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Abstract  
 
Monitoring indoor pollutant concentrations is integral in the efforts to improve indoor 
air quality in UK homes. The impact that the number and placement of monitors can 
have on the quantified pollutant exposure is an under-researched, yet potentially 
important consideration. To address this research gap, this work employed an 
EnergyPlus-CONTAM co-simulation approach to model fine particulate matter (PM2.5 
– indoor- and outdoor-sourced) and radon in four UK archetype homes: semi-
detached, mid-terrace, bungalow, and low-rise flat. Using data from only one or two 
locations in each home led to discrepancies in the estimated exposure, with root 
mean square errors reaching 600% for PM2.5, and 119% for radon. Collecting whole-
house data should be pursued, whilst generalising from a limited dataset should be 
done with caution. 
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1. Introduction 
 
Exposure to environmental air pollution is a leading driver of morbidity and mortality 
(1). It has been causally linked to an increased risk of several illnesses, including 
respiratory and cardiovascular diseases (2). Over recent decades, the monitoring of 
outdoor air pollution together with the introduction or improvement of standards and 
regulations has resulted in a decline in the emissions of pollutants with probable 
impacts on health (3). Efforts to reduce air pollutant concentrations indoors have not 
progressed as rapidly as those focused on outdoor air pollution (1,4), despite the 
impacts on global mortality being comparable according to the World Health 
Organisation (WHO); out of 6.7 million deaths attributed to air pollution in 2020, 3.2 
million were thought to be the result of exposure to household air pollution (5).  
 
Part of the challenge in developing standards to improve indoor air quality is the 
currently limited understanding of how air pollutant concentrations vary over space 
and time, within and between buildings (6). Improving our understanding requires 
wide scale and long-term monitoring of several pollutants for a diverse and 
representative set of buildings (7). This is especially important as we transition to 
better insulated buildings on our road to Net Zero. Changes to the airtightness and 
ventilation of buildings, and homes in particular, may have positive and negative 
effects on indoor air quality and health (8). Thus, monitoring of indoor air at the initial 
stages of this transition is crucial for avoiding locking in adverse effects, especially for 
the most vulnerable (7). 
 
An important consideration when monitoring indoor air quality is the number of 
sensors to be used and their placement (9,10). Modelling and empirical work on 
sensor placement within non-domestic buildings has offered valuable insights. 
Optimal sensor placement for an office setting, investigated by Yun and Licina 
through controlled chamber experiments, was shown to depend on the pollutant 
being investigated (9). A Computational Fluid Dynamics (CFD) approach was used to 
explore sensor placement within a laboratory room (10). Despite a growing body of 
research on the impact of sensor placement in monitoring indoor air, work that 
focuses on sensor placement within UK homes is lacking. In response to this 
research gap, this paper explores the effect that the number and location of sensors 
can have on quantifying pollutant exposure.  
 
The concentrations of two air pollutants, particulate matter with aerodynamic 
diameter of 2.5 μm or less (PM2.5) and radon, were simulated in four common 
archetype models of UK homes: a semi-detached, a mid-terrace, a bungalow, and a 
low-rise flat. Pollutant exposure was estimated for up to four occupants for each 
archetype, by considering the time assumed to be spent in each room based on 
previously published profiles. This exposure was compared against an approximate 
exposure; estimated using subsets of the data to represent the exposure that would 
be estimated if only some of the rooms were being monitored. Section 2 provides 
further information on the modelling framework and methods of estimating and 
comparing pollutant exposure. The results are presented and discussed in Sections 3 
and 4, respectively. 
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2. Methods 
 

A CONTAM-EnergyPlus co-simulation framework, capable of simulating indoor 
temperature and pollutant concentration in UK housing archetype models, was 
employed in this research. The characteristics of the archetype models and 
pollutants are summarised in Sections 2.1 and 2.2, respectively. An in-depth 
description of the modelling framework, is offered by Wang et al. (11). 
 

2.1 Archetype characteristics 
 
The layout of the four archetype models, presented in Figure 1, is based on work by 
Oikonomou et al (14). To limit the factors that vary between models, the U-values of 
the building fabric and airtightness of the four archetypes were assumed to be the 
same, as shown in Table 1. All four models were assumed to be constructed of solid 
walls with single-glazed windows and solid floor. The flat was assumed to be located 
on the ground floor. 
 
