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Power utilities, especially those that generate electricity by burning fossil fuels, produce
significant amounts of carbon emissions. Mitigation of CO2e-emissions can be achieved

by replacing power plants with renewable power installations and by adopting carbon-
sequestration technologies. Physical upgrades are expensive, but carbon taxes, or the

purchase of certificates and allowances on a voluntary carbon market, can be costly, too.

Carbon costs may increasingly become a threatening liability for power utilities, eating
into profits and undermining the financial viability of emission-intensive electricity gen-

eration. Thus, we consider an asset-and-liability, structural firm model to investigate the

creditworthiness of a generic power utility. The utility’s assets dynamics are driven by
the financial returns generated from the sold electricity for a set tariff which is modelled

by a simple stochastic process. The liabilities not only depend on fuel, running, and

depreciation costs, but also on the costs of CO2e-emissions. As a case study, we consider
Eskom, the South African power utility. We show the evolution of Eskom’s default prob-

ability under various fuel mix plans and technologies (as per SA’s Integrated Resources

Plan (IRP) 2019), and under the Network for Greening the Financial System (NGFS)
carbon price scenarios. The obtained results and insights present a trying path ahead,

especially for carbon-intensive power utilities.

Keywords: Generation of electricity; power utility; fossil fuels; carbon emissions; climate
change; emission reduction policies; carbon price scenarios; asset & liability; default

probability; Eskom.

1. Introduction

Consider a power utility firm that generates electricity. For simplicity, we may

assume that electricity generation is the firm’s sole line of business. To generate

electricity, the power utility relies on a fuel mix that includes fossil (chiefly coal and

gas) and nuclear fuels, and renewable sources like aeolian, solar, and hydro power.

In the process of generating electricity, the power utility releases greenhouse gases,

of which amounts are measured in CO2-equivalent (CO2e) quantities. The more

carbon-intensive and the more of such fuels are used, the more CO2e greenhouse

gases are emitted. In jurisdictions where CO2e-emissions are penalized, by, e.g.,

taxation, carbon certificates and allowances, generating electricity by using CO2e-

intensive energy sources can become expensive. Depending on the severity of the

imposed penalization and how carbon-heavy the electricity generation is, the re-

sulting carbon costs can lead to a firm becoming financially distressed, in the sense

that the firm’s default risk is untenable for financial investors or underwriters. In

the case where an existing power utility no longer has the ability to access financial

markets, or no longer can be underwritten by a third-party (e.g., a government), the

firm will have to close and its assets become stranded. One can imagine a scenario

in which CO2e-intensive electricity generation is no longer financially viable and a

whole sector (e.g., energy providers) becomes stranded, unless fundamental physi-

cal and financial redesign are implemented. Kenyon et al. (2024, 2023b,a) propose

the carbon equivalence principle (CEP) and show how accounting for carbon flows

in all financial instruments (e.g., loans, credit lines, etc.) impacts the valuation of

assets and consequently investment decision-making. The shift in the assessment of

what constitutes a financially viable investment is exposed by considering project

finance, and in particular the financing of power plants of various types. Kenyon
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et al. (2023b) conclude that under the Network for Greening the Financial Sys-

tem (NGFS) scenarios (Network for Greening the Financial System (NGFS) 2022)

leading to meaningful emissions reductions, all electricity generation that relies on

fossil-fuel combustion is already financially untenable. That is, new fossil-fuel power

plants are already stranded assets, from the start. So, associated questions emerge:

What strategy should be pursued in the case of an ageing network of fossil-fuel

power plants? Should these (a) be refurbished, (b) refurbished and retrofitted with

emissions-reducing technology, or (c) decommissioned and replaced with “green”

power plants? These questions become increasingly topical as networks of power

plants age, and maintenance and depreciation costs grow. Here, an important ex-

ample is Eskom, South Africa’s monopoly power utility, generating most electricity

by burning coal. Eskom relies on old power plants, and is often unable to satisfy the

electricity demand in South Africa, so much so that power cut schedules must be

implemented across the country to safeguard the electricity grid. While, in a coal-

rich country as South Africa, refurbishing the existing coal-fired power plants and

building new ones seems to be an obvious solution to guarantee current and future

electricity demand, the picture changes dramatically when the costs of carbon emis-

sions are accounted for. This is especially the case, if CO2e-costs are projected into

the future to 2050 based on emission-abating carbon price scenarios as provided by,

e.g., the NGFS. Then, questions pertaining a power utility’s future fuel mix plans,

the refurbishment of power plants and adoption of emissions-reducing technolo-

gies (e.g., carbon capture and storage), and outright replacement of fossil-fuel-fired

power plants with renewable electricity-generating installations gather importance

and pace. Though our case study focuses on South Africa, the challenge faced by the

energy sector in tackling climate change mitigation and adaptation is not limited to

a specific country, see, e.g., Mi & Sun (2021) and Lau et al. (2023). In the context

of the European power sector, we refer to Cormack et al. (2020).

In this paper, we focus on the financial impact of carbon emissions on power

utilities under climate scenarios. In particular, we investigate how the default prob-

ability of a power utility that has issued debt, is affected by the costs arising from

CO2e-emissions. We take a structural firm approach, see Merton (1974), to price

the equity (assets minus liabilities) of a stylized power utility and to derive the

probability of default used to price a zero-coupon bond issued by the firm. In this

approach, a firm defaults when the liabilities exceed the assets. In the case of a

power utility, whose core business is to generate and sell electricity, the main source

of assets growth is derived from the sold electricity. On the other hand, the firm’s

liabilities are driven by fuel, running, maintenance and depreciation costs, in ad-

dition to the CO2e-emissions costs. For all of these costs, along with the assets,

we produce simple dynamical models with the necessary parameters to capture

enough of the power plants features and mode of operation. We then go on to cal-

ibrate the model’s degrees of freedom to available power plant specifications and

market data. Once a specific power utility is chosen, its calibrated default proba-
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bility can be obtained and compared with the market-implied one. The calibrated

model can then be used to create scenarios for the default probability of a power

utility given the carbon price scenarios provided by, e.g., the NGFS. This in turn

allows for an analysis of a power utility’s default risk depending on, for example, its

fuel mix plans, adoption of emission-abating technologies, and imposed regulatory

emissions-reducing policies, all of which impact the carbon emission liability (and

the other cost sources), and thus the credit-worthiness of a power utility. As a case

study, we apply our modelling setting to Eskom, South Africa’s monopoly power

utility (Eskom 2022), to shed light on Eskom’s probability of default on its issued

debt, once Eskom’s carbon footprint is accounted for. We find that, given Eskom’s

heavy reliance on fossil fuels (mainly coal) to generate electricity, it has substantial

exposure to carbon price risk. In most carbon price scenarios out to 2050, bar those

with little to no impact on emissions reduction, Eskom’s credit-worthiness declines

inexorably. With current policies in place, our findings show that Eskom is already

in a financially non-viable state when its carbon (price) risk exposure is taken into

account.

This paper is organised as follows: In the next section, we introduce the asset-

and-liability structural firm model for pricing defaultable discount bonds, and thus

we also obtain the expression for the probability of default in this setting. Then we

go on to model the assets and liabilities of a generic power utility with electricity

generation as their core business, before offering brief suggestions about how to

use our model setting. In Section 3, we focus on Eskom as a case study. Here, we

gather enough data to produce a stylized version of South Africa’s actual power

utility and calibrate our asset-and-liability model. We obtain an excellent fit to

Eskom’s market-implied default probability even though we work with a rather

simplistic stochastic process for the electricity sell price. We provide graphs showing

the resulting term structure and time-evolution of Eskom’s default probability for

different fuel mix plans and under various carbon price scenarios. We also derive the

minimum electricity price for Eskom to remain solvent given its asset and liability

profile under different carbon cost scenarios until 2050. In the last section we offer

a few concluding remarks. Details regarding the optimization method employed to

calibrate our asset-and-liability model can be found in the appendix.

