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Quantized Constant-Envelope Waveform Design for
Massive MIMO DFRC Systems

Zheyu Wu, Ya-Feng Liu, Wei-Kun Chen, and Christos Masouros

Abstract—Both dual-functional radar-communication (DFRC)
and massive multiple-input multiple-output (MIMO) have been
recognized as enabling technologies for 6G wireless networks.
This paper considers the advanced waveform design for
hardware-efficient massive MIMO DFRC systems. Specifically,
the transmit waveform is imposed with the quantized constant-
envelope (QCE) constraint, which facilitates the employment of
low-resolution digital-to-analog converters (DACs) and power-
efficient amplifiers. The waveform design problem is formulated
as the minimization of the mean square error (MSE) between
the designed and desired beampatterns subject to the constructive
interference (CI)-based communication quality of service (QoS)
constraints and the QCE constraint. To solve the formulated
problem, we first utilize the penalty technique to transform
the discrete problem into an equivalent continuous penalty
model. Then, we propose an inexact augmented Lagrangian
method (ALM) algorithm for solving the penalty model. In
particular, the ALM subproblem at each iteration is solved
by a custom-built block successive upper-bound minimization
(BSUM) algorithm, which admits closed-form updates, making
the proposed inexact ALM algorithm computationally efficient.
Simulation results demonstrate the superiority of the proposed
approach over existing state-of-the-art ones. In addition, extensive
simulations are conducted to examine the impact of various
system parameters on the trade-off between communication and
radar performances.

Index Terms—Augmented Lagrangian method, constructive
interference, dual-functional radar communication, massive
multiple-input multiple-output, quantized constant envelope.

I. INTRODUCTION

Communication-radar spectrum sharing (CRSS) has
emerged as a promising paradigm to address the spectrum
congestion issue in today’s ever-expanding wireless networks
[1]. A straightforward approach to achieve CRSS is to allow
individual radar and communication systems to share the
frequency band, which, however, necessitates the exchange of
side-information for managing cross-interference, leading to
a prohibitive cooperation cost [2]. As a step ahead from the
coexistence scheme, the dual-functional radar-communication
(DFRC) system integrates both radar and communication
functionalities on a single platform, which not only eliminates
the need for information exchange but also greatly reduces
the hardware cost and system complexity. The DFRC system
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has gained significant attention recently in both academia and
industry. In particular, the DFRC system has been considered
as an enabling technology for future IoT applications and
integrated sensing and communications (ISAC) has been
listed as one of the six major usage scenarios in future 6G
wireless networks [3], [4], [5], [6], [7], [8], [9], [10].

The performance of the DFRC system can be further en-
hanced when equipped with massive multiple-input multiple-
output (MIMO) [11], another key technology for 5G and 6G
wireless networks, as the increased number of antennas offers
greater flexibility to mitigate the multiuser interference and
shape the spectral beampattern for radar applications. Despite
the great potential of massive MIMO DFRC systems, the high
hardware cost and energy consumption pose major practical
challenges. In particular, the numbers of digital-to-analog
converters (DACs) and power amplifiers (PAs), which are the
most power-hungry and costly components in fully digital
systems, both scale with the number of transmit antennas.
Therefore, it is crucial to employ low-resolution DACs and
power-efficient PAs in massive MIMO DFRC systems. It is
well-known that when constant-envelope (CE) waveforms are
transmitted, the PAs can operate close to saturation without
distortion and achieve their highest efficiency [12]. Quantized
CE (QCE) transmission is a novel scheme that combines the
CE requirement on the transmit waveform with the use of low-
resolution DACs, in which case the transmit signals are con-
strained to have a fixed amplitude and their phases are limited
to a finite set of values. The QCE transmission facilitates the
use of both low-resolution DACs and the most power-efficient
PAs, making it a favorable transmission scheme in massive
MIMO systems. In this paper, we focus on the QCE transmit
waveform design for massive MIMO DFRC systems.

A. Related Works

Extensive research efforts have been devoted to the de-
sign and analysis of QCE precoding in massive MIMO
communication-only systems [13], [14], [15], [16], [17], [18],
[19]. The QCE precoding schemes can be broadly categorized
into two classes: linear-quantized precoding and nonlinear pre-
coding. Linear-quantized precoding schemes directly quantize
the output of linear precoders, which, although simple, often
fail to provide satisfactory performance [13], [14], [15]. In
contrast, nonlinear precoding schemes optimize the transmit
signal based on both the channel and the data symbols by
solving appropriate optimization problems, which generally
yield significantly superior performance compared to linear-
quantized schemes [16], [17], [18], [19].
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Various nonlinear precoders have been proposed based on
different criteria. In particular, the concept of constructive
interference (CI) [20], [21], [22] has been incorporated into
nonlinear precoding design [18], [19]. The main idea is to
shape the multiuser interference (MUI) such that it aligns
constructively with the signal of interest, thereby maximizing
the useful signal power [23]. Due to the ability to exploit
MUI, CI-based nonlinear precoders generally outperform those
designed based on the classical mean square error (MSE)
metric, which treats MUI as a detrimental factor. In addition
to numerous notable works on QCE precoding for commu-
nication systems, there are also a few works investigating
the QCE waveform design for massive MIMO radar systems;
see [24], [25], [26] and the references therein. It is worth
mentioning that as an extreme case of QCE transmission, one-
bit waveform design (where one-bit DACs are employed) has
attracted independent research interests in both communication
systems [27], [28], [29], [30], [31] and radar systems [32],
[33], [34].

Note that, the aforementioned works on QCE waveform
design focus on either communication-only or radar-only
scenarios. To date, there have been very few studies on QCE
waveform design for DFRC systems. As far as we know, the
only existing works are [35], [36], [37], all of which consider
the extreme one-bit case. Specifically, in [35], the one-bit
DFRC waveform is designed to minimize the communication
MSE under the Cramér-Rao bound (CRB) constraint for radar
direction-of-arrive estimation. To encompass wider applica-
tions for radar (e.g., target tracking), the works [36] and [37]
adopt the MSE between the designed and desired beampatterns
and the similarity between the designed and desired waveforms
as radar metrics, respectively, which are minimized (in weight)
jointly with the communication MSE.

There are two main limitations in the current studies on
QCE waveform design for DFRC systems. First, the existing
works [35], [36], [37] all adopt the MSE as the communication
metric, which has been shown to be less effective than the
CI metric in the context of nonlinear precoding. Although
the works [38], [39], [40] have adopted the CI metric in the
waveform design for DFRC systems, they do not consider the
QCE constraint. Second, as mentioned earlier, the existing
works [35], [36], [37] all focus on the one-bit case, and
the proposed algorithms therein cannot be directly extended
to handle the general QCE constraint. To the best of our
knowledge, the general QCE waveform design for DFRC
systems has not been explored in the literature, possibly due to
the technical challenges introduced by both the QCE constraint
and the DFRC scenario.

B. Our Contributions

In this paper, we consider the general QCE waveform design
for massive MIMO DFRC systems. The main contributions are
summarized as follows.

• Novel CI-based QoS-constrained general QCE waveform
design problem formulation. For the first time, we inves-
tigate the waveform design problem for DFRC systems
under general QCE constraints. We employ CI as the
communication metric and formulate the problem as the

minimization of the MSE between the designed and
desired beampatterns subject to the CI-based communi-
cation QoS constraints and the general QCE constraint.
This results in a large-scale optimization problem with
a nonconvex quartic objective function, numerous linear
constraints, and discrete QCE constraints.

• Efficient approach for solving the formulated problem.
We propose an efficient approach for solving the for-
mulated problem. Specifically, we first apply the penalty
technique to transform the discrete model with compli-
cated QCE constraints into a continuous penalty model,
and theoretically establish the equivalence between these
two models. Then, we propose an inexact augmented La-
grangian method (ALM) algorithm for solving the penalty
model and prove its convergence. In particular, we pro-
pose a custom-built successive upper-bound minimization
(BSUM) algorithm for solving the ALM subproblem at
each iteration. The proposed BSUM algorithm admits
closed-form updates, making the inexact ALM algorithm
computationally efficient and suitable for solving large-
scale problems.

We provide extensive simulation results to verify the ef-
fectiveness of the proposed approach. For the one-bit case,
the proposed approach demonstrates significantly superior
performance compared to existing state-of-the-art (SOTA) al-
gorithms [4], [37]. In particular, with the same communication
symbol error rate (SER), the beampattern MSE achieved by
the proposed approach is generally more than three times
lower than those achieved by the SOTA algorithms. We also
examine the impact of various system parameters, including
the numbers of transmit antennas and users in the system, the
quantization level, and the safety margin threshold involved
in the CI constraint, on the trade-off between communication
and radar performances. In particular, we demonstrate that the
shape and power level of the achieved beampattern are strongly
influenced by the number of transmit antennas. Additionally,
we show that increasing the resolution of DACs from one bit
to three bits can greatly enhance the radar and communication
performance, but further increases beyond three bits yield only
marginal gains. This highlights the advantages of equipping
massive MIMO and low-resolution DACs in DFRC systems.

C. Organization and Notations

The rest of the paper is organized as follows. In Section II,
we introduce the system model and formulate the problem. In
Section III, we propose an efficient approach for solving the
formulated problem. Extensive simulation results are presented
in Section IV and the paper is concluded in Section V.