 

 

Figure 1 – Floorplans for the four archetypes. 
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Characteristics 
Mid-
terrace 

Bungalow Semi-
detached 

Flat 

Air permeability (m-3 h-1 m-2 @50Pa) 15 

Wall U-value (Wm-2 K-1) 1.7 

Window U-value (Wm-2 K-1) 4.8 

Floor U-value (Wm-2 K-1) 1.2 

Loft U-value (Wm-2 K-1) 0.4 N/A 

Roof U-value (Wm-2 K-1) 2.3 N/A 

Floor Area (m2) 142 89 92 54 

Table 1 – Building characteristics (12,13). 

All four archetypes were assumed to be naturally ventilated. Intermittent extract fans 
were modelled in the bathroom and kitchen, with the minimum extract rate as 
specified by Approved Document F of the Building Regulations 2010 (15). During the 
summer period, windows in the living room and bedrooms were modelled as open 
during occupied hours (Figure 2) if the indoor temperature exceeded 22 °C (16). The 
windows in other rooms were modelled as open during the daytime but closed at 
night. During the heating season, windows were modelled as closed, except in the 

Figure 2 – Modelled hourly occupancy profiles for a typical weekday and 
weekend day. The y-axis represents the proportion of time spent in each room. 
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kitchen and bathroom were open during cooking or showering. Heating was modelled 
using simple electric radiators and with a thermostat set point of 22 °C (17). Internal 
doors were constantly open except for: (i) the kitchen door during cooking, (ii) the 
bedroom doors overnight, and (iii) the bathroom and loo doors during use. 
 
Occupancy profiles developed in previous work were used in this study (17). The 
mid-terrace and bungalow houses were assumed to be occupied by two adults and 
two children (Figure 2). Both adults were assumed to sleep in bedroom 1, while each 
child was assumed to sleep in a separate bedroom. Adult 1 was modelled as 
spending more time in the kitchen during cooking activities than other occupants.  
The semi-detached house was assumed to be occupied by two adults (bedroom 1) 
and one child (bedroom 2). For the one-bed flat, only the two adult occupants were 
modelled. The presence profiles of the occupants in the semi-detached house and 
flat were the same as those in the mid-terrace house and bungalow. To simplify this 
analysis, and due to the negligible impact it would have on the modelling outcomes, 
the time that each occupant spent in the loo or bathroom was not considered. 
 

2.2 Pollutant modelling 
 

A whole-year simulation was run for all archetype models. The models were 
assumed to be located in Plymouth, an area with high geological radon levels (18), to 
examine the impact of monitor placement in homes where high indoor radon 
concentrations may be reached. The models were simulated using hourly 
meteorological data (including dry bulb temperature, solar data, wind speed and 
direction) for 2019, obtained from the Met Office MIDAS Open database (19). 
 
For each model, PM2.5 and radon were simulated at 5-minute timesteps, and their 
concentration was reported separately for each zone. Both indoor and outdoor 
sources were modelled for PM2.5. A summary of assumptions for indoor generation 
and deposition rates is provided in Table 2. The hourly profile of outdoor PM2.5 
concentration for 2019 was sourced from the Department for Environment Food and 
Rural Affairs’ (Defra) Data Archive (20). Radon was modelled as entering the house 
through the air leakage of soil gas radon from the ground using a pressure-driven 
model of radon entry, described in detail by Wang et al. (11). Other sources of radon 
entry (e.g. from outdoor air) were not considered since air leakage of soil radon gas 
is generally the dominant method (21). In modelling radon, we assumed the air 
permeance of the ground to be 10-3 m3/(m2 hPa) (21), and soil gas radon 
concentration to be 64 kBq/m3 (22). 
 