2. Power Utility Firm Model

We base our analysis of a power utility firm on a simple asset-and-liability model

that we design to reflect the main income and cost sources of such a company. This

model allows us to study the influences of different carbon price scenarios as well

as investment scenarios on the firm, after fitting it to current market data available

to us.

In the following, we describe the general modelling framework with the possible

options of how to use it. The implementation of the model is available in the GitHub

repository (Krach et al. 2023).
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The focus of this work is to quantify carbon cost liabilities under different carbon

price scenarios and the profitability of a power utility firm in conjunction with these

liabilities. In particular, we focus on the Scope 1 carbon emissionsa of a power utility

firm, i.e., those emissions which the company can influence directlyb. Moreover,

we focus on their main CO2e-emissions, which are generated by burning fuels to

produce electricity, while we ignore the comparably small emissions caused by the

transportation of the fuels.

2.1. Asset-and-Liability Model

We use a Merton structural firm value model, see Wang (2009). At time t ≥ 0,

we define the equity E(t) of a firm as the difference between its assets A(t) and

liabilities (or debts) L(t), i.e.,

E(t) = A(t)− L(t). (2.1)

However, instead of assuming that A(t) follows a Black–Scholes model and that the

debt is only due at maturity, we instead suggest the use of data-driven modelling

of A(t) and L(t) as the main income and cost sources of a power utility firm. In

particular, we model these quantities on a time grid t0 < t1 < · · · < tm < · · · <
tN suitable for the application at hand (e.g., corresponding to months or years)

and survey whether the company defaulted at time step tm. For simplicity, we

assume that the time grid has equidistant steps ∆t. One could adopt a continuous-

time modelling approach; however, for practical purposes, a discrete-time model

is sufficient. To keep notation light, we use subscripts m ∈ {0, . . . , N} whenever

quantities correspond to time tm, e.g., we write Am for the assets value A(tm) at

time tm. We assume that t0 is the reference (e.g., current) time, at which the initial

equity E0 = A0 − L0 is known. Then, throughout time, assets and liabilities are

accumulated as described in Sections 2.4 and 2.5 below, until the maturity date.

2.2. Discounting and Inflation

Discounting is used to value future income streams and costs in today’s terms. We

introduce a bank account process Bm in terms of which we define a discounting

factor by

Dmn :=
Bm

Bn
, (2.2)

over the time interval [tm, tn], where m < n ∈ {0, . . . , N}. Moreover, depending on

the currency denomination, the valuation of equity may be subject to inflation for

aScope 1 emissions are the direct emissions of a company, while scope 2 and 3 emissions are

indirect emissions, which the company causes by the energy it uses (scope 2) and all emissions
caused by suppliers to the company and customers of the company (scope 3).

bWe note that for a power utility company this usually also includes their scope 2 emissions,

since they produce their needed energy themselves.
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which we introduce an inflation factor (Imn). This factor is defined as the quotient

of a nominal (zero-coupon) bond price process Zmn and its associated inflation-

linked (zero-coupon) bond price process ZI
mn with maturity tn. At bond maturity,

i.e., m = n, the inflation factor Inn equals the (consumer, retail) price index value

prevailing at time tn.

2.3. Probability of Default and Zero-Coupon Bond Price

The asset and liability price processes (Am)m=0,...,N and (Lm)m=0,...,N are defined

on a filtered probability space (Ω,F ,F = (Fm)m=0,...,N ,Q), where Q is the market’s

pricing measure, and the price processes are (Fm)-adapted. In the following, all

expectations are with respect to this probability measure.

The probability of default P d
mn conditional on tm < tn ≤ tN (implicitly assuming

that no default occurred before or at tm) is defined for any time tn ∈ {tm, . . . , tN}
by

P d
mn := P d(tm, tn) := Q(∃m ≤ k ≤ n : Ak ≤ Lk | Fm) := E

[
I{∃m≤k≤n :Ak≤Lk} | Fm

]
,

(2.3)

and its term structure is given by tn 7→ P d(tm, tn), for tn ≥ tm. The corresponding

defaultable zero-coupon bond (ZCB) price process (Zd
mn) with recovery rate R = 0

and maturity tn ≤ tN , is given by

Zd
mn := Zd(tm, tn) := E

[
DmnI{∀s≤n :As>Ls} | Fm

]
. (2.4)

The tn-parametrized term structure of the defaultable ZCB is given by the function

tn 7→ Zd(tm, tn), for tn ≥ tm.

More realistic assumptions. Our definition of default, as the event occur-

ring when a firm’s equity becomes negative, i.e., E(t) ≤ 0, is rather elementary. It

implies that the equity owners (e.g., shareholders) do not intervene unless the firm’s

assets are less than the liabilities, in which case they would liquidate all assets to

pay back the liabilities—or as much as possible if E(t) < 0. In such a situation,

the equity owners lose their entire capital. More realistically, equity owners usu-

ally declare bankruptcy when E(t) ≤ G(t) for some positive quantity G(t) ≥ 0c,

a covenant defined as, e.g., a fraction of current assets G(t) = p · A(t) for some

p ∈ [0, 1]. This way, liquidating all the assets to pay back the liabilities leaves the

equity owners with a capital remainder that amounts to G(t). Furthermore, it is

rather common in the event of a default—independently of the choice of G(t)—that

debt is restructured (according to a rescue plan) instead of a drastic liquidation of

the firm’s assets (Schönbucher 1998). In this case, bond holders agree on foregoing a

fraction q ∈ [0, 1] of their (original) claims to provide rescue capital that is invested

in the defaulted firm. Furthermore, the recovered fraction R = 1 − q is not paid

out in “cash”, but in new defaultable bonds with the same maturity. Since these

bonds can also default, Schönbucher (1998) defines stopping times τ1 < τ2 < · · ·

cBy setting G(t) = 0 we get back our previous definition.
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representing the default times of the company. At each default time τi, a loss quota

qi ∈ [0, 1], implying a recovery rate Ri := 1− qi, is agreed on such that the default-

able ZCB with maturity T pays out Q(T ) =
∏

τi≤T Ri, i.e., what is left after all

recoveries. Therefore, the price Zd
mT at time tm ≤ T of the defaultable ZCB with

maturity T and recovery is

Zd
rec(tm, T ) := E [D(tm, T )Q(T ) | Fm] .

To link this to our asset-and-liability model, we define τ0 = 0 and R0 = 1 and

τi := inf{t > τi−1 |E(t) ≤ G(t)}. (2.5)

The corresponding recovery rates Ri can either be fixed in advance (market stan-

dards are Ri ∈ [0.4, 0.8]) or defined as Fi-measurable random variables. Moreover,

at the default time τi, the liabilities change, which is expressed by a jump in the

liabilities value L(τi) = Ri · L(τi−) at the default timed.

In this work, we are mainly interested in the probabilities of default, because

they are quoted in the market, hence, allow for calibration to market data without

the need of modelling ZCB with recovery. Nevertheless, we will also show the term

structure of the corresponding ZCB prices with zero-recovery, where an extension

to bond prices with recovery is straightforward following the discussion above. Since

the default probabilities P d
mn are increasing as a function of the maturity tn, the

term structure tn 7→ P d
mn does not allow to investigate a firm’s future financial via-

bility without taking into account the entire time period. An alternative may be to

consider different starting dates tm along with their corresponding term structures.

However, this would require one to define the state of the model at tm (i.e., fix a

scenario in Fm \ Fm−1). Instead, we propose to use the instantaneous probability

of default at time tm, given by

P d
m ≡ P d(tm) = Q(Em ≤ Gm), (2.6)

0 ≤ m ≤ N , which is well-defined in our discrete-time setting. The function tm 7→
P d(tm) of this probability is not (necessarily) increasing, and thus provides one with

a measure of how financially viable a firm is at each instant tm ∈ {t0, t1, . . . , tN}.