Notation: We use x, x, X, and X to denote scalar, column
vector, matrix, and set, respectively. For a matrix X, we denote
xn as its n-th column and xn,t as its (n, t)-th entry. For a
set X , conv(X ) is the convex hull of X and PX (·) is the
projection operator onto X (if X is convex). ∥ · ∥ denotes the
ℓ2 norm of the corresponding vector or the spectrum norm
of the corresponding matrix. The operators (·)T, (·)H, R(·),
I(·), and | · | return the transpose, the Hermitian transpose, the
real part, the imaginary part, and the modular of their corre-
sponding argument, respectively. The notation ⟨x,y⟩ is also
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Fig. 1: A MIMO DFRC system, where there are one BS
equipped with N transmit antennas, each employed with a pair
of low-resolution DACs, K communication users, and many
targets.

used in some contexts to denote the inner product of vectors
x and y for clarity, as an alternative to xTy. The symbol
0 represents the all-zero vector with appropriate dimension.
CN (0, σ2I) represents the zero-mean circularly symmetric
complex Gaussian distribution with covariance matrix σ2I,
where I denotes the identity matrix. For a positive integer
n, we use [n] to denote {1, 2, . . . , n}. Finally, ⊗ represents
the Kronecker product and j ≜

√
−1 is the imaginary unit.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, we consider a MIMO DFRC sys-
tem that simultaneously sends communication symbols to K
single-antenna users and transmits probing waveform to the
targets for sensing purposes. The system is equipped with a
uniform linear array (ULA) with N transmit antennas, each
employed with a pair of low-resolution DACs to enhance the
hardware efficiency.

Let X = [x1,x2, . . . ,xT ] ∈ CN×T be the transmit signal
matrix, where T is the block length and xt is the transmit
signal vector at the t-th time slot. Typically, the transmit signal
matrix should satisfy the CE constraint to achieve the highest
power efficiency of PAs [4], [38], i.e.,

|xt,n| = η, ∀ n ∈ [N ], ∀ t ∈ [T ],

where η =
√
P/N with P being the maximum available

power at each time slot. As low-resolution DACs are em-
ployed, each transmit signal is further restricted to be selected
from only a finite set, i.e.,

xt,n ∈ XL :=
{
ηej

(2ℓ−1)π
L , ℓ ∈ [L]

}
, ∀ n ∈ [N ], ∀ t ∈ [T ].

By convention, we refer to XL as the QCE set (as it is a
quantized version of the CE signal set) and L as the number
of quantization levels. Clearly, an L-level quantization can be
realized by a pair of (log2 L−1)-bit DACs [15]. In this paper,
the transmit signal matrix X is designed to optimize the radar
performance with a guaranteed communication QoS require-
ment. Next, we will introduce the models and performance
metrics for communication and radar sensing, respectively.

st,k

y′ t,k

d (2)t,k

d(1)
t,k

sA
t,k

sB
t,k

αA
t,ks

A
t,k

α
B t,k
sB t,k

Φ =
2π

M

Φ

Φ

Fig. 2: An illustration of the CI metric.

A. Communication Model and Performance Metric

The received signal matrix Y = [y1,y2, . . . ,yT ] ∈ CK×T

at the communication users is given by

Y = HX+N, (1)

where H = [h1,h2, . . . ,hK ]T ∈ CK×N is the channel
matrix between the transmitter and the users, and N =
[n1,n2, . . . ,nT ] ∈ CK×T is the additive white Gaussian
noise matrix with nt ∼ CN (0, σ2I) for all t ∈ [T ]. Let
S = [s1, s2, . . . , sT ] ∈ CK×T be the data symbol matrix
for the users. The transmit signal matrix X is designed
based on both the channel H and the data symbol matrix S
through nonlinear precoding. This kind of precoding scheme
can achieve significantly better performance than conventional
linear precoding schemes designed solely based on H, espe-
cially when low-resolution DACs are employed [13].

In this paper, we adopt the CI metric as the communication
performance metric and focus on the M -ary phase shift keying
(PSK) constellation1. CI refers to the interference that aligns
constructively with the signal of interest, thereby enhancing
the useful signal power and pushing the signal away from its
corresponding decision boundary [22]. Exploiting the idea of
CI, the CI metric aims to maximize the distance between the
received noise-free signal and its closest decision boundary
of the data symbol, a crucial quantity known as the safety
margin [29]. The safety margin is closely related to the symbol
error probability (SEP). Intuitively, with a larger safety margin,
the received noise-free signal would be less susceptible to the
additive noise, resulting in a lower SEP. More specifically, it
has been shown in [14] that the SEP can be both lower and
upper bounded by a function of the safety margin:

Q

(√
2d

σ

)
≤ SEP ≤ 2Q

(√
2d

σ

)
, (2)

where Q(x) = 1√
2π

∫∞
x

e−
1
2x

2

dx , d is the safety margin, and
σ is the standard variance of the additive noise. Therefore, the
CI-based communication QoS constraint can be formulated as
the form d ≥ b, where b is the lower bound of the safety
margin determined by the prespecified SEP threshold.

1We focus on PSK constellation for ease of presentation, but the results in
this paper can be straightforwardly generalized to other constellation schemes,
e.g., quadrature amplitude modulation (QAM).
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Next, we derive the CI-based communication QoS constraint
for model (1). For illustration, we depict a piece of the decision
region of 8-PSK constellation in Fig. 2, where st,k and y′t,k :=

hT
kxt denote the data symbol and the noise-free received signal

of user k at the t-th time slot, respectively. Clearly, the safety
margin, i.e., the distance from y′t,k to its closest decision

boundary of st,k, is given by min
{
d
(1)
t,k , d

(2)
t,k

}
. Therefore, the

block-level CI-based communication QoS constraint can be
formulated as

min{d(1)t,k , d
(2)
t,k} ≥ bt,k, ∀ k ∈ [K], ∀ t ∈ [T ], (3)

where bt,k > 0 is the preset safety margin threshold for the
k-th user at the t-th time slot.

We still need to derive the explicit formula of
min{d(1)t,k , d

(2)
t,k}. Following [29], we decompose y′t,k along

the decision boundaries as

y′t,k = αA
t,ks

A
t,k + αB

t,ks
B
t,k, (4)

where sAt,k = st,ke
−j π

M and sBt,k = st,ke
j π
M are the unit

vectors on the decision boundaries, as shown in Fig. 2. Then,
we have

min{d(1)t,k , d
(2)
t,k} = min{αA

t,k sinΦ, α
B
t,k sinΦ},

where Φ = 2π
M . By further rewriting (4) into the real space

and noting that y′t,k = hT
kxt, we can express αA

t,k and αB
t,k as

(
αA
t,k

αB
t,k

)
=

1

sinΦ

(
I(sBt,k) −R(sBt,k)
−I(sAt,k) R(sAt,k)

)(
R(hT

k) −I(hT
k)

I(hT
k) R(hT

k)

)(
R(xt)
I(xt)

)
:=

1

sinΦ

(
cTt,2k−1

cTt,2k

)(
R(xt)

I(xt)

)
, (5)

where we have used the fact that R(sAt,k)I(sBt,k) −
R(sBt,k)I(sAt,k) = sin(arg(sBt,k)− arg(sAt,k)) = sinΦ; see [29]
for a detailed derivation. Let xR

t = [R(xt)
T I(xt)

T]T ∈
R2N be the real space representation of xt, Ct =
[ct,1, ct,2, . . . , ct,2K−1, ct,2K ]T ∈ R2K×2N with ct,k defined
in (5), and bt = [bt,1, bt,2, . . . , bt,K ]T ⊗ [1, 1]T ∈ R2K . Then
the constraint in (3) can be expressed as

Ctx
R
t ≥ bt, ∀ t ∈ [T ].

B. Radar Model and Performance Metric

Under the assumption that the transmitted probing wave-
form X is narrow-band and that the propagation is line of
sight (LoS), the baseband signal at angular θ ∈ [−π

2 ,
π
2 ) at

the t-th time slot is

rt(θ) = a(θ)Hxt,

where a(θ) := [1, eπ sin θ, . . . , ejπ(N−1) sin θ]T is the steering
vector and the antenna spacing is assumed to be half of the
wavelength [41]. The beampattern, which describes the power
distribution of the probing waveform in the spacial domain, is
given by

P (θ) =
1

T

T∑
t=1

|rt(θ)|2 =
1

T
a(θ)HXXHa(θ).

For radar applications such as detection and tracking, the
probing waveform should exhibit strong power in the direc-
tions of potential targets while keeping power levels minimal
in other directions. To achieve this goal, a common design
criterion is to match the designed beampattern P (θ) with a
desired beampattern d(θ). Specifically, we adopt the MSE
between the designed and desired beampatterns as the radar
metric:

1

Q

Q∑
q=1

∣∣∣∣αd(θq)− 1

T
a(θq)

HXXHa(θq)

∣∣∣∣2 ,
where α > 0 is a scaling factor and {θq}Qq=1 are the sampled
angle grids.

C. Problem Formulation

Based on the above discussions, the QCE transmit waveform
design problem, aiming to minimize the MSE between the
designed and desired beampatterns under the CI-based com-
munication QoS constraint, can be formulated as follows:

min
α>0,X

1

Q

Q∑
q=1

∣∣∣∣αd(θq)− 1

T
a(θq)

HXXHa(θq)

∣∣∣∣2
s.t. Ctx

R
t ≥ bt, ∀ t ∈ [T ],

xt,n ∈ XL, ∀ n ∈ [N ], ∀ t ∈ [T ],

(6)

where we recall that X = [x1,x2, . . . ,xT ] and xR
t is the

real-space representation of xt. To solve (6), we first note that
for a given X, the problem is quadratic in α, which admits a
closed-form solution as

α∗(X) =
1
T

∑Q
q=1 d(θq)a(θq)

HXXHa(θq)∑Q
q=1 d

2(θq)
.