Contaminant activity Rate/Factor  Schedule 

PM2.5 emission from 

cooking 
1.6 mg/min 

Weekdays: 7.20-7.35, 18-18.30  

Weekends: 8.45-9, 12.30-13, 18-18.30  

PM2.5 deposition -0.39/h  24 h 

PM2.5 penetration factor 0.8 Windows closed 

PM2.5 penetration factor 1.0 Windows open 

Table 2 –PM2.5 assumptions based on Shrubsole et al (23). 
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2.3 Occupant exposure 
 
To estimate the exposure of each occupant to PM2.5 and radon, the following 
equation was used:  
 

𝑒𝑝,𝑖,𝑡 = ∑ 𝑜𝑖,𝑟,𝑡𝑐𝑝,𝑟,𝑡

𝑅

𝑟=1

 [1] 

 
where:  

• 𝑐𝑝,𝑟,𝑡 is the pollutant concentration for pollutant 𝑝, in room 𝑟 at time 𝑡 

• 𝑜𝑖,𝑟,𝑡 is an indicator variable that signifies whether individual 𝑖 occupies room 𝑟 

at time 𝑡, taking values of 1 or 0. Since an occupant can only be in one room 

at time 𝑡, ∑ 𝑜𝑖,𝑟,𝑡 = 1𝑅
𝑟=1  if the occupant is at home or ∑ 𝑜𝑖,𝑟,𝑡 = 0𝑅

𝑟=1  otherwise. 

• 𝑒𝑝,𝑖,𝑡 is the exposure of individual 𝑖 to pollutant 𝑝, at time 𝑡. 

 
The exact pollutant exposure for each occupant, as calculated from the full dataset of 
concentrations in the main rooms (kitchen, living room and bedrooms) was compared 
against the approximate exposure estimated when data on pollutant concentrations 
were available for only subsets of the rooms. To estimate the approximate exposure, 
the process described in Table 3 was followed. This process assumes that: (i) if data 
are only available from one room, that data offer the best indication of the occupant’s 
pollutant exposure at home, and (ii) if data from two rooms are available, day-time 
data from the living room or kitchen are most representative of the occupant’s 
exposure, while night-time data from a bedroom are preferred. Assumption (ii) 
depends on the assumed occupancy of individuals, and in this paper the occupants 
are not assumed to spend any time in their bedroom during daytime. 

Rooms for 
which data 
are available 

Process to estimate exposure 

Any one 
room 

All hours that occupants are at home are associated with data from 
that room, regardless of the location of the occupants in the home. 

Living room 
and one 
bedroom 

For occupants whose bedroom is being monitored: 

• For hours that occupants are in the kitchen, pollutant data were 
taken from the living room.  

For occupants whose bedroom is not monitored:   

• For hours that occupants are in the kitchen, pollutant data were 
taken from the living room.   

• For hours that occupants are in the bedroom, pollutant data 
were taken from the monitored bedroom. 

Kitchen and 
one bedroom 

For occupants whose bedroom is being monitored: 

• For hours that occupants are in the living room, pollutant data 
were taken from the kitchen (assumed to be more 
representative of daytime exposure than the bedroom). 

For occupants whose bedroom is not monitored:   

• For hours that occupants are in the living room, pollutant data 
were taken from the kitchen (assumed to be more 
representative of daytime exposure than the bedroom).  
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• For hours that occupants are in the bedroom, pollutant data 
were taken from the monitored bedroom. 

Table 3 – Process to estimate approximate exposure using data from a subset 
of the rooms. 
 
The approximate exposure for each archetype, occupant and pollutant was 
calculated for five synthetic experiments representing data being available for a 
subset of rooms, as summarised in Table 4. The first three experiments considered 
the case where only one room is being monitored, with the last two experiments 
looking at the effects of monitoring the main bedroom (Bedroom 1) and the kitchen or 
living room. This is a non-exhaustive list of room combinations, but it was considered 
representative of typical practices of indoor air quality monitoring (24,25).  
 

Experiment Living 
room 

Kitchen 
  

Bedroom 1 Bedroom 2 Bedroom 3 

K N Y N N N 

L Y N N N N 

B1 N N Y N N 

LB1 Y N Y N N 

KB1 N Y Y N N 

Table 4 – Rooms being monitored per experiment. 
 

2.4 Comparing exposure 
 
To compare the exposure estimated for each occupant from the full dataset against 
the approximate exposure, four performance metrics were used: (i) the Root Mean 
Square Error (RMSE), (ii) the Mean Bias Error (MBE), (iii) the Coefficient of Variation 
of Root Mean Square Error (CV(RMSE)), and (iv) the Normalised Mean Bias Error 
(NMBE). 
 
