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Summary
Background Antimicrobial resistance (AMR) in Escherichia coli is a global problem associated with substantial
morbidity and mortality. AMR-associated genes are typically annotated based on similarity to variants in a curated
reference database, with the implicit assumption that uncatalogued genetic variation within these is phenotypically
unimportant. In this study, we evaluated the performance of the AMRFinder tool and, subsequently, the potential
for discovering new AMR-associated gene families and characterising variation within existing ones to improve
genotype-to-susceptibility phenotype predictions in E coli.

Methods In this cross-sectional study of international genome sequence data, we assembled a global dataset of 9001
E coli sequences from five publicly available data collections predominantly deriving from human bloodstream
infections from: Norway, Oxfordshire (UK), Thailand, the UK, and Sweden. 8555 of these sequences had linked
antibiotic susceptibility data. Raw reads were assembled using Shovill and AMR genes (relevant to amoxicillin–
clavulanic acid, ampicillin, ceftriaxone, ciprofloxacin, gentamicin, piperacillin–tazobactam, and trimethoprim)
extracted using the National Center for Biotechnology Information AMRFinder tool (using both default and strict
[100%] coverage and identity filters). We assessed the predictive value of the presence of these genes for predicting
resistance or susceptibility against US Food and Drug Administration thresholds for major and very major errors.
Mash was used to calculate the similarity between extracted genes using Jaccard distances. We empirically
reclustered extracted gene sequences into AMR-associated gene families (≥70% match) and antibiotic-resistance
genes (ARGs; 100% match) and categorised these according to their frequency in the dataset. Accumulation curves
were simulated and correlations between gene frequency in the Oxfordshire and other datasets calculated using
the Spearman coefficient. Firth regression was used to model the association between the presence of blaTEM-1

variants and amoxicillin–clavulanic acid or piperacillin–tazobactam resistance, adjusted for the presence of other
relevant ARGs.

Findings The performance of the AMRFinder database for genotype-to-phenotype predictions using strict 100%
identity and coverage thresholds did not meet US Food and Drug Administration thresholds for any of the seven
antibiotics evaluated. Relaxing filters to default settings improved sensitivity with a specificity cost. For all
antibiotics, most explainable resistance was associated with the presence of a small number of genes. There was a
proportion of resistance that could not be explained by known ARGs; this ranged from 75⋅1% for amoxicillin–
clavulanic acid to 3⋅4% for ciprofloxacin. Only 18 199 (51⋅5%) of the 35 343 ARGs detected had a 100% identity
and coverage match in the AMRFinder database. After empirically reclassifying genes at 100% nucleotide sequence
identity, we identified 1042 unique ARGs, of which 126 (12⋅1%) were present ten times or more, 313 (30⋅0%)
were present between two and nine times, and 603 (57⋅9%) were present only once. Simulated accumulation
curves revealed that discovery of new (100% match) ARGs present more than once in the dataset plateaued
relatively quickly, whereas new singleton ARGs were discovered even after many thousands of isolates had been
included. We identified a strong correlation (Spearman coefficient 0⋅76 [95% CI 0⋅73–0⋅80], p<0⋅0001) between the
number of times an ARG was observed in Oxfordshire and the number of times it was seen internationally, with
ARGs that were observed six times in Oxfordshire always being found elsewhere. Finally, using the example of
blaTEM-1, we showed that uncatalogued variation, including synonymous variation, is associated with potentially
important phenotypic differences; for example, two common, uncatalogued blaTEM-1 alleles with only synonymous
mutations compared with the known reference were associated with reduced resistance to amoxicillin–clavulanic
acid (adjusted odds ratio 0⋅58 [95% CI 0⋅35–0⋅95], p=0⋅031) and piperacillin–tazobactam (0⋅50 [95% CI 0⋅29–0⋅82],
p=0⋅005).

