Structural and practical identifiability analysis of compartmental models for foliar uptake

Enrico Sangoi^a, Federica Cattani^b, Federico Galvanin^{a*}

^a Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK ^b Process Studies Group, Syngenta, Jealott's Hill International Research Centre, Berkshire, Bracknell, RG42 6EY, UK * Corresponding author: f.galvanin@ucl.ac.uk

Problem

Solution

Introduction and Motivation

Mathematical modelling of biological systems has several **challenges**:

- **Partial understanding** of the system
- Limited observability
- **High uncertainty** in the data (experimental error and intrinsic variability)
- Trade-off between model **complexity** and **interpretability**
- **Time consuming** and **resource hungry** experiments

Tackle these problems through a systematic model building strategy:

- Tests to ensure the **identifiability** of the model parameters
- Statistically-sound comparison of different models

- Model-based design of experiments for better exploitation of resources
- Quantification of the errors

A.Y

Quantification of **uncertainty** on parameter estimates and model predictions

Methodology

The model building framework presented in the following diagram is based on wellestablished approaches^[1].

 $x \coloneqq \{m_i\}$ mass in the *i*-th compartment

Observed states \widehat{y} : dependent on the case A, B, C Parameters $\boldsymbol{\theta} \coloneqq \{k_{ii}\}$ mass transfer rates Input $\boldsymbol{u} \coloneqq \{M_0\}$ initial mass in the deposit

Results and Learnings

A-priori structural identifiability test

Α	B	C
Globally	Locally	Non-
identifiable	identifiable	identifiable

Model C: $k_{drop-env} + k_{drop-loss} =$ $=k_{drop-env}^{*}+k_{drop-loss}^{*}$

A-posteriori practical identifiability tests

Model identifiability analysis

<u>Question:</u> can the model parameters be **uniquely determined** given the system inputs u(t) and the measurable outputs y(t)?

The following tests are considered to check identifiability conditions on the model parameters: *a-priori* structural identifiability and *a-posteriori* practical identifiability.^[2]

- Structural identifiability: differential algebra approach
- Practical identifiability: correlation matrix and analysis of variances in the estimates

⊖ Active ['] ingredient 😑 Adjuvant **II**NTERFACE CUTICLE INTERFAC LEAF TISSUE REST OF THE PLANT

Case study

Foliar uptake of pesticides

Many phenomena involved in the foliar uptake of pesticides^[3]:

- Absorption
- Diffusion
- Equilibrium at interfaces
- Metabolism
- Volatility
- Photostability

Parameters correlation matrix

Requires a **preliminary estimation of** the parameters and considers practical limitations on the data available. <u>Results interpretation:</u> **correlation > 0.99** for parameters is symptom **practical** non-identifiability.

t-test on the estimates *t*-value: $t_{\theta_i} = \frac{1}{\sqrt{12}}$

Tested with respect to a *t*-distribution with $(N_{data} - N_{\theta})$ degrees of freedom. Interpretation: a reliable estimate is identified by $t_{\theta_i} > t_{ref}$

Future works

Data understanding

The experimental data are obtained by spraying the formulated product (AI + co-formulants) on whole plants. The variability observed in the data arises from both the measurement and the system (different plants/leaves for each data point).

In the dataset used for this study the collected measurements of are Leaf wash: Al recovered on the surface of the leaf **Wax extract:** the waxy cuticle in extracted with a solvent **Tissue extract:** the samples are macerated with a solvent

Translocation in the rest of the plant was not observed.

The analyses showed that the model complexity achievable is strongly limited by the system observability. Future works will include:

- Reformulation of non-identifiable models
- Conducting identifiability analysis on physics-based mechanistic model
- Testing the distinguishability of candidate models
- Proceeding with model discrimination and model-based design of experiments

Acknowledgements

This project received funding from UCL Department of Chemical Engineering and Syngenta. The support is gratefully acknowledged.

References:

1. Franceschini, G., Macchietto, S., (2008). Model-based design of experiments for parameter precision: State of the art. Chemical Engineering Science, Model-Based Experimental Analysis 63, 4846-4872.

- 2. Miao, H., Xia, X., Perelson, A.S., Wu, H., 2011. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev Soc Ind Appl Math 53, 3-39.
- 3. Wang, C.J., Liu, Z.Q., (2007). Foliar uptake of pesticides—Present status and future challenge. Pesticide Biochemistry and Physiology 87, 1-8.

Personal Information

Enrico Sango

Federica Cattani Prof. Federico Galvanin