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Abstract—In this paper, we introduce a novel resource alloca-
tion approach for integrated sensing-communication (ISAC) us-
ing the Kullback–Leibler divergence (KLD) metric. Specifically,
we consider a base-station with limited power and antenna re-
sources serving a number of communication users and detecting
multiple targets simultaneously. First, we analyze the KLD for
two possible antenna deployments, which are the separated and
shared deployments, then use the results to optimize the resources
of the base-station through minimising the average KLD for the
network while satisfying a minimum predefined KLD require-
ment for each user equipment (UE) and target. To this end, the
optimisation is formulated and presented as a mixed integer non-
linear programming (MINLP) problem and then solved using two
approaches. In the first approach, we employ a genetic algorithm,
which offers remarkable performance but demands substantial
computational resources; and in the second approach, we propose
a rounding-based interior-point method (RIPM) that provides a
more computationally-efficient alternative solution at a negligible
performance loss. The results demonstrate that the KLD metric
can be an effective means for optimising ISAC networks, and that
both optimisation solutions presented offer superior performance
compared to uniform power and antenna allocation.

Index Terms—Integrated sensing and communication,
multiple-input-multiple-output (MIMO), radar, zero-forcing,
Kullback–Leibler divergence, power allocation, antenna
allocation, mixed integer non-linear programming (MINLP).

I. INTRODUCTION

THE field of communication technology is undergoing
rapid evolution, with 6G being the next generation of

wireless communication networks that promises to bring about
transformative changes [1]–[3]. As we approach this new era
of wireless communication, the demand for advanced and
efficient communication techniques has become increasingly
apparent [4]. 6G networks are expected to support various ser-
vices and applications, such as holographic communications,
smart grids, digital twins, and integrating radar technology into
communication systems which is the interest of this paper.

Integrated sensing and communication (ISAC), when prop-
erly implemented, is exceptionally beneficial, as both systems
could use the same hardware and network resources. For in-
stance, the large antenna arrays which form massive multiple-
input-multiple-output (mMIMO) can be shared among both
subsystems, which reduces the cost immensely [5]–[11]. Gen-
erally speaking, ISAC systems can be implemented in two
ways, namely, the separated deployment in which the base
station (BS) antennas are distributed among each sub-system
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and the shared deployment in which antennas are exploited
for both sub-systems. Additionally, incorporating both systems
and utilising the same spectrum bands leads to improved sys-
tem capacity, higher data rates and better sensing capabilities
due to increased spectral efficiency [12]. Furthermore, radar
systems are generally used for detection, localisation, tracking,
and navigation, which have the potential to provide precise
data about the surrounding environment, and thus numerous
applications such as autonomous vehicles and drones can
benefit from such information to take appropriate actions in
order to accomplish their tasks [13]–[15].

One of the challenging factors which should be carefully
considered for effective ISAC functionality is the allocation of
available resources at the BS. Remarkable efforts have been
devoted in the literature to achieve this objective. For instance,
the optimisation of power allocation while maximising the
signal-to-interference-noise-ratio (SINR) for the radar system
or the communication system capacity, either as cooperative
or coexistence design, has been discussed in literature [16]–
[19]. However, the measures considered in these articles to
evaluate the performance of the communication and sensing
subsystems are not homogeneous, i.e., different measures
for each subsystem. Consequently, it is difficult to assess
the performance gained by the power optimisation on the
functionality of the overall system.

In [16], [17], power allocation and transmission strategies
are proposed with the aim of optimising the performance of
coexisting radar and communication systems. The work in
[16] focuses on orthogonal frequency division multiplexing
(OFDM) communication systems and sparse sensing radars
in cluttered environments and develops a joint transmit de-
sign framework accordingly, where the SINR of the radar is
maximised with constraints on the throughput of the com-
munication system. The optimisation problem relies on prior
knowledge of the communication system signal-to-noise ratio
(SNR), interference-to-noise-ratio (INR), and radar system
clutter-to-noise-ratio (CNR), and the target SNR up to an
unknown constant common to all subcarriers. In [17], the
authors present an optimisation framework that maximises
the performance metric of one system while meeting the
service constraint of the other system where both radar-centric
and communication-centric designs are studied. OFDM dual
functional radar and communication (DFRC) based systems
that serve the dual purpose of radar and communication are
considered in [18] and [19]. The authors in [18] have presented
an optimal power allocation method for monostatic OFDM
systems by maximising the mutual information (MI) between
the radar target and communication users while minimising the
radar detection error probability. Moreover, [19] proposes an
algorithm that balances the competing requirements of radar
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detection and communication data rate, aiming at optimising
the power and maximising performance of the DFRC system.

Apparently, none of these papers explored the joint allo-
cation antenna and power resources in both of the antenna
deployment configurations for ISAC systems and the com-
parison between the two models (e.g. shared and separated
deployments), and how these models affect the transmission
and reception of both the communications and radar. However,
incorporating the optimal antenna allocation for each subsys-
tem into the problem adds a new dimension to the problem
where power and antennas for each system are controllable to
achieve the highest performance. In addition, ISAC systems
aim at integrating the communication and sensing tasks in a
more holistic manner than DFRC or a coexistent operation.
Interestingly, in our previous works [20], [21], we have
shown that a unified performance evaluation measure using
Kullback–Leibler divergence (KLD) can be effectively used to
characterise ISAC systems holistically. The relation between
KLD from one side and the symbol error rate (SER) and
detection performance of the communication system and radar
system, respectively, from the other side, has been thoroughly
investigated. Moreover, the trade-off between both subsystems
using the introduced KLD has been well studied. Obviously,
KLD can be utilised as a design reference for the overall ISAC
system as a single entity and put both subsystems on one
scale, unlike conventional designs, which rely on two different
measures, i.e., one measure for each subsystem. Furthermore,
unlike SER, detection probability and false alarm probability,
KLD measure is independent of the detection process and
detection threshold applied at the receiver side, which makes
it an ideal candidate for system level design and resource
allocation [22], [23].

