
Mixed population ICUs	21	21,773	40.2%	RR = 0.91	0.81 to 1.0					

404

405 RR: Risk Ratio; MD: Mean Difference; *Confidence Interval; MV: Mechanical ventilation; ICU: Intensive care unit; C-Diff: Clostridioides difficile; VAP: Ventilator associated pneumonia; ARO: Antibiotic

406 resistant micro-organisms. No data in medical ICUs. ⁺Total number of trials is 31 as de Smet contributes both IV and non-IV data. Participant numbers for the control group have been split evenly

407 between IV and non-IV group so they remain the same as the main publication (i.e. not double counted).

Table 3: GRADE Summary of Findings Table

	Selective decontamination of the digestive tract in mechanically ventilated patients in the intensive care unit												
Population		Mechanically	y ventilated patients treated in the	e ICU									
Intervention		Selective d	econtamination of the digestive to	ract									
Comparison			Standard care										
Outcome	Effect estimate	Absolute	effect estimates	Certainty of Evidence	Plain language								
Timeframe	(95% Crl) Number of trials Number of participants	Standard Care	SDD (95% Crl)	 (Quality of the evidence) 	summary*								
Mortality in hospital	Relative risk 0.91 (0.82 to 0.99) 30 trials 24,034 participants	316 per 1000	287 per 1000 29 fewer per 1000 (4 fewer to 55 fewer)	Moderate Due to inconsistency ¹	The use of SDD probably reduces the risk of in- hospital mortality								
Ventilator associated pneumonia	Relative risk 0.44 (0.36 to 0.54) 22 trials 3,619 participants	298 per 1000	132 per 1000 166 fewer per 1000 (137 fewer to 192 fewer)	Very Low Due to inconsistency, indirectness and risk of bias ²	The evidence is very uncertain about the effect of SDD on the reduction in VAP								
Incidence of ICU acquired bacteraemia	Relative risk 0.68 (0.57 to 0.81) 21 trials 22,076 participants	101 per 1000	69 per 1000 32 fewer per 1000 (19 fewer to 44 fewer)	Low Due to indirectness and risk of bias ³	The use of SDD may result in a reduction in ICU acquired bacteraemia								
Incidence of participants with positive cultures of antimicrobial resistant organisms	Relative risk 0.64 (0.45 to 0.91) 5 trials 12,841 participants	205 per 1000	131 per 1000 94 fewer per 1000 (17 fewer to 113 fewer)	Very Low Due to inconsistency, indirectness, risk of bias ⁴	The evidence is uncertain about the effect of SDD on the emergence of antimicrobial resistant organisms								
Incidence of participants with positive culture for MRSA	Relative risk 1.06 (0.52 to 2.11) 5 trials 13,240 participants	20 per 1000	21 per 1000 1 more per 1000 (10 fewer to 22 more)	Very Low Due to inconsistency, indirectness, risk of bias ⁵	The evidence is very uncertain about the effect of SDD on the incidence of positive cultures ofMRSA								
Incidence of participants with positive culture for VRE	Relative risk 0.62 (0.18 to 2.1) 3 trials 13,287 participants	3 per 1000	2 per 1000 1 fewer per 1000 (3 fewer to 2 more)	Very Low Due to inconsistency, indirectness, risk of bias ⁶	The evidence is very uncertain about the effect of SDD on the								

					incidence of positive
					cultures of VRE
Duration of mechanical	Mean difference -0.73 days	9.2 days	8.5 days	Moderate	The use of SDD probably
ventilation	(-1.32 to -0.09 days)		(7.9 days to 9.1 days)	Due to indirectness ⁷	results in a small
	20 trials				reduction in the duration
	20,733 participants				of ventilation
Duration of ICU admission	Mean difference -0.86 days	12.9 days	12.1 days	Low	The use of SDD may
	(-1.73 to 0 days)		(11.2 days to 12.9 days)	Due to indirectness and	have little to no
	24 trials			imprecision ⁸	difference in the
	23,198 participants				duration of ICU
					admission
Duration of hospital	Mean difference -0.52 days	26.6 days	26.1 days	Moderate	The use of SDD probably
admission	(-2.2 to 1.2 days)		(24.2 days to 27.8 days)	Due to imprecision ⁹	results in little to no
	5 trials				difference in the
	18,592 participants				duration of hospital
					admission

410 * Judgement is based on the intervention reducing the outcome by any amount. ICU = Intensive Care unit, CrI = credible intervals from primary Bayesian analysis with vague priors,

411 SDD = Selective digestive decontamination, MRSA = methicillin resistant Staphylococcus aureus, VRE = vancomycin resistant Enterococcus.