RMSE for pollutant 𝑝 and individual 𝑖 is defined as (26): 
 

𝑅𝑀𝑆𝐸(𝑝, 𝑖) =  √
1

𝑇𝑖
∑ (𝑒𝑝,𝑖,𝑡 − 𝑒𝑝,𝑖,𝑡

(𝑎)
)

2
𝑇𝑖

𝑡=1

 [2] 

 

𝑇𝑖 is the total number of timesteps that individual 𝑖 is at home over the year, and 𝑒𝑝,𝑖,𝑡
(𝑎)

 

is the approximate pollutant exposure. 
 
MBE is defined as (27): 
 

𝑀𝐵𝐸(𝑝, 𝑖) =  
1

𝑇𝑖
∑(𝑒𝑝,𝑖,𝑡 − 𝑒𝑝,𝑖,𝑡

(𝑎)
)

𝑇𝑖

𝑡=1

 [3] 
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MBE represents the mean difference in exposures, and it is subject to cancellation 
errors; its sign indicates whether the model underpredicts (positive) or overpredicts 
(negative) compared to the monitored data. 
 
Both RMSE and MBE return values in the same unit as the quantity being evaluated, 
in this case, pollutant exposure. To transform the error estimates into percentage 
estimates, the mean occupant exposure (𝑒𝑝,𝑖̅̅ ̅̅ ) was considered (27): 

 

𝐶𝑉(𝑅𝑀𝑆𝐸(𝑝, 𝑖)) =  
1

𝑒𝑝,𝑖̅̅ ̅̅
𝑅𝑀𝑆𝐸(𝑝, 𝑖)  × 100 % , [4] 

𝑁𝑀𝐵𝐸(𝑝, 𝑖) =  
1

𝑒𝑝,𝑖̅̅ ̅̅
𝑀𝐵𝐸(𝑝, 𝑖)   × 100 % . [5] 

 
 

3. Results 
 
RMSE, MBE, CV(RMSE) and NMBE were estimated for each pollutant, archetype 
and occupant. The results for PM2.5 are presented in Section 3.1, Figures 3 and 4, 
and for radon in Section 3.2, Figures 5 and 6. For each figure, the y-axis and bar 
height correspond to the non-normalised metrics (RMSE and MBE), while the 
percentage-based value above or below each bar corresponds to the normalised 
metrics (CV(RMSE) and NMBE). It should be highlighted that the mean occupant 
exposure, used to normalise RMSE and MBE (Equations 4 and 5), may differ 
between occupants and archetypes. 

3.1 PM2.5 comparison 
 
For adult 1, who is the occupant present in the kitchen during cooking activities, 
PM2.5 data from only the kitchen (experiment K) results in the smallest RMSE 
amongst the experiments focused on data from just one room (Figure 3). This is the 
case regardless of the typology. For experiment K, RMSE ranged from 9.1 μg/m3 in 
the bungalow to 21.4 μg/m3 in the flat. In comparison, experiment L and B1 RMSE 
ranged between 31.8-62.2 μg/m3 and 31.5-62.2 μg/m3, respectively. In terms of 
CV(RMSE), the errors associated with experiment L or B1 ranged between 242-
270%, whereas the errors associated with experiment K ranged between 56-121%. 
Collecting data from the kitchen and bedroom 1 (experiment KB1) reduces the RMSE 
for adult 1, when compared to using data only from the kitchen, but the improvement 
is small (0.3-0.5 μg/m3). Looking at the tendency to under- or over-predict (Figure 4), 
data from only the kitchen results in overprediction for adult 1, with the MBE (NMBE) 
ranging from -0.5 μg/m3 (-4%) in the bungalow to -4.4 μg/m3 (-29%) in the mid-
terraced house. On the other hand, collecting data only from the living room or 
bedroom 1 results in an underprediction of up to 14.4 μg/m3 (63%; flat – living room).  
 