Substituting α∗(X) into the objective function, problem (6)
is transformed into the following equivalent form (where we
have omitted a constant scaling factor 1

QT 2 in the objective
function):

min
{xt}

Q∑
q=1

(
T∑

t=1

|a(θq)Hxt|2
)2

−
(

Q∑
q=1

T∑
t=1

cq|a(θq)Hxt|2
)2

s.t. Ctx
R
t ≥ bt, ∀ t ∈ [T ],

xt,n ∈ XL, ∀ n ∈ [N ], ∀ t ∈ [T ],
(7)

where
cq =

d(θq)√∑Q
q=1 d

2(θq)
, ∀ q ∈ [Q]. (8)

By further rewriting (7) into the real space, we obtain

min
{xR

t }

Q∑
q=1

(
T∑

t=1

∥Aqx
R
t ∥2

)2

−
(

Q∑
q=1

T∑
t=1

cq∥Aqx
R
t ∥2

)2

(9a)

s.t. Ctx
R
t ≥ bt, ∀ t ∈ [T ], (9b)

xR
t,n ∈ XR

L , ∀ n ∈ [N ], ∀ t ∈ [T ], (9c)

where in (9a),

Aq =

(
R(a(θq)) I(a(θq))
−I(a(θq)) R(a(θq))

)
∈ R2×2N ,
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conv(X R
L )

Fig. 3: An illustration of XR
L and conv(XR

L ) with L = 8,
where XR

L is the set of 8 red QCE points and its convex hull
conv(XR

L ) is the shadow region.

and in (9c),

xR
t,n =

[
xR
t,n

xR
t,n+N

]
∈ R2, XR

L =

{
η

[
cos (2ℓ−1)π

L

sin (2ℓ−1)π
L

]
, ℓ ∈ [L]

}
.

In the rest of this paper, we will focus on problem (9).
From an optimization viewpoint, there are significant technical
difficulties and challenges in solving problem (9). First, the
discrete QCE constraint (9c) is complicated, which poses a
major difficulty. Second, the linear constraints in (9b) further
complicates the solution of the problem. As shown in [31], it
is even NP-hard to check whether the problem is feasible with
constraints (9b) and (9c). Moreover, the objective function (9a)
is nonconvex and has a complicated expression. Finally, the
problem size is large, especially when massive MIMO DFRC
systems are considered. In the next section, we shall propose
an efficient approach for solving (9) by judiciously exploiting
the problem structure.

III. PROPOSED APPROACH

In this section, we propose an efficient approach for solving
problem (9). First, we employ the penalty technique to tackle
the discrete QCE constraint in (9c), transforming the discrete
problem into a continuous penalty model in Section III-A.
Then, we propose an inexact ALM algorithm for solving the
penalty model and establish its convergence in Section III-B.
In particular, we propose a custom-designed BSUM algorithm
for solving the ALM subproblem in Section III-C. The updates
of all blocks of variables in the proposed BSUM admit closed-
from solutions, making the proposed inexact ALM algorithm
computationally very efficient.

A. Penalty Model

The penalty technique is a powerful tool to deal with
complicated constraints involved in optimization problems
[42]. Here, we use the penalty technique to handle the discrete
QCE constraint. Specifically, we relax the QCE constraint into

its convex hull and include a negative square penalty term into
the objective function as follows:

min
{xR

t }

Q∑
q=1

(
T∑

t=1

∥Aqx
R
t ∥2

)2

−
(

Q∑
q=1

T∑
t=1

cq∥Aqx
R
t ∥2

)2

− λ

T∑
t=1

∥xR
t ∥2

s.t. Ctx
R
t ≥ bt, ∀ t ∈ [T ],

xR
t,n ∈ conv(XR

L ), ∀ n ∈ [N ], ∀ t ∈ [T ],

(10)

where λ is the penalty parameter. The idea is based on the
observation that the discrete QCE points in XR

L are the vertices
of conv(XR

L ), which are the points in conv(XR
L ) with the

largest ℓ2 norm; see Fig. 3. Hence, by promoting a larger ℓ2
norm, the negative square penalty term, i.e., −λ

∑T
t=1 ∥xR

t ∥2,
encourages the solution of problem (10) to approach a discrete
QCE point as the penalty parameter λ increases. In the fol-
lowing proposition, we theoretically establish the equivalence
between the continuous penalty model (10) and the original
discrete model (9).

Proposition 1. There exists λ0 > 0 such that for all λ > λ0,
problems (9) and (10) share the same optimal solutions.

Proof. See Appendix A.

In practice, it is difficult to determine the explicit value
of λ0 in Proposition 1. In our implementation, we employ
a common technique in penalty-based approaches known as
the homotopy technique [43], which initializes the penalty
parameter λ with a small value and gradually increases it,
tracking the solution path of the corresponding penalty models.
Through this process, we will eventually find the required λ in
Proposition 1. Moreover, this technique can greatly enhance
the numerical performance of the penalty approaches [17],
[31], compared to directly solving the penalty model (10) with
a very large λ.

We remark here that similar penalty strategies have been
employed to deal with the QCE constraint in communication-
only QCE precoding design [17], [19]. However, the optimiza-
tion problems in [17], [19] do not include any constraints
other than the QCE constraint, while our problem involves
a large number of linear constraints. These linear constraints
exclude many QCE points from the feasible set and destroy
the symmetry of set conv(XR

L ), making the feasible region of
problem (10) more complicated and the equivalence between
the original and penalty problems more challenging to be
established.

Up to now, we have transformed the original discrete model
(9) into an equivalent continuous penalty model (10), which is
more amenable to the algorithmic design. However, problem
(10) is still a nonconvex problem with a complicated objec-
tive function and many linear constraints. In the following
subsection, we propose an efficient inexact ALM algorithm
for solving problem (10).
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B. Inexact ALM Algorithm for Solving (10)

In this subsection, we propose an inexact ALM algorithm
for solving the penalty model (10). In Section III-B1, we first
reformulate problem (10) into a form that facilitates the use of
the ALM framework. Then, we present the proposed inexact
ALM algorithm and prove its convergence in Sections III-B2
and III-B3, respectively.

1) Reformulation of (10): For problem (10), we introduce
auxiliary variables wt,q = Aqx

R
t ∈ R2 to simplify its

objective function and introduce auxiliary variables zt ≥ 0
to transform its inequality linear constraints into equality ones
as follows:

min
{xR

t },{wt},{zt}

Q∑
q=1

(
T∑

t=1

∥wt,q∥2
)2

−
(

Q∑
q=1

T∑
t=1

cq∥wt,q∥2
)2

−λ
T∑

t=1

∥xR
t ∥2

s.t. Ctx
R
t − zt = bt, zt ≥ 0, ∀ t ∈ [T ],

ÃxR
t −wt = 0, ∀ t ∈ [T ],

xR
t,n ∈ conv(XR

L ), ∀n ∈ [N ],∀ t ∈ [T ],

(11)

where Ã = [AT
1 ,A

T
2 , . . . ,A

T
Q]

T ∈ R2Q×2N and wt =

[wT
t,1,w

T
t,2, . . . ,w

T
t,Q]

T ∈ R2Q×1. Compared to (10), the
ALM subproblem of (11) is more tractable, which will become
more clear in Section III-C.

For ease of presentation, we further express problem (11)
into the following more compact form:

min
x,w,z

f(w) + g(w) + h(x)

s.t. Cx− z = b,

Ax−w = 0,

x ∈ X , z ∈ Z.

(12)

where x = [(xR
1 )T, (xR

2 )T, . . . , (xR
T )T]T, w = [wT

1 ,w
T
2 ,

. . . ,wT
T ]

T, z = [zT1 , z
T
2 , . . . , z

T
T ]

T, b = [bT
1 ,b

T
2 , . . . ,b

T
T ]

T,
C = diag(C1,C2, . . . ,CT ), A = IT ⊗ Ã, X ={
x | xR

t,n ∈ conv(XR
L ), ∀ n ∈ [N ], ∀ t ∈ [T ]

}
, Z = {z |

z ≥ 0}, and f(w), g(w), and h(x) are the first, second,
and third terms of the objective function in (11), respectively.

2) Inexact ALM Algorithm: The ALM [43] is a popular
and powerful method for solving (equality) constrained op-
timization problems like (12). It transforms the complicated
constrained problem into a sequence of relatively easy un-
constrained subproblems or subproblems with easy constraints
(e.g., nonnegative constraints) via the augmented Lagrangian
function. Then, by iteratively solving the ALM subproblems
and updating the Lagrange multipliers and penalty parameters,
the algorithm converges to a (stationary) solution of the
original constrained problem. Next, we propose an inexact
ALM algorithm for solving problem (12), which inexactly
solves the ALM subproblem at each iteration in order to reduce
the computational cost.

The augmented Lagrangian function of (12) is given by

Lρ(x,w, z;µ,ν) =f(w) + g(w) + h(x)

+ µT(Cx− z− b) + νT(Ax−w)

+
ρµ
2
∥Cx− z− b∥2 + ρν

2
∥Ax−w∥2,

(13)
where (µ,ν) are the Lagrange multipliers corresponding to the
first and second equality constraints in (12) and ρ := (ρµ, ρν)
are the corresponding penalty parameters. The proposed in-
exact ALM algorithm iteratively performs the following three
steps.

Step 1: Inexactly solve the ALM subproblem over primal
variables (x,w, z). In the classical ALM algorithm, one needs
to solve the following ALM subproblem

(xm+1,wm+1, zm+1)∈ arg min
x∈X ,w,z∈Z

Lρm(x,w, z;µm,νm)

(14)
at each iteration [43]. To avoid the high computational cost
of exactly solving (14), the proposed inexact ALM algorithm
only requires (14) to be solved to an ϵm-stationary point. Here
(xm+1,wm+1, zm+1) is called an ϵm-stationary point of the
ALM subproblem if

dist (∇Lρm(xm+1,wm+1, zm+1;µm,νm)

+ ∂IX (xm+1) + ∂IZ(zm+1),0) ≤ ϵm,
(15)

where IX and IZ denote the indicator functions of X and Z ,
respectively, and ∂IX and ∂IZ denote their subdifferentials,
respectively. When ϵm = 0 in (15), then (xm+1,wm+1, zm+1)
is a stationary point of problem (14). To guarantee the conver-
gence of the inexact ALM algorithm, the accuracy of solving
the ALM subproblem should be gradually increased.

In our proposed algorithm, the ALM subproblem (14) is
(approximately) solved by a custom-built BSUM algorithm,
which admits closed-form updates and is guaranteed to find
an ϵm-stationary point within a finite number of iterations.
To maintain coherence in presenting the proposed inexact
ALM algorithm, we defer detailed discussions of the BSUM
algorithm for solving (14) to Section III-C.