Inspired by the benefits of KLD, this paper investigates
utilizing such metric for optimal resource allocation in ISAC
networks. We do not only focus on a typical ISAC setup,
but also explore the models used in [6], [24], for shared
and separated deployment modes. As shown in Fig. 1.a, in
shared deployment, communication and radar systems use
the entire antenna array, and therefore optimization is only
for power allocation. In contrast, the separated deployment
in Fig. 1.b, in which each subsystem is allocated a certain
subset of antennas, requires the optimization of both power
and antenna allocation for communication and radar systems.
We present an optimisation framework for power and antenna
allocation for each node, i.e., communication user or sensing
target, which results in the maximum achievable network-
level KLD while satisfying a minimum KLD requirement that
needs to be satisfied for each device. The formulated problem
is found to be a constrained non-convex mixed integer non-
linear programming (MINLP) for the separated deployment,
and nonlinear programming (NLP) for the shared deployment.
Therefore, we propose a low-complexity algorithm for solving
the separated deployment optimisation problem based on the
interior-point method (IPM), which is referred to rounding-
based interior-point method (RIPM) algorithm. The achievable
performance of the proposed algorithm is compared to a
genetic algorithm (GA) as a benchmark, as well as, both
algorithms are compared with the uniform resource allocation

(URA) scenario as an additional benchmark. The results show
the effectiveness of the proposed algorithm when compared
to GA and URA, where the obtained results demonstrate
that both GA and RIPM significantly outperform the URA
scenario. Moreover, as compared to GA, the proposed RIPM
provides comparable detection capability with more computa-
tional efficiency. The primary contributions of this paper are
summarized as follows:

• A generalized system model with multiple communi-
cation users and multiple targets is introduced, which
seamlessly integrates the impact of clutter and imperfect
interference cancellation. In addition, both the separated
and shared ISAC antenna deployments are investigated
thoroughly.

• Providing the analysis of the KLD to characterize the
achievable detection capability for radar and communi-
cation systems within the shared deployment of ISAC
systems.

• Proposing a novel approach for power and antenna alloca-
tion using the derived KLD. The formulated optimization
problems are found to be constrained non-convex MINLP
for the separated deployment and as a constrainted non-
convex NLP for the shared deployment. A low complex
optimization algorithm, that includes RIPM algorithm
based on the IPM to solve the MINLP, is developed.
While the shared deployment NLP is solved using IPM.

• A detailed comparative analysis between RIPM, GA,
and URA, are conducted to emphasize the computational
efficiency and convergence rates.

• Extensive simulated validations are provided that under-
score the performance benefits of RIPM and GA over
the URA methodology. Furthermore, the efficacy of both
shared and separated deployment methods is evaluated,
drawing attention to the superior performance outcomes
of shared deployment when assessed using the KLD
metric.

In summation, this research underscores the relevance of
KLD as an effective metric for system optimization in ISAC
systems. The results shows that RIPM algorithm matches the
performance of the established GA, with significant reduction
in the computational complexity, where also, both the GA
and RIPM methods surpass the URA in effectiveness. Impor-
tantly, when comparing the shared and separated deployment
methods, the shared deployment yielded superior results based
on the KLD measure. This shows the potential benefits of
progressing towards a more unified ISAC system.

The remainder of this paper is organised as follows. In
section II, the system model is presented. Section III intro-
duces a summary of the derivation of the radar KLD, the
communication system’s KLD, and the average KLD for the
overall ISAC system. In section IV, the optimisation problem
for power and antenna allocation is formulated. Section V
shows the numerical results. Section VI the complexity anal-
ysis for the optimisation techniques are explored and Section
VII concludes the work.
Notation: The following notations are used in this paper. Bold
uppercase letters (e.g. S) specify matrices, while bold lower-
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Fig. 1. Antenna deployments for ISAC systems. (a) Separated deployment; (b) Shared deployment.

case letters (e.g. s) specify vectors. Superscripts (·)∗, (·)T and
(·)H specify the conjugate, transpose and Hermitian transpose,
respectively. Subscripts (·)c and (·)r relate the corresponding
parameter to the communication or radar system, respectively.
The absolute value and the trace operator are denoted by | · |
and tr{·}, respectively.

II. SYSTEM MODEL

This paper is concerned in a multi-user multi-target
(MUMT) MIMO scenario. The ISAC system model comprises
an N antenna MIMO-BS, these antennas are utilized for
detecting T number of radar targets, and serving K number
of single-antenna communication user equipments (UEs) in
downlink. The ISAC system is analyzed for two system
deployments, the separated and shared deployment as shown
in Fig.1.

The total transmitted power available at BS is PT which
is utilised for both sensing and data communication function-
alities. The portions of the power that are allocated to the
radar and communication subsystems are respectively denoted
as Pr and Pc, where PT = Pc + Pr. Zero-forcing (ZF)
beamforming is employed at BS to precode the information
of communication UEs and eliminate the cross-interference
caused by signals intended for other UEs [25]. Moreover, the
radar waveform is designed such that the covariance matrix is
Rx ≜ 1

L

∑L
l=1 xlx

H
l ∈ CNr×Nr , where L is the total number

of snapshots, and xl ∈ CNr×1 is the radar waveform vector
for the l-th snapshot.

A. Separated Deployment

In this case, as shown in Fig.1.a for the separated deploy-
ment antenna model, the MIMO-BS antennas are divided into
two subsets. The first subset contains a number of Nr antennas
applied for detecting T number of radar targets, whereas the
second one utilises the remaining Nc = N − Nr to serve
K number of single-antenna communication user equipments
(UEs) in the downlink.

1) Communication System: At each l instance, a data
symbol sk,l intended for the k-th UE is drawn from a certain
normalised constellation, i.e, E[|sk,l|2] = 1. Given the channel
matrix from MIMO-BS to UEs, Hl, these symbols, i.e., sk,l∀k,
are precoded using a ZF precoder with a precoding matrix
Wc,l ∈ CNc×K that is normalised using instantaneous matrix
normalisation scheme for which Wc,l =

W̃c,l√
sHl W̃c,l W̃H

c,l sl

with W̃c,l = HH
l

(
Hl H

H
l

)−1
is the non-normalised ZF

precoding matrix. This sort of normalisation ensures that the
communication system transmit power satisfies the power
constraint. The received signal yl ∈ CK×1, at the l-th instance,
can be shown as follows,

yl = Dc H
T
l Wc,l Pc sl+Dc

√
Pr

Nr
FT

l xl+nl, (1)

where Pc = diag(Pc,1, Pc,2, · · · , Pc,K) is a power control
matrix for UEs, Hl ∈ CNc×K ∼ CN

(
0, 2σ2

H

)
is the

BS-UEs communication channel matrix which is modeled
as flat Rayleigh fading, FT

l ∈ CNr×T ∼ CN
(
0, 2σ2

F

)
is

the radar-communication interference channel matrix mod-
eled as flat Rayleigh fading from the radar antennas to
each of the UEs, and nl ∈ CK×1 ∼ CN

(
0, 2σ2

n

)
is

the additive white Gaussian noise (AWGN). The matrix
Dc = diag(d

−η/2
c,1 , d

−η/2
c,2 , · · · , d−η/2

c,K ) counts for the free
space pathloss, where η is the pathloss exponent, and dc,k is
the k-th UE distance to BS. Throughout the paper, the channels
are assumed to be independent and identically distributed (iid).