For all other occupants, the effect of utilising data from only one room is reversed. 
Utilising data only from the kitchen results in the largest RMSE and MBE for all 
occupants, except adult 1, and for all typologies. As adult 2 and the children spend 
little time in the kitchen during cooking activities, utilising data collected in the kitchen 
to estimate their exposure leads to an overprediction (MBE) of up to 16.8 μg/m3 
(NMBE of 155%; flat – adult 2). Supplementing kitchen data with bedroom 1 data 
results in a marginal improvement of 3.6 μg/m3 (flat – adult 2). Contrary to the case of 
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adult 1, the use of data from only the living room or bedroom 1 results in smaller 
RMSE and MBE for all other occupants. The differences in RMSE between using the 
living room or bedroom 1 data are marginal, as is the improvement from collecting 
data from both rooms.  
 
  

Figure 3 – Root Mean Square Error (RMSE; y-axis and bar height) and 
Coefficient of Variation of RMSE (percentages above each bar) of PM2.5 
exposure per occupant depending on the data being used. Each occupant’s 
bedroom is specified next to their name.  
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Figure 4 – Mean Bias Error (MBE; y-axis and bar height) and Normalised MBE 
(percentages above or below each bar) of PM2.5 exposure per occupant 
depending on the data being used. Each occupant’s bedroom is specified next 
to their name.  

3.2 Radon comparison 
 
Focusing on RMSE and CV(RMSE), the smallest errors are associated with the two 
adults (Figure 5). Amongst the cases where data from only one room were used 
(experiments K, L, B1), the use of bedroom 1 data (experiment B1) resulted in the 
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smallest RMSE for adult 1 (17.2-53.7 Bq/m3) and 2 (11.5-39.6 Bq/m3), regardless of 
the archetype. The use of data from two rooms tends to decrease the RMSE,  
although the changes can be small, and vary between occupants and typologies. 
Contrary to the case of the adults, the use of bedroom 1 data, on their own or in 
combination with other room data, do not consistently result in the smallest RMSE for 
the children. For the cases where bedroom 1 data are used (B1, KB1, LB1), the 
mean RMSE for the children is 55.4 Bq/m3, 120% greater than the mean RMSE for 

Figure 5 – Root Mean Square Error (RMSE; y-axis and bar height) and 
Coefficient of Variation of RMSE (percentages above each bar) of radon 
exposure per occupant depending on the data being used. Each occupant’s 
bedroom is specified next to their name.  
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the adults (25.2 Bq/m3). The greatest CV(RMSE) was observed for child 1 in the 
semi-detached model, with a value of 119%. 
 
Based on Figure 6, the mean discrepancy for the two adults is smaller than that of 
the children for most comparable cases. Looking at the bungalow, the approximate 
exposure for the adults can on average be smaller or greater than the exact 
exposure depending on the data used (MBE: -9.0-2.2 Bq/m3; NMBE: -16.5-3.9%). 

Figure 6 – Mean Bias Error (MBE; y-axis and bar height) and Normalised 
MBE (percentages above or below each bar) of radon exposure per occupant 
depending on the data being used. Each occupant’s bedroom is specified 
next to their name.  
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For the children, regardless of the room being monitored, the approximate exposure 
is smaller – on average – than the exact exposure (MBE: 6.8-23.6 Bq/m3; NMBE: 
9.8-30.7%).  
 
Another trend that can be observed in Figure 6 relates to the mid-terraced and semi-
detached; the two archetypes that have two storeys, with the living room and kitchen 
located on the ground floor and the bedrooms located on the first floor. For the mid-
terraced and semi-detached archetypes, there is consistent overprediction (negative 
MBE) for all occupants when only the living room data are used (experiment L). The 
same effect is not observed when data are only taken from the ground floor kitchen 
of the mid-terraced and semi-detached house; the MBE for experiment K can be both 
positive or negative, depending on the case, and have a smaller magnitude to that 
experiment L. However, the RMSE errors of the kitchen data are comparatively high 
to those of the living room. 
 

4. Discussion 
 
Multizonal modelling of radon and PM2.5 in four archetypical UK housing models was 
used to explore the potential effects that the number and location of air quality 
monitors has in quantifying pollutant exposure. By comparing the modelled exposure 
for each occupant – estimated from the complete dataset – to the approximate 
exposure based on subsets of the rooms, this work revealed that discrepancies exist 
and differ depending on the pollutant and archetype being considered, and the 
occupant for whom exposure was estimated. 
 