412 1. Downgraded for inconsistency due to differences in the components of the intervention (Table 1), and differences in standard care in the included trials.

413 2. Downgraded due to indirectness as VAP is not a patient important outcome, there is significant variation in standards for diagnosis as shown in Table S1 and risk of bias in adjudication of these outcomes in the included trials (Table S2).

3. Downgraded due to indirectness as ICU acquired bacteraemia is not a patient important outcome, and risk of bias in adjudication of these outcomes in the included trials (Table
 52).

417 4. Downgraded due to inconsistency in the definition of antimicrobial resistant organisms and the threshold for testing, indirectness as not a patient important outcome, risk of

418 bias in adjudication of this outcome in the included trials (Table S2) and imprecision as the 95% credible intervals include values that may be of direct value to patients .

5. Downgraded due to inconsistency in the indication for testing, indirectness regarding patient importance and risk of bias in the adjudication of this outcome in the included trials
 (Table S2)

6. Downgraded due to inconsistency in the indication for testing, indirectness regarding patient importance of this outcome and risk of bias in the adjudication of this outcome in the included trials (Table S2)

423 7. Downgraded due to indirectness as duration of ventilation not directly a patient important outcome

424 8. Downgraded due to indirectness as duration of ICU not directly a patient important outcome, imprecision as evidence by high heterogeneity in the *I*²

425 9. Downgraded due to imprecision as the 95% credible intervals include values that may be of direct value to patients

426

428	8 References				
429	1.	Stoutenbeek CP, van Saene HK, Miranda DR, Zandstra DF. The effect of selective			
430		decontamination of the digestive tract on colonisation and infection rate in multiple trauma			
431		patients. Intensive Care Med 1984;10(4):185-92. (In eng). DOI: 10.1007/bf00259435.			
432	2.	Liberati A, D'Amico R, Pifferi S, Torri V, Brazzi L, Parmelli E. Antibiotic prophylaxis to reduce			
433		respiratory tract infections and mortality in adults receiving intensive care. Cochrane			
434		Database Syst Rev 2009;2009(4):Cd000022. (In eng). DOI:			
435		10.1002/14651858.CD000022.pub3.			
436	3.	Minozzi S, Pifferi S, Brazzi L, Pecoraro V, Montrucchio G, D'Amico R. Topical antibiotic			
437		prophylaxis to reduce respiratory tract infections and mortality in adults receiving			
438		mechanical ventilation. Cochrane Database of Systematic Reviews 2021(1). DOI:			
439		10.1002/14651858.CD000022.pub4.			
440	4.	Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines			
441		for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41(2):580-637.			
442		(In eng). DOI: 10.1097/CCM.0b013e31827e83af.			
443	5.	Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines			
444		for Management of Sepsis and Septic Shock 2021. Critical Care Medicine 2021;49(11):e1063-			
445		e1143. DOI: 10.1097/ccm.00000000005337.			
446	6.	Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines			
447		for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;43(3):304-377.			
448		(In eng). DOI: 10.1007/s00134-017-4683-6.			
449	7.	Daneman N, Sarwar S, Fowler RA, Cuthbertson BH. Effect of selective decontamination on			
450		antimicrobial resistance in intensive care units: a systematic review and meta-analysis.			
451		Lancet Infect Dis 2013;13(4):328-41. (In eng). DOI: 10.1016/s1473-3099(12)70322-5.			
452	8.	Oostdijk EA, de Smet AM, Blok HE, et al. Ecological effects of selective decontamination on			
453		resistant gram-negative bacterial colonization. Am J Respir Crit Care Med 2010;181(5):452-7.			
454		(In eng). DOI: 10.1164/rccm.200908-1210OC.			
455	9.	Wittekamp BH, Plantinga NL, Cooper BS, et al. Decontamination Strategies and Bloodstream			
456		Infections With Antibiotic-Resistant Microorganisms in Ventilated Patients: A Randomized			
457		Clinical Trial. JAMA 2018;320(20):2087-2098. DOI:			
458		https://dx.doi.org/10.1001/jama.2018.13765.			
459	10.	The SuDDICU Investigators for the Australian and New Zealand Intensive Care Society Clinical			
460		Trials Group. Selective Decontamination of the Digestive Tract in Intensive Care Patients: a			
461		cluster, crossover, randomized controlled trial. XXXX 2022;xxx.			
462	11.	Hammond NE, Myburgh J, Di Tanna GL, et al. Selective Decontamination of the Digestive			
463		Tract in Invasively Ventilated Patients in an Intensive Care Unit: A protocol for a Systematic			
464		Review and Meta-Analysis. medRxiv 2022:2022.03.18.22272586. DOI:			
465		10.1101/2022.03.18.22272586.			
466	12.	Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline			
467		for reporting systematic reviews. Bmj 2021;372:n71. (In eng). DOI: 10.1136/bmj.n71.			
468	13.	Higgins JPT ES, Li T (editors) Chapter 23: Including variants on randomized trials. In: Higgins			
469		JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane			
470		Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021).			
471		Cochrane, 2021. Available from <u>www.training.cochrane.org/handbook</u> .			
472	14.	COVIDENCE: Systematic Review Management System. (<u>https://www.covidence.org/</u>).			
473	15.	Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the			
474		sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.			
475		(In eng). DOI: 10.1186/1471-2288-14-135.			
476	16.	Tool to assess risk of bias in randomized controlled trials. Contributed by the CLARITY Group			
477		at McMaster University. (https://www.evidencepartners.com/resources/methodological-			
478		resources/tool-to-assess-risk-of-bias-in-randomized-controlled-trials-distillersr).			
479	17.	Schandelmaier S, Briel M, Varadhan R, et al. Development of the Instrument to assess the			
480		Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and			