Interpretation We highlight substantial uncatalogued genetic variation with respect to known ARGs, although a
relatively small proportion of these alleles are repeatedly observed in a large international dataset suggesting strong
selection pressures. The current approach of using fuzzy matching for ARG detection, ignoring the unknown effects
of uncatalogued variation, is unlikely to be acceptable for future clinical deployment. The association of synonymous
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mutations with potentially important phenotypic differences suggests that relying solely on amino acid-based gene
detection to predict resistance is unlikely to be sufficient. Finally, the inability to explain all resistance using
existing knowledge highlights the importance of new target gene discovery.
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Introduction
Antimicrobial resistance (AMR) is a global challenge with
substantial associated morbidity and mortality.1 In
Escherichia coli, AMR is mostly conferred by acquisition of
genes that can be integrated into the chromosome or carried
on plasmids.2–4 AMR can also occur via point mutations in
both core and accessory genes. Extensive efforts have been
made to catalogue and characterise these mechanisms,
resulting in several highly curated databases that are widely
used for genomic epidemiology.5–7

Several studies have investigated the performance of such
databases to predict phenotype from genotype for E coli,8,9

highlighting the associated challenges. Verschuuren and
colleagues10 recently showed the inability of the ResFinder
tool to meet US Food and Drug Administration (FDA)
specifications for major or very major error rates for most
antibiotics (234 isolates, selected for resistance to third-
generation cephalosporins). This work found particularly
poor performance in predicting AMR phenotype for
β-lactam–β-lactamase inhibitor combination drugs, repli-
cating a finding from earlier studies.11,12 Feldgarden and
colleagues6 claimed much better performance (99⋅7%
overall concordancewhen pooling across antibiotic classes),
albeit with a small (47 isolates) and predominantly
Research in context

Evidence before this study
We searched PubMed from database inception toMarch 16, 2023,
using the terms Escherichia coliAND (antimicrobial resistance gene)
AND ((catalogue) OR (database)) AND ((variation) OR
(uncatalogued)). The 16 studies identified were mostly molecular
epidemiology studies describing the distribution of antibiotic
resistance genes (ARGs; identified using standard, non-exact
identity and coverage thresholds) in various countries and
reservoirs. None of the studies considered uncatalogued variation
in ARGs.

Added value of this study
To our knowledge, this is the first study to systematically examine
uncatalogued variation within known resistance genes in E coli.
Using a large global dataset of clinical isolates, we show that such
variation is common, and that in the case of blaTEM-1 synonymous
variation is associated with substantial phenotypic differences
compared with the reference. Our analysis suggests that there is a
constant background of genetic variation that undergoes strong
selection pressures, emphasising the importance of stewardship to
susceptible dataset. These and other studies highlight the
need for further development and expansion of these
databases if they are to become clinically useful.
There are two hierarchical levels of annotation within

existing AMR gene catalogues: AMR-associated gene
families (eg, blaCTX-M, gyrA) and alleles of gene families
(eg, gyrA Ser83Leu, blaCTM-M-15, blaCTX-M-27); we hereafter
refer to the latter as antibiotic resistance genes (ARGs). It is
currently standard practice to characterise the presence or
absence of ARGs based on percentage identity and coverage
(commonly used thresholds for the former are 80% [the
ABRicate default] and 90% [the AMRFinder default]).13

Where there is no perfect match, the presence of the clos-
est characterised allele in the same gene family is reported;
hence, most studies ignore any non-catalogued variation.
To our knowledge, the prevalence, diversity, and impact of
these imperfectly matching genes has not been systemat-
ically evaluated. Improvements to existing cataloguesmight,
therefore, come from discovery of novel AMR-associated
gene families or improved annotation of variation within
existing ones.
In this study, we seek to estimate the potential for further

exploration of these two domains of genomic variation to
improve existing ARG reference databases. We first
avoid the emergence and dissemination of variants with extended
resistance phenotypes. We also show that, for all drugs, there is a
proportion of resistance that cannot be explained by current
resistance gene families, and that the widely used AMRFinder
database does not meet US Food and Drug Administration
specified performance metrics for predicting phenotype for most
classes of antibiotics.

Implications of all the available evidence
We identify two priorities for the improvement of existing ARG
catalogues for E coli: identification of new resistance gene families
associated with AMR, and improved cataloguing of genetic
variation within known ones. We show that variation within
known resistance genes (including synonymous mutations that
can only be detected by analysing nucleotide sequences) can have
substantial phenotype-modifying effects, which should prompt
more detailed consideration in future epidemiology and resistance
prediction studies. ARG detection based on amino acid sequence
analysis alone should be avoided.
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quantify how much resistance is explained by presence or
absence of knownARGs or variants, and therefore estimate
how much might be gained by searching for novel AMR-
associated gene families. Second, we explore variation
within known AMR-associated gene families at 100%
match (acknowledging that this could be caused by
sequencing or assembly error as well as true biological
variation) that is currently uncatalogued and investigate
whether including this in future versions of databases is
likely to be useful.