2.4. Modelling of Assets

Typically, power utility companies sell two major goods, these are electricity and

gas. Generating electricity causes substantial CO2e-emissions world-wide. Electric-

ity generation was responsible for 43% of carbon emissions in 2020, see Climate

Watch (2020), and CO2 emissions from energy combustion and industrial process

dThis definition of the jump of the liabilities L at default implies that the default times

defined in (2.5) are well-defined in the sense that τi > τi−1, as long as Ri is chosen such that
E(τi) = A(τi)−Ri · L(τi−) > G(τi). Assuming that G(τi) = G(τi−) and A(τi) = A(τi−), this is

equivalent to Ri <
A(τi−)−G(τi−)

L(τi−)
.
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accounted for 89% of energy-related greenhouse gas emissions in 2022, see Inter-

national Energy Agency (IEA) (2023). Gas sales do not cause scope 1 emissions,

if emissions arising from extraction and transportation are ignored. Therefore, we

only consider modelling the electricity-producing branch of a power utility firm in

what follows. Furthermore, for simplicity, we do not consider income from financial

investments or subsidiary companies of the power utility firm. Thus, the main in-

come source for such a firm is the sale of electricity, which is calculated as the sold

energy times the prevailing electricity price πelect
m and, where necessary, discounted

to the time at which the income is computed. The amount of sold energy is calcu-

lated as the power output capacity κrunm , at which all power plants run on average in

the period (tm−1, tm], multiplied by the length of the time period ∆tm = tm− tm−1

and a factor ψi ∈ [0, 1] that determines how much of the produced energy is sold

(transmission losses, e.g., influence this factor). Hence, for a given initial asset value

A0 the asset process (Am)m=0,...,N is defined by

Am =
A0

D0m
+

m∑
i=1

κruni · ψi · πelect
i

Dim
∆ti, (2.7)

where, for i ≤ m = 1, . . . , N , the output capacity (κrunm ), the electricity price (πelect
m ),

and the discount factor (Dim) are stochastic processes.

2.5. Modelling of Liabilities

In line with the simplifying assumptions for the modelling of the power utility’s

income stream, we do not consider possible debt or interest payments like the pay-

back of bonds or their coupons. Hence, we model the liabilities as the main costs

that arise from generating electricity.

Fuel mix. We first introduce the notion of a fuel mix (sometimes referred to

as “energy mix”) for a power utility and all related quantities. This is the firm’s

composition of different power plant types which amount to the entire energy-

generating portfolio. Power plant types include coal, gas/diesel, nuclear, hydro-

power, wind, and solare. Let J be the set of indices for the different types of

electricity-generating plants. We use the standard convention that for each energy

type j ∈ J the maximal generation capacity κj max
m (i.e., its maximal power output)

of all power plants of type j during the period (tm−1, tm] is known. However, the

maximal capacity is not achievable, since, for example, a photo-voltaic power plant

can only produce as much electricity as there is convertible sunshine. The capacity

realization constant γjcrf ∈ (0, 1) is an average that adjusts the maximal capacity

to generate electricity with all power plants of type j at time tm to its realizable

capacity (or power output) given by

κj rlzm = γjcrf · κ
j max
m .

eIn this work, we consider prototype power plants for each energy type with their specifics
reported in Table 1. In particular, the different energy types used in this work are listed in the

table.
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Hence, if the power plants of energy type j run at full realizable capacity, then

they produce κj rlzm · ∆tm of electricity in the period (tm−1, tm]. However, usually

only a fraction, defined by the power production factor γj ppfm ∈ (0, 1), is actually

produced by the power utility, such that its electricity production meets the demand.

In particular, we assume that the power production factor γj ppfm is determined

such that the produced electricity γj ppfm · κj rlzm ·∆tm equals the actually produced

electricity amount in period (tm−1, tm]. In other words, γj ppfm is the fraction of the

realizable power output at which the power plants run on average in the period

(tm−1, tm]. So, we define the average running power output capacity,

κj runm = γj ppfm · κj rlzm , (2.8)

such that we may write the electricity amount (matching the actually produced

amount) generated by plant type j in period (tm−1, tm] as κj runm ·∆tm. The total

maximal generation capacity (power output) is

κmax
m =

∑
j∈J

κj max
m . (2.9)

Similar expressions can be obtained for κrlzm and κrunm . Given a fuel mix, the pro-

portion of the maximum capacity in the period (tm−1, tm] for generation type j is

given by (κj max
m /κmax

m )j∈J . Similar expressions hold for κrlzm and κrunm . We refer to

these as the maximal realizable and running proportional fuel mixes, respectively.

Costs for generating electricity. In what follows, we list the costs which

are considered in our setting. The list is non-exhaustive, so we focus on the main

cost sources. Costs that are not included in the list below fall under “additional

costs”.

(1) We introduce the average price πj fuel
m per unit of fuel type j, averaged over

∆tm, for each plant type j ∈ J . Moreover, for each j ∈ J , let φj be the fuel

consumption rate per generated unit of electricity. Then, the total fuel costs in

the period (tm−1, tm] amounts to

Cfuel
m =

∑
j∈J

φj · κj runm · πj fuel
m ·∆tm.

(2) The running costs Crun
m over the period ∆tm are a combination of the labour

and maintenance costs C labour
m and Cmaint

m , respectively. In principle, these costs

could be linked to the fuel/plant type j and its generated electricity and as-

sociated emissions cost. However, the corresponding cost factors are hard to

determine. Therefore, we shall model these costs as incremental running costs,

which can be inferred from a power utility’s balance sheet. The incremental

quantity is adjusted for inflation over the interval (tm−1, tm], and is propor-

tional to the change in the realizable power output over the same time period.

Hence, the running costs are given by

Crun
m =

κrlzm

κrlzm−1

· Crun
m−1 · Im−1m · ∆tm

∆tm−1
.
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For clarity, we emphasize that a discrete-time quantity indexed by m ap-

plies over the interval (tm−1, tm] and one indexed by m − 1 is applicable over

(tm−2, tm−1]. The labour and maintenance costs might change depending on the

energy mix, which is not reflected in the expression above. This implies that

the running costs are the same for each realizable unit of power output, inde-

pendently of the fuel type. Therefore, a better definition would link the running

costs to the fuel types and their maximal, realizable (or average) running power

output. Although this is achievable in our setting, we keep the simplification

above. In absence of the needed cost factors, the obtained results hold, at least

as a good proxy if the energy mix does not change significantly over time.

(3) For power plant type j ∈ J , we define the depreciation factor djm during

(tm−1, tm] per unit of maximal capacity. This is the capital amount per unit of

maximal capacity by which the value of a power plant generating electricity on

fuel type j depreciates. For power plant type j, let πj
build be the capital cost at

t0 for the construction of a power plantf with maximal capacity Kj
max and a

lifespan lj . We emphasize that Kj
max is the maximal capacity of one electricity-

generating plant of type j, as opposed to the aggregate maximal capacity κj max
m

of all plants of type j in a network. Then, the depreciation factor djm over ∆tm
is given by

djm =
πj
build

Kj
max · lj

∆tm.

We use the simplifying convention that an investment into a new power plant

does not directly change the overall asset-and-liability balance of the firm, since,

at the time of funding the new power plantg, it is an exchange from cash to the

equal value now presented by the new power plant. However, the power plant

loses value over time (since it is only operational for its lifespan lj), where we

assume equal value reduction in each time period until it becomes worthless at

the end of its lifespan. Since we compute the depreciation of prototype power

plants (these might differ from those brought online by a specific power utility

firm), we introduce a depreciation adjustment γdf that is useful for the calibra-

tion of the model to market data. To compute the depreciation cost at a future

time tm ≥ t0, we adjust the value d
j
m by inflation. Since the power plant’s value

increases with inflation, future depreciation costs also increase with inflation.