481		meta-analyses. Canadian Medical Association Journal 2020;192(32):E901-E906. DOI:
482		10.1503/cmaj.200077.
483	18.	Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP. Predictive distributions for between-
484		study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat
485		Med 2015;34(6):984-98. (In eng). DOI: 10.1002/sim.6381.
486	19.	IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random
487		effects meta-analysis is straightforward and considerably outperforms the standard
488		DerSimonian-Laird method. BMC Medical Research Methodology 2014;14(1):25. DOI:
489		10.1186/1471-2288-14-25.
490	20.	McKenzie J RR, Di Tanna GL; Cochrane Consumers and Communication Review Group.
491		Cluster randomised controlled trials. (http://cccrg.cochrane.org).
492	21.	IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenting prediction
493		intervals in meta-analysis. BMJ Open 2016;6(7):e010247. (In eng). DOI: 10.1136/bmjopen-
494		2015-010247.
495	22.	Röver C. Bavesian Random-Effects Meta-Analysis Using the bavesmeta R Package, 2020
496		2020:93(6):51. (evidence synthesis: NNHM: between-study heterogeneity). DOI:
497		10.18637/iss.v093.i06.
498	23.	Guyatt GH. Oxman AD. Vist GE. et al. GRADE: an emerging consensus on rating quality of
499	_0.	evidence and strength of recommendations BMI 2008-336(7650):924-926 DOI:
500		10 1136/hmi 39489 470347 AD
501	24	Papoti S. Setsidou F. Koletsou F. et al. Effect of antibiotic oral decontamination therapy
502		compared to oral care with chlorbexidine in intubated ICU patients on prevention of IVAC
502		and VAP. Intensive care medicine experimental 2019:7(Suppl 3)
503		(https://ezproxy library usyd edu au/logip?url=http://ovidsp.ovid.com/ovidweb.cgi?T=IS&CS
505		C=Y&NEWS=N&PAGE=fulltext&D=cctr&AN=CN-02118967)
505	25	de Smet AM Kluvtmans IA Cooper BS et al. Decontamination of the digestive tract and
507	25.	oronharvny in ICU nations, N Engl I Med 2009;360(1):20-31 (In eng) DOI:
508		10 1056/NEIMoa0800304
500	26	Stoutonbook CB van Saano HKE Little BA Whitehoad A Working Group on Selective
510	20.	Decontamination of the Digestive T. The effect of selective decontamination of the digestive
511		tract on mortality in multiple trauma patients: a multicenter randomized controlled trial
512		Intensive care medicine 2007;22(2):261-70
512		(https://link.springer.com/content/pdf/10.1007/s00134-006-0455-4.pdf)
517	27	(<u>Inteps.//Intespringer.com/content/pur/to.to07/soot34-000-0455-4.pur</u>).
515	27.	roduces the incidence of ventilator associated pneumonia. American journal of respiratory
516		and critical care modicine 2006:172(12):1248 55
517		(https://www.pshi.plm.pib.gov/pubmod/16602600)
518	20	(<u>IIII), //www.iiicbi.iiiii.iiii.gov/publicu/10005009</u> .
510	20.	ue La Carinia, cerua E, Garcia-Herro P, et al. Survival benefit in critically in burned patients
520		double blind trial Appals of surgery 2005;241(2):424, 20
520		(https://www.pobi.plm.pib.cov/pmc/articles/PMC12E6080/pdf/200E0200c0000Ep424.pdf)
521	20	(https://www.httpl.him.him.gov/pinc/articles/Pinc1356980/pul/200505000005p424.pul).
522	29.	with the combination of two decontamination regiments. Critical care medicine
525 524		2005.22(2):207.14 (https://www.pobi.plm.pib.gov/pubmod/15600822)
524	20	2005;33(2):307-14. (<u>nttps://www.ncbi.nim.nin.gov/pubmed/15699832</u>).
525	30.	de Jonge E, Schultz IVIJ, Spanjaard L, et al. Effects of selective decontamination of digestive
520		tract on mortality and acquisition of resistant bacteria in intensive care: a randomised
521		controlled that. Lancet 2003;362(9389):1011-6. (in eng). DOI: 10.1016/50140-
520	24	6736(03)14409-1.
529	31.	Pheumatikos I, Koulouras V, Nathanali C, Goe D, Nakos G. Selective decontamination of
55U		subgiottic area in mechanically ventilated patients with multiple trauma. Intensive care
531 522		medicine 2002;28(4):432-7. (<u>nttps://link.springer.com/content/pdf/10.100//s00134-002-</u>
532 532	22	<u>1230-1.pul</u>). Krueger MA Lonbert ED Nesser C. et al. Influence of combined intervences on difference
555 524	32.	Krueger WA, Lennart FP, Neeser G, et al. Influence of combined intravenous and topical
534		antibiotic prophylaxis on the incluence of infections, organ dysfunctions, and mortality in