Methods
Study design
In this international cross-sectional study, we selected five
large E coli sequencing projects for inclusion, which were
predominantly from human bloodstream infections:
PRJEB11403 (Thailand, 2014–15, data unpublished),
PRJEB23294 (various countries including Sweden,
2018),12 PRJEB32059 (Norway, 2002–17),14 PRJEB4681
(UK, 2001–11),15 and PRJNA604975 (Oxfordshire, UK,
2008–18).16 We selected these studies because they had
linked whole-genome sequencing and antimicrobial
susceptibility phenotype data available. Raw reads from
isolates in these BioProjects were downloaded from the
European Nucleotide Archive and subsequently
assembled using Shovill (version 1.0.417) using default
settings. We excluded assemblies with total size less than
4 000 000 or more than 6 000 000, and those that did not
have associated antimicrobial susceptibility data (all binary
and measured using European Committee on Anti-
microbial Susceptibility Testing breakpoints) for at least
one antibiotic. A permanova was performed to explore
whether there were any differences in the ARG content of
these isolates (appendix 1 p 2). Quast (version 5.2.0)18 was
used to generate assembly quality control metrics. As this
study was a retrospective secondary analysis of publicly
available data, no ethical approval was required.

Procedures
We chose to focus on ARGs encoding resistance to seven
drugs in five clinically relevant antibiotic classes (as defined
by AMRFinder) for the treatment of E coli infection
in humans: aminoglycosides (gentamicin), β-lactams
(ampicillin and the β-lactamase inhibitor combinations
amoxicillin–clavulanic acid and piperacillin–tazobactam),
cephalosporins (ceftriaxone), quinolones (ciprofloxacin),
and trimethoprim. We ran the AMRFinder software
(v3.10.23,19 database version 2022-12-19.1) using the
-O Escherichia –nucleotide output flags (using the default
curated or 90% identity threshold and default 50%
minimum coverage threshold). We extracted all sequences
for each antibiotic class into a single multi-FASTA file, and
then sketched these sequences (Mash20 sketch -s 100 000 -i)
and created an all versus all distance matrix from the
number of shared hashes divided by the total number of
hashes.
www.thelancet.com/microbe Vol 5 November 2024
Given that AMR gene nomenclature sometimes assigns
similar genenames toARGs that are genetically diverse, and
different gene names to ARGs that are genetically similar,
we empirically redefinedAMR-associated gene families and
ARGs (appendix 1 p 8). We defined AMR-associated gene
families by filtering mash distance matrices for any given
antibiotic class at a minimum 0⋅7 similarity threshold
(ie, 70% kmer of all possible kmers match exactly,
approximately similar to the threshold used by Panaroo21

and others to define gene families). We performed no
such reclassification for genes belonging to the point
AMRFinder element subtype (eg, gyrA, parC) as these are
core genes that are not difficult to accurately identify. These
filtered distance matrices were then converted into graphs
from which communities (AMR-associated gene families)
were detected using complete linkage (R package igraph22).
AMR-associated gene families were named according to the
most common label assigned to their members by
AMRFinder. We hereafter refer to each unique version
(including the reference sequenceorwild-type) of anyAMR-
associated gene family as an ARG, regardless of whether it
contains one or more single-nucleotide polymorphisms or
indels compared with the reference sequence. To define
these ARGs, we repeated the process above with a
1⋅0 similarity threshold (ie, 100% sequence identity and
coverage) and assigned sequential numeric labels to define
unique ARGs within a given AMR-associated gene family
(blaTEM-1 1, blaTEM-1 2, etc).