Equivalently, building the same power plant at a future time tm costs more

fFor simplicity, we consider typical prototype power plants, with their specifics reported in

Table 1. Moreover, we assume that these prototype power plants can be scaled linearly to any
wanted size such that we only need to consider the proportional costs per capacity unit of these

prototype plants for each energy type.
gFor further simplification, we assume here that the power utility firm pays for a new power

plant at the moment it becomes operational.
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than at an earlier time t0 by a factor of I0m. We have

Cdep
m := γdf · I0m

∑
j∈J

djm · κj max
m ,

where tm > t0. By this definition of the depreciation cost, one can increase the

capacities of the different energy types over time, without the need to account

for the investments into new power plants, since these investments are paid

over the future time periods through the depreciation. On the other hand, we

assume that reductions of the maximal capacities are made at the end of the

lifespan of a power plant, or are compensated by selling the respective power

plant exactly for the future depreciation costs (such that no additional costs

arise). Otherwise, the power production factor of the respective energy type

γj ppf can be adjusted so to model the reduced amount of electricity that is

produced for a certain plant type while the maximal capacity does not change.

(4) The CO2e emission costs Cemiss
m at time tm play a central role. Their impact

on the financial viability of electricity-generating power plants is considered

under different future scenarios for the CO2e price π
CO2e
m . For each energy type

j ∈ J , let ej be the amount of CO2e-emissions per unit of generated electricity.

Recalling the average power output capacity κj runm of a power plant of type j

over the period (tm−1, tm], we compute the total CO2e-emissions produced over

the period (tm−1, tm] by all power plant types in the network by

Em =
∑
j∈J

ej · κj runm ·∆tm.

Since we compute the emissions of prototype power plants, i.e., emissions of

the actually installed plants might differ, we introduce an adjustment factor

γef that is useful for calibrating the emissions model to market data. Then, the

financial costs due to CO2e-emissions during (tm−1, tm] are

Cemiss
m = γef · Em · πCO2e

m .

In Section 3.1, we shall consider carbon price scenarios, in particular the NGFS

scenarios, and their usage for building liability scenarios potentially faced by a

power utility due to their CO2e-emissions and future carbon price evolution.

(5) Finally, the additional costs Cadd
m can be used to model any other costs not

included in the costs defined above. For example, additional investment costs

when building a new power plant, which are not covered by the depreciation

costs, could be included in Cadd
m .

We can now determine the financial liability process (Lm)m=0,...,N of a power utility

firm, generating electricity based on a certain fuel mix profile, that accounts for the

costs listed above. We have,

Lm =
L0

D0m
+

m∑
k=1

1

Dkm

(
Cfuel

k + Crun
k + Cdep

k + Cemiss
k + Cadd

k

)
, (2.10)

where L0 is the initial liability at time t0.
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2.6. Calibration and Suggested Usage of the Model

We work with a data-driven approach to fit the model-implied default probabilities

to the market-implied ones. In the case study we focus on in Section 3, we inform as

many of the model ingredients as possible with market data (or make assumptions

about how to extrapolate them deterministically) and model the remaining quanti-

ties with parameterised stochastic processes. Then, for any fixed set of parameters,

the model-implied default probabilities can be approximated by Monte Carlo by

using i.i.d. sampling from the stochastic processes and by approximating (2.3) by

the corresponding empirical mean. Hence, the model can be calibrated to the mar-

ket default probabilities by solving the inverse problem of finding the parameters

such that the model-implied default probabilities match the market default proba-

bilities as well as possible—a goodness-of-fit measured by the Euclidean norm. The

calibrated model, equipped with the fitted parameters, can be used to investigate

the impact of various carbon price scenarios. Here we take the view that financial

markets (at least significant portions of it) have not yet priced future carbon price

developments (steered by climate change policies) in the firm’s financial viability. In

particular, we study how a power utility firm’s default probabilities change under

different (i) carbon price scenarios, and (ii) fuel mix development strategies, mod-

elled by different scenarios for the construction of new and decommissioning of old

power plants, which influences the fuel mix of the generated electricity.

3. Eskom: South Africa’s State-Owned Power Utility Firm

In this section, we apply the model developed in Section 2 to South Africa’s state-

owned power utility firm, Eskom. It has a monopoly position in the electricity

market generating approximately 90% of South Africa’s electricity supply (Eskom

2023a). First, we describe the market data and our considered scenarios in Sec-

tion 3.1 followed by the stochastic modelling approach for the electricity price in

Section 3.3. Based on those, we calibrate our model in Section 3.4 and investigate

the impact of different carbon price and fuel mix development scenarios on Eskom’s

financial viability in Sections 3.5 and 3.6.

3.1. Market Data and Scenarios

We describe the market data for the variables introduced in Section 2. We focus on

describing the data qualitatively and give their source. When not stated, the exact

values can be found in the data configuration of our implementation (Krach et al.

2023).

Eskom’s last financial report was published dated 31 March 2022. So, we use 1

April 2022, which is the beginning of Eskom’s 2022/2023 fiscal year, as starting date

t0. Yearly time steps are used (the corresponding time step is ∆t = 8760 hours)

such that tm corresponds to 1 April 2022 +m, for m ∈ {0, . . . , N}, where N = 28

correspond to 28 yearly steps, i.e., an end date of 1 April 2050. This time horizon
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is chosen because many climate-related targets and strategies are determined with

an end date of 2050, especially the 2015 Paris Agreement (UNFCCC 2018).

Inflation and discounting factors. The South African discount and infla-

tion factors Dm and Im are derived from the South African nominal sovereign

(SAGBs) and inflation-linked bonds, respectively. These can be retrieved from

Bloomberg with base date t0 for all available maturities. The inflation factor is

obtained as the quotient of the nominal and inflation-linked bond for each available

maturity (in the case that the term structure is needed). Linear interpolation is then

used to determine the discount and inflation factors for each year. Similarly, the US

inflation and discount factors, IUS
m and DUS

m , respectively, are computed from the

corresponding US bonds.

Market default probabilities and credit ratings. The market survival

(non-default) probabilities of Eskom are retrieved from the Eskom bonds quoted

on Bloomberg with base date t0 for all available maturities. The market default

probabilities are computed by subtracting the survival probabilities from one. Linear

interpolation is used to obtain the default probabilities at any step tm on the time

grid. To better understand what the computed default probabilities signify in a

financial context, we link the S&P Globalh long-term issuer credit ratings (ranging

from “AAA” to “D”) to the default probabilities obtained for Eskom. We retrieve

from Bloomberg, the 5Y, 10Y and 20Y value of the yield curves corresponding to the

ratings between “AAA” and “B-”, where “AAA” is the most creditworthy (lowest

default probability) rating. For each credit rating, its respective default intensity λT
with maturity T ∈ {5, 10, 20} is computed as the credit spread between this yield

curve value and the corresponding US government bond’s yield curve value (which

is used as a reference). These default intensities are extrapolated to any maturity

T by

λT =


λ5, 0 ≤ T < 10,

λ10, 10 ≤ T < 20,

λ20, 20 ≤ T,

as is standard practice. Then the probability of default P d(T ) corresponding to

each credit rating with maturity T ≥ 0 is given by

P d(T ) =
1− e−λTT

(1−R)
, (3.1)

where the 40% recovery rate market standard is used, i.e., R = 0.4.

Power plant (fuel) types and fuel prices. We consider the power plant

types (which we also refer to as fuel types) listed in Table 1. Since the combined-cycle

single shaft turbines can be powered by diesel and by gas, their power plant specifics

are the same, but their emission and fuel specifics differ. The values for Kj
max, π

j
build

hhttps://www.spglobal.com/ratings/en/index
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and τ j are taken from (Kenyon et al. 2023b, Table 1). The values for the CO2e-

emissions are taken from (US Energy Information Administration 2022a). As stated

in the documentation by the National Energy Regulator of South Africa (NERSA)

(2023b) (Paragraphs 8.7.14 to 8.7.17, Table 72), Eskom pays a special coal price of

672.9 ZAR/ton in 2023, fixed by the National Energy Regulator of South Africa

(NERSA). This is approximately 39.74% of the market coal price. The current fuel

price πj fuel
m for diesel is taken as the average of Eskom’s normal contract prices for

diesel, as stated in (Business Tech 2023). The fuel amounts φj for coal is taken from

(National Energy Regulator of South Africa (NERSA) 2023b, Paragraph 8.7.16),

and for diesel from (US Energy Information Administration 2022b). The fuel price

πj fuel
m at time tm for LPG-gas (the type which is used by Eskom) is computed as

the mean of the prices stated in (South African Department of Mineral Resources

and Enegy 2023), and its fuel amount φj is taken from (ELGAS 2022). For nuclear

energy, the fuel price πj fuel
m and fuel amount φj are taken from (World Nuclear

Association 2022). The price stated in USD as of September 2021 is converted (spot)

to South African Rand (ZAR), using first the US inflation calculator (US Bureau

of Labor Statistics 2023) to adjust for inflation to t0. The currency is converted at

the (t0) exchange rate of 14.5954 ZAR/USD. For future fuel prices we use a simple

extrapolation of the current fuel prices instead of a stochastic model, so to keep our

model simple. In particular, we scale the current fuel prices (except for coal) with

the US inflation factor IUS and discount them with the US discount factor DUS.

