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Abstract (150 words) 

Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry 

out tasks that typically require human intelligence. In medicine, there has been a tremendous 

increase in AI applications thanks to increasingly powerful computers and the emergence of 

big data repositories. Multiple sclerosis (MS) is a chronic autoimmune condition affecting the 

central nervous system with a complex pathogenesis, a challenging diagnostic process 

strongly relying on Magnetic Resonance Imaging (MRI), and a high and largely unexplained 

variability across patients. Therefore, AI applications in MS have the great potential of helping 

us better support the diagnosis, find markers for prognosis to eventually design more powerful 

randomised clinical trials and improve patient management in clinical practice, and eventually 

understand the mechanisms of the disease. This topical review aims to summarise the recent 

advances in AI applied to MRI data in MS to illustrate its achievements, limitations, and future 

directions.  
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INTRODUCTION  

Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry 

out tasks that typically require human intelligence.1–3 AI methodologies used for medical 

research have mainly two objectives. On the one hand, AI can extract patterns from the data 

to understand their internal structure or classify them. For this purpose, data does not need to 

be annotated, that is, the output (e.g., the belonging to a given class) is unknown 

(unsupervised learning). On the other hand, AI can make predictions from the data available, 

which is annotated. That is, in such available data, not only the input data (e.g., set of 

predictors) but also the output data (e.g., disability milestone or death) are known and well 

characterised (supervised learning), allowing the learning of the link between input and output 

data. In both cases, AI usage goes through two phases: first, there is the creation of a model, 

with a series of iterations (i.e., the training) and tests until we obtain the desired output; then, 

there is a second phase characterised by the model application on new data (Figure 1).  

 

The AI and machine learning (ML) approaches referred to here represent a set of 

mathematical algorithms able to learn from the data and make predictions on unseen 

information. A subset of ML relies on networks of multiple layers of artificial neurons and is 

defined as deep learning (DL) (Table 1). DL does not necessarily need pre-selected variables 

as input but can extract the variables necessary for the network task (Figure 2). For instance, 

when defining network’s layers through convolution operators, DL allows to optimise spatial 

filters to automatically extract relevant image features to solve a given task.   

 

Multiple sclerosis (MS) is a chronic inflammatory-demyelinating condition of the central 

nervous system (CNS). People with MS (pwMS) may live with a  high physical and emotional      

burden with social and economic implications for both pwMS and healthcare systems. Disease 

diagnosis and monitoring strongly rely on routinely acquired brain and spinal cord magnetic 

resonance imaging (MRI). AI applications in MS can potentially help us better support the 

diagnosis, find markers for prognosis, facilitate accurate monitoring, and eventually 



4 
 

understand the mechanisms of the disease. Focusing on these main challenges, this review 

aims to summarise the recent advances in AI applied to MRI in MS, highlighting the key 

features of the most representative studies, as opposed to other, broader reviews which have 

been recently published.4,5 This review also aims to illustrate its limitations and future 

directions. 

 

SEARCH STRATEGY 

We performed a search in PubMed based on the following criteria: (i) publication date: 

between 2013 and 2023; (ii) search terms: (multiple sclerosis or demyelination or 

demyelinating disease) AND (artificial intelligence or deep learning or machine learning) AND 

(MRI or neuroimaging or brain/cord imaging); (iii) language of publication: English; (iv) type of 

paper: original research. For the purpose of this narrative review, we have focused on four 

aspects: (i) diagnosis & differential diagnosis; (ii) prediction of clinical outcome; (iii) MRI lesion 

identification and segmentation, including detection of new and enlarging lesions; (iv) 

understanding of pathogenic mechanisms. Thus, after the first literature search, we manually 

selected the papers if they were included in one of these four categories. Papers not clearly 

included in any of these categories were not considered in the review. Thus, we did not include 

papers whose main focus was methodological or animal research. We also excluded review 

papers, editorials, and case reports. The PubMed search yielded 411 articles, published 

between 2013 and 2023, both included (Figure 3). After excluding those not meeting our 

inclusion criteria, we revised 185 papers for their inclusion in this narrative review (Figure 3). 

Most of these papers have been published between 2021 and 2023 (Figure 4).   

 

MS DIAGNOSIS 

The diagnosis of MS relies on integrating clinical, MRI, and laboratory findings to demonstrate 

disease dissemination in space and time and exclude alternative diagnoses, especially in the 

presence of the so-called red flags.6 Indeed, the diagnosis of MS is not devoid of challenges: 

other conditions may mimic MS, clinically or radiologically. Additionally, there are special 
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populations, such as non-Caucasic individuals, those with comorbidities, paediatric patients, 

and older adults, where diagnostic criteria must be applied more carefully, and the differential 

diagnosis needs to be expanded.6 In these circumstances, the use of AI algorithms to reach 

the correct diagnosis may be very useful.   

 

In 2016, Eshaghi et al.7 used a ML model to extract 157 features from T1-weighted (T1w) 

images to differentiate MS (N=25) from neuro-myelitis optica spectrum disorder (NMOSD) 

(N=30),  and healthy controls (HCs) (N=35). The ML model achieved an accuracy of 74%, 

opening new possibilities for utilising ML for the differential diagnosis of MS. Rocca and 

colleagues compared the accuracy of a DL model from both T1w and T2-weighted (T2w) 

images based on convolutional neural networks (CNNs) to the one achieved by two 

experienced neuroradiologists to classify patients into different conditions: MS (N=70), 

NMOSD (N=91), vasculitis of the CNS (N=51), or migraine (N=56).8 In all conditions, the DL 

model achieved a higher accuracy (around 90% or above) than human evaluators (Table 2 

for details ). More recently, Seok et al.9 also used a DL model based on CNN to differentiate 

between MS (N=86) and NMOSD (N=70) using 3D fluid attenuated inversion recovery (FLAIR) 

images and obtaining 76.1% accuracy. Other studies based on AI models have achieved 

similarly high accuracy differentiating MS from other conditions (Table 2).  

 

All these studies have shown promising results, but there are still several limitations that need 

to be acknowledged, including relatively small datasets and heterogeneity of input data, 

discussed below.  