Step 2: Update the Lagrange multipliers (µ,ν). After ob-
taining (xm+1,wm+1, zm+1), the Lagrange multipliers (µ,ν)
are updated as

µm+1= min
{
max{µm+ ρmµ (Cxm+1− zm+1− b), µmin}, µmax

}
,

νm+1= min
{
max{νm+ ρmν (Axm+1 −wm+1), νmin}, νmax

}
,

(16)
where (µmin, νmin) and (µmax, νmax) are the imposed lower
and upper bounds on the Lagrange multipliers (µ,ν), re-
spectively, and the operators min and max both operate
component-wise on their entries. Different from the classical
ALM, we apply safeguards in our method to ensure that the
Lagrange multipliers are bounded, which is crucial for the
convergence of the algorithm [44].

Step 3: Update the penalty parameters ρ = (ρµ, ρν).
Finally, we update the penalty parameters ρ = (ρµ, ρν) as
in (17), which is given on the top of the next page, where
τ > 1 and δ > 0. The criterion in (17) increases the penalty
parameters if the violation of the constraints is not sufficiently
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ρm+1 =

τρm, if
∥∥∥∥√ρm

µ (Cxm+1−zm+1−b)
√
ρm
ν (Axm+1−wm+1)

∥∥∥∥ ≥ δ
∥∥∥√ρm

µ (Cxm−zm−b)
√
ρm
ν (Axm−wm)

∥∥∥ ;
ρm, otherwise.

(17)

Algorithm 1 Inexact ALM algorithm for solving (12)

1: Input: (x0,w0, z0), (µ0,ν0), ρ0 = (ρ0µ, ρ
0
ν), −∞ < µmin <

µmax < ∞, −∞ < νmin < νmax < ∞, τ > 1, δ > 0, a positive
sequence ϵm → 0.

2: Initialize: m = 0.
3: repeat
4: (Inexactly solve the ALM subproblem): Obtain an ϵm-

stationary point (xm+1,wm+1, zm+1) of (14) by Algorithm
2 (see further ahead).

5: (Update the Lagrange multipliers): Obtain (µm+1,νm+1) by
(16).

6: (Update the penalty parameter): Obtain ρm+1 by (17).
7: Set m = m+ 1.
8: until some stopping criterion is satisfied.
9: Output: (xm,wm, zm).

reduced and keep them fixed otherwise. We remark that the
penalty parameters ρµ and ρν should be increased at the same
rate as in (17) to ensure the convergence of the algorithm.

We summarize the proposed inexact ALM algorithm for
solving problem (12) in Algorithm 1.

3) Convergence Analysis: Before showing the convergence
guarantee of the proposed inexact ALM algorithm, we first
give the formal definition of the stationary point of problem
(12) [43, Proposition 2.1.2].

Definition 1 (Stationary point of (12)). A point (x̂, ŵ, ẑ) is
called a stationary point of (12) if it satisfies (x̂, ŵ, ẑ) ∈ F
and

(∇f(w)+∇g(w))T(w − ŵ) +∇h(x)T(x− x̂) ≥ 0,

∀ (x,w) ∈ {(x,w) | ∃ z, (x,w, z) ∈ F}, (18)

where

F := {(x,w, z) | Cx− z = b,Ax−w = 0,x ∈ X , z ∈ Z}
is the feasible region of (12).

Now we present the convergence result of Algorithm 1 in
the following Theorem 1. .

Theorem 1. Any limit point (x̄, w̄, z̄) of {(xm,wm, zm)}
generated by Algorithm 1 is a stationary point of (12).
Moreover,

lim
m→∞

dist((xm,wm, zm),S∗) = 0,

where S∗ is the set of stationary points of (12).

Proof. See Appendix C.

We remark that the above result highly depends on
the boundedness of the sequences {(xm,wm, zm)} and
{(µm,νm)} generated by Algorithm 1. In sharp contrast to
classical convergence results for the ALM where the bounded-
ness is typically imposed as an uncheckable assumption [43],
in the proposed inexact ALM algorithm, the boundedness of
the Lagrange multipliers is naturally ensured by the update

rule in (16), and the boundedness of the primal variables is
guaranteed by the specialized BSUM algorithm for solving
the ALM subproblem; see Section III-C and Appendix B for
detailed discussions.

It is worth mentioning that a similar inexact ALM frame-
work has been proposed in [44]. However, the problem con-
sidered in [44] is much simpler than (12). In addition, the
condition that guarantees the convergence in [44] is more
restrictive than that in the proposed inexact ALM algorithm.
In particular, in [44], ϵm is required to satisfy ϵmρm → 0
(where ρm is the corresponding penalty parameter), while we
only require ϵm → 0.

C. BSUM Algorithm for Solving Subproblem (14)

The efficiency of the proposed inexact ALM algorithm is
mainly determined by the efficiency of solving the ALM
subproblem (14) to obtain an ϵm-stationary point. In this
subsection, we propose an efficient BSUM algorithm for
solving (14) by judiciously exploiting the problem’s special
structure. Since (µm,νm) are treated as fixed parameters
when solving (14), we denote

Lm(x,w, z) := Lρm(x,w, z;µm,νm) (19)

in this subsection for simplicity of notations.
Noting that the constraints in (14) are separable within

each block of variables {x,w, z}, it is convenient to update
the variables in an alternating fashion to solve the problem.
However, the objective function is complicated (even with
respect to each block of variables) and cannot be efficiently
optimized within each block. This motivates us to apply a
BSUM framework, which minimizes an upper bound of the
objective function for each block at each iteration. Specifically,
the BSUM framework is given by

x(r+1) ∈ argmin
x∈X

ux(x;x
(r),w(r), z(r)); (20a)

w(r+1) ∈ argmin uw(w;x(r+1),w(r), z(r)); (20b)

z(r+1) ∈ argmin
z∈Z

uz(z;x
(r+1),w(r+1), z(r)), (20c)

where ux, uw, and uz are locally tight upper bounds of Lm in
(19), i.e., ux(x;x

(r),w(r), z(r)) ≥ Lm(x,w(r), z(r)) for all
x ∈ X with equality holding at x = x(r) (similar properties
hold for uw and uz). Please see [45] for more detailed
discussions on BSUM. Here we use {(x(r),w(r), z(r))} to
denote the inner sequence generated by the BSUM framework
for solving the ALM subproblem, which is different from
the outer sequence {(xm,wm, zm)} generated by the inexact
ALM.

In the following, we tailor a BSUM algorithm for solving
problem (14). The key is to design the upper bounds ux, uw, uz

appropriately such that they are good approximations of the
objective function Lm and at the same time the subproblems
(20a)–(20c) admit closed-form solutions or can be efficiently
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solved. Next we discuss the updates of the x-, w-, and z-
blocks separately.

Update of variable x. The difficulty in updating variable x
mainly arises from the complicated constraint x ∈ X defined
below (12). Notably, the set X is decoupled over {xR

t,n}. To
leverage this property, we construct a separable upper bound
function of Lm(x,w(r), z(r)) as follows:

ux(x;x
(r),w(r), z(r)) = Lm(x(r),w(r), z(r))

+∇xLm(x(r),w(r), z(r))T(x− x(r)) +
γm

2
∥x− x(r)∥2.

(21)
The above ux(x;x

(r),w(r), z(r)) is exactly the first-order
Taylor expansion of Lm(x,w(r), z(r)) at x = x(r) plus a
quadratic regularization term, which equals Lm(x,w(r), z(r))
at x = x(r). To ensure that it serves as an upper bound of
Lm(x,w(r), z(r)), we set γm = ∥ρmµ CTC+ ρmν ATA∥.

With ux(x;x
(r),w(r), z(r)) defined in (21) and by ignoring

the constant terms, the x-subproblem can be expressed as

min
x∈X

∇xLm(x(r),w(r), z(r))Tx+
γm

2
∥x− x(r)∥2, (22)

whose solution is given by

x(r+1) =PX

(
x(r) − ∇Lm(x(r),w(r), z(r))

γm

)
. (23)

According to the definition of X , the projection onto X can
be decomposed into NT of projections onto conv(XR

L ), which
admit closed-form expressions [17].

Update of variable w. The functions f(w) and g(w) in-
volved in the ALM subproblem are both quartic in w, making
the w-update challenging. In particular, g(w) is concave and
couples all the components in w. To simplify the objective
function while best preserving its structure, we linearize the
concave quartic term g(w) and keep all the convex terms
unchanged, which gives the following locally tight upper
bound of Lm(x(r+1),w, z(r)):

uw(w;x(r+1),w(r), z(r))

= f(w) + g(w(r)) +∇g(w(r))T(w −w(r)) + h(x(r+1))

+(µm)T(Cx(r+1)− z(r) − b) + (νm)T(Ax(r+1)−w)

+
ρmµ
2

∥Cx(r+1) − z(r) − b∥2 + ρmν
2

∥Ax(r+1) −w∥2.
Then, by omitting the constant terms, the w-subproblem reads

min
w

f(w) + (∇g(w(r))− νm)Tw +
ρmv
2

∥Ax(r+1) −w∥2.
(24)

Note that in the objective function of (24), f(w), i.e., the
first term of the objective function of (11), is separable over
the index q ∈ [Q], and both of the last two terms are fully
separable. Hence, the problem can be decomposed into Q
individual subproblems.

Let w(q) := [wT
1,q,w

T
2,q, . . . ,w

T
T,q]

T denote the vector
collecting all the components in w related to q and let ξ

(r)
q

be the coefficient of the linear term in (24) related to w(q).
Then for each q ∈ [Q], the w(q)-subproblem has the following
form:

argmin
w(q)

∥w(q)∥4 +
ρmv
2

∥w(q)∥2 + (ξ(r)q )Tw(q). (25)

Since the first two terms in the objective function of (25) are
irrelevant to the angle of w(q), it follows that the optimal angle
of w(q) is −ξ

(r)
q /∥ξ(r)q ∥. Therefore, we only need to optimize

the norm of w(q), i.e., solving a univariate quartic problem as
follows:

β(r+1)
q ∈ argmin

β≥0

{
β4 +

ρmv
2

β2 −
∥∥∥ξ(r)q

∥∥∥β} . (26)

By setting the derivative of the quartic objective function in
(26) to zero, we obtain the following cubic equation:

4β3 + ρmv β −
∥∥∥ξ(r)q

∥∥∥ = 0.