535		critically ill surgical patients: a prospective, stratified, randomized, double-blind, placebo-
536		controlled clinical trial. Am J Respir Crit Care Med 2002;166(8):1029-37. DOI:
537		10.1164/rccm.2105141.
538	33.	Bergmans DC. Bonten MJ. Gaillard CA. et al. Prevention of ventilator-associated pneumonia
539		by oral decontamination: a prospective, randomized, double-blind, placebo-controlled study.
540		American journal of respiratory and critical care medicine 2001:164(3):382-8
541	34	Sanchez Garcia M. Cambronero Galache IA. Lonez Diaz L et al. Effectiveness and cost of
542	54.	selective decontamination of the directive tract in critically ill intubated nations. A
5/2		randomized double blind placebe controlled multicenter trial. American journal of
545		randomized, double-bind, placebo-controlled, multicenter that. American journal of
544	25	respiratory and critical care medicine 1998;158(3):908-16.
545	35.	Verwäest C, Vernaegen J, Ferdinande P, et al. Randomized, controlled trial of selective
546		digestive decontamination in 600 mechanically ventilated patients in a multidisciplinary
547		intensive care unit. Critical care medicine 1997;25(1):63-71.
548	36.	Palomar M, Alvarez-Lerma F, Jorda R, Bermejo B. Prevention of nosocomial infection in
549		mechanically ventilated patients: selective digestive decontamination versus sucralfate.
550		Clinical intensive care 1997;8(5):228-235.
551		(https://ezproxy.library.usyd.edu.au/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CS
552		<u>C=Y&NEWS=N&PAGE=fulltext&D=cctr&AN=CN-00197497</u>).
553	37.	Abele-Horn M, Dauber A, Bauernfeind A, et al. Decrease in nosocomial pneumonia in
554		ventilated patients by selective oropharyngeal decontamination (SOD). Intensive care
555		medicine 1997;23(2):187-95.
556		(https://link.springer.com/content/pdf/10.1007/s001340050314.pdf)
557	38.	Quinio B, Albanese J, Bues-Charbit M, Viviand X, Martin C. Selective decontamination of the
558		digestive tract in multiple trauma patients. A prospective double-blind, randomized.
559		placebo-controlled study. Chest 1996:109(3):765-72.
560	39.	Wiener J. Itokazu G. Nathan C. Kabins SA. Weinstein RA. A randomized, double-blind.
561		placebo-controlled trial of selective digestive decontamination in a medical-surgical
562		intensive care unit. Clinical infectious diseases : an official nublication of the Infectious
563		Diseases Society of America 1905:20(4):861-7
564	40	Langlois-Karaga A Rues-Charbit M Davignon A et al Selective directive decontamination in
565	40.	Early of the and a second officacy. Beamacy World and Science 100E:17(1):12.16
566		DOU http://dv.doi.org/10.1007/DE0197EEE2
567	41	DOI. <u>IIIIp.//ux.uoi.org/10.100//BF016/5552</u> . Karinak AM Laisna ML Nisalas ML Dasking L Darain V. Sansan Lanara ML Salastiva
569	41.	Konnek Alvi, Laishe Mij, Nicolas Min, Raskine L, Deroin V, Sanson-Lepors Mij. Selective
508		decontamination of the digestive tract in neurosurgical intensive care unit patients: a
509		double-blind, randomized, placebo-controlled study. Critical care medicine
570		1993;21(10):1466-73.
571	42.	Rocha LA, Martin MJ, Pita S, et al. Prevention of nosocomial infection in critically ill patients
572		by selective decontamination of the digestive tract. A randomized, double blind, placebo-
573		controlled study. Intensive care medicine 1992;18(7):398-404.
574	43.	Jacobs S, Foweraker JE, Roberts SE. Effectiveness of selective decontamination of the
575		digestive tract (SDD) in an ICU with a policy encouraging a low gastric pH. Clinical intensive
576		care 1992;3:52-58.
577	44.	Gastinne H, Wolff M, Delatour F, Faurisson F, Chevret S. A controlled trial in intensive care
578		units of selective decontamination of the digestive tract with nonabsorbable antibiotics.
579		New England Journal of Medicine 1992;326(9):594-599. DOI:
580		http://dx.doi.org/10.1056/NEJM199202273260903.
581	45.	Cockerill FR, 3rd, Muller SR, Anhalt JP, et al. Prevention of infection in critically ill patients by
582		selective decontamination of the digestive tract. Annals of internal medicine
583		1992;117(7):545-53.
584	46.	Pugin J, Auckenthaler R, Lew DP, Suter PM. Oropharvngeal decontamination decreases
585		incidence of ventilator-associated pneumonia. A randomized placebo-controlled double-
586		blind clinical trial. JAMA 1991:265(20):2704-10
587		(https://iamanetwork.com/iournals/iama/article-abstract/386022)