 

PREDICTION OF MS EVOLUTION  

MS is a highly heterogeneous condition with variable course, both in relation to the occurrence 

of future relapses and development of irreversible disability. Over the years, observational 

studies have identified MRI predictors of worse prognosis including a greater number of 

demyelinating lesions,10 the presence of infratentorial,11 cortical,12 spinal cord,13 or new lesions 
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in a short-term follow-up.13 Importantly, all these risk factors are usually taken into account in 

the clinic to monitor patients and decide treatment strategies. However, the factors mentioned 

only account for a relatively small proportion of the variability in clinical outcomes. So, the 

potential for AI models to make a substantial contribution is clear.  

 

Relapses 

Only a few studies have used AI methodologies to predict the risk of future relapses at MS 

onset. Among the most relevant publications there is the one from Wottschel et al.,14 which  

applied ML models to morphometric measures from MRI scans (both T1w and FLAIR/T2w 

images) of 400 patients at symptom onset to predict the occurrence of a second relapse over 

one year, achieving an accuracy of 71%. They showed that a greater whole brain T2 lesion 

load, a lower grey matter volume in the thalamus and the precuneus region, and a thinner 

cortex in the cuneus and inferior temporal gyrus at first attack were the best predictors of a 

second attack. Another study15 carried out in in 364 patients with a first demyelinating attack 

which also used ML to predict a second clinical attack based on MRI scans (T1w after 

gadolinium administration and T2w images) achieved an accuracy of 70%. This accuracy was 

only achieved, though, when both MRI features, i.e., geometric features of individual lesions 

and whole-brain and region-of-interest-based volumes, and clinical & demographic 

characteristics were used.15 Finally, a more recent study16 used both a global and regional ML 

approach to predict the occurrence of a second clinical event over a three-year follow-up from 

brain MRI scans (T1w images) of 266 patients at disease onset. Specifically, input data were 

grey matter characteristics and white matter T1-hypointensities from 3D-T1-weighted images. 

Based on grey matter characteristics, the models achieved an accuracy of approximately 50%. 

After the inclusion of T1-hypointensities, the accuracy did not improve (see Table 3 for more 

details). All these studies suggest that models based on input data from a single modality 

(e.g., T1w) have lower accuracy rates than those based on more complex MRI data or the 

combination of clinical and MRI-derived features.  
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Disability accumulation  

Predicting disability accrual in pwMS has been a priority for the scientific community over the 

last years,10 as this prediction has an impact on patient management. Studies have 

demonstrated that both high inflammatory lesion load and CNS atrophy observed in the MRI 

scan are associated with worse long-term prognosis.10,17  

 

Among the AI studies which have focused on short- or mid-term predictions, Tousignant et 

al.18 developed a DL model using multi-modal MRI data (T1w, T2w, T2-FLAIR, and post-

contrast T1w images) of 465 pwMS from placebo arms of randomised clinical trials as input 

data to predict disease progression at one-year follow-up. When they only used data from the 

MR raw images (see Table 3), their model had a moderate performance with an Area Under 

the Curve (AUC) of 0.66 (± 0.055). However, when they supplemented the model with lesion 

masks from T2-weighted and contrast-enhanced T1-weighted sequences, the AUC improved 

to 0.701 (± 0.027), highlighting the importance of rich and informative input data for model 

performance. In 2020, Roca et al.19 assessed the performance of a DL CNN model which used 

age, sex, and brain T2-FLAIR scans from 971 pwMS to predict EDSS scores at two-year 

follow-up. Their model showed moderate performance (mean EDSS score error: 1.7), which 

was worse for very low or high EDSS values. This possibly suggests the need for an adequate 

representation of the different output options when training the model to allow a correct 

learning process. Storelli et al.20 also used a DL CNN to predict disability at two years in 48 

pwMS, using both T1w and T2w images from a multi-centre training set of 325 pwMS. The 

output was a binary outcome for disability progression, based on EDSS and symbol digit 

modalities test (SDMT) scores. The CNN model showed a predictive accuracy that was high 

for EDSS (83.3%) and moderate for SMDT (67.7%) worsening, although  the highest accuracy 

was achieved using both tests (85.7%).20 
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Finally, regarding the long-term predictions of disability using AI models, Zhao et al.21 built a 

series of ML models to predict disability progression (binary output) at 5-year follow-up in 1693 

pwMS. Input data were baseline and short-term follow-up, clinical and MRI data (T2w images). 

Of note, the best accuracy was achieved when the model included both MRI and clinical data 

from baseline and follow-up (around 75%) (Table 3), highlighting the need for both informative 

and rich input data to ensure model accuracy.    

 

Segmentation of MRI lesions  

The most widely used non-clinical tool for MS monitoring is the MRI. However, the assessment 

of the number of lesions and of the presence of new or enlarged lesions in follow-up MRI 

scans can be very time-consuming and requires expert neuroradiologists. Therefore, a great 

effort has been made over the years to develop strategies (software) to identify and segment 

lesions in T2-FLAIR images22 and to identify the presence of new or enlarged lesions.23,24  

 

In relation to the identification and segmentation of brain T2-FLAIR lesions, different studies 

have proposed DL algorithms that are emerging with increasing accuracy.25 Yet the 

comparison across algorithms is challenging because they often use different datasets, not 

always publicly available. For the detection of new or enlarged lesions on follow-up MRI scans, 

also several algorithms have been proposed. In 2020, Salem et al. published the first 

longitudinal approach based on CNNs that dealt with lesion changes in brain MRI.26 More 

recently, the same group has published an improved method also based on CNNs for new 

lesion segmentation.27 Finally, regarding the identification of active lesions based on non-

contrast MRI, a study on 1008 pwMS28 was able to detect the presence and location (i.e., the 

MRI slice) of gadolinium-enhancing lesions using a CNN model based on pre-contrast T1w, 

T2w, and T2-FLAIR images, with high sensitivity and specificity of 78% and 73%, 

respectively.28 After this study, other authors have also investigated DL algorithms to identify 

active lesions based on non-contrast MRI, showing high accuracy levels too.29–32 Please see 



9 
 

Table 4 for more details on lesion segmentation studies carried out using AI-based algorithms. 