2) Radar System: For this system, we are targeting the
scenario in which each target is located in a separate radar
bin [26], [27], allowing for easy identification for the number
of targets in the environment. We further assume that BS has
knowledge about the number of possible targets in the area
through historical records. MIMO radar makes it possible to
generate multiple beams simultaneously by combining mul-
tiple orthogonal signals. Accordingly, the transmitted signal
vector at the output of the antennas can be represented as,

xl = Wr,l Pr Φ, (2)
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where Φ = [ϕ1, ϕ2, · · · , ϕT ]
T is a set of T

orthonormal baseband waveforms [28], Pr =

diag
(√

Pr,1/Nr,
√
Pr,2/Nr, · · · ,

√
Pr,T /Nr

)
is the power

allocation matrix which is used to control the amount of
power to be emitted towards each target, and Wr,l ∈ CNr×T

is the precoding matrix for the radar at the l-th signalling
period. The precoding matrix for the radar system can
be tailored to enhance the radar performance or fulfil a
specific radar covariance matrix requirement. For instance, a
radar covariance matrix with desired characteristics can be
achieved through the design of appropriate precoding matrix
Rw ≜ 1

LWr ×WH
r = INr×Nr

which is typically used for
omnidirectional radar.

The radar return from all targets is processed through a
bank of matched filters with the signal waveform ϕt ∀t =
{1, 2, · · · , T} which is tuned to a certain radar angular-range-
Doppler bin. Thereafter, since ϕt ⊥ ϕi ∀t ̸= i, the radar
return from different targets can be separated, and thus the
detection of each target can be performed independently. The
binary hypothesis problem associated with each target can be
defined as Hq ∀q ∈ {0, 1}, where q = 0 and q = 1 denote the
absence and presence of a target, respectively. Mathematically,
the received radar signal from target t under hypothesis Hq

can be written as

yr,t,l|Hq
=

√
Pr,t

Nr
d
−η/2
r,t αt A (θt)wr,t,l q + ω̃r, (3)

where d−η
r,t is the two-way channel pathloss from BS to the

target and backwards with dr,t is the two-way distance, αt rep-
resents the target cross-section, and A (θt) = aT (θt)×aR (θt)
is the equivalent array manifold with aT (θt) and aR (θt)
represent the transmit and receive steering vector for the
t-th target, respectively. In this paper, it is assumed that
a (θt) ≜ aT (θt) = aR (θt). After employing interference
cancellation (IC) at BS, the noise plus interference residue due
to the communication signal is denoted as ω̃r ≜ ωr + nr,l ∼
CN

(
0, 2σ2

ω̃INr

)
, with total variance σ2

ω̃ = σ2
ω + σ2

n, where
nr,l ∈ CNr×1 ∼ CN

(
0, 2σ2

n INr

)
is AWGN with INr

is an
identity matrix. Here, ωr ∈ CNr×1 ≜ Gerr Pc Wc,l sl repre-
sents the residual error of the imperfect IC that is employed
to mitigate interference caused by the communication signal,
with Gerr ∈ CNr×Nc is the channel estimation error matrix at
BS. The residual error of imperfect IC, ωr, is approximated to
a complex Gaussian distribution by assuming that the channel
estimation errors are normally distributed with each entry
in Gerr being CN

(
0, 2σ2

err

)
, where 2σ2

err is the variance
of the channel estimator. Each element of ωr is a sum of
independent KNc random variables. Therefore, central limit
theorem (CLT) can be applied to approximate the density
of the elements of ωr for large KNc. This approximation
leads to the conclusion that the errors caused by imperfect IC
are complex Gaussian distributed. Specifically, ωr follows a
complex Gaussian distribution with mean zero and covariance
matrix 2σ2

ωINr
, where σ2

ω = σ2
errσ

2
wNc Pc. Here, σ2

w is the
variance of the elements of wc,k,l, which are the elements of
the precoding matrix Wc,l ≜ [wc,1,l, ...,wc,k,l]

T .

B. Shared Deployment

In this scenario, as shown in Fig.1.b, the MIMO-BS anten-
nas are not divided into two subsets for the shared deployment
model. Instead, the whole the antenna array with number
of elements N is utilized by both systems for detecting T
number of radar targets, and serving K number of single-
antenna communication user equipments (UEs) in downlink.
It is important to notice that the transmitted signal in shared
deployment is a combined superimposed signal of both radar
and communication signals, which can be represented as

Ẇc,l Pc sl + ẋl, (4)

where ẋl = Ẇr,l Pr Φ has similar properties to the com-
munication signal of the separated deployment in (2) but
with different dimensions as the shared deployment uti-
lizes N antennas rather than Nr. Therefore, the precod-
ing matrix for the communication and radar systems are
Ẇc,l ∈ CN×K , respectively, and Ẇr,l ∈ CN×T , and
the power control diagonal matrix for the radar system is
Ṗr = diag

(√
Pr,1/N,

√
Pr,2/N, · · · ,

√
Pr,T /N

)
.

1) Communication system: The received signal yl ∈
CK×1, at the l-th instance, can be shown as follows,

yl = Dc Ḣ
T
l Ẇc,lPc sl+Dc

√
Pr

N

(
ḢT

l + ḞT
)
ẋl+nl, (5)

the first term in the received signal represents the useful part
of the transmitted signal after the going through the fading
channel and the pathloss, while the second term represents
the radar interference from clutter and the transmit signal.
Ḣl ∈ CN×K is the BS-UEs communication channel matrix
which is modeled as flat Rayleigh fading,, and ḞT

l ∈ CN×T is
the radar-communication interference channel matrix modeled
as flat Rayleigh fading from the radar antennas to each of
the UEs, and nl ∈ CK×1 ∼ CN

(
0, 2σ2

n

)
is the additive

white Gaussian noise (AWGN). The clutter term, noise and
the transmit signal radar interference can be encapsulated as
ζ ∈ CK×1 ≜ Dc

√
Pr

N

(
ḢT

l + ḞT
)

xl+nl each element of

ζ has a variance of σ2
ζ = d−η

c,kPrσ
2
Ḣ
+ d−η

c,kPrσ
2
Ḟ
+ σ2

n.
2) Radar system: The binary hypothesis problem associ-

ated with each target can be defined as Hq ∀q ∈ {0, 1}, where
q = 0 and q = 1 denote the absence and presence of a target,
respectively. Mathematically, the received radar signal from
target t under hypothesis Hq can be written as

yr,t,l|Hq
= αt A (θt)