- 588 47. Gaussorgues P, Salord F, Sirodot M, et al. Efficacitè de la dècontamination digestive sur la
 589 survenue des bactèrièmies nosocomiales chez les patients sous ventilation mècanique et
 590 recevant des bítamimètiques. 1991.
- 48. Blair P, Rowlands BJ, Lowry K, Webb H, Armstrong P, Smilie J. Selective decontamination of
 the digestive tract: a stratified, randomized, prospective study in a mixed intensive care unit.
 Surgery 1991;110(2):303-10.
- Aerdts SJ, van Dalen R, Clasener HA, Festen J, van Lier HJ, Vollaard EJ. Antibiotic prophylaxis
 of respiratory tract infection in mechanically ventilated patients. A prospective, blinded,
 randomized trial of the effect of a novel regimen. Chest 1991;100(3):783-91.
- 597 50. Rodriguez-Roldan JM, Altuna-Cuesta A, Lopez A, et al. Prevention of nosocomial lung
 598 infection in ventilated patients: use of an antimicrobial pharyngeal nonabsorbable paste.
 599 Critical care medicine 1990;18(11):1239-42.
- 60051.Ulrich C, Harinck-de Weerd JE, Bakker NC, Jacz K, Doornbos L, de Ridder VA. Selective601decontamination of the digestive tract with norfloxacin in the prevention of ICU-acquired602infections: a prospective randomized study. Intensive care medicine 1989;15(7):424-31.
- Kerver AJ, Rommes JH, Mevissen-Verhage EA, et al. Prevention of colonization and infection
 in critically ill patients: a prospective randomized study. Critical care medicine
 1988;16(11):1087-93.
- 60653.Unertl K, Ruckdeschel G, Selbmann HK, et al. Prevention of colonization and respiratory607infections in long-term ventilated patients by local antimicrobial prophylaxis. Intensive Care608Med 1987;13(2):106-13. DOI: 10.1007/bf00254795.