However, given the narrative, non-systematic nature of this review, a number of other relevant 

papers could not be included, despite their relevance.33,34 Furthermore, it is to be highlighted 

that, although most lesion segmentation algorithms are based on DL, not all of them are, and 

still they may achieve high performances. For instance, a recent study presented a method 

called Multiple Sclerosis Lesion Analysis at Seven Tesla (MSLAST), based on connected 

component analysis, which was able to identify MS lesions from ultra-high-field MR images, 

with high sensitivity (71%).35  

 

In sum, DL has shown a great potential for improving the performance of available automatic 

lesion segmentation tools. Additionally, apart from MRI lesions, new DL algorithms have also 

shown a great value in segmenting CNS tissues, mainly in the brain but also in the spinal cord. 

However, this topic was beyond the scope of this narrative review and should be covered by 

future reviews.   

   

INVESTIGATION OF DISEASE MECHANISMS 

The pathophysiological processes underlying disease progression in MS are not completely 

understood and are believed to be highly heterogeneous across people and stages of the 

disease. Conventional MRI techniques offer a range of metrics which are not specific to these 

processes and their pathological manifestations.36 Consequently, these metrics have low to 

moderate correlations with clinical parameters.37 In this context, AI may help us understand 

the pathogenetic mechanisms of MS.  

 

AI-based focused on understanding disease mechanisms have mainly used two strategies, 

i.e., unsupervised ML models and DL-derived attention maps (Table 5). Among the studies 

using the first strategy, Eshaghi et al.38 applied an unsupervised ML algorithm (SuStaIn39) on 

MRI scans (T1w, T2w, T2-FLAIR images) of 6322 pwMS to determine different longitudinal 

patterns of brain pathology. They identified three different patterns, i.e., cortex-led, with a more 
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neurodegenerative component, corresponding to those patients whose pathology began in 

the cortex; normal-appearing white matter-led, with a more chronic inflammatory component, 

corresponding to those patients whose pathology began in the normal-appearing white matter; 

and lesion-led, with a more acute inflammatory component, corresponding to pwMS whose 

pathology was initiated by visible lesions. The lesion-led subtype had the worse prognosis, 

with a faster progression of disability.38 This model was later on applied by Pontillo et al.40 to 

a different cohort of 425 pwMS also using T1w and T2-FLAIR scans. Although they found two 

patterns of disease instead of three, they were able to identify, as Eshaghi et al. did, a deep 

grey matter-led pattern associated with T2 lesion-related damage which implied a worse 

prognosis. These studies show the potential of AI algorithms to provide an accurate patient 

stratification that is both biologically reliable and prognostically meaningful.38,40  

 

Regarding the studies that have used attention maps, which reflect those anatomical regions 

that the DL model deems more relevant to make a given DL-based prediction, Eitel et al.41 

found that posterior periventricular white matter regions were determinant for the diagnosis of 

MS. More recently, Coll et al.42 found that the areas identified as most relevant to classify 

patients into more or less disabled (i.e., EDSS≥3.0 vs EDSS<3.0) were the frontotemporal 

cortex and cerebellum (Figure 5), suggesting that damage in these regions may be key to 

disability accrual (please see Table 5 for more details). 

 

Other AI-based strategies, such as supervised classification ML or DL models, have also been 

exploited in several studies to uncover the pathological processes underlying disability 

progression in MS. However, only in a few of those studies this was the primary aim. In this 

regard, a recent paper exploited the patterns of brain functional connectivity derived from 

resting state functional MRI to understand differences between relapsing and progressive 

forms of MS (Table 5).43    
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To conclude, although the studies that have used AI to understand pathogenetic mechanisms 

in MS are still relatively few, they certainly contribute to a greater characterisation of MS by 

expanding the concept of classical phenotypes. Nonetheless, the integration with new 

quantitative MRI techniques that can show damage in apparently normal tissues,44 even at 

very early disease stages,45 would be necessary. 

 

LIMITATIONS IN AI-BASED RESEARCH IN MS  

Although AI offers promising results in MS, there are still many limitations concerning AI-based 

research, which hamper its medical applications. Some of these limitations are intrinsically 

related to the ML/DL methodology, such as the so-called "black box" issue, i.e., the lack of 

transparency in the decision-making process of the AI model.46 The consequences of this are 

twofold: from a methodological perspective, this issue may inadvertently lead to error 

propagation in data analysis, since it may be virtually impossible to evaluate erroneous paths, 

causing the same model to obtain different results on different datasets. From a practical 

perspective, the black-box issue may cause distrust among clinicians and healthcare 

providers, slowing down its implementation in the clinic. Secondly, the use of relatively small 

datasets is a clear limitation of most studies. In this context, though, the need for large 

datasets, which are difficult to obtain, can lead to a preference for data quantity over data 

quality, resulting in suboptimal data quality to train the models, which is also a problem in AI 

studies. Additionally, there is a large methodological variability among the different algorithms 

proposed to answer a similar research question, challenging their translation to clinical 

practice. In this regard, it is essential to conduct quantitative assessments of DL models and 

use large datasets with different MRI scanners and imaging protocols to assess their true 

potential as diagnostic and monitoring tools in the clinic. It is therefore fundamental to intensify 

future efforts towards collecting large-scale datasets to train DL models and improve their 

performance and robustness. Furthermore, there is still the unmet need for AI application 

guidelines to set standards for models’ accuracy and data adequacy. Despite the presence of 

international frameworks for reporting clinical studies based on AI models (i.e., TRIPOD-AI for 
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diagnostic and prognostic prediction model studies47) there is still a large variability in its 

compliance among researchers. Finally, there are general limitations concerning the use of AI 

in healthcare that relate to ethical and equality issues that are beyond the scope of this review, 

but they will be part of the future scientific and public debate influencing future AI applications. 