Statistical analysis
Todeterminehowmuch resistance remainsunexplainedby
existing ARG catalogues, we first quantified the extent to
which the genes or mutations identified by the AMRFinder
database were able to explain the observed resistance
phenotype. Isolates were predicted as being resistant to an
antibiotic if their genotype contained any allele associated
with resistance to the drug in the AMRFinder database (this
analysis was first performed with strict 100% coverage and
identity filters and subsequently using the AMRFinder
default settings [ie, 90% or curated identity threshold,
50% coverage] as well as with intermediate values in a
sensitivity analysis for ciprofloxacin; appendix 1 p 4).
Because AMRFinder does not provide any phenotypic
subclassifications of β-lactam-resistance encoding ARGs,
we used the lookup table provided by ResFinder5 to predict
phenotypes forβ-lactam–β-lactamase inhibitor combination
drugs. Sensitivity, specificity, negative predictive value, and
positive predictive value were calculated in the standard way
(code provided in binder environment), making compar-
isons against the laboratory-derived antibiotic susceptibility
phenotypes thatwere available for the sequences analysedas
the reference standard. We also calculated the frequency of
major errors (ie, erroneous genotypic prediction of suscep-
tible isolates as resistant when compared with the reference
phenotype) and very major errors (ie, erroneous genotypic
prediction of resistant isolates as susceptible when
comparedwith the reference phenotype).We used the FDA
3
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 9001 total isolates assembled

 8945 passed assembly quality control

 8555 had assemblies with paired phenotypic data for at least one antibiotic
   5044 for amoxicillin–clavulanic acid
   7450 for ampicillin
   3362 for ceftriaxone
   8466 for ciprofloxacin
   8422 for gentamicin
   8130 for piperacillin-tazobactam
   4076 for trimethoprim

 and were derived from
   1508 from PRJEB4681 (UK, 2001–11)15 
   3254 from PRJEB32059 (Norway, 2002–17)14 

   3368 from PRJNA604975 (Oxfordshire, UK, 2008–18)16

   254 from PRJEB23294 (various countries including Sweden, 2018)12 
   171 from PRJEB11403 (Thailand, 2014–15)

390 had no phenotype data for
  any drug and were excluded

 56 had poor-quality assembly
  and were excluded

Figure 1: Isolates included and excluded in the analysis, and subsequent data
availability for study components
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guidance on acceptable performance standards for these as
a reference (major error <3%, upper confidence limit for
very major error <7⋅5%).23 We estimated exact binomial
95% CIs using the R package Stats. We performed a sen-
sitivity analysis to explore the extent to which the observed
results might be affected by the prevalence of resistance in
our dataset (appendix 1 p 2), and separate stratified analyses
to investigate whether there was evidence of substantial
heterogeneity in performance characteristics between
studies (appendix 1 p 9).
We classifiedARGsaccording to their overall frequency in

the dataset (ie, occurring only once [singletons], between
two andnine times, or ten times ormore). To determine the
rate at which newARGs in these categories were discovered
as more genomes in the dataset were analysed, rarefaction
curves were created after randomisation of the isolate order
using the rarefaction function of the R package Micropan
(n.perm=100).24 To explore whether patterns of ARGs
selection were similar between datasets from the studies
included in this analysis, we calculated the correlation
between the number of times an ARG was observed in the
Oxfordshire versus other datasets using the Spearman
correlation coefficient (R package Stats). Firth regression
(R package logistf25) was used to investigate whether dif-
ferent 100%match variants of blaTEM-1 were associatedwith
a higher probability of resistance to amoxicillin–clavulanic
acid or piperacillin–tazobactam, including multivariable
models to adjust for the presence of other ARGs known to
cause resistance to these antibiotics. Firth regression was
used to estimate odds ratios or adjusted odds ratios (aORs)
for these associationsdue to the presence of blaCMY-2 being a
perfect predictor for amoxicillin–clavulanic acid resistance,
meaning standard logistic regression does not converge. An
additional analysis was performed to explore the extent to
which this association might be confounded by population
structure (appendix 1 p 2). Finally, we investigated the extent
to which sequencing or bioinformatic error might inflate
the true number of ARGs that occurred only once
(singletons; appendix 1 p 2). All statistical analyses were
done with R version 4.3.1.

Role of the funding source
The funders of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of
the report.