We use US factors instead of South African ones because the commodity market

is based on US dollars. Hence, these prices are subject to US inflation. Moreover,

discounting by the US factor, instead of the South African one, adjusts directly for

the different future foreign exchange rates. For coal, which is mined in South Africa

and where the price is set by NERSA, we scale and discount with the South African

inflation factor I and discount factor D.

CO2e emission price scenarios and fuel cost efficiency. The CO2e price

data for the six most common scenarios (Net Zero 2050, Below 2◦C, Divergent Net

Zero, Delayed Transition, Nationally Determined Contributions (NDC) and Current

Policies) are obtained from the Network for Greening the Financial System (NGFS)

portal Network for Greening the Financial System (NGFS) (2023). These prices are

given in 2010 USD, and thus are US inflation-adjusted. We adjust them by inflation

to t0 and convert them to ZAR, using the same procedure as above. In our model,

we discount future carbon prices by the US discounting factor DUS (as for the fuel

prices) to tm. We add the No-Cost scenario, where CO2e trades at the constant

price of zero, and the scenario of the South African Carbon Tax (SACT) (South

African Revenue Service (SARS) 2023) that is computed according to its definition

by an annual increase of the current rate by South Africa’s inflation factor I and

discounted by the South African factor D to tm. The CO2e price dynamics in these

eight scenarios are plotted in Figure 1. One sees that the SACT approximately

coincides with the Current Policies scenario. By using the data of the different
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Table 1. Power plant types with technology characteristics, capital costs and life span. NB: Carbon

capture and storage (CCS), (B)ZAR = (billion) South African rand, MW = Megawatt, KWh =
Kilowatt-hour.

j Abbre-

viation

Technology Size

(MW):

Kj
max

Capital

cost

(BZAR):

πj
build

Lifespan

(Years):

lj

Capacity

realiza-

tion

factor:

γjcrf

CO2e-

emissions

(kg/KWh):

εj

Fuel amount

per KWh:

φj

Fuel price at

t0 (ZAR per

amount

unit): πj fuel
0

1 Coal Ultra-supercritical

coal (USC)

650 37.247 40 0.85 0.328 0.610 kg 0.673

2 Coal

(CCS90)

USC with 90% CCS 650 59.535 40 0.85 0.033 0.610 kg 0.673

3 Diesel Combined-cycle

single shaft (diesel

fired)

418 7.064 40 0.87 0.253 0.303 l 21.093

4 Gas Combined-

cycle single shaft

(gas fired)

418 7.064 40 0.87 0.181 0.074 kg 31.118

5 Gas

(CCS90)

Combined-cycle

with 90% CCS (gas

fired)

377 14.581 40 0.87 0.018 0.074 kg 31.118

6 Nuclear Nuclear-small mod-

ular reactor

600 57.900 40 0.9 0 2.78 · 10−6

kg

25485.758

7 Hydro Conventional

hydropower

100 8.290 50 0.5 0 0 0

8 Wind

(onshore)

Wind onshore 200 3.941 25 0.38 0 0 0

9 Wind

(offshore)

Wind offshore 400 27.279 25 0.39 0 0 0

10 Solar Solar photovoltaic

(PV) with tracking

150 3.065 30 0.158 0 0 0

fuel types (Table 1), the fuel prices and the CO2e-emissions, we compare the cost

efficiency of all fuel types in different CO2e price scenarios, as presented in Figure 2.

At the time of writing, Eskom is in a transition phase, whereby it is moving from

a previous environmental levy, which amounts approximately to 0.035 ZAR/kg, to

the new SACT, which is currently 0.159 ZAR/kg. According to current information,

Eskom will pay the environmental levy until end of 2025 and the SACT starting

from 2026 (Eskom 2023c, p. 116). We assume that the market uses this combined

CO2e price scenario (of environmental levy for the first four years and SACT there-

after) for pricing Eskom’s assets and liabilities. Therefore, we calibrate our model to

market data assuming this scenario. While it is certain that Eskom will be paying

the environmental levy until 2026, it is possible that the levy will not be replaced

by the SACT, but by a different, more expensive CO2e price scenario, see Eskom

(2023c, p. 116). In Sections 3.5 and 3.6, we therefore use the combined scenarios of

environmental levy until 2026 followed by the different NGFS or the SACT CO2e

price scenarios to illustrate their impact on the viability of Eskom. Only the No-

Cost scenario is not combined with the environmental levy, and it is used as baseline

for comparison.

Eskom-specific data. We consider the South African power utility firm Es-

kom SOC Ltd (Eskom), which is a monopoly holding the responsibility of supplying
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Fig. 1. NGFS, South African Carbon Tax, and No-Cost CO2e price scenarios. No discounting is

applied, i.e., prices are not divided by D to obtain non-discounted prices in ZAR.

the majority of electricity in South Africa. It is entirely owned by the South African

government, and it is accountable for generating and distributing electricity, serving

industries and municipalities across the country. Furthermore, Eskom buys electric-

ity from independent power producers (IPP) and international sources based in

southern Africa (Eskom 2022). Eskom’s latest balance sheet (Eskom 2022) and the

corresponding integrated report (Eskom 2023c) refer to the end of the fiscal year on

31 March 2022, and therefore represent the starting values at t0. The relevant data

for our purpose is shown in Table 2. Moreover, Eskom’s current fuel mix (Eskom

2023a,d) is illustrated in Table 3, where we treat pumped storage hydro plants as

standard hydro plants. The actually produced capacities κj run0 are derived from

Eskom (2023c, p. 77) by dividing the stated produced energy amounts by the hours

per year (8760 hours). The power production factors γj ppf can then be derived via

(2.8). All of Eskom’s fuel type capacities are listed. We first note that Eskom’s

theoretically realizable annual energy production is 376.575 TWh. Comparing this

to the produced electricity, Eskom’s overall power production factor amounts to

γppf0 = 58.87%. Moreover, the produced and imported electricity, when compared

to the sold electricity, implies an energy sales factor of ψ0 = 86.14%. Based on

these calibrated parameters, the model-implied CO2e-emissions are e0 = 37.358

megatons (MT), which is much smaller than Eskom’s reported value. According to

Eskom’s Carbon Footprint Report (Eskom 2022), these emissions stem from burn-

ing fuels, mainly coal, only. Therefore, we suspect that the higher level of emissions
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Fig. 2. Cost comparison of all different energy types in different scenarios for the emission price.

Table 2. Eskom’s balance sheet data as of 31 March 2022. NB: BZAR = billion ZAR, MT = million
tons, TWh = terawatt hours.