 

FUTURE DIRECTIONS 

Future steps include the translation of AI-based research to clinical practice, as well as the 

development of new AI-based methodologies that help us tackle key challenges in MS beyond 

differential diagnosis and disease prediction, which are the areas where AI research applied 

to MS data has developed the most. For instance, AI applications may help design more 

efficient randomised clinical trials (RCTs), for instance selecting a priori those study 

participants with greatest likelihood to respond to treatment. This process, called predictive 

enrichment, was successfully explored by Falet and colleagues, who leveraged clinical and 

imaging data from six randomised clinical trials to predict treatment response.48 Regarding 

those healthcare areas where AI-based research is most developed and closest to its use in 

clincial practice, there is radiology.49 Hence, numerous AI-based devices for image analysis 

have received approval in both Europe and the USA, with a notable prevalence of those 

specifically associated with neurology, mainly stroke imaging.50 For instance, several 

algorithms for an automatic identification of signs of acute ischaemic stroke in brain CT 

imaging, needed for the Alberta Stroke Program Early CT Score (ASPECTS), have already 

been commercialised.50 In the MS field, a few algorithms for automatic lesion (and brain tissue) 

segmentation have also been commercialised. Nevertheless, the peer-reviewed scientific 

evidence supporting the efficacy of many of the commercialised AI-based products (in general, 

not only those related to neurology) is frequently absent or inaccessible.50 This, in part, may 

account for the relatively limited adoption of these technologies in clinical practice, together 

with logistic and budgetary reasons. Therefore, future endeavours should focus on rigorous 

scientific validation to ensure a definitive integration of all these AI-based algorithms into 

clinical settings. 
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CONCLUSIONS  

The use of AI in MS has made significant progresses in recent years. There is a growing 

recognition of the potential for AI to contribute to the diagnosis, monitoring, and prediction of 

MS. However, several challenges are still present in relation to AI-based research and are 

probably responsible for the significant gap between AI studies and their clinical utility. One of 

the challenges when using AI for diagnosis monitoring and prognosis in MS is the quality of 

the input data. Standardised MRI protocols and accurate and comprehensive data collection 

are essential for developing reliable AI models. Another challenge is ensuring the 

reproducibility of methods used in AI-based studies, particularly considering the use of 

different MRI scanners and imaging protocols across centres. The ability to reproduce and 

validate results is key to accepting and integrating AI into clinical practice. Additionally, we 

should adequately address the ethical issues derived from the implementation of AI to 

diagnose, monitor, and predict MS. Concerns about privacy, data security and potential biases 

in algorithmic decision-making need to be tackled to ensure ethical standards are met. 

Nonetheless, the high number of opportunities identified in relation to the use of AI in MS 

research and clinical practice will hopefully help address and overcome these challenges 

quickly. Furthermore, there is an unmet need for research to create AI prediction models 

capable of integrating longitudinal MRI data and exploring optimal methods for merging 

information from MR images and clinical data. Finally, in the future, AI may also enable better 

trial design and a deeper understanding of the mechanisms underlying irreversible disability 

accumulation, leading to more effective treatments and interventions. 
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FIGURE LEGENDS 

Figure 1. Main objectives of machine and deep learning models 

 

Figure 1 (legend). This figure illustrates the main aims of AI methods applied to data analysis: 

learning patterns from the data (left) and predicting unseen data (right). In both cases, there 

is always a first part consisting of building the model (i.e., training and testing), and a second 

part consisting of validating the model in new (unseen) data. Figure adapted from Tur and 

Collorone. Kranion, 2023. DOI: 10.24875/KRANION.M23000065. 
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Figure 2. Main types of AI models 

 

Figure 2 (legend). AI models can be divided into supervised and unsupervised learning 

models, depending on whether data are annotated (i.e., the output is known) or not (i.e., the 

output is unknown), respectively. AI models can also be divided into machine or deep learning 

models, depending on whether features (predictors) are already extracted or not, respectively. 

Abbreviations: DL: deep learning; ML: machine learning.  
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Figure 3. PRISMA chart describing article selection 

 

Figure 3 (legend). Although this is not a systematic review paper but a narrative review one, 

we have followed a fairly systematic approach to selecting the papers to be considered in our 

manuscript. After performing a PubMed search with the following terms: (multiple sclerosis or 

demyelination or demyelinating disease) AND (artificial intelligence or deep learning or 

machine learning) AND (MRI or neuroimaging or brain/cord imaging), 411 records were 

obtained. Of those, only 185 were considered for this review after excluding those not meeting 

our inclusion criteria.  
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Figure 4. Distribution of the research papers on AI applied to neuroimaging data in MS 

over time 

 

Figure 4 (legend). This histogram shows the number of research articles (of those 185 

selected) published per year, between 2013 and 2023. It is to be noted that most of the papers 

have been published in the last 3 years.   
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Figure 5. Attention maps to uncover the mechanisms of disability accumulation in MS 

 

Figure 5 (legend). On the left (panels A and B), this figure shows an individual example of 

attention map (B) obtained after building a DL model which used structural imaging (T1-

weighted and T2-FLAIR images [panel A]) to classify patients based on their disability  level, 

i.e., below or above EDSS 3.0. On the right (panel C), this figure reflects the group-level 

results, for all the DL-derived classes, i.e., TP, TN, FP, FN. As can be observed, the most 

relevant brain areas for the DL-based prediction were the frontal and cerebellar cortices. See 

Coll et al. (ref.42), for more details. Abbreviations: DL: deep learning; EDSS: expanded 

disability status scale; FN: false negative; FP: false positive; TN: true negative; TP: true 

positive;   
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Table 1. Artificial Intelligence terminology  
 

Terms Definitions 

Annotated data  Set of data where both the input variables (i.e., predictors in a given model) and the output 
variables (e.g., clinical outcome) are known and well characterised 

Artificial Intelligence Branch of science aiming at creating algorithms able to carry out tasks that typically require human 
intelligence 

Attention Maps (or 
Salience Maps or 
Heat Maps) 

Regions of the input data – typically of the brain MR images – that carry the most important 
information for the Deep Learning model  

Bagging Machine Learning technique aiming to improve the stability and accuracy of a model by combining 
predictions from multiple models trained on different subsets of the data 

Bayesian Network A graphical representation of probabilistic relationships among a set of variables, for instance 
diseases and symptoms 

Convolutional Neural 
Networks 

Deep Learning algorithm that can learn directly from the input data (images) their 
filters/characteristics and find patterns to recognise objects, classes, and categories 

Deep Learning Machine Learning using artificial neurons 

Feature reduction 
methods 

Selection (i.e., feature selection, LASSO, random forest, Relief) or dimensionality reduction (i.e., 
principal component analysis, independent component analysis, t-SNE) techniques improving the 
efficiency and performance of machine learning models, especially in the context of radiomics 
where datasets often contain a large number of features. 