(√
Pr,t

N
d
−η/2
r,t ẇr,t,l q + Ẇc,l Pc sl

)

+Gerr1

(√
Pr

N
ẋl q + Ẇc,l Pc sl

)
+ nr,l. (6)

The first part of the signal in parentheses is the transmitted
signal after reception, while the second term in parentheses
is the clutter signal reflected back to the BS. Similar to the
derivation of (3), (6) can be reduced to

yr,t,l|Hq
=

√
Pr,t

N
d
−η/2
r,t αt A (θt) ẇr,t,l q + ζ̃, (7)
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where ζ̃ = αt A (θt) Wc,l Pc sl +

Gerr1

(√
Pr

N xl q +Wc,l Pc sl

)
+ nr,l is the interference

from the clutter, plus the interference from the combined
transmitted signal, and the noise. There is two operations of
imperfect IC that are important to note, one that involves the
clutter part of the signal which follows the same explanation
done before in the separated deployment model and is
represented with the channel estimation error matrix at the
BS Gerr1 ∈ CN×N ∼ CN

(
0, 2σ2

err1

)
. While the other

IC involves the interference from the transmitted signal
itself which is a combined signal of both systems, this IC
depends on the estimation of the target cross section αt and
the equivalent array manifold A (θt), where the estimation
is considered imperfect where we considered a combined
Gaussian error Gerr2 ∈ CN×N ∼ CN

(
0, 2σ2

err2

)
with

variance for both of the parameters represented as σ2
err2 .

Following these approximations leads to the conclusion
that all the imperfect IC errors along with the complex
gaussian noise can be combined into a complex gaussian
with zero mean and 2σ2

ζ̃
IN covariance matrix, where

σ2
ζ̃
= σ2

n+σ2
err1

(
σ2
ẇ N Pc + tr{Rx} Pr /N

)
+σ2

err2 σ
2
ẇN Pc.

Here, σ2
ẇ is the variance of the elements of ẇc,k,l,

which are the elements of the precoding matrix
Ẇc,l ≜ [ẇc,1,l, ..., ẇc,k,l]

T .

III. KULLBACK–LEIBLER DIVERGENCE

This section presents the derivation of KLD for both the
separated and shared deployment which is to be used in the
formulation of the optimisation problem for both systems.

A. Separated Deployment

1) KLD fo Communication System: In the case of ZF pre-
coding, the precoding matrix is given in the section introducing
the communication system. The KLD shown below accom-
modates any type of constellations and has been modified to
account for the long-term pathloss effect as follows,

KLDc,k =
λ α2

ZF Pc,k d−η
c,k

2M (M − 1)
(
Pr σ2

F d−η
c,k + σ2

n

)
ln 2

, (8)

where M is the modulation order, αZF =
√
Nc −K + 1 is the

normalisation factor for ZF precoding, and λ is a constant that
depends on the constellation, for example, in the case of M -
ary Phase Shift Keying (M-PSK) it would be λMPSK = M2.

2) KLD for Radar System: The sufficient statistics of the
generalised likelihood ratio test is denoted as ξ(θk). As L
increases, ξ(θk) distribution approaches a Chi-squared distri-
bution [29, Eq. 54]. Hence, ξ(θt) can be expressed as,

ξ (θt) ∼
{
H1 : X 2

2 (λt)
H0 : X 2

2 (0)
, (9)

where X 2
2 (λt) denotes a noncentral Chi-squared random vari-

able with 2 degrees of freedom and a noncentrality parameter
of

λt =
αt d

−η
r,t Pr,t |aH(θt) Rt a(θt)|2

Nr (σ2
n + σ2

errσ
2
wNc Pc d

−η
r,t )

, (10)

where Rt = 1
L

∑L
l=1 wr,t,lw

H
r,t,l.which can be reduced to

λt =
αt Nr d

−η
r,t Pr,t

(σ2
n + σ2

errσ
2
wNc Pc d

−η
r,t )

for the case of orthogonal

waveforms.
The KLD for the radar from ξH1 to ξH0 is found to be [20],

KLDξH0
∥ξH1

=
1

2

1.4427λt−
1

ln 2

∞∫
0

e−0.5ξ ln
(
I0

(√
λtξ
))dξ,

(11)
where I0(.) is a modified bessel function of the first kind. That
is, the KLD for the radar from ξH0

to ξH1
is derived as,

KLDξH1
∥ξH0

=
−0.5λt

ln 2
+

e−0.5λt

2 ln 2
I, (12)

where I=
∞∫
0

e−0.5ξI0
(√

λtξ
)
ln
(
I0
(√

λtξ
))

dξ can be solved

with numerical methods such as trapezoidal integration. Con-
sequently, for the tth target, the average KLD can be written
as KLDr,t=0.5

(
KLDξH0

∥ξH1
+KLDξH1

∥ξH0

)
.

B. Shared Deployment

1) KLD for the Communication system: The KLD here
differs from separated deployment as the radar interference
is essentially doubled as shown in (5), as there is two sources
of radar interference, the first is the transmit signal radar
interference, and the second is from the radar clutter. For
multivariate Gaussian distributed random variables having
mean vectors of µm and µn and covariance matrices of Σm

and Σn, the KLD can be derived as

KLDn→m =
1

2 ln 2

(
tr
(
Σ−1

n Σm

)
− 2 + (µk,n − µk,m)

T

× Σ−1
n (µk,n − µk,m) + ln

|Σn|
|Σm|

)
. (13)

By noting that Σn = Σm = σ2
ζI2, and given that µk,m =[√

Pc,k d
−η/2
c,k αZF cosϕk,m,

√
Pc,k d

−η/2
c,k αZF sinϕk,m

]
, and

µk,n =
[√

Pc,k d
−η/2
c,k αZF cosϕk,n,

√
Pc,k d

−η/2
c,k αZF sinϕk,n

]
Then by substituting Σn, Σm, µk,m, and µk,n in (13), then
the KLD for shared deployment communication system can
be found as [20, Corrolary 1],

KLDc,k =
λ α2

ZF Pc,k d−η
c,k

2M (M − 1)
(
Pr σ2

H d−η
c,k + Pr σ2

F d−η
c,k + σ2

n

)
ln 2

,

(14)
2) KLD for the Radar System: After collecting L snapshots,

the received signal matrix can be formulated as

Yr,t|Hq
=

√
Pr,t

N
αtA (θt)Wr,t q+Z̃r, (15)

where Wt,r ∈ CN×L = [wt,r,1,wt,r,2, · · · ,wt,r,l] and Z̃r ∈
CN×L =

[
ζ̃t,r,1, ζ̃t,r,2, · · · , ζ̃t,r,l

]
. By noting that yr,t|H1

[l] ∼
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CN
(√

Pr

N αtA (θt)wr,t,l, 2σ
2
ζ̃
IN

)
, then using this the KLD

can be derived from (13) using (15) as follows,

KLDr,t =
|αt|2 Pr,t d

−η
r,t |a(θt) Rx a(θt)

H |2

2N σ2
ζ̃
ln 2

(16)

By considering the derived KLD for all radar targets and
all served communication UEs, the weighted average KLD for
the overall ISAC network can be formulated as

KLDavg =

(
ccom

K∑
k=1

KLDc,k + crad

T∑
t=1

KLDr,t

)
, (17)

where ccom and crad are the weights for each system, with
K ccom+T crad = 1. The weights gives priority to the desired
system which allows for more flexibility and trade-off.