Results
We assembled a collection of 9001 E coli isolates, of which
8555 had linked whole-genome sequencing data and binary
phenotypic classifications available for at least one antibiotic
of interest (figure 1; appendix 1p3).Wefirst investigated the
proportion of AMR that could be explained using the
current AMRFinder database. The sensitivity of the AMR-
Finder database (ie, percentage of phenotypically resistant
isolates with a relevant ARG as determined by AMRFinder)
using 100% identity or coverage filters was notably
poorer for β-lactam–β-lactamase inhibitor combinations
(24⋅6% [95% CI 22⋅5–26⋅8] for amoxicillin–clavulanic acid
and 40⋅3% [35⋅0–45⋅9] for piperacillin–tazobactam) than
other antibiotics considered, which had sensitivities in the
range 86⋅7–91⋅8% (table 1, appendix 1 p 9). Conversely,
specificity was high for all antibiotics (range 96⋅0–99⋅6%;
99⋅2% [98⋅9–99⋅5] for amoxicillin–clavulanic acid and
96⋅0% [95⋅5–96⋅4] for piperacillin–tazobactam). The sensi-
tivity for both amoxicillin–clavulanic acid and piperacillin–
tazobactam was improved by predicting isolates carrying
blaTEM-1 as resistant, but this reduced specificity (increase
in sensitivity 61⋅7% [61⋅1–62⋅0] vs 48⋅0% [45⋅6–49⋅2] but
reduction in specificity 29⋅4% [28⋅2–30⋅7] vs 36⋅9%
[36⋅2–37⋅5]; table 1).
Using 100% identity or coverage filters, no drugs met the

FDA specified thresholds for very major error rates but six
(amoxicillin–clavulanic acid, ampicillin, ceftriaxone, cipro-
floxacin, gentamicin, and trimethoprim)met the thresholds
for major error rates (table 1). Resampling simulations
suggested that this finding is also likely to be applicable to
settings with a higher prevalence of AMR (appendix 1 p 10).
When identity or coverage settings were relaxed to default
settings, there was an increase in sensitivity for six drugs
(ampicillin, ciprofloxacin, ceftriaxone, gentamicin, and tri-
methoprim) but a drop in specificity for all except genta-
micin. This change increased the major error rates for
ciprofloxacin and ceftriaxone to above the FDA specified
acceptable threshold (table 1). A sensitivity analysis revealed
no improvement in performance when intermediate
identity thresholds were trialled for ciprofloxacin
www.thelancet.com/microbe Vol 5 November 2024
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Concordance Sensitivity Specificity NPV PPV Major error Very major error

Amoxicillin–clavulanic acid, 1607 (31⋅9%) of 5044 isolates phenotypically resistant

Default coverage or ID threshold 75⋅5% (74⋅2–76⋅6) 24⋅6% (22⋅5–26⋅8) 99⋅2% (98⋅9–99⋅5) 73⋅8% (72⋅5–75⋅0) 93⋅8% (91⋅0–95⋅8) 0⋅8% (0⋅5–1⋅1) 75⋅4% (73⋅2–77⋅5)*
100/100 coverage or ID threshold 75⋅5% (74⋅2–76⋅6) 24⋅6% (22⋅5–26⋅8) 99⋅2% (98⋅9–99⋅5) 73⋅8% (72⋅5–75⋅0) 93⋅8% (91⋅0–95⋅8) 0⋅8% (0⋅5–1⋅1) 75⋅4% (73⋅2–77⋅5)*
Amoxicillin–clavulanic acid plus blaTEM-1, 1607 (31⋅9%) of 5044 isolates phenotypically resistant†

Default coverage or ID threshold 74⋅8% (73⋅6–76⋅0) 87⋅5% (85⋅8–89⋅1) 68⋅9% (67⋅3–70⋅5) 92⋅2% (91⋅1–93⋅2) 56⋅8% (54⋅8–58⋅8) 31⋅1% (29⋅5–32⋅7)* 12⋅5% (10⋅9–14⋅2)*
100/100 coverage or ID threshold 75⋅1% (73⋅8–76⋅2) 86⋅3% (84⋅5–87⋅9) 69⋅8% (68⋅2–71⋅3) 91⋅6% (90⋅5–92⋅6) 57⋅2% (55⋅2–59⋅2) 30⋅2% (28⋅7–31⋅8)* 13⋅7% (12⋅1–15⋅5)*
Ampicillin, 3821 (51⋅3%) of 7450 isolates phenotypically resistant