Gradient Boosting Machine learning technique involving constructing an ensemble of models, typically decision trees, 
that are built sequentially. Each new model in the sequence is trained to correct the errors made by 
the previous models 

Gradient Descent An optimisation algorithm to find the coefficients that minimise the cost function 

Input data Set of variables or images (also called predictors) that are used to feed a statistical/AI model in 
order to predict an outcome, also called output data 

K-Nearest 
Neighbours 

Machine Learning classification algorithm based on similarity measures, usually distance functions, 
with known cases. It is a non-parametric learning algorithm, and it does not require training phase 

Layer-wise 
Relevance 
Propagation  

Deep Learning algorithm that allows to decompose the prediction computed over a sample (i.e., an 
image) down to relevance scores for the single input dimensions of the sample (i.e., pixels) 

Linear Discriminant 
Analysis 

Machine Learning classification algorithm limited for more than two-class classification problems 

Logistic Regression Machine Learning classification algorithm limited to two-class classification problems 

Machine Learning  Set of mathematical algorithms able both to learn from the data and to predict 

Multilayer Perceptron Feedforward artificial neural network in which information travels in one direction—from the input 
layer through the hidden layers to the output layer—without forming cycle 

Naïve Bayes 
Classifiers 

Bayesian network model assuming that features are conditionally independent given the class 
label (naïve) 

Non-annotated data Set of data where the outcome variable (e.g., specific disease classification) is not known and 
must be investigated through AI methods  

Output data  Variable in the dataset that contains the outcome that is being predicted by the (statistical/AI) 
model, for instance, a given classification based on disability scores  

Principal Component 
Analysis 

Machine Learning algorithm whose main objective is to transform a dataset of possibly correlated 
variables into a new set of uncorrelated variables, called principal components. These principal 
components are linear combinations of the original variables and capture the maximum variance 
present in the data 

Probabilistic Neural 
Network 

Deep Learning approach providing probabilistic outputs, making them suitable for applications 
where uncertainty in predictions needs to be quantified 

Random Forest Machine Learning classification algorithm consisting of many decisions trees 

Support Vector 
Machine 

Machine Learning supervised learning models with learning algorithms for classification and 
regression analysis 

 
Table 1 (footnote). This table shows key definitions of the AI terms used in the included 

papers. Abbreviations; LASSO: least absolute shrinkage and selection operator; t-SNE: t-

Distributed Stochastic Neighbour Embedding. 
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Table 2. Summary of selected studies focused on differential diagnosis 

Reference N MRI 
protocol 

AI method: 
algorithms 

Model input Model output  Model 
accuracy 

Comment 

Eshaghi et 
al., 
Neurology 
2016 (ref.7) 

144 patients 1.5T and 3T 
scanners 
3D-T1, 
FLAIR 

Machine 
learning: 
random 
forest 

157 features, 
including GM 
regional 
volumes, and 
cortical 
thicknesses 
and surface 
areas, 
extracted from 
3D-T1 images 

Disease group: 
MS vs NMOSD 

74% Variables 
reflecting deep 
grey matter 
volume were 
those responsible 
for the main 
differences 
between MS and 
NMOSD 

Zurita et al., 
Neuroimage: 
Clin. 2018 
(ref.51) 

157 subjects 
(107 MS; 50 
HCs) 

3T scanner 
T1 
DTI 
Rs-fMRI 

Machine 
learning: 
SVM 

FA maps, DTI 
connectivity 
matrix, rsfMRI 
correlation 
matrix, 
normalized 
combination 
of DTI and 
rsfMRI 
matrices 

Disease group: 
EDSS >1.5 MS 
vs EDSS ≤1.5 
MS vs HCs 

89% The brain regions 
that contributed 
the most to the 
classification 
were: the right 
occipital, left 
frontal orbital, 
medial frontal 
cortices and 
lingual gyrus. 
Model 
performance was 
below 63% when 
comparing the 
two groups of 
patients with 
different levels of 
disability. 

Eitel et al., 
Neuroimage: 
Clin. 2019 
(ref.41) 

147 subjects (76 
MS; 71 HCs) 

3T scanner 
3D-T1, 
3D-FLAIR 

Deep 
learning: 
CNN  

FLAIR lesion 
masks and 
the entire 
FLAIR volume 

Disease group: 
MS vs HC 

87% The authors used 
the LRP 
algorithm to 
assess the brain 
regions most 
relevant for CNN 
decisions, which 
were WM lesions 
and some GM 
regions such as 
thalamus 

Mato-Abad et 
al., Eur J 
Neurol. 2019 
(ref.52) 

34 patients (17 
RIS; 17 CIS) 

3T scanner 
DTI 
Structural 
sequence 
not specified 

Machine 
learning: 
Bagging; 
Naive Bayes 
classifier 
Deep 
learning: 
Multilayer 
Perceptron 

FA maps, MD 
maps, cortical 
thickness, 
cortical and 
subcortical 
grey matter 
volume 

Disease group: 
RIS vs CIS 

78% The best models 
to predict the 
diagnosis of CIS 
and RIS used 
only three 
features: the left 
rostral middle 
frontal gyrus 
volume; FA in the 
right amygdala 
and right lingual 
gyrus 

Rocca et al., 
Investigative 
Radiology 
2021 (ref.8) 

268 patients 1.5T and 3T 
scanners 
3D-T1, 
Axial T1 and 
T2-weighted 
images 

Deep 
learning: 
CNN 

T1-weighted 
and T2-
weighted 
image 
features 

Disease group 
(MS vs 
NMOSD vs 
migraine vs 
CNS vasculitis) 