IV. POWER AND ANTENNA ALLOCATION

Effective power and antenna allocation is a critical design
factor for ISAC systems, as it directly impacts the system’s
sensing and communication capabilities. As well as, allocating
more resources to one system does not only reduce the
resources of the other subsystem, but also could result in
a considerable amount of interference which may lead to
system breakdown. Nevertheless, by optimising these param-
eters through maximizing the system’s KLDavg, a significant
improvement on the detection of radar targets and the quality
of communication among UEs can be achieved. This, in turn,
results in better overall system performance and effective
resource utilisation. In this section, we formulate two optimi-
sation problems for separated deployment and shared deploy-
ment. It is noteworthy mentioning that the shared deployment
utilizes all of the antennas for both systems, therefore, the
required computational resources are reduced by eliminating
the need for allocating the antennas, while in the separated
deployment the optimization algorithm needs to take into
account the allocation of both antennas and power.

A. Separated Deployment

The optimisation problem is formulated to maximise the
average KLD by optimally allocating a limited budget of
power and antennas among UEs and radar targets while
satisfying certain KLD requirements for every served device
(e.g. communication UEs and sensed targets). With the aid of
(17), the optimisation problem can be formulated as follows,

P1 : max
Pc,k,Pr,t,Nc,Nr

KLDavg(Pc,k, Pr,t, Nc, Nr) (18a)

s.t. At,L ≤ KLDr,t ≤ At,U, ∀t ∈ T, (18b)
Bk,L ≤ KLDc,k ≤ Bk,U,∀k ∈ K, (18c)
K∑

k=1

Pc,k +

T∑
t=1

Pr,t = PT, (18d)

Nc +Nr = N. (18e)

where At,L is the minimum KLD for the t-th radar target,
and Bk,L is the minimum KLD for the k-th UE, an upper

limit for the KLD can also be enforced with the use of
At,U, and Bk,U, for both targets and UEs, respectively. The
formulated P1 is a compact optimisation problem for our
system model, while the non-compact problem can be found
in (19), denoted as P2. This optimisation problem maximises
KLDavg by optimally allocating the power and the number
of antennas among UEs and targets in both systems while
maintaining a certain minimum KLD for each. Because the
antennas are allocated through the precoding process, they can
be allocated per subsystem, whereas a certain amount of power
can be allocated to each target and UE.

The discrete nature of antenna allocation and the continuous
nature of power allocation make optimisation challenging.
This problem can be formulated as a constrained MINLP
problem, which is known to be computationally expensive to
solve [30]. One possible approach for solving this problem is
using the GA approach, a metaheuristic optimisation technique
inspired by natural selection and genetics. GA generates a pop-
ulation of candidate solutions and iteratively improves them by
applying operations such as mutation, crossover, and selection.
This process continues until a stopping criterion is met, such
as reaching a maximum number of iterations or achieving a
satisfactory solution. GA can provide a global optimum, but
it requires significant computational power resources and may
not be suitable for real-time applications [31].

Therefore, in this paper, we propose RIPM which is a low-
complex heuristic and very effective algorithm. The proposed
RIPM manages to provide comparative results with much
less computational complexity when compared to GA. RIPM
algorithm aims at solving the antenna and power allocation
problem by exploiting an IPM with integer constraints as a
base structure. Accordingly, RIPM treats the discrete nature
of antenna allocation as a continuous variable and uses a
continuous optimisation approach to find the solution, where
in each iteration, the number of antennas Nr is rounded and the
number of communication antennas is found as Nc = N−Nr.
A pseudo-code for the introduced RIPM is provided below
in Algorithm 1 which explains the computations executed
to realise this algorithm. It is worth noting that RIPM is
an iterative algorithm that moves towards the solution by
following a central path in the feasible region while satisfying
the required constraints [32].

B. Shared Deployment

In shared deployment, only the power is optimally allocated
as both systems utilizes the whole antenna array, the optimi-
sation problem can be formulated similar to P1, as follows,

P3 : max
Pc,k,Pr,t

KLDavg(Pc,k, Pr,t) (20a)

s.t. At,L ≤ KLDr,t ≤ At,U, ∀t ∈ T, (20b)
Bk,L ≤ KLDc,k ≤ Bk,U,∀k ∈ K, (20c)
K∑

k=1

Pc,k +

T∑
t=1

Pr,t = PT. (20d)

The non-compact problem can be found in (19), denoted as
P4. This problem is solved using the IPM algorithm, which
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P2 : max
Pc,k,Pr,t,Nc,Nr

ccom

K∑
k=1

M (Nc −K + 1) Pc,k d−η
c,k

2 (M − 1)
(
Pr σ2

F d−η
c,k + σ2

n

)
ln 2

+crad

T∑
t=1

1

4

1.4427λt−
1

ln 2

∞∫
0

e−0.5ξ ln
(
I0
(√

λtξ
))dξ

+
1

2

−0.5λt

ln 2
+

e−0.5λt

2 ln 2

∞∫
0

e−0.5ξI0
(√

λtξ
)
ln
(
I0
(√

λtξ
))

dξ


s.t. (18b), (18c), (18d), and (18e)

P4 : max
Pc,k,Pr,t

(
ccom

K∑
k=1

λ α2
ZF Pc,k d−η

c,k

2M (M − 1)
(
Pr σ2

H d−η
c,k + Pr σ2

F d−η
c,k + σ2

n

)
ln 2

+ crad

T∑
t=1

|αt|2 Pr,t d
−η
r,t |a(θt) Rx a(θt)H |2

2 ln(2) (σ2
n + σ2

err1
d−η
r,t (σ2

w N Pc + Pr) + σ2
err2

d−η
r,t σ2

w N Pc)

)
s.t. (18b), (18c), and (18d)

(19)