Equity 235.314 BZAR

Annual depreciation costs 32.009 BZAR

Annual maintenance costs 24.113 BZAR

Annual labour costs 32.985 BZAR

Annual sold electricity 198.3 TWh

Annual produced electricity 221.7 TWh

Annual electricity imports 8.5 TWh

Annual CO2e emission 207.230 MT

are due to older technology used in Eskom’s coal power plants than assumed in our

study. For the model calibration of the emissions level to the available data, we set

γef = 554.71%, where Eskom’s coal, gas and diesel power plants are not equipped
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Table 3. Eskom’s energy mix with the maximal capacities κj max
0 , the realizable capacities κj rlz

0

(computed with the respective γj
crf factors), and the actually produced capacities κj run stated in

megawatt (MW), together with their respective ratios κj
0/κ0 and the implied power production

factors γj ppf

.

j Source κj max
0 Ratio κj rlz0 Ratio κj run0 Ratio γj ppf0

1 Coal 44013.0 84.88% 37411.0 87.027% 21860.7 86.38% 58.43%

3 Diesel 2078.3 4.01% 1808.1 4.21% 267.1 1.06% 14.77%

4 Gas 342.0 0.66% 297.5 0.69% 44.0 0.17% 14.77%

6 Nuclear 1934.0 3.73% 1740.6 4.05% 1415.5 5.59% 81.32%

7 Hydro 3385.4 6.53% 1692.7 3.94% 1682.9 6.65% 99.42%

8 Wind Onshore 100.0 0.19% 38.0 0.09% 37.8 0.15% 99.42%

Total 51852.7 100% 42988.0 100% 25308.0 100% 58.87%

with carbon capture and storage (CCS) technology. Similarly, the model-implied

depreciation cost is Cdep
0 = 81.382 billion ZAR (BZAR), which is much larger than

the market value. This is most likely due to lower cost bases in South Africa com-

pared to the prototype costs listed in Table 1. To calibrate the model depreciation

costs to market data, we set γdf = 42.93%.

Future fuel mix till 2030. South Africa’s Integrated Resource Plan (IRP) of

2019 (South African Department of Mineral Resources and Energy 2019) states the

planned addition and decommissioning of power plants that will be implemented

between 2023 and the end of 2030. In Table 4 we show the planned changes relevant

to the present study, i.e., excluding storage projects and the unspecified listings in

the category of “other”. Considering the large model-implied/calibrated emission

factor γef = 554.71%, we assume that newly added coal, gas and diesel power plants

will operate with CCS technology. Together with γef this leads to CO2e-emissions of

55.4% of the emissions of these plants without CCS technology, which is a reasonable

compromise for our modelling approach. In particular, it is not clear whether (and to

what extent) Eskom invests in CCS technology in their new power plants. However,

it is reasonable to assume that the new technology is more CO2e-emission efficient

than the old coal plants that are still in use. Since Eskom is also aware of its

environmental impact, the assumption that newly built plants have average CO2e-

emissions between the current prototype plants with and without CCS technology

seems justified. For gas-fired power plants with CCS technology, we assume that

the power production factor γj ppf0 is the same as without CCS technology, since the

limiting factor here is the cost of production. In contrast to this, the limiting factor

for coal-fired plants is the old facilities’ poor conditions, which often need to be shut

down involuntarily due to technical problems. Hence, it is plausible that newly built

coal-fired plants will be operated with a high power production factor, since burning

coal is comparably cheap for Eskom. The same reasoning holds true for nuclear
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plants, therefore it seems reasonable to use the same factor for “clean coal”. To

additionally take into account that decommissioned coal-fired plants will be those,

which already now do not have a satisfactory output capacity (due to technical

problems), we increase the factor for the newly built “clean coal” plants further to

γj ppf0 = 90%i. South Africa’s wind farms are onshore, so we shall assume that added

wind farms will also be onshore. This is further justified considering that South

Africa has enough “unused” land (compared for example to countries in Europe)

such that they are able to built the more cost-efficient onshore wind farms. Moreover,

the IRP 2019 includes using gas, instead of diesel, to power electricity generation

given that emission costs are higher when burning diesel. Thus, we assume that any

newly introduced “gas & diesel” power plant will be gas-fired. At the same time,

we keep the currently diesel-fired plants in this category and do not assume that

these are switched to gas-fired plants. In absence of more precise information, the

latter two assumptions together seem to be a reasonable compromise between the

usage of (the more efficient) gas- and (the currently more used) diesel-fired plants

for our modelling approach. Hence, we define the future maximal capacity κj max
m

starting from the current maximal capacities reported in Table 3 and following the

changes listed in Table 4. In particular, we make the conservative assumption that

capacity changes listed for year m are implemented as of the start of the following

fiscal year m + 1 (e.g., the changes listed for 2023 are in place from t2 = 1 April

2024). This defines κj max
m for 1 ≤ m ≤ 10.

Fuel mix scenarios after 2030. We consider the following three fuel mix

scenarios after 2030, all based on the IRP 2019 (South African Department of

Mineral Resources and Energy 2019).

• Base case In our base case scenario for the future capacities, we assume that

the capacities do not change between 2031 and 2050. This is the scenario used

to calibrate our model to market data, i.e., the scenario we believe the market

currently prices.

• Green continuation The second scenario is a green continuation of the IRP

2019, where we assume that for coal, solar and wind the average change of the

last three years (2028 to 2030) in Table 4 is continued. Each year, from 2031

to 2050, coal is reduced by 1073 MW, solar is increased by 1000 MW and on-

iA different possibility to account for this assumption would be to increase the power pro-
duction factor for coal whenever old coal-fired plants are decommissioned. Since determining the

amount of those increases would need additional assumptions, we simply use a higher factor for

“clean coal”, instead. For orientation, assuming that all decommissioned coal plants already have
zero output now and that the overall output of coal-fired plants (not including newly added

“clean coal”) stays constant over time, the power production factor for coal would increase to

γj ppf
0 = 67.37% by 2031. However, this is a strong assumption, and given the development in past

years, one is lead to assume that additional coal-fired plants will start to have technical issues over

this time period. It thus seems most reasonable to keep the power production factor for coal-fired
plants constant over time, while using a higher factor for newly built “clean coal” facilities, which

should not be constrained by technical problems in the near future.



June 4, 2024 18:23 KMKHHR-IJTAF-D-23-00081

20 F. Krach, A. Macrina, A. Kanter, E. Hampwaye, S. Hlalukana & N. T. Rateele

Table 4. Decommissioning (Dec.) of existing and addition (Add.) of new capacities between 2023

and 2030 (South African Department of Mineral Resources and Energy 2019, Table 5) stated in
megawatt (MW).

Coal Nuclear Hydro Solar Wind Gas &

Diesel

Year Add. Dec. Change Add. Add. Add. Add. Add.

2023 750 -555 195 0 0 1000 1600 0

2024 0 0 0 1860 0 0 1600 1000

2025 0 0 0 0 0 1000 1600 0

2026 0 -1219 -1219 0 0 0 1600 0

2027 750 -847 -97 0 0 0 1600 2000

2028 0 -475 -475 0 0 1000 1600 0

2029 0 -1694 -1694 0 0 1000 1600 0

2030 0 -1050 -1050 0 2500 1000 1600 0

shore wind is increased by 1600 MW. Moreover, once every ten years, nuclear

and hydro power generation is increased by 1860 MW and 2500 MW, respec-

tively. For nuclear power this happens in the years 2034 and 2044, while for

hydro-generated electricity this happens in 2037 and 2047. The gas and diesel

capacities are not increased further, hence the terminology “green continua-

tion”.

• Green continuation & CCS technology In the third scenario, we assume a

switch to carbon capture and storage (CCS) technology for fossil-fuelled power

plants starting from t1 = 1 April 2023 j, in addition to the adaptations in the

green continuation scenario. In particular, we assume that diesel and gas power

plants are all replaced with or upgraded to gas (CCS90) plants in equal fractions

over four years starting from t1. Additionally, gas plants which are newly built

according to the IRP 2019 4 are assumed to deploy CCS90 technology. For the

coal plants we assume that every year, from 2023 until 2029, 5500 MW of coal

plants are upgraded to coal CCS90 power plants and 500 MW worth of coal-

fired electricity generation is decommissioned. The latter adaptation measure

applies to power plants that are too old to be upgraded. We note here that the

costs for these upgrades are priced in through the different depreciation costs

of the power plants with CCS technology.