The solution of (26) is the unique positive root of the above
equation, whose explicit expression is given by

β(r+1)
q =

∥ξ(r)q ∥
8

+

(∥ξ(r)q ∥
8

)2

+

(
ρmν
12

)3
 1

2


1
3

+

∥ξ(r)q ∥
8

−

(∥ξ(r)q ∥
8

)2

+

(
ρmν
12

)3
 1

2


1
3

.

Combining the above discussions, we obtain the optimal
solution of (25):

w
(r+1)
(q) = −β

(r+1)
q

∥ξ(r)q ∥
ξ(r)q , ∀ q ∈ [Q]. (27)

Update of variable z. The ALM subproblem with respect
to z is straightforward to solve. In particular, we simply set

uz(z;x
(r+1),w(r+1), z(r)) = Lm(x(r+1),w(r+1), z).

The z-subproblem

min
z∈Z

−(µm)Tz+
ρmµ
2

∥z−Cx(r+1) + b∥2 (28)

admits a closed-form solution as

z(r+1) = P{z≥0}

(
Cx(r+1) − b+

µm

ρmµ

)
. (29)

The proposed BSUM algorithm for solving the ALM sub-
problem (14) is summarized in Algorithm 2. Since all variables
admit closed-form updates, the BSUM algorithm can be per-
formed efficiently. Note that in Algorithm 2, we set the initial
point (x(0),w(0), z(0)) as the approximate stationary point of
the previous ALM subproblem. This warm-start strategy is
able to accelerate the convergence of BSUM, thereby enhanc-
ing the numerical efficiency of the inexact ALM algorithm. As
will be demonstrated in the simulation, Algorithm 2 equipped
with the warm-start strategy can generally terminate within
only a few iterations.

In the following proposition, we theoretically show that
Algorithm 2 can terminate within a finite number of iterations,
i.e., an ϵm-stationary point of (14) can be found within a finite
number of iterations. Note that according to the update rule of
ρ in (17), ρµ and ρν are increased consistently, and thus we
can express ρm as ρm = (aµ, aν)ρ

m with aµ > 0 and aν > 0
being two constants independent of m. With this notation, the
iteration complexity of Algorithm 2 is given as follows.
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Algorithm 2 BSUM algorithm for solving (14)

1: Input: (xm,wm, zm), (µm,νm),ρm = (ρmµ , ρmν ), γm =
∥ρmµ CTC+ ρmν ATA∥, ϵm.

2: Initialize: (x(0),w(0), z(0)) = (xm,wm, zm), r = 0.
3: repeat
4: Update x(r+1), w(r+1), and z(r+1) by (23), (27), and (29),

respectively.
5: Set r = r + 1.
6: until (x(r),w(r), z(r)) is an ϵm-stationary point of (14).
7: Output: (xm+1,wm+1, zm+1) = (x(r),w(r), z(r)).

Proposition 2. Algorithm 2 can return an ϵm-stationary point
of (14) within O

(
(ρm)2

ϵ2m

)
iterations.

Proof. See Appendix D.

IV. NUMERICAL RESULTS

In this section, we present simulation results to evaluate the
performance of the proposed approach under various system
configurations. Each system configuration is represented by
a tuple (N,K,M,L), where N and K are the numbers of
transmit antennas and users in the system, respectively, M
is the constellation order, and L is the quantization level.
We generate the simulation parameters in the same way
as in [4], [38]. Specifically, the transmit power is fixed as
P = 1 and the SNR is defined as 1/σ2. We assume a
Rayleigh fading communication channel H, whose elements
are independently drawn from CN (0, 1). We assume that there
are three interested targets located at θ̄1 = −40◦, θ̄2 = 0◦,
and θ̄3 = 40◦, respectively, and the desired beampattern is
given by

d(θ) =

1, if θ ∈
[
θ̄i −

∆θ

2
, θ̄i +

∆θ

2

]
, i = 1, 2, 3;

0, otherwise,
(30)

where ∆θ = 10◦ is the beam width. The direction grids
{θq}q∈[Q] are uniformly sampled from −90◦ to 90◦ with a
resolution of 1◦. The safety margin thresholds for different
users at different time slots are set as the same, i.e., bt,k = b
for all t ∈ [T ] and k ∈ [K]. The block length is set as T = 50.

The implementation details of the proposed Algorithm 1
are as follows. We set ρ0µ = 0.01

√
λ and ρ0ν = 1

3ρ
0
µ. Both

(x0,w0, z0) and (µ0,ν0) are set as all-zero vectors. The
bounds on the Lagrange multipliers are given by µmin =
νmin = −103, µmax = νmax = 103. Finally, τ = 1.01, δ =
0.95, and ϵm = 1

m . Algorithm 1 is terminated when the
iteration number is larger than 500 or when

max{em−1, ∥Cxm−zm−b∥, ∥Axm−wm∥} ≤
√
T ×10−3,

(31)
where

em−1 :=∥∇xL(xm,wm, zm)−∇xLm(xm−1,wm−1, zm−1)

− γm(xm − xm−1)∥+ ∥∇g(wm)−∇g(wm−1)∥
is defined to characterize the accuracy of solving the ALM
subproblem (see (46) and (47)). The above stopping criterion
is employed based on the fact that when max{em−1, ∥Cxm−

5 10 15 20

Number of iterations

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
n
ta

g
e
 o

f 
S

u
c
e
s
s
fu

l 
U

p
d
a
te

s

(a) Inner loop.

0 100 200

Number of iterations

0

1

2

3

4

5

(b) Outer loop.

Fig. 4: Convergence behaviors of proposed Algorithms 1 and
2.
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Fig. 5: Achieved SERs by the proposed approach versus the
safety margin threshold b under different system configura-
tions, where the tuple in the legend represents the system
parameter (N,K,M,L) and the SNR is set as 10 dB. The
curves labeled “upper bound” and “lower bound” correspond
to the theoretical upper and lower bounds on the SEP in (2),
respectively.

zm − b∥, |Axm −wm∥} is small, the output of Algorithm 1
approaches a stationary point of the penalty model (12).

In the following, we first show the convergence behavior of
the proposed inexact ALM and BSUM algorithms in Section
IV-A. Then, we examine the impact of various problem
parameters on the communication and radar performance in
Section IV-B. Finally, we compare the performance of the
proposed approach with existing SOTA ones in Section IV-C.

A. Convergence Behavior

We first test the convergence behaviors of proposed Algo-
rithms 1 and 2 in Fig. 4, where (N,K,M,L) = (64, 4, 4, 4)
and b = 0.8. Specifically, Fig. 4 (a) shows the behavior of the
inner loop, where proposed BSUM Algorithm 2 is applied to
solve the ALM subproblem. Here, we say that a successful
update is achieved if Algorithm 2 reaches an ϵm-stationary
point of the ALM subproblem within the specified number
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Fig. 6: Achieved beampatterns by the proposed approach under different system configurations.

of iterations. As shown Fig. 4 (a), an ϵm-stationary point can
be obtained within a very small number of inner iterations.
Notably, over 80% of the inner loops terminate in fewer than
10 iterations and almost all of the inner loops terminates within
20 iterations. This, combined with the fact that all variables
admit closed-form updates, demonstrates the efficiency of
proposed BSUM Algorithm 2. The convergence behavior of
the outer loop is presented in Fig. 4 (b). As demonstrated, the
proposed Algorithm 1 converges rapidly at the early iterations
and successfully meet the stopping criterion in (31) within
the preset maximum of 500 iterations. The good convergence
behaviors of both the inner and outer loops make the proposed
inexact ALM algorithm computationally very efficient.

B. Communication and Radar Performance under Different
System Configurations

In this subsection, we evaluate the communication and radar
performance achieved by the proposed approach under various
system configurations. In particular, we aim at investigating the
impact of several problem parameters, including the system
parameters (N,K,M,L) and the safety margin threshold b,
on the communication SER and the radar beampattern.

We first depict the SER with respect to the safety margin
threshold b under different system configurations in Fig. 5,
where the communication SNR is set as 10 dB. The theoretical
upper and lower bounds on the SEP in (2) are included
as benchmarks. As shown in the figure, the achieved SERs
by the proposed approach under all system configurations
decrease as b increases and remain much lower than the
theoretical bound in most cases. The is because some of the
CI constraints in (9b) are satisfied with strict inequality at
the output solution, which makes the achieved SER much
better than the theoretical SER derived based on the fixed
b. However, when the problem becomes difficult (i.e., when
N/K is small, L is small, M is large, and b is large), more
CI constraints will be satisfied with equality or even violated
(even the problem itself might be infeasible), leading to a
reduction in the gap between the achieved and theoretical
SERs, e.g., in the configuration (N,K,M,L) = (64, 4, 8, 4).
This also explains why different system configurations exhibit
dramatically distinct SER performances with the same b.

In Fig. 6, we depict the achieved beampatterns by the
proposed approach under various system configurations and
explore the effects of different problem parameters on the

0 0.05 0.1
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Fig. 7: Achieved radar beampattern MSE and communication
SER trade-offs achieved by the proposed approach, where
(N,K,M,L) = (64, 4, 8, 4) and SNR= 10 dB.

achieved beampattern. We first test the impact of the number
of transmit antennas on the obtained beampatterns in Fig. 6 (a).
As demonstrated, the number of transmit antennas has a strong
influence on the shape of the obtained beampattern. With more
antennas, the obtained beampattern can better approximate the
desired square shape given in (30), emitting equal power in
the main beam. This demonstrates the advantage of employing
massive MIMO technology in the DFRC system.