The modelling of PM2.5 captured the effect of indoor and outdoor sources. Indoor-
sourced PM2.5 was the result of cooking in the kitchen, leading to a substantial and 
localised generation of PM2.5 at 1.6 mg/min. Utilising data from the kitchen was 
shown to result in the smallest errors for the occupant (adult 1) present in the kitchen 
during cooking. On the contrary, for occupants who spent little or no time in the 
kitchen during cooking, the use of kitchen data led to larger discrepancies and 
consistent overprediction of their PM2.5 exposure. Pollutant exposure is a function of 
the time spent in different rooms, and the levels of pollutant concentration in each 
room during this time. Thus, collecting data from rooms with strong pollutant sources 
is important when estimating the exposure of occupants who spend time in such 
rooms when concentration levels are high. However, the use of this data alone can 
be misleading for occupants that spend a limited amount of time in that room when 
the pollutant concentration level is low. 
 
Radon entry was modelled to be the result of pressure-driven ingress of radon gas 
from the ground (11). Thus, the entry of radon gas was broadly uniform across the 
rooms at the ground floor level of each house (except for small variations due to the 
indoor temperature in each room). For occupants assumed to sleep in a given 
bedroom, data from that bedroom resulted in the smallest errors when only one room 
was being monitored. The errors reduced further if the occupants’ bedroom and 
another room was being monitored. However, utilising data from a different bedroom 
to the one that the occupants use for sleep can result in substantial differences, even 
when the bedrooms are on the same storey. This is likely due to differences in air 
exchange between rooms that might be the result of their physical characteristics 
(number of exposed walls, number of openings, orientation etc.) and differences in 
occupant activities.  
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For multi-storey houses (semi-detached and mid-terraced archetypes), the bedrooms 
were assumed to be on the first floor. The errors associated with the use of radon 
data from the bedroom (experiment B1) of multi-storey houses were larger than the 
errors associated with single-storey houses (bungalow and ground-floor flat), and this 
was true regardless of the occupant being considered. Further, the use of data from 
the living room (experiment L), resulted in consistent overprediction of occupant 
exposure. This is due to the greater accumulation of radon in the living room, since it 
is located on the ground floor. While the RMSE errors were comparatively large when 
data from the ground floor kitchen were used (experiment K) as for the living room in 
the two-storey archetypes, the MBE was smaller than for experiment L and could be 
both positive and negative. Thus, the use of kitchen data resulted in periods of 
underprediction, and periods of overprediction – likely due to its ventilation schedules 
– that largely cancelled out these differences. However, given the large RMSE of 
experiment K, and the fact that ventilation practices vary between dwellings, the use 
of radon data only from the ground-floor kitchen should not be considered a reliable 
proxy for occupant exposure in multi-storey houses. Data from rooms on all storeys 
are likely to provide a more accurate picture of occupant exposure, at least for 
occupants whose bedroom is being monitored.  
 

4.1 Implications 
 
Findings from this work have important implications for academic research and 
industry practice. The differences in occupant exposure observed within this study 
suggest that the number and placement of monitors is an important consideration, 
and using a limited number of monitors could result in potentially substantial 
discrepancies between the estimated and true indoor pollutant exposure. 
 
In applications where measurements may be used to estimate and quantify the 
health impacts of exposure to different pollutants, using a limited number of sensors 
may introduce bias. As an example from this paper, the mean bias for one of the 
occupant’s (child 1) of the bungalow model ranged between 13.7 Bq/m3

 and 
23.6 Bq/m3, corresponding to normalised bias (in relation to the occupant’s mean 
annual exposure) of 18-31%. In the case of the mid-terraced model, the mean (and 
normalised) bias for adult 2 ranged from -2.6 Bq/m3

 (approximately -2%) to -
65.6 Bq/m3 (-60%). Reducing this bias requires the monitoring of all rooms where 
substantial exposure is likely to occur.  
 