The realizable capacities κj rlzm and the energy mixes in the three scenarios are plot-

ted in Figure 3. In all scenarios, the total realizable capacity grows approximately

by the same amount. Along with these management scenarios, we assume that the

power production factors γj ppf, the emission and depreciation factors γef and γdf

jEskom is considering using CCS technology (Wendell Roelf 2021), therefore this scenario is

not too unrealistic, even though the quick change we consider here might be implausible.
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m and proportional energy mix κj rlz

m /κrlz
m for different fuel types

according to the scenarios based on South Africa’s IRP 2019.

are constant throughout the years. In the third scenario, we assume that the CCS

power plants are run with the same power production factors γj ppf as their more

polluting alternatives. Further, we assume that Eskom will be able to sell all the

produced electricity, also in the case that their capacity increases. This assumption

is justified by the fact that South Africa has been forced to apply “loadshedding”

(planned power cuts) since 2007, because Eskom has not been able to produce

enough electricity to cover demand. The deficit between supply and demand is so

significant and the necessary financial commitment for sufficient upgrade so high

that it is reasonable to expect that for the foreseeable future any level of plausible

increase in electricity supply will be met by demand in South Africa.

3.2. Minimal Electricity Prices to Cover the Costs

Given our asset and liability firm model for a power utility along with the market

data defined in Section 3.1, we can now calculate the minimal electricity price

πmin elect
m that is necessary to cover all costs in every period (tm−1, tm], by solving

Am −Am−1 = Lm −Lm−1 for πmin elect
m . In Figure 4, the minimal electricity prices

are plotted for the different scenarios of the emission price k πCO2e and for the

three fuel mix scenarios we introduced above. In the “green continuation” scenario,

πmin elect
m increases much more moderately than in the base case scenario. Moreover,

in the scenario “green continuation with CCS technology”, the (inflation-adjusted)

price even decreases until 2030 to then keep relatively constant.

3.3. Electricity Price Model

South Africa’s electricity price is set by the National Energy Regulator of South

Africa (NERSA) once per year. In particular, Eskom applies for a certain percentage

price increase (so to stay viable) for the following year and NERSA decides whether

kHere, we use the standard CO2e price scenarios without environmental levy during the first
four years.
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Table 5. Eskom’s electricity selling prices from 2012 to 2023 with relative changes.

Year Tariff (ZAR/KWh) Relative change

2012 0.5027 -

2013 0.5849 16.35%

2014 0.6281 7.39%

2015 0.6763 7.67%

2016 0.7538 11.46%

2017 0.8177 8.48%

2018 0.8249 0.88%

2019 0.8512 3.18%

2020 0.9595 12.73%

2021 1.0562 10.08%

2022 1.2275 16.21%

2023 1.3455 9.61%

to grant this or only a fraction of it—this is partly also a political decision. Therefore,

electricity prices are not determined by demand and supply, in the usual sense of a

market. In Table 5, we report the historical average pricel for which Eskom sold the

generated electricity, as reported in (Eskom 2023b). The electricity price for 2023

was computed based on the percentage price increase of 9.61% reported in (National

Energy Regulator of South Africa (NERSA) 2023a). These prices always apply for

one year overlapping with Eskom’s fiscal year where e.g. the price stated for 2022

applies from 1 April 2021 to 31 March 2022, i.e., πelect
0 = 1.2275 ZAR/KWh. Under

the real-world probability measure P, the mean of the price adjustment is 9.46%

lEskom provides different electricity tariffs for local authorities, residential, commercial, in-
dustrial, mining, agriculture, traction, and international costumers. We report the price for which

Eskom sold their electricity on average, i.e., the total revenue divided by the total sales volume.
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compared to which its standard deviation of 4.79% is very large. Moreover, we note

that the set prices always increase. Due to the unpredictability of the level at which

prices are set and the high variance of the yearly percentage price increases, we

propose to use a simple stochastic process to model the future electricity prices. In

particular, we model the electricity price dynamics by

πelect
m = πelect

0 · αm ·
m∏
i=1

(1 +Xi), m > 0, (3.2)

where αm > 0 are scaling factors and Xm are i.i.d. random variables drawn from

an exponential distribution, i.e., Xm ∼ Exp(λ−1). The parameter λ represents the

mean percentage price jumps of the electricity price (e.g., λ = 0.2 corresponds to a

20% average increase). The calibration of the mean percentage price jump parameter

λ and the scaling factors (αm)m≥2 to market data is discussed in Section 3.4. The

paths of this calibrated electricity price model are paths with distribution under

the (market) pricing measure Q, so not the real-world probability measure P.

3.4. Calibration of the Power Utility Model to Market Data

We use the market data described in Section 3.1 for the corresponding model param-

eters. For the emission prices, we use the South African Carbon Tax scenario and

for the energy mix we use the Base Case scenario, since we assume that these are

the scenarios currently used for pricing by the market. (We note that the following

calibration procedure could similarly be performed with any other policy choice.)

For any fixed set of parameters λ and (αm)m≥2, the model-implied probabilities of

default can be approximated via Monte Carlo by (i) sampling i.i.d. paths from the

stochastic electricity price model and (ii) approximating (2.3) by the corresponding

empirical mean. The goal is to find the parameters λ and (αm)m≥2 such that the

model-implied term structure of the probability of default with starting date t0,

i.e., T 7→ P d(t0, T ) for t0 ≤ T ≤ tN (where we use the simplest formulation with

G = 0), best matches the corresponding term structure observed in the market.

More formally, let P d
market(t0, tm)0≤m≤N be the probabilities of default observed in

the marketm and let us write P̂ d
λ,(αm)Nm=2

≈ P d for the model-implied probabilities

computed by Monte Carlo for a given set of parameters. Then, we set out to solve

the ℓ2-minimization problem

min
λ>0

α2>0,...,αN>0

{
N∑

k=0

(
P̂ d
λ,(αm)Nm=2

(t0, tk)− P d
market(t0, tk)

)2
}
. (3.3)

We compute (an approximation to) the solution of this minimization problem nu-

merically using the Nelder-Mead algorithm (Gao & Han 2012). For more details,

see the appendix.

mWe note that these values, observed in the market, correspond to the (market) pricing measure

Q and not the real-world measure P.
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Fig. 5. Term structure of the market default probabilities, T 7→ P d
market(t0, T ), and of the calibrated

model, T 7→ P d
λ,(αm)Nm=2

(t0, T ).

The term structure of the (rather simple) calibrated market model versus the

market observations is shown in Figure 5. We see that our model fits the market

data accurately, except at t1 (corresponding to the year 2023) where the model-

implied default probability is 0. The reason for this is the large initial equity amount

E0, which is not (i.e., in none of the sampled paths) exhausted by the amount of

liability before t2. One could argue that the model-implied probabilities of default

are reasonable until t1, since Eskom’s (real world) probability of default under P
within the next year should be zero (implying that this is also the case under

the pricing measure Q, by equivalence of the real-world measure and the pricing

measure, P ∼ Q). This argument becomes more plausible if one recalls that Eskom

is for all practical purposes underwritten by the South African state, at least for

the foreseeable future of a year.