Algorithm 1 Rounding-based Interior-Point Method for
MINLP

Require: F (x): objective function defined in (18a),
g(x): linear and nonlinear constraints defined in
(18b),(18c),(18d), and (18e),
x = {Pc,k, Prad,t, Nc, Nr}: continuous and integer opti-
misation variables

1: Set ϵopt = 10−6, ϵconstr = 10−6, and max iter = 1000
2: Define a modified objective function Fm(x):
3: Function Fm(x):
4: Round integer variables in x to their nearest integer

values, obtaining xr

5: Compute F (xr) using the original objective function
F (x)

6: Return F (xr)
7: End Function
8: Relax integer variables in the MINLP problem, creating a

relaxed problem
9: Initialize IPM parameters and starting point x0 for the

relaxed problem
10: Replace the original objective function F (x) with the

modified objective function Fm(x) in the relaxed problem
11: Set iteration counter k ← 0
12: repeat
13: Apply the IPM to the relaxed problem with the modified

objective function, updating the solution xk

14: Compute ||xk−xk−1||, the optimality tolerance opt tol
and constraint tolerance constr tol for the current so-
lution xk

15: k ← k + 1
16: until (opt tol < ϵopt and constr tol < ϵconstr) or k ≥

max iter
17: Obtain the final solution x∗ of the relaxed problem with

the modified objective function
18: Round the integer variables in x∗

19: return x∗

has a very low computational complexity. It is important to
note that the shared deployment optimisation problem has
less complexity from the separated deployment optimisation
problem and that is due to the fact that only power allocation
is required for the shared deployment, which makes this
optimisation problem a NLP, rather than a MINLP. The results
will show that not only the shared deployment has better

performance but lower resource allocation complexity as well.

V. COMPLEXITY ANALYSIS

Optimization problems often necessitate the need for algo-
rithms that provide a good trade-off between solution accuracy
and computational efficiency. Complexity analysis gives a the-
oretical perspective on this, while empirical analysis provides
practical insights. Here, we delve into the complexity of the
RIPM and contrast it with that of GA.

1) RIPM Complexity Analysis: The RIPM introduces a
hybrid approach, effectively capitalizing on the deterministic
search strategy of IPM while incorporating a rounding tech-
nique adept for MINLP problems.

For I iterations, RIPM’s estimated complexity is:

O(E + I × (i+ n3 + (k + 1)× E + n+m)), (21)

where E is the cost of evaluating the objective function and its
derivatives, this is assumed to be of constant time complexity,
n is the total number of variables, m is the number of
constraints, i is number of integer variables, I is the number
of IPM iterations and it is assumed with empirical verification
that for the given problem domain, the RIPM and IPM will
converge within a feasible number of iterations, and k is
the maximum number of objective function evaluations per
iteration.

The complexity of RIPM predominantly escalates with the
cube of the number of variables (n3), contingent on dense ma-
trix operations. Nevertheless, given the problem structure, ma-
trix operations remain tractable, and the rounding technique,
which could have been a potential source of discontinuities,
operates seamlessly.

2) GA Complexity Analysis: GA are recognized for their
heuristic nature and widespread search potential. The compu-
tational demands of GA, for G generations with a population
of size P , is estimated as [31],

O(G× P × L× F (n)), (22)

where L is the length of the chromosome (often proportional
to n), F (n) is the time taken for a single fitness evaluation
which is a function of the number of variables.

The complexity of GA is linearly related to the population
size, and the generation count, also the F (n) differs from
problem to problem and its influence is more dominant in our
problem. It’s noteworthy that the probabilistic and explorative
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nature of GA, while powerful, can sometimes lead to broader,
less-directed searches, which might not always be efficient.

When contrasting the complexities of RIPM and GA, it
becomes apparent that the RIPM’s structured and deterministic
approach holds a tangible advantage. The RIPM complexity,
while escalating polynomially with variables, remains moder-
ated by the IPM’s determinism and the efficient integration of
the rounding technique. Meanwhile, the GA linear dependence
on the population size and generations can render it demand-
ing, especially for larger populations or extended generations.
Our findings further accentuate this observation, showcasing
RIPM’s superior efficiency for the problem at hand.

3) IPM: The IPM for nonconvex NLP benefits from a
systematic search strategy that offers determinism, even in the
midst of nonconvexities. The IPM’s complexity, for a given I
iterations, can be depicted as [32],

O(I × (E + n3 +m× n2)), (23)

where the variables have same definition for RIPM. Our
empirical observations accentuate IPM’s ability to approach
solutions swiftly, minimizing the implied computational toll of
the n3 factor. GA has same complexity analysis for MINLP
as in NLP but the single fitness evaluation will go higher
in MINLP due to more variables and integers, GA heuris-
tic fabric require exhaustive function evaluations, especially
when precision is paramount. This inherent characteristic was
underscored in our experiments, where GA fell out compared
to IPM in execution rapidity and efficiency.

VI. NUMERICAL RESULTS

This section presents the performance results of the above-
introduced optimisation problem for both ISAC systems. The
optimisation is carried out for single-UE-single-target (SUST)
and MUMT scenarios. Mixed-integer GA and RIPM are
compared for the first scenario only, e.g., SUST, as running
the mixed-integer GA requires extremely high computational
complexity for the case of MUMT, which makes it unsuitable
for real-time applications compared to the RIPM. In the
simulations, GA population size is set to 50 times the number
of decision variables, with a crossover fraction of 0.8 and a
mutation rate of 0.2. The stopping criteria for GA include
reaching the maximum number of generations, which is set to
100 times the number of decision variables, or a stall in the
best fitness value for a predetermined number of generations.
While for the RIPM simulations, the stopping criteria for
RIPM is based on the maximum number of iterations which
is set to 1000. Furthermore, the optimality tolerance and the
constraint tolerance are set to 10−6. For MUMT scenario, a
number of 3 UEs and 3 targets have been considered for two
cases; the first case without upper limits, whereas upper limits
on individual KLDs have been enforced in the second one.
In all cases, the antenna separation is set to half wavelength,
the total transmit power is fixed at PT = 1, the covariance
matrix for the radar in the case of separated deployment is
Rx = INr

, and in the case of shared deployment Rx = IN ,
the target cross section is normalised to αt = 1 ∀t, and
QPSK modulation is used throughout the results. Moreover,

the variance of the channel estimation error of the IC process
is σerr = σerr1 = 0.01, the pathloss exponent is η = 3, which
is considered to model the effect of large-scale fading, and
the total number of antennas at BS is fixed at N = 20. In the
figures provided, the PR/No is chosen, so the optimisation
problem is in the feasible region. Unless stated otherwise,
ccom = crad = 1

K+T .