If factors such as cost prevent the comprehensive monitoring of dwellings, it is 
important to prioritise rooms depending on the pollutant being monitored and the 
typical use of each room by each occupant. Gathering data on typical use per room 
and by each occupant ahead of a monitoring campaign, in addition to identifying key 
pollutant sources, may allow for a subset of rooms to be effectively selected for 
monitor placement. Where the placement of monitors is not informed by the location 
of sources, and occupant activities, and instead an approach of monitoring the same 
subset of rooms regardless of the pollutant being considered, there is a risk of 
consistently under- and over-estimating the exposure for some occupants. This was 
most pronounced in this study when looking at exposure of PM2.5 for occupants that 
were, or were not, present in the kitchen during cooking activities, with the 
normalised mean bias error ranging from -162% to 63%. 
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4.2 Strengths and weaknesses 
 
While there is a growing body of research on the topic of sensor placement (9,10), to 
our knowledge, this is the first paper to focus on indoor exposure to PM2.5 and radon 
in UK homes. We employed a state-of-the-art co-simulation method that draws on 
the strengths of two established building physics software, EnergyPlus and 
CONTAM. By examining the impact on two pollutants with different generation 
mechanisms, in four UK archetype models and separately for up to four occupants 
per model, we demonstrated that differences in building typology and occupant 
activities can influence the approximate estimates of pollutant exposure.  
 
While this novel work has resulted in findings of importance to academia and the 
industry, it is important to reflect upon its limitations. As with any modelling approach, 
it is but a simplification of real life and the quantitative estimates derived from this 
process depend on the modelling assumptions made. However, modelling can offer 
useful insights in this case, and our assumptions regarding pollutant generation, 
occupant activities and dwelling characteristics are based on published literature and 
aimed to represent typical values. Nevertheless, variability in many of the key model 
inputs exists within the UK housing stock, and a comprehensive investigation of the 
effects of this variability was not pursued within this study. Thus, the findings cannot 
be generalised to other homes and should be considered within the context of our 
case study models and their assumptions. Some of our key modelling limitations 
include: (i) modelling outdoor levels of PM2.5 as spatially homogeneous, (ii) 
considering only cooking as a source of indoor PM2.5, (iii) considering only four 
occupant profiles, (iv) assuming well-mixed indoor air. Finally, while focusing on five 
options for sensor placement was sufficient in highlighting the impact that this choice 
has on monitoring occupant exposure, it was not an exhaustive study of all possible 
combinations.  
 

5. Conclusions 
 
The importance of monitoring indoor air quality in UK homes, especially as wide-
scale changes to the housing stock are required to reach Net Zero, has been 
previously highlighted. To contribute to the effective monitoring of indoor air, a 
modelling approach was used to investigate the impact that monitor placement has 
on quantifying indoor occupant exposure to fine particulate matter (PM2.5 – indoor- 
and outdoor-sourced) and radon. The approximate occupant exposure, estimated 
using data from only a subset of the rooms, was shown to differ from the occupant 
exposure estimated using the complete dataset. The differences depended on the 
sensor location, the occupant, pollutant and archetype being considered.  
 
In the case of PM2.5, where exposure was largely driven by cooking activities, 
collecting data only from the kitchen exaggerated the exposure for occupants that 
were not present during cooking. On the other hand, not monitoring such a room was 
shown to underestimate the exposure of someone present during cooking activities 
by up to 63% (normalised mean bias error - NMBE). Monitoring radon concentration 
in the main bedroom was revealed to be important in quantifying the radon exposure 
of occupants that sleep in that bedroom. However, substantial differences (NMBE: -
56-30%) were observed when data from the main bedroom were used to estimate 
radon exposure for occupants that did not sleep in the main bedroom, even when the 
bedrooms were on the same storey. For multi-storey homes, collecting data from 
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rooms on every storey would likely provide a more accurate picture of occupant 
exposure, at least for occupants whose bedroom is being monitored. Overall, if 
possible, all rooms where substantial exposure to a given pollutant should be 
monitored. Given that differences were shown to exist between occupants of the 
same modelled dwelling, generalising measurements from rooms typically occupied 
by some occupants to the rest of the household should be done with caution. 
 
This work contributes directly to the body of knowledge that can be used to develop 
guidance on monitoring indoor air quality in UK homes. Future modelling and 
empirical work should seek to explore more variations of dwelling and occupant 
characteristics, consider more pollutants, and define best practice for different 
scenarios and policies. 
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