On the other hand, since we use a simplistic toy model that focuses on Eskom’s

main income and cost streams, our model does not capture all of Eskom’s cash

flows (e.g., large debt and interest payments, transportation costs for coal and other

fuels, costs of running the electricity grid, etc.). An effective and convenient way

to alleviate this shortcoming is to decrease the initial equity amount. In particular,

using only E0/3 for Eskom’s initial equity at t0, we can account for the missing

costs in our model. Re-running the same calibration as above with a third of the

initial equity amount yields a nearly perfect fit of the model, see Figure 6. In the

following we shall therefore use the adjusted model, with only 1/3 of Eskom’s initial

equity. The mean percentage price jump parameter λ is 0.033, and the scaling
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Table 6. Fitted values for {αm}m=1,...,28 corresponding to the years 2023 to 2050.

m 1 2 3 4 5 6 7 8 9 10

αm 0.50 0.89 0.89 0.88 1.07 1.05 1.07 1.06 1.04 1.01

m 11 12 13 14 15 16 17 18 19 20

αm 1.06 1.07 1.07 1.08 1.08 1.15 1.16 1.14 1.15 1.14

m 21 22 23 24 25 26 27 28

αm 1.27 1.31 1.29 1.31 1.31 1.31 1.35 1.29
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Fig. 6. Left: term structure of probabilities of default in the market, T 7→ P d
market(t0, T ), and

of the calibrated model, T 7→ P d
λ,(αn)Nn=2

(t0, T ), when using 1/3 of the initial equity E0. Right:

electricity price evolution (mean ± standard deviation) under the calibrated model.

parameters {αm}m=1,...,N are reported in Table 6. In Figure 6, we include a plot for

the mean and standard deviation of the (inflation adjusted) electricity price paths

(πelect
m )m=1,... N , obtained from the calibrated model. The adjustment of E0/3 can

be further understood by recalling that in our theoretical model, we define default as

the event where E(t) = A(t)−L(t) ≤ G(t). So, rescaling E0 amounts to introducing

a non-zero covenant level G(0) > 0.

3.5. Impact of NGFS Scenarios on the Calibrated Model

In Figure 7, we show the term structure of the probability of default (2.3), T 7→
P d(t0, T ), in different CO2e price scenarios (starting from 2026 until such time

when the environmental levy is in place), which are also included. We note that

the instantaneous probabilities of default (2.6), T 7→ P d(T ), are nearly the same,

therefore we do not show the corresponding plot, here. For comparison, we also

plot the probabilities of default corresponding to the different levels of Standard &

Poor’s credit ratings. Under the South African Carbon Tax, Eskom is mainly rated

between BBB and BB. In all scenarios with higher CO2e costs than the South

African Carbon Tax, i.e., all scenarios except “No-Cost” and “Current Policies”,
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Fig. 7. Left: Term structure of the default probability T 7→ PD(t0, T ) under different CO2e price

scenarios. Default probabilities corresponding to different S&P credit ratings are plotted in gray.
Right: Term structure of the bond prices T 7→ Zd(t0, T ) under different CO2e price scenarios.

the probability of default increases rapidly. In the “Delayed Transitions” scenario

the default probability reaches P d = 1 by 2035. This result indicates that Eskom’s

operations become financially non-viable if the CO2e emission costs are accounted

for in a scenario with an expedite and sustained CO2e-emissions reduction policy.

We also plot the corresponding bond price term structure (2.4), T 7→ Zd(t0, T ),

assuming zero recovery (R = 0), in Figure 7.

3.6. Impact of Different Energy Mix Scenarios

The impact of the fuel mix scenarios (i) “green continuation” and (ii) “green con-

tinuation with CCS”, which we have produced following the IRP 2019, is shown in

Figure 8. There, we present the impact on (i) the term structures of the default

probability, (ii) the instantaneous default probability, and (iii) the impact on the

term structure of bond prices. In the green continuation scenario the probability

of default under the SA Carbon Tax only grows to 0.6 compared to its growth to

slightly below 0.9 in the base case. However, in all more expensive CO2e scenar-

ios, we do not see a difference to the base case. The instantaneous probability of

default is similar to the probability of default in all CO2e price scenarios. In the

“green continuation with CCS technology” scenario the situation looks different.

In particular, only in the “divergent net zero” and the “net zero 2050” scenario,

the probability of default increases (nearly) to one, immediately after replacing the

environmental levy. In the “Delayed Transition” scenario it increases to about 0.6

until 2050, while it only increases to 0.35 in the “Below 2C” scenario. In all other,

cheaper, CO2e price scenarios, it stays below 0.1 and is therefore classified as AAA

in the long run. The instantaneous probability of default in the “Net Zero 2050”

and “Below 2C” scenarios has a (steep) initial increase from 2026 to 2028, then

decreases again as soon as the switch to the CCS technology becomes substantial
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Fig. 8. Left: green continuation scenario. Right: green continuation & CCS technology scenario.

Top: term structure of the probability of default T 7→ P d(t0, T ). Middle: term structure of the
instantaneous probability of default T 7→ P d(T ). Bottom: term structure of the bond prices

T 7→ Zd(t0, T ). All plotted for the different CO2e price scenarios.

enough, though thereafter it increases once more.
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4. Conclusions

In this work we introduced a simple, yet effective, modelling framework for

electricity-generating companies that captures their main income and cost streams.

We apply this approach to the case study of South Africa’s power utility Eskom.

In particular, we first calibrate the model to the current market data and then

use it to study the impact of (i) different emission cost scenarios, see (Network

for Greening the Financial System (NGFS) 2022), and (ii) different fuel mix sce-

narios. We observe, for example, that under the “Delayed Transition” scenario for

emission costs, Eskom’s operations become non-viable by 2035 if one assumes the

fuel mix base case. However, this can be prevented by a determined transition to

less carbon-intensive energy sources as suggested in the “green continuation and

CCS technology” scenarios. The obtained results suggest that large investments in

greener electricity production would pay off relatively quickly, by keeping Eskom’s

business viable in an emission cost scenario that corresponds to an expedite and

sustained CO2e-emission reduction policy. Moreover, in the long run, these invest-

ments could in addition lead to lower electricity prices for end users, as suggested

by our calculated minimal electricity price to cover all costs. Our model implemen-

tation is available at (Krach et al. 2023), so that our approach can in principle be

used to model other setups for electricity-generating firms and to study the effects

of customised scenarios (for emission costs, fuel mixes etc.) on the firm’s viability.

Appendix A. Details on model calibration

Joint calibration. We use the Nelder-Mead optimization algorithm (Gao & Han

2012) implemented in Python’s SciPy package (Virtanen et al. 2020) to find a nu-

merical approximation of the solution to the calibration problem (3.3). The quality

of the solution of this simplex algorithm depends on the initial guess for the pa-

rameters λ and (αn)n. Therefore, we use an iterative, half-automated calibration

scheme, that can be summarized as follows.

(1) Make an initial guess for λ and (αn)n. Our initial guess is λ = 0.094 (the

mean percentage jump from the historical electricity price data in Table 5) and

αn = 1.

(2) Run the Nelder-Mead algorithm with the initial guess.

(3) If the calibrated model fit is not good enough, come up with a (handcrafted)

new initial guess based on the fitted parameters from Step 2. Use this as new

input for Step 2 and iterate.

As a general “engineering rule”, the scaling factor αm needs to be increased when-

ever the probability of default of the calibrated model P d
λ,(αm)Nm=2

(t0, tm) is larger

than the respective market value P d
market(t0, tm) and vice versa. Indeed, increasing

αm makes the electricity price larger at this time step and therefore leads to larger

equity, which means a smaller default probability. Moreover, we note that restarting
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the Nelder-Mead algorithm with its last output as a new initial guess can further

improve the model fit (due to the stopping conditions of the algorithm).

The calibrated models reported in Figure 5 and Figure 6 were achieved after two

and three iterations of the above calibration scheme (i.e. after using Nelder-Mead

twice or thrice), respectively. The exact initial values used are available in the data

configuration of our implementation (Krach et al. 2023).

Sequential calibration of (αn)n. Once a good enough joint fit of the pa-

rameters λ and (αn)n is achieved, or after choosing a reasonable candidate for λ,

the scaling factors (αn)n can (additionally) be optimized sequentially to minimize

the objective function. In particular, since αn only influences P̂ d
λ,(αm)Nm=2

(t0, tk) for

k ≥ n, looping over n ∈ {1, . . . , N} to optimize

α⋆
n = arg min

αn>0

{(
P̂ d
λ,(α⋆

2 ,...,α
⋆
n−1,αn,...,αN )(t0, tn)− P d

market(t0, tn)
)2

}
, (A.1)

yields improved scaling factors (α⋆
m)Nm=2, which should lead to the best possible fit

for n ≥ 1 based on the fixed parameter λ.
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