In contrast, the number of users K, the quantization level
L, and the safety margin threshold b have a weak impact on
the shape and power level of the main beam; see Fig. 6 (b)-
(d). Instead, they affect the power level of undesirable angles.
Specifically, the power level of undesirable angles decreases
as K and b decrease and L increases — that is, when the
constraints in the considered problem are easier to be satisfied.
An important engineering observation that can be drawn from
Fig. 6 (c) is that the achieved beampattern with only L = 16,
which corresponds to 3-bit DACs, is similar to that achieved by
infinite-resolution DACs. Finally, we note that the constellation
order M affects the problem in a similar manner to b (as it only
influences the parameter Ct involved in the CI constraint). As
a result, the impact of M on the achieved beampattern is also
similar to that of b. As such, we omit the detailed simulation
result of M .

To illustrate the impact of the quantization level L on the
system performance more clearly, we plot the trade-off curves
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Fig. 8: Achieved SERs by different algorithms, where b = 0.4.
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Fig. 9: Achieved beampatterns by different algorithms, where
b = 0.4.

between the radar beampattern MSE and the communication
SER for different quantization levels in Fig. 7. We consider a
system with (N,K,M,L) = (64, 4, 8, 4) and set the SNR
as 10 dB. The curves are obtained by varying the safety
margin threshold b. It can be observed from the figure that
increasing the quantization level from L = 4 to L = 16, which
corresponds to increasing the resolution of DACs from 1 bit
to 3 bits, can significantly enhance both the communication
and radar performance of the DFRC system. However, only
marginal gains can be obtained if the quantization level is
further increased beyond L = 16, i.e., the resolution of DACs
is increased beyond 3 bits.

C. Comparison with Existing SOTA Approaches

In this subsection, we compare both the radar and commu-
nication performance of the proposed approach with existing
SOTA ones. As no prior work has addressed the general QCE
transmit waveform design problem for DFRC systems, we
shall focus on the one-bit case, i.e., L = 4. We compare
the proposed approach with the algorithm2 in [4] and the
MVAM algorithm in [37]. Note that the algorithm in [4] is
designed for the infinite-resolution case. To obtain one-bit
transmit signal, we directly quantize its output to satisfy the
one-bit constraint, which is termed as “Quantize”. We also
include the unquantized version of the algorithm in [4] as a
benchmark, which is termed as “Unquantize”.

2In [4], several algorithms have been proposed to deal with different
DFRC waveform design problems that are formulated based on different
criteria. Here, we adopt the one designed for solving the weighted radar and
communication optimization problem with the total power constraint as the
benchmark, as it demonstrates the best radar and communication performance
with the presence of one-bit quantization.
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Fig. 10: Achieved radar beampattern MSE and communication
SER trade-offs by different algorithms, where SNR= 10 dB.

In Figs. 8 and 9, we compare the SER and beampattern
achieved by the considered four approaches for both a small
system with (N,K,M) = (16, 2, 4) and a large system
with (N,K,M) = (64, 4, 8). The safety margin threshold
is set as b = 0.4. Note that both of the algorithms in [4]
and [37] focus on the optimization of a weighted radar and
communication performance. In our implementation, we tune
the weighting factor to achieve the best balanced radar and
communication performance for these algorithms. As shown
in Fig. 8, the SER performance of the algorithm in [4] suffers
from a severe degradation with the direct one-bit quantization.
In comparison, the MVAM algorithm [37] and the proposed
algorithm, which are designed specifically for the one-bit
scenario, achieve better SER performance. Due to superior
problem formulations, they even outperform the unquantized
version of the algorithm in [4] in large systems and at low
SNRs; see Fig. 8 (b). Of these two approaches, the proposed
one exhibits significantly lower SER, especially at high SNRs.
Regarding the radar performance, it can be observed from Fig.
9 that the three one-bit approaches, though experience degra-
dation due to the one-bit quantization, still produce satisfactory
beampatterns, featuring strong mainlobes around the desired
angles. Among them, the proposed approach demonstrates the
best beampattern.

To give a more fair comparison, we plot in Fig. 10 the
trade-off curves between the radar beampattern MSE and
the communication SER of the three one-bit approaches.
Specifically, the curves for the algorithms in [4] and [37]
are obtained by ranging the weighting factors from 0 to 1
and the curve for the proposed algorithm is obtained by
varying the safety margin threshold b. As demonstrated in
the figure, the proposed algorithm achieves substantially lower
radar beampattern MSE and communication SER compared
to the other two algorithms, especially when the system
dimension is large. In particular, with the same communication
SER, the radar beampattern MSE achieved by the proposed
approach is generally more than three times lower than those
achieved by the SOTA algorithms. This is attributed to both
the superiority of the CI-based problem formulation (compared
to the MSE-based formulation) and the effectiveness of the
proposed approach.
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V. CONCLUSION

In this paper, we investigated the general QCE waveform
design for massive MIMO DFRC systems. The transmit
waveform was optimized to minimize the MSE between the
designed and desired beampatterns while satisfying the CI-
based communication QoS constraints and the QCE constraint.
We proposed an efficient approach for solving the formulated
discrete optimization problem, which consists of two main
steps. First, the discrete problem was transformed into an
equivalent continuous problem using the penalty technique.
Second, an inexact ALM algorithm was developed for solving
the nonconvex continuous penalty model, where the ALM
subproblem at each iteration was efficiently solved by a
custom-designed BSUM algorithm in an inexact fashion. Sim-
ulation results demonstrated the good convergence behaviors
of the proposed inexact ALM and BSUM algorithms and the
superiority of the proposed approach compared to the existing
SOTA ones in both radar and communication performance.
An interesting future work is to optimize the overall radar
performance rather than solely focusing on the transmitter
design.

APPENDIX A
PROOF OF PROPOSITION 1

In this appendix, we prove the following proposition, which
covers Proposition 1 as a special case.

Proposition 3. Consider the following problem:

min
x∈A

F (x)

s.t. xn ∈ XR
L , ∀ n ∈ [m],

(32)

where x ∈ R2m, F : R2m → R is a continuously differentiable
function, A ⊆ R2m is a closed set, and xn := [xn;xm+n].
Then there exists λ0 > 0 such that for all λ > λ0, problem (32)
shares the same optimal solution with the following penalty
model:

min
x∈A

F (x)− λ∥x∥2

s.t. xn ∈ conv(XR
L ), ∀ n ∈ [m].

(33)

Proof. It suffices to show that for all λ > λ0, each optimal
solution of (33) is feasible for (32). For ease of the notation,
let

Fd := A ∩ {x | xn ∈ XR
L , ∀ n ∈ [m]}

and

Fc := A ∩ {x | xn ∈ conv(XR
L ), ∀ n ∈ [m]}

be the feasible sets of the discrete problem (32) and the
continuous penalty problem (33), respectively. In addition, let
{v1,v2, . . . ,vB} denote all the points in Fd and define

S1 :=

B⋃
b=1

{
x ∈ Fc | 0 < ∥x− vb∥ < η sin

π

L

}
and

S2 :=

B⋃
b=1

{
x ∈ Fc | ∥x− vb∥ ≥ η sin

π

L

}
,

conv(X R
L )

vb,n
xn

ub,n
ϕb,n

ϕb,n Ω
Ω

η

Fig. 11: An illustration of {xn,vb,n,ub,n} and ϕb,n, where
Ω = π

2 − π
L . Since xn lies in conv(XR

L ), i.e., the shaded area,
we have ϕb,n ≤ Ω. The equality holds when xn lies on the
two edges of conv(XR

L ) that are incident with vb,n.

where S1 collects the points in Fc that are sufficiently close
to, but not within, Fd, and S2 collects the points in Fc that are
away from Fd. To prove our claim, we need to show that all
points in Fc\Fd cannot be optimal for problem (33). For this
purpose, we next examine the two cases x ∈ S1 and x ∈ S2,
separately.

Case I: x ∈ S1. For any x ∈ S1, there exists vb ∈ Fd such
that ∥x−vb∥ = ρ < η sin π

L . Let ub = vb−x and ϕb,n denote
the angle between ub,n and vb,n for all n. Then we have

∥vb∥2 − ∥x∥2 = ∥vb∥2 − ∥vb − ub∥2

= 2uT
b vb − ∥ub∥2

= 2

m∑
n=1

uT
b,nvb,n − ρ2

(a)
= 2η

m∑
n=1

∥ub,n∥ cosϕb,n − ρ2

(b)

≥ 2η sin
π

L
ρ− ρ2,

(34)

where (a) uses the fact that ∥vb,n∥ = η, and (b) holds since∑N
n=1 ∥ub,n∥ ≥ ∥ub∥ = ρ and ϕb,n ≤ π

2 − π
L ; see Fig. 11

for an illustration. Since F (x) is continuously differentiable
on the bounded set Fc, it is Lipschitz continuous on Fc. Let
LF be the Lipschitz constant, then we get

|F (x)− F (vb)| ≤ LF ∥x− vb∥ = LF ρ. (35)

Combing (35) with (34) and noting that ρ < η sin π
L , we have

that for any λ > LF

η sin π
L

,

F (x)− λ∥x∥2 − (F (vb)− λ∥vb∥2)
≥ ρ(−LF + 2λη sin

π

L
− λρ)

≥ ρ(−LF + λη sin
π

L
) > 0,

i.e., x is not optimal for (33).
Case II: x ∈ S2. Now consider any x ∈ S2. It is easy to

check that the set S2 is compact, and thus

max
x∈S2

∥x∥ := c0 < η.
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Let v∗ ∈ Fd and F ∗ := F (v∗) be an optimal solution and
the optimal value of problem (32), respectively, and let F̂ :=

minx∈S2 F (x). Then for all x ∈ S2 and λ > F∗−F̂
η−c0

, we have

F (x)−λ∥x∥2−(F (v∗)−λ∥v∗∥2) ≥ F̂−F ∗+λ(η2−c20) > 0,

where the first inequality holds since ∥v∗∥ = η. Hence, x is
not optimal for (33).

Combining the above two cases, we can now conclude that
the desired result holds for λ0 = max{ LF

η sin π
L
, F∗−F̂

η−c0
}.