98.8%,  
88.6%, 
92.9%, 
92.1%, for  
MS, 
NMOSD, 
migraine, or 
CNS 
vasculitis, 
respectively, 
vs rest 

Human raters 
accuracy was 
72.8% and 81.8% 
for MS; 4.4% for 
NMOSD, both; 
53% and 64.8% 
for migraine; and 
54.6% and 45.5 
% for vasculitis  

Seok et al., 
Sci Rep 2023 
(ref.9) 

90 patients (86 
MS, 70 NMOSD) 

3T scanner 
3D-T1, 
3D-FLAIR, 
Axial T2-
weighted 
images 

Deep 
learning: 
CNN 

5-channel 2D 
image 
obtained by 
concatenating 
selected five 
axial slices 
from 3D-
FLAIR 

Disease group: 
MS vs NMOSD 

76.1% 
 

White matter 
lesions were what 
the model 
focused on for 
classification. 
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Table 2 (footnote). This table shows a selection of studies focused on differential diagnosis. 

Abbreviations: AI: artificial intelligence; ANN: artificial neural network; CIS: clinically isolated 

syndrome; CM: chronic microangiopathy; CNN: convolutional neural networks; DTI: diffusion 

tensor imaging; EDSS: expanded disability status scale; FA: fractional anisotropy; FLAIR: fluid 

attenuated inversion recovery; FS: full spectra; LDA: linear discriminant analysis; LR: logistic 

regression; LRP: layer-wise relevance propagation; MD: mean diffusivity; MRS: magnetic 

resonance spectroscopy; MS: multiple sclerosis; NMOSD: neuromyelitis optica spectrum 

disorder; PCA: principal component analysis; PI: peak integration; PNN: probabilistic neural 

network; RIS: radiologically isolated syndrome; ROI: region of interest; rs-fMRI: resting state-

functional MRI; SVM: support vector machine; 
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Table 3. Summary of selected studies focused on prediction of disease course: 
relapses and disability progression 
 

Reference N Follow-
up 
time 

MRI 
protocol 

AI 
method: 
algorithms 

Model input Model 
output  

Model 
performance 

Comment 

Relapses         

Wottschel et al., 
Neuroimage: Clinical 
2019 (ref.14) 

400 patients 
with a first 
demyelinating 
attack 

1 year Magnetic 
field not 
specified 
3D-T1  
FLAIR or 
PD/T2-
weighted 
images 

Machine 
learning: 
SVM 

213 features 
extracted 
from 
structural 
imaging, 
including: 
whole-brain, 
lobar, and 
region-of-
interest 
metrics  

Second 
attack over 
1-year 
follow-up 

Accuracy: 
70.8% 

40 features 
selected as 
most relevant, 
including GM 
volumes and 
thicknesses, 
together with 
whole brain 
lesion load 

Bendfeldt et al., Brain 
Imaging Behav 2019 
(ref.15) 

364 patients 
with a first 
demyelinating 
attack 

2 years 1.5T 
scanner 
T1-
weighted 
after Gd 
administrat
ion and T2-
weighted 
images 

Machine 
learning: 
linear and 
non-linear 
SVM 

Geometric 
features of 
individual 
lesions 
derived from 
MRI data 
(T2-, T1-, 
Gd-lesions); 
spatial 
information 
on 13 brain 
ROIs 

Second 
attack over 
2-year 
follow-up 

Accuracy: 
70.4% 

The greatest 
accuracy was 
obtained 
when 
considering 
both MRI and 
clinical & 
demographic 
characteristics 

Pareto  et al., 
Neuroradiology 2022  
(ref.16) 

266 patients 
with a first 
demyelinating 
attack 

3 years 3T scanner 
3D-T1 
images 

Machine 
learning: 
SVM, MKL 
 

3D-T1 
images: GM 
characteristi
cs in 116 
parcellations 
from the 
AAL atlas 
and 
maps of 
white matter 
hypointensiti
es in the 
JHU atlas  

Second 
attack over 
3-year 
follow-up 

Accuracy 
(GM + 
hypointensiti
es):  
SVM: 
51.44% 
MKL: 50.87% 

Most relevant 
GM regions 
in the 
temporal, 
deep GM, and 
frontal lobe, 
followed 
by the 
cerebellum, 
parietal, and 
occipital lobe 

Disability 
accumulation 

        

Short/mid-term         

Tousignant et al., 
Proceedings of 
Machine Learning 
Research 2019 (ref.18) 

465 patients 
with MS 

1 year Magnetic 
field not 
specified 
T1 and 
PD/T2-
weighted 
images, 
FLAIR 
Post-
contrast 
T1-
weighted 
images  
 

Deep 
learning: 
CNN  

MR (raw) 
images at 
study 
baseline +/- 
lesion masks 
as an 
additional 
input 

Confirmed 
disease 
progression 
at 1-year 
follow-up 

Accuracy: 
70.1% 

Moderate 
performance, 
but clear 
improvement 
when lesion 
masks (on T2-
weighted and 
Gd-T1 
images) were 
added as 
inputs 

Roca et al., Diagnostic 
and Interventional 
Imaging 2020 (ref.19) 

971 patients 
with MS 

2 years 1.5T and 
3T 
scanners 
2D and 
3D-FLAIR 

Machine 
learning: 
random 
forest and 
manifold 
learning; 
 
Deep 
learning: 
CNN 

Machine 
learning: 65 
features, 
including 
lesion 
volumetric 
measures in 
white matter 
tracts and 
ventricle 
volumes, 
extracted 
from FLAIR 

EDSS 
score at 2-
year follow-
up 

Mean EDSS 
square error:  
- Random 
forest: 2.6 
- CNN: 2.7 
- Manifold 
learning: 3.2 

Overall 
moderate 
performance. 
 
No clear 
superiority of 
DL over ML. 
 