A. Separated Deployment

20 22 24 26 28 30 32 34

101

102

103

Fig. 2. RIPM and GA optimisation methods comparison for SUST scenario,
the minimum KLD requirement for the UE and target are B1,L = 20 and
A1,L = 5, respectively. The distances are dUE1

= 150 m, and dt1 = 220
m.

In Fig. 2, KLDavg and the individual KLD for both the UE
and the target are plotted using both RIPM and GA methods
for optimisation. As can be seen from the figure, KLDavg for
both optimisation methods is much higher than the KLDavg of
URA. Therefore, both optimisation methods show significant
improvement over URA method by maximising the KLDavg

and satisfying the minimum KLD requirements. In addition,
RIPM with integer constraint rounding and GA performances
are identical. It is important to note that because the UE is
closer to BS and has a higher minimum KLD requirement
than the radar target, it is allocated the rest of the resources
after the radar target’s minimum KLD requirement is satisfied.

As shown in Fig. 3.a, the system is generalised to multiple
UEs and targets using the RIPM optimisation method. The
performance of GA has not been considered in this figure
because it is computationally untraceable for this scenario. It
is evident from the figure that UE1 and UE3 for the URA
case are in an outage for the whole range of PR/No as they
do not satisfy the minimum KLD requirement, as well as,
targets T1 and T3 are in an outage at PR/No = 28 dB.
The optimal KLDavg improvement over the URA case is
still significant for MUMT scenario. It is important to note
that changing the KLD requirements will change the gained
improvement, as the minimum KLD requirement for UEs and
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Fig. 3. RIPM optimisation is used for MUMT scenario, the minimum KLD for each UE is B1,L = 10, B2,L = 5, and B3,L = 15, and for each target is
A1,L = 10, A2,L = 15, and A3,L = 5, where dUE1

= 150 m, dUE2
= 210 m, dUE3

= 100 m, dt1 = 250 m, dt2 = 180 m, and dt3 = 300 m.

targets affects KLDavg. It will decrease whenever a higher
minimum requirement is enforced on distant targets or UEs. In
addition, Fig. 3.a shows that the minimum KLD requirement is
satisfied for all UEs and targets, and the rest of the resources
are given to the target or UE that will provide the highest
KLDavg. In the considered scenario, T2 is the target that
provides the highest KLDavg, which is the closest target to
BS, even though UE3 and UE1 are closer to BS than T2,
this is because the communication system is very sensitive to
radar-interference as there is no IC applied at UEs.

In Fig. 3.b and Fig. 3.c, the same MUMT setup as Fig. 3.a
is used with the addition of upper limits applied on the KLD
of each of UEs and targets. The upper limits are introduced to
ensure fairness between UEs and targets. Once T2, the device
with the highest KLD, as shown in Fig. 3.a, reaches its KLD
upper limit, which is set to 50 bits for both Bk,U and At,U in
this simulation setup, the extra resources will be allocated to
the other UEs and targets in the order of their contribution in
the maximisation of KLDavg. The KLD for UE1 and UE3 in
the case of URA are in outages as they are below the minimum
KLD requirement.

B. Shared Deployment

The shared deployment MUMT ISAC system power is
optimally allocated by utilising the KLD in (19). Fig.4 shows
that the performance of shared deployment is superior to the
performance of separated deployment when the σ2

err2 is in
reasonable range, at the point PR/No = 30 dB, the separated
deployment KLDavg. is approximately 30 bits, while in the
case of σ2

err2 = 0.01, the KLDavg. is approximately 45 bits.
This shows that shared deployment system and moving to
more integration of both systems is the way forward. The
estimation error of radar parameter which is dictated by
the error variance σ2

err2 , affects the amount of information
received from the target which is reflected on radar KLD

and consequently on the KLDavg., more error leads to less
information, and as shown in the figure this gives decrease in
the KLD measure. It is also still evident from the figure that
UE1 and UE3 for the URA case are in an outage for the whole
range of PR/No as they do not satisfy the minimum KLD
requirement, as the whole communication system in URA
saturate at around 5.8 bits.

In Fig. 5, the same setup as Fig. 4.b is used with the addition
of upper limits applied on the KLD of each of UEs and targets.
The upper limits are introduced to ensure fairness between
UEs and targets just as shown in 3.b and Fig. 3.c for the
separated deployment. This is done for shared deployment and
the same thing is noticed where once T2, the device with the
highest KLD, reaches its KLD upper limit, which is set to 80
bits for both Bk,U and At,U in this simulation setup, the extra
resources will be allocated to the other UEs and targets in the
order of their contribution in the maximisation of KLDavg.

For the sake of completeness, the receiver operating char-
acteristic (ROC) curves are shown in Fig. 6 for all the targets
using the same MUMT parameters in Fig.3.a but with an
upper limit of 80 bits, this is done for both separated and
shared deployment antenna configuration. It is clear from the
figure that the performance of RIPM is superior to URA
in terms of radar detection capability, for all targets in the
separated deployment and for targets T1 and T2 for the shared
deployment, this is because the URA basically only focuses on
one system which is the one least susceptible to interference
while the other system is totally cut-off, this is why a power
optimisation is essential to ensure that both systems work
properly, the upper limit introduced makes sure more fairness
to not single out one UE or target.

As seen from the figure, T2 has the best probability of de-
tection trade-off with the probability of false alarm because it
is the closest target and allocated more resources. Furthermore,
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Fig. 4. RIPM optimisation is used for shared deployment MUMT scenario, the configuration is the same as Fig.3, it is done for multiple cases of σ2
err2
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Fig. 5. RIPM optimisation is used for shared deployment MUMT scenario,
the configuration is the same as Fig.3, with σ2

err2
= 0.01

the bit error rates (BERs) of UEs achieved by using RIPM for
both deployments at PR/No = 40 dB for both deployment
configurations are 0.0175, 0.0620, and 0.0009, respectively,
whereas a BER of 0.0610 for all UEs is obtained using URA,
it is important to note that the BER for each UE is determined
by the set KLD minimum requirement for that UE, which can
be changed to accommodate different BER requirements. By
comparing the results in this figure with those in Fig.3.a, it
can be realised that KLD measure can effectively characterise
ISAC system. This sort of characterisation can be observed by
the fact that a higher KLD results in better detection capability
for the radar subsystem and lower BER for the communication
subsystem. Apparently, the obtained results in this figure
reinforce the fact that the usage of KLD as a unifying and

homogeneous measure for ISAC system that provides a clear
system level trade-off between both subsystems, and thus it
can be effectively utilized as a standard measure for ISAC
system design purposes.