APPENDIX B
BOUNDEDNESS OF THE SEQUENCES GENERATED BY

ALGORITHMS 1 AND 2

In this section, we show that the sequences generated by
Algorithms 1 and 2 are bounded. This result is important to
the proof of both Theorem 1 and Proposition 2.

Lemma 1. There exists a constant M > 0 (independent of m
and r) such that

1) The sequence (xm,wm, zm) generated by Algorithm 1
satisfies

∥xm∥ ≤ M, ∥wm∥ ≤ M, ∥zm∥ ≤ M, ∀ m.

2) For any m > 0, the sequence (x(r),w(r), z(r)) gener-
ated by Algorithm 2 satisfies

∥x(r)∥ ≤ M, ∥w(r)∥ ≤ M, ∥z(r)∥ ≤ M, ∀ r.

Proof. Note that for any m ≥ 0, (xm+1,wm+1, zm+1) is the
output of Algorithm 2 for solving the ALM subproblem (14).
Hence, it suffices to prove the second assertion of the above
lemma.

Given any m ≥ 0 and consider the sequence
{(x(r+1),w(r+1), z(r+1))} generated by Algorithm 2 for solv-
ing the ALM subproblem (14). First, since x(r+1) ∈ X and
noting the definition of X , we have

∥x(r+1)∥ ≤
√
NTη := Mx, ∀ r.

In addition, it follows from the update rule of variable z in
(29) that

∥z(r+1)∥

≤∥C∥∥x(r+1)∥+ ∥b∥+ ∥µm∥
ρmµ

≤∥C∥Mx+∥b∥+
√
2KT max{|µmin|, |µmax|}

ρ0µ
:= Mz, ∀ r,

where the second inequality holds since the elements of µ
are lower and upper bounded by µmin and µmax, respectively,
and ρmµ is increasing in m and thus lower bounded by ρ0µ; see
(16) and (17). The remaining task is to show that {w(r)} is
bounded by a constant (independent of m and r). According
to the update rule of w(r) in (27), we only need to prove that
{β(r+1)

q } is bounded for all q ∈ [Q].
Recall that β(r+1)

q is the unique positive root of the cubic
equation:

P (β) := 4β3 + ρmv β −
∥∥∥ξ(r)q

∥∥∥ = 0,

where3 ξ
(r)
q =

(
∇g(w(r))− νm − ρmν Ax(r+1)

)
(q)

. Using the

the definitions of g(w) and β
(r)
q , we can further express ξ

(r)
q

as

ξ(r)q =

4
∑
q∈[Q]

cq(β
(r)
q )2

 cqw
(r)
(q)−νm

(q)−ρmν

(
Ax(r+1)

)
(q)

.

It is obvious that P (β) is increasing in β with P (0) < 0 and
P (+∞) = +∞. Hence, if we can find a positive constant c
such that P (c) > 0, then β

(r+1)
q ≤ c. Note that P (β) can be

lower bounded as

P (β) ≥4β3 + ρmν β − 4

(
Q∑

q=1

cq(β
(r)
q )2

)
cqβ

(r)
q

−
∥∥∥νm

(q)

∥∥∥− ρmν

∥∥∥(Ax(r+1))(q)

∥∥∥ ,
where we have used the fact that ∥w(r)

(q)∥ = β
(r)
q . For the last

two terms in the above lower bound, there exists a constant
Mw,0 > 0 independent of m and r such that∥∥∥νm

(q)

∥∥∥+ ∥∥∥ρmν (Ax(r+1)(q)

∥∥∥ ≤ ρmν Mw,0.

Let I = {q ∈ [Q] | cq > 0}, where cq is given in (8). We next
investigate the two cases q /∈ I and q ∈ I separately.

In case of q /∈ I, i.e., cq = 0, we have

P (β) ≥ 4β3 + ρmv (β −Mw,0),

which further implies that P (Mw,0) > 0 and β
(r+1)
q ≤ Mw,0.

In case of q ∈ I, it is straightforward to verify that P (β) >
0 if

β > max


∑

q∈Iq

cq(β
(r)
q )2

 1
3

(cqβ
(r)
q )

1
3 ,Mw,0

 .

Then we immediately get

β(r+1)
q ≤ max


∑

q∈Iq

cq(β
(r)
q )2

 1
3

(cqβ
(r)
q )

1
3 ,Mw,0

 .

Squaring the above inequality, multiplying both sides by cq ,
and then summing over q ∈ I, we obtain∑

q∈I
cq(β

(r+1)
q )2

≤max


∑

q∈I
cq(β

(r)
q )2

2
3
∑

q∈I
cq(cqβ

(r)
q )

2
3

, ∑
q∈I

cqM
2
w,0

 .

(36)
In addition, using

∑
q∈I c2q = 1 (see (8)) and the (extended)

Holder inequality, i.e.,

∑
q∈I

|uq|a|vq|b
a+b

≤

∑
q∈I

|uq|a+b

a∑
q∈I

|vq|a+b

b

,

3Here and after, for a vector ξ, we use ξ(q) to denote its subvector that
collects the elements in ξ at the same positions as w(q) in w.
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with uq = c2q, vq = cq(β
(r)
q )2, a = 2

3 , and b = 1
3 , we have

∑
q∈I

cq(cqβ
(r)
q )

2
3 ≤

∑
q∈I

cq(β
(r)
q )2

1
3

.

Plugging the above inequality into (36) yields

∑
q∈I

cq(β
(r+1)
q )2 ≤ max

∑
q∈I

cq(β
(r)
q )2,

∑
q∈I

cqM
2
w,0

 ,

which further implies

∑
q∈I

cq(β
(r+1)
q )2 ≤ max

∑
q∈I

cq(β
(0)
q )2,

∑
q∈I

cqM
2
w,0

 , ∀ r.

(37)
Note that β

(0)
q = ∥wm

(q)∥ (since the initial point of Algo-
rithm 2 is set as (x(0),w(0), z(0)) = (xm,wm, zm)) and
(xm+1,wm+1, zm+1) is the output of Algorithm 2. Then, it
follows from (37) that

∑
q∈I

cq∥wm+1
(q) ∥2 ≤ max

∑
q∈I

cq∥wm
(q)∥2,

∑
q∈I

cqM
2
w,0

 , ∀m.

(38)
Combining (38) with (37), we get

∑
q∈I

cq(β
(r+1)
q )2

(a)

≤ max

∑
q∈I

cq∥wm
(q)∥2,

∑
q∈I

cqM
2
w,0


(b)

≤ max

∑
q∈I

cq∥w0
(q)∥2,

∑
q∈I

cqM
2
w,0

 , ∀ r,

where (a) is obtained by replacing β
(0)
q in (37) with ∥wm

(q)∥ and
(b) is obtained by iteratively applying (38) for m − 1, . . . , 0.
Hence, since cq > 0 for q /∈ I, we further have∑

q∈I

(
β(r+1)
q

)2

≤
max

{∑
q∈I cq∥w0

(q)∥2,
∑

q∈I cqM
2
w,0

}
minq∈I cq

:= Mw,1, ∀ r.

Let Mw :=
√

(Q− |I|)M2
w,0 +Mw,1, where |I| denotes the

number of elements in I. Then it is simple to check that
∥w(r)∥ ≤ Mw for all r.

Combing the above discussions, we can now conclude that
M := max{Mx,Mz,Mw} satisfies the condition in Lemma
1, which completes the proof.

APPENDIX C
PROOF OF THEOREM 1

According to Lemma 1, the sequence
{(xm+1,wm+1, zm+1)} generated by Algorithm 1 is
bounded. As a result, to prove Theorem 1, we only need
to prove the first assertion in it (and the second assertion
follows directly from the first assertion and the fact that
{(xm+1,wm+1, zm+1)} lies in a compact set). The following

proof follows a similar argument to that in [44, Theorems
3.3-3.4].

Let (x̄, w̄, z̄) be any limit point of {(xm+1,wm+1, zm+1)}.
We first show that (x̄, w̄, z̄) is feasible, i.e., (x̄, w̄, z̄) ∈ F .
Since X and Z are closed sets and xm+1 ∈ X and zm+1 ∈ Z
for all m, we have x̄ ∈ X and z̄ ∈ Z . The remaining task
is to show that (x̄, w̄, z̄) satisfies the linear constraints in F ,
i.e., Cx̄− z̄ = b and Ax̄ = w̄. From the update rule in (17),
we can express (ρmµ , ρmν ) = (aµρ

m, aνρ
m), where aµ > 0,

aν > 0, and ρm is increasing in m. Hence, either ρm → ∞ or
ρm keeps fixed after a finite number of iterations. In the latter
case, the violation of the linear constraints will be decreased
by a factor of δ < 1 at each iteration and thus tends to zero
as m → ∞, which further implies that (x̄, w̄, z̄) ∈ F .