Prediction of 
extreme 
disability 
scores more 
challenging 
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images, and 
age  
 
Deep 
learning: 
FLAIR 
images and 
age 

Storelli et al., 
Investigative 
Radiology 2022 
(ref.20) 

373 patients 
with MS 

2 years 3T scanner 
3D-T1 
2D or 3D 
T2-
weighted 
images 
 

Deep 
learning: 
CNN 

Coregistered 
T1-weighted 
and T2-
weighted 
images in 
MNI space 

Clinical 
worsening* 
on (i) 
EDSS, (ii) 
SDMT, (iii) 
EDSS or 
SDMT 
at 2-year 
follow-up 

Accuracy for:  
- EDSS 
worsening: 
83.3% 
- SDMT 
worsening: 
67.7% 
- EDSS or 
SDMT 
worsening: 
85.7% 

High 
performance, 
and the 
EDSS+SDMT
-based model 
had the 
highest 
accuracy, 
greater than 
(human) rater-
based 
accuracy 
(70%) 

Long-term         

Zhao et al., PloS ONE 
2017 (ref.21) 

1693 patients 
with MS 

5 years  Magnetic 
field not 
specified 
T2-
weighted 
images, 
Other 
sequences 
not 
specified 

Machine 
learning: 
SVM 

35 features, 
including 
MRI (lesion 
load, BPF), 
clinical and 
demographic 
variables at 
baseline  
+/- 1-year 
follow-up 
data  
+/- 2-year 
follow-up 
data  

Clinical 
worsening$ 
on the 
EDSS at 5-
year follow-
up 

Accuracy for: 
- Baseline-
only data 
models: very 
low 
- Baseline + 
1-year follow-
up MRI data: 
69% 
- Baseline + 
2-year follow-
up MRI data: 
71-75% 

Only when 
using  
baseline and 
longitudinal  
clinical and 
MRI data the  
ML model is 
better than a 
classical LR 
model 

 
 

Table 3 (footnote). This table shows a selection of studies focused on predicting disease 

course. * Clinically worsening on the EDSS is defined as EDSS score increase ≥1.5 if baseline 

EDSS is 0, ≥1.0 if baseline EDSS is <6.0, and ≥0.5 if baseline EDSS is ≥6.0; clinical worsening 

on the SDMT is defined as a decrease ≥4 points in the follow-up SDMT (regardless of baseline 

SDMT score). $ Clinical worsening was defined as an increase in the EDSS of ≥1.5. 

Abbreviations: ALL: automated anatomical labelling; BPF: brain parenchymal fraction; CNN: 

convolutional neural networks; EDSS: expanded disability status scale; FLAIR: fluid 

attenuated inversion recovery; Gd: gadolinium; GM: grey matter; JHU: Johns Hopkins 

University; LR: logistic regression; MKL: multiple kernel learning; MRI: magnetic resonance 

imaging; MS: multiple sclerosis; ROI: region of interest; SDMT: symbol digit modalities test; 

SVM: support vector machine; 
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Table 4. Summary of selected studies focused on lesion segmentation  

Reference N MRI 
protocol 

AI method: 
algorithms 

Model input Model 
output  

Model 
accuracy 

Comment 

Salem et al., 
Neuroimage 
Clin 2020 
(ref.26) 

60 patients 3T scanner 
1-year FU 
PD, 
Axial T2-
weighted 
images, 
3D-T1, 
Axial FLAIR 

 

Deep 
learning: 
CNN 

3D patches 
from the 
baseline and 
follow-up 
images of the 
four input 
modalities 

New MS 
lesions 

83%a 36 patients 
had new 
lesions at 
FU. 
True positive 
detection 
rate was 
83.09% and 
false 
positive 
detection 
rate was 
9.36%. 

Narayana et 
al., 
Radiology 
2020 (ref.28) 

1008 
patients 

1.5T and 3T 
scanners 
Pre- and 
post-
contrast T1-
weighted 
images,  
T2-weighted 
images, 
FLAIR 

Deep 
learning: 
CNN 

Automated 
T2-
hyperintense 
lesion mask 
dilated by 3 
voxels in 
each 
direction 
applied on 
pre-contrast 
T1-weighted 
images,  
T2-weighted 
images, and 
FLAIR 

Enhancing 
lesions 

75% 519 patients 
had 
enhancing 
lesions.  
Accuracy 
slice-wise: 
82%, 
Sensitivity 
78%, 
Specificity 
73%  

Salem et al., 
Front 
Neurosci 
2022 (ref.27) 

32 patients 3T scanner 
1-year FU 
3D-FLAIR 

Deep 
learning: 
CNN 

3D patches 
from the 
baseline and 
follow-up 
images 

New MS 
lesions 

42%a All patients 
had at least 
one new 
lesion at FU.  
Sensitivity: 
53% 
Precision: 
52% 

Caba et al., 
Neuroimage 
2023 (ref.29) 

4,924 
patients 

1.5T and 3T 
scanners 
24-156-
week FU 
T1-weighted 
images,  
T2-weighted 
images 

Machine 
learning: 
Ensemble 
Classifier; 
Deep 
learning: 
CNN  

32 radiomic 
features from 
raw images 
and inpainted 
patches 
concatenated 
together with 
T2-
hyperintense 
lesion masks 

Acute 
versus 
chronic MS 
lesions 

75% New and 
enlarging T2 
lesions are 
detected 
through 
computing 
the 
difference 
between 
follow-up 
and baseline 
T2-
hyperintense 
lesion 
masks 

Khajetash et 
al., Biomed 
Phys Eng 
Express 
2023 (ref.30) 

82 patients 1.5T 
scanner 
Pre- and 
post-
contrast T1-
weighted 
images,  
T2-weighted 
images, 
FLAIR 

Machine 
learning:  
DT, 
KNN,  
LR,  
NB, 
RF,  
SVM 

11 radiomics 
features for 
each lesion 

Enhancing 
lesions 

85%  Feature 
reduction 
methods 
(107 to 11):  
LASSO. 
Sensitivity 
82%, 
Specificity 
66% 

Tavakoli et 
al., J 
Biomed 
Phys Eng 
2023 (ref.31)  

82 patients 1.5T 
scanner 
Pre- and 
post-
contrast T1-
weighted 
images,  

Machine 
learning:  
DT, 
GB,  
MLP,  
XGB 

7 and 8 
radiomics 
features for 
each lesion 

Enhancing 
lesions 

86% Feature 
reduction 
methods 
(107 to 7 
and 8):  
Boruta, 
Relief. 
Sensitivity 
100%, 
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T2-weighted 
images, 
FLAIR 