In Fig. 7, the probability of error can be observed for the
radar in both antenna deployment configurations, the opti-
misation works to increase the total KLDavg., satisfying the
constraints, minimum KLD requirements, and the upper KLD
fairness constraint. T2 is the nearest between the targets and
UEs, therefore, it will contribute the highest to the KLDavg.,
but to ensure it is not singled out, the upper limit is introduced.
In Fig. 7.b, the upper limit is reached for T2 at 26 dB, then the
extra power resources will go to the next target T1, and when
that target reaches the upper limit the extra resources will go
to the next target T3 at around 31 dB, similar thing happens in
Fig.7.a. but the upper limit for each target is reached at a higher
PR/No which shows that the shared deployment configuration
has superiority over the separated deployment. The URA can
be a bit better than the RIPM for T1 and T3 before the
point that they are given more resources, because the URA
does not have any upper or lower limit for either the radar
or communication systems, and the optimisation focuses the
minimum requirement for both systems and their equipments.

For the sake of computational complexity argument, the
convergence, optimality, and complexity of both optimisa-
tion methods, i.e., GA and RIPM, are investigated, as well.
The time and computational resources consumed by GA are
generally much more than RIPM due to the nature of its
search process (e.g. selection, crossover, mutation). In Fig. 8,
the convergence criteria is shown through plotting KLDavg

versus the numbers of iterations that are required for the
optimisation techniques to find the optimal solution. For
Fig.8.a, the convergence is explored for separated deployment
at PR/No = 20 dB, using the same simulation environment
used for SUST configuration in Fig. 2, where the RIPM
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Fig. 6. ROC curves for the MUMT scenario with upper limit of 80 bits using
RIPM and URA, at PR/No = 28 dB. (a) Separated deployment; (b) Shared
deployment.

method requires 10 iterations to find the solution, while GA
needs 164 iterations to find the same solution. This clearly
depicts that there is a massive difference in terms of the
number of iterations. Moreover, the number of times the
objective function is evaluated during the optimisation process
using GA is 6275 calculations, whereas it is 51 calculations
for the case of RIPM. Obviously, RIPM is a significantly
better candidate to achieve the allocation objective. Generally
speaking, the quality of the final solution determines the
optimality condition. It can be noticed from the figure that
the final solution for GA is 41.007 bits, whereas it is 40.736
for RIPM, and thus the percentage difference between them
is as little as 0.6631%. This shows that GA gives a very
tiny improvement over the RIPM regarding the final solution.
However, this tiny amount is not as proportional to the amount
of the functions calculations and the iterations difference
between the two methods.

In Fig. 8.b, the shared deployment convergence for both
the GA and RIPM is shown, this is done at PR/No = 20 dB,
using the same simulation environment used for the SUST
configuration in Fig. 2. This shows that GA falls in terms of
efficiency in the shared deployment as well, this is observed in
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Fig. 7. Probability of error for the radar in the MUMT scenario with upper
limit of 80 bits using RIPM and URA. (a) Separated deployment; (b) Shared
deployment.

the figure as the GA starts with infeasible points and only starts
searching in the right direction after 100 iteration, reaching
its feasible solution at around 140 iterations. The number of
objective function calculations for GA reaches around 2520
calculations in total, while the RIPM reaches the solution at
9 iterations with only 27 objective function calculations.

In Fig. 9, the CPU time versus the input size which is K+T ,
this figure shows the average CPU time it takes to perform
optimisation for both RIPM/IPM and GA in separated and
shared deployment configurations by varying the input size i.e
the number of continuous optimisation variables. This shows
in both deployment configuration how the RIPM and IPM
performs more efficiently in terms of time when compared
with the GA technique, which also backs our convergence
rate results.

Lastly, it is important to show the trade-off performance
between the two systems in response to the weights of each
system ccom and crad in (17). This kind of trade-off is
achieved by varying ccom from 0 to 2

T+K , calculating crad
using crad = 1−K ccom

T , and then plotting the achievable
KLDc against KLDr, where KLDc = ccom

∑K
k=1 KLDc,k

and KLDr = crad
∑T

t=1 KLDr,t. As can be observed from
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Fig. 8. Convergence evaluation for both RIPM and GA optimisation methods
for both deployment configurations. (a) Separated deployment for SUST; (b)
Shared deployment for SUST.
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Fig. 9. CPU time simulation for both RIPM and GA optimisation methods
for both deployment configurations.

Fig. 10, which depicts this trade-off for the shared deployment
scenario, the IPM optimised method provides a better trade-
off between the radar and communication system, and much
more controllability when compared to the URA or any fixed
power approach. When observing the boundary which is the
maximum achievable performance trade-off using the fixed
power approach and the IPM optimised trade-off, the optimi-
sation clearly provides a much better trade-off in comparison.
For example, the maximum achievable KLDc in Fig. 10 is
about 50 bits achieved when KLDr approaches 0, whereas a
KLDc of 90 bits is obtained using IPM at PR/No = 44 dB.
Some sort of discontinuity can be seen in Fig.10, in the x-
axis range of (3,21). This behaviour is attributed to the fact that
optimisation prioritises a system over the other after satisfying
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10-1

100
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103

Fig. 10. KLDc versus KLDr trade-off for shared deployment at PR/No =
44 dB, same MUMT system configuration from Fig.4.b, with relaxed con-
straints.

the minimum KLD requirement to get the maximum KLD
gain, this will make the system at a certain weight switching
the priority from one system to the other to provide optimal
KLD gain. This zone is considered infeasible and does not
provide maximum performance gain. In Fig.10, it is shown that
the IPM optimised method provides better trade-off between
the radar and communication system.

VII. CONCLUSION

In this paper, we explored new means for the allocation
of antenna and power resources in downlink ISAC system
to optimize its functionality. Unlike existing literature, we
applied the KLD metric as a unifying measure to merge
both subsystems into a singular integrated system, thereby
facilitating the allocation of antennas and power resources in
a novel manner. It was shown that this unifying KLD measure
can provide an efficient, clearer and more leaner ISAC design.

Both separated and shared ISAC modes of operation have
been considered. The findings were decisive in showing that
the shared deployment outperformed the separated one which
suggests that deeper integration offers better rewards and
hence a more promising direction for future ISAC systems.

Furthermore, the proposed RIPM algorithm was bench-
marked against the GA and URA approaches. Notably, we
delved into the MUMT scenario and a SUST one. The ob-
tained results demonstrated that the proposed RIPM provides
comparable performance to the optimal GA with significant
reduction in computational complexity. The results highlighted
that both GA and RIPM have an edge over URA, especially
in the realms of KLD, BER, and probability of detection.
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