We next consider the case where ρm → ∞. Assume, with-
out loss of generality, that (xm+1,wm+1, zm+1) → (x̄, w̄, z̄).
Since (xm+1,wm+1, zm+1) is an ϵm-stationary point of the
ALM subproblem, there exists em :=

[
emx

T, emy
T, emz

T
]T

such
that

em∈∇Lm(xm+1,wm+1 zm+1)

+ ∂IX (xm+1) + ∂IZ(zm+1)
(39)

with ∥em∥ ≤ ϵm (see (15)). Substituting
Lm(xm+1,wm+1, zm+1) in (19) into (39), we get

〈
∇h(xm+1)+CTµm+ATνm+ρmµ CT(Cxm+1−zm+1−b)

+ρmν AT(Axm+1−wm+1)−emx ,x− xm+1
〉
≥ 0, ∀ x ∈ X ,

(40a)

∇f(wm+1) +∇g(wm+1)− νm

− ρmν (Axm+1 −wm+1)− emw = 0, (40b)〈
−µm − ρmµ (Cxm+1 − zm+1 − b)− emz , z− zm+1

〉
≥ 0,

∀ z ∈ Z, (40c)

where we have used the fact that for a convex set X , η ∈
∂IX (x̃) is equivalent to ηT(x − x̃) ≤ 0 for all x ∈ X . By
further dividing (40a)–(40c) by ρm, we obtain

〈∇h(xm+1)+CTµm+ATνm−emx
ρm

+aµC
T(Cxm+1−zm+1

xm

ρm
−b)+aνA

T(Axm+1−wm+1), x− xm+1

〉
≥ 0, ∀ x ∈ X,

(41a)
∇f(wm+1) +∇g(wm+1)− νm − emw

ρm

− aν(Axm+1 −wm+1) = 0, (41b)〈
−µm − emz

ρm
− aµ(Cxm+1 − zm+1 − b), z− zm+1

〉
≥ 0,

∀ z ∈ Z. (41c)

Recall that (xm+1,wm+1, zm+1) lies in a compact set. Since
∇h(x),∇f(w), and ∇g(w) are all continuous, they are
bounded on that compact set. In addition, the multipliers
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(µm,νm) are bounded and ∥em∥ ≤ ϵm with ϵm → 0.
Therefore, by letting m → ∞ in (41a)–(41c), we have

⟨aµCT(Cx̄− z̄−b)+aνA
T(Ax̄−w̄),x−x̄⟩ ≥ 0, ∀ x ∈ X ,

(42a)
aν(w̄ −Ax̄) = 0, (42b)
⟨aµ(z̄−Cx̄+ b), z− z̄⟩ ≥ 0 ,∀ z ∈ Z. (42c)

From (42b), w̄ − Ax̄ = 0. Substituting this into (42a) and
combining (42a) with (42c), we get

⟨Cx̄− z̄− b, (Cx− z)− (Cx̄− z̄)⟩ ≥ 0, ∀ x ∈ X , z ∈ Z,

which further implies that

∥Cx̄− z̄−b∥2≤⟨Cx̄− z̄− b,Cx− z− b⟩
≤∥Cx−z−b∥∥Cx̄− z̄− b∥, ∀x ∈ X , z ∈ Z,

i.e., ∥Cx̄− z̄−b∥ ≤ ∥Cx−z−b∥ for all x ∈ X and z ∈ Z.
Hence, Cx̄ − z̄ − b = 0 (as long as F is nonempty), and
(x̄, w̄, z̄) ∈ F .

Finally, we show that (x̄, w̄, z̄) satisfies (18). Given any
(x,w, z) ∈ F , by taking an inner product of (40b) with w−
wm+1 and then summing it with (40a) and (40c), we obtain

⟨∇f(wm+1) +∇g(wm+1),w −wm+1⟩
+ ⟨∇h(xm+1),x− xm+1⟩

(a)

≥⟨µm,Cxm+1 − zm+1 − b⟩+ ⟨νm,Axm+1 −wm+1⟩
+ ρmµ ∥Cxm+1 − zm+1 − b∥2 + ρmν ∥Axm+1 −wm+1∥2

+ ⟨emx ,x− xm+1⟩+ ⟨emw ,w −wm+1⟩+ ⟨emz , z− zm+1⟩
≥−∥µm∥∥Cxm+1−zm+1 − b∥−∥νm∥∥Axm+1−wm+1∥
−∥emx ∥∥x−xm+1∥−∥emw ∥∥w−wm+1∥−∥emz ∥∥z−zm+1∥,

(43)
where (a) follows from the fact Cx−z = b and Ax−w = 0.
It is simple to verify that F is a compact set, given that X
is compact. Furthermore, note that (µm,νm) are bounded,
(x̄, w̄, z̄) ∈ F , ∥em∥ → 0, and {(xm+1,wm+1, zm+1)} is
bounded. Then, by letting m → ∞ in (43), we get

⟨∇f(w̄) +∇g(w̄),w − w̄⟩+ ⟨∇h(x̄),x− x̄⟩≥ 0,

which gives (18) and completes the proof.

APPENDIX D
PROOF OF PROPOSITION 2

In this appendix, we give the proof of Proposition 2. We
first give an outline of the proof, which contains three main
steps.
Step 1: Control the violation of the first-order optimality
condition. For (x(r+1),w(r+1), z(r+1)), we bound its vio-
lation of the first-order optimality condition by the difference
between successive iterations. Specifically, based on the update
rules of the proposed BSUM Algorithm 2, we find an e(r+1)

with

e(r+1) ∈ ∇Lm(x(r+1),w(r+1) z(r+1))

+ ∂IX (x(r+1)) + ∂IZ(z(r+1))

that satisfies

∥e(r+1)∥2 ≤C0 (ρ
m)2

(
∥x(r+1) − x(r)∥2

+∥w(r+1) −w(r)∥2+∥z(r+1) − z(r)∥2
)
,

(44)

where C0 is a constant independent of m.
Step 2: Establish the sufficient decrease and lower bound-
edness of the objective function. We show that the objective
function is sufficiently decreased at each iteration:

Lm(x(r+1),w(r+1), z(r+1))− Lm(x(r),w(r), z(r))

≤ − C1ρ
m
(
∥x(r+1) − x(r)∥2 − ∥w(r+1) −w(r)∥2

−∥z(r+1) − z(r)∥2
) (45)

and is bounded from below. The sufficient decrease is es-
tablished based on the fact that a strongly convex upper
bound is minimized for each block at each iteration, and the
boundedness is due to the specific structure of Lm and the
boundedness of the sequence.
Step 3: Identify an upper bound of r with ∥e(r)∥ ≤ ϵm by
combining Steps 1 and 2.

We next give the detailed proof and consider the above three
steps separately.

Step 1: From the update rules of the BSUM algorithm given
by (23), (27), (29), we have

0 ∈∇xLm(x(r),w(r),z(r))+γm(x(r+1)−x(r))+∂IX (x(r+1)),

0 =∇wLm(x(r+1),w(r+1), z(r+1))+∇g(w(r))−∇g(w(r+1)),

0 ∈∇zLm(x(r+1),w(r+1), z(r+1)) + ∂IZ(z(r+1)).

Define

e(r+1)
x =∇xLm(x(r+1),w(r+1),z(r+1))

−∇xLm(x(r),w(r), z(r))−γm(x(r+1)−x(r)),

e(r+1)
w = ∇g(w(r+1))−∇g(w(r)).

(46)

Then

e(r+1) :=

[
e(r+1)
x

e(r+1)
w
0

]
∈∇Lm(x(r+1),w(r+1) z(r+1))

+ ∂IX (x(r+1)) + ∂IZ(z(r+1)).

(47)

From Lemma 1, {w(r+1)} lies in a bounded set, which we
denote by W . Let Lg be the Lipschitz constant of ∇g(w) on
W . Then using the definitions of e(r+1) and Lm, we have

∥e(r+1)∥2

≤ 3∥(γm + 2λ)I− ρmµ CTC− ρmν ATA∥2∥x(r+1) − x(r)∥2

+
(
3(ρmν )2∥A∥2 + L2

g

)
∥w(r+1) −w(r)∥2

+ 3(ρmµ )2∥C∥2∥z(r+1) − z(r)∥2.
(48)

Note that ρmµ = aµρ
m, ρmν = aνρ

m, and γm = ρm∥aµCTC+
aνA

TA∥, where ρm is increasing in m and thus lower-
bounded by ρ0 > 0. Hence, according to (48), we can find
a constant C0 > 0 independent of m such that (44) holds,
which completes the first step.
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Step 2: We next establish the sufficient decrease of Lm.
Specifically,

Lm(x(r+1),w(r), z(r))− Lm(x(r),w(r), z(r))

(a)

≤ ux(x
(r+1);x(r),w(r), z(r))− ux(x

(r);x(r),w(r), z(r))

(b)

≤ − γm

2
∥x(r+1) − x(r)∥2,

where (a) is due to the facts that ux(x;x
(r),w(r), z(r))

is an upper bound of Lm(x,w(r), z(r)) and
ux(x

(r);x(r),w(r), z(r)) = Lm(x(r),w(r), z(r))
and (b) follows from the update rule x(r+1) ∈
argminx∈X ux(x;x

(r),w(r), z(r)) and the fact that
ux(x;x

(r),w(r), z(r)) is strongly convex with modulus γm.
Similarly, we can show that

Lm(x(r+1),w(r+1), z(r))− Lm(x(r+1),w(r), z(r))

≤ − ρmν
2

∥w(r+1) −w(r)∥2

and

Lm(x(r+1),w(r+1), z(r+1))− Lm(x(r+1),w(r+1), z(r))

≤ − ρmµ
2

∥z(r+1) − z(r)∥2.

Summing the above inequalities and letting C1 :=
min{aµ, aν , ∥aµCTC + aνA

TA∥}/2, we get the sufficient
decrease of the objective function in (45). Since the sequence
{(x(r+1),w(r+1), z(r+1))} and the multipliers (µm,νm) are
bounded, the objective function Lm is bounded from below.
We denote the lower bound of Lm by L.

Step 3: Let

r(ϵm) := min{r ≥ 0 | ∥e(r)∥ ≤ ϵm}. (49)

Our goal is to determine an upper bound of r(ϵm). Given any
R ≥ 1, combining (44) and (45) and summing them from
r = 0 to r = R− 1, we have

R∑
r=1

∥e(r)∥2 ≤ C0ρ
m

C1
(Lm(x(0),w(0), z(0))

− Lm(x(R),w(R), z(R))).

(50)

Recalling the definition of Lm in (19), we can upper bound
Lm(x(0),w(0), z(0)) as

Lm(x(0),w(0), z(0)) ≤ C2ρ
m,

where C2 is a positive constant independent of m. Then, letting
R = r(ϵm)− 1 in (50) and noting the definition of r(ϵm), we
have

(r(ϵm)− 1)ϵ2m ≤
r(ϵm)−1∑

r=1

∥e(r)∥2 ≤ C0C2

C1
(ρm)2 − L,

which implies that r(ϵm) = O
(

(ρm)2

ϵ2m

)
.
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