Specificity 
84% 

Shekari et 
al., Mult 
Scler Relat 
Disord 2024 
(ref.32) 

34 patients 1.5T 
scanner 
post-
contrast T1-
weighted, 
FLAIR, 
DWI 

Machine 
learning:  
DT, 
KNN, 
LDA,  
LR,  
SVM  

53 radiomics 
features 
for each 
lesion from 
DWI 

Enhancing 
lesions 

96% 

 
Feature 
reduction 
methods (89 
to 53):  
t-test,  
PCA,  
SBS, 
SFS, 
Relief. 
Sensitivity 
91%, 
Specificity 
100% 

 

Table 4 (footnote). This table shows a selection of studies focused on lesion segmentation.  

a Accuracy computed as Dice similarity coefficient: 2 * TPs / (FNs + FPs + 2 * TPs). Where: TPs: 

number of voxels correctly predicted as lesions; FPs: number of voxels incorrectly predicted as 

lesions; and FNs: number of voxels incorrectly predicted as non-lesions. Abbreviations: CNN: 

convolutional neural networks; DT: decision tree; DWI: diffusion weighted imaging; FLAIR: 

fluid attenuated inversion recovery; FU: follow-up; GB: gradient boosting;  KNN: K-Nearest 

Neighbours; LASSO: least absolute shrinkage and selection operator; LDA: linear discriminant 

analysis; LR: logistic regression; MLP: multi-layer perceptron; MS: multiple sclerosis; NB: 

naive bayes classifier; PCA: principal component analysis; PD: proton density; RF: random 

forest; SBS: sequential backward selection; SFS: sequential forward selection; SVM: support 

vector machine; XGB: extreme gradient boosting. 
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Table 5. Summary of selected studies focused on investigation of disease mechanisms 

Reference N MRI 
protocol 

AI method: 
algorithms 

Model input Model 
output  

Model 
accuracy 

Comment 

Eitel et al., 
Neuroimage 
Clin 2019 
(ref.41) 

147 subjects 
(76 MS; 71 
HCs) 

3T scanner 
3D-T1, 
3D-FLAIR 

Deep 
learning: 
CNN  
Attention 
Maps 

FLAIR imagesa Disease 
group: MS 
vs HC 

87% Posterior periventricular 
white matter regions were 
determinant areas for MS 
diagnosis  

Eshaghi et al., 
Nat Commun 
2021 (ref.38) 

6322 patients 
with MS 

1.5 and 3T 
scanners 
2D or 3D-T1,  
FLAIR,  
T2-weighted 
images 

Machine 
learning: 
SustaIn 
(ref.39)  

18 features from 
available 
images 
(regional 
volumes, lesion 
volumes, and 
T1/T2 ratio) of 
which 13 
differed 
between 
training and 
validation 
datasets and 
were retained in 
the SustaIn 
model  

Longitudina
l patterns 
of brain 
pathology  

NA Three patterns identified: 
cortex-led, normal-
appearing WM-led, and 
lesion-led- The lesion-led 
pattern was related to 
worse prognosis 

Pontillo et al., 
Eur Radiol 
2022 (ref.40) 

425 patients 
with MS 

3T scanner 
3D-T1, 
FLAIR 
images 

Machine 
learning: 
SustaIn 
(ref.39) 

Regional and 
lesions volumes 
from T1-
weighted and 
FLAIR-
T2weighted 
images 

Longitudina
l patterns 
of brain 
pathology  

NA Two patterns identified: 
cortex-led, and DGM-
lesion-led- The DGM-
lesion-led pattern was 
related to worse prognosis 

Coll et al., 
NeuroImage 
Clin 2023 
(ref.42) 

268 patients 
with MS 

1.5 and 3T 
scanners 
3D-T1, 
FLAIR 
images 

Deep 
learning: 
CNN 
Attention 
Maps 

3D-T1 and 
FLAIR  images 

Disability 
(EDSS≥3.0 
vs 
EDSS<3.0) 

79% Areas identified were the 
frontotemporal cortex and 
cerebellum 

Yamin et al., 
Hum Brain 
Mapp 2023 
(ref.43) 

100 patients 
with MS 

3T scanner 
T2*- 
weighted 
single-shot 
EPI for RS 
fMRI; dual 
echo turbo 
spin echo 
(T2-
weighted); 
3D T1-
weighted 
images 

2-step 
Machine 
learning 
approach:  
Step 1: 
Unsupervise
d DS 
clustering;  
Step 2: SVM 
and LR with 
LASSO 
regularisatio
n 

RS FC metrics 
(derived from a 
low 
representation 
of the actual RS 
FC matrices)  

Step 1: no 
outcome is 
provided 
(unsupervis
ed 
learning) 
Step 2: 
clinical 
phenotypes 
(RRMS, 
PMS, HCs)   

Accuracy 
for:  
-RRMS vs 
HCs: 
72.51% 
-PMS vs 
HCs: 
85.19% 
-RRMS vs 
PMS: 
76.04% 

RRMS and PMS (vs HCs):  
- Increased RS FC within 
basal ganglia subnetwork, 
especially between the 
bilateral thalami,  
- Decreased RS FC within 
the frontal, temporal, and 
occipital subnetworks  
 
PMS (vs RRMS):  
- Decreased RS FC within 
temporal, and occipital 
subnetworks 
- Decreased RS FC 
between several 
subnetworks  

 
Table 5 (footnote). This table shows a selection of studies focused on investigating disease 

mechanisms. Abbreviations: CNN: convolutional neural networks; DGM: deep grey matter; 

DS: dominant set; EDSS: expanded disability status scale; EPI: echo-planar imaging; FC: 

functional connectivity; FLAIR: fluid attenuated inversion recovery; fMRI: functional MRI; HCs: 

healthy controls; LASSO: Least Absolute Shrinkage and Selection Operator; LR: logistic 

regression; MS: multiple sclerosis; PMS: progressive MS patients; RRMS: relapsing-remitting 

multiple sclerosis; RS: resting-state; WM: white matter.  
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