Default coverage or ID threshold 93⋅9% (93⋅3–94⋅4) 90⋅8% (89⋅8–91⋅7) 97⋅2% (96⋅6–97⋅7) 90⋅9% (90⋅0–91⋅8) 97⋅1% (96⋅5–97⋅6) 2⋅8% (2⋅3–3⋅4) 9⋅2% (8⋅3–10⋅2)*
100/100 coverage or ID threshold 92⋅9% (92⋅3–93⋅5) 88⋅1% (87⋅1–89⋅2) 97⋅9% (97⋅3–98⋅3) 88⋅7% (87⋅7–89⋅6) 97⋅8% (97⋅2–98⋅2) 2⋅1% (1⋅7–2⋅7) 11⋅9% (10⋅9–12⋅9)*
Ceftriaxone, 267 (7⋅9%) of 3362 isolates phenotypically resistant
Default coverage or ID threshold 95⋅2% (94⋅4–95⋅9) 92⋅9% (88⋅9–95⋅5) 95⋅4% (94⋅6–96⋅1) 99⋅4% (99⋅0–99⋅6) 63⋅4% (58⋅4–68⋅2) 4⋅6% (3⋅9–5⋅4)* 7⋅1% (4⋅5–11⋅1)*
100/100 coverage or ID threshold 96⋅9% (96⋅2–97⋅5) 91⋅0% (86⋅8–94⋅0) 97⋅4% (96⋅8–97⋅9) 99⋅2% (98⋅8–99⋅5) 75⋅2% (70⋅0–79⋅8) 2⋅6% (2⋅1–3⋅2) 9⋅0% (6⋅0–13⋅2)*
Ciprofloxacin, 1161 (13⋅7%) of 8466 isolates phenotypically resistant

Default coverage or ID threshold 83⋅8% (83⋅0–84⋅6) 96⋅6% (95⋅4–97⋅6) 81⋅8% (80⋅9–82⋅7) 99⋅4% (99⋅1–99⋅5) 45⋅8% (43⋅8–47⋅8) 18⋅2% (17⋅3–19⋅1)* 3⋅4% (2⋅4–4⋅6)
100/100 coverage or ID threshold 85⋅6% (84⋅9–86⋅4) 3⋅9% (2⋅9–5⋅2) 98⋅6% (98⋅3–98⋅9) 86⋅6% (85⋅8–87⋅3) 31⋅0% (23⋅8–39⋅3) 1⋅4% (1⋅1–1⋅7) 96⋅1% (94⋅8–97⋅1)*
Gentamicin, 648 (7⋅7%) of 8422 isolates phenotypically resistant
Default coverage or ID threshold 99⋅0% (98⋅8–99⋅2) 92⋅6% (90⋅2–94⋅4) 99⋅6% (99⋅4–99⋅7) 99⋅4% (99⋅2–99⋅5) 94⋅6% (92⋅5–96⋅2) 0⋅4% (0⋅3–0⋅6) 7⋅4% (5⋅5–9⋅8)*
100/100 coverage or ID threshold 99⋅0% (98⋅8–99⋅2) 91⋅8% (89⋅4–93⋅8%) 99⋅6% (99⋅5–99⋅7) 99⋅3% (99⋅1–99⋅5) 95⋅4% (93⋅3–96⋅8) 0⋅4% (0⋅3–0⋅5) 8⋅2% (6⋅2–10⋅6)*
Piperacillin–tazobactam, 325 (4⋅0%) of 8130 isolates phenotypically resistant

Default coverage or ID threshold 93⋅8% (93⋅2–94⋅3) 40⋅3% (35⋅0–45⋅9) 96⋅0% (95⋅5–96⋅4) 97⋅5% (97⋅1–97⋅8) 29⋅6% (25⋅4–34⋅1) 4⋅0% (3⋅6–4⋅5)* 59⋅7% (54⋅1–65⋅0)*
100/100 coverage or ID threshold 93⋅8% (93⋅2–94⋅3) 40⋅3% (35⋅0–45⋅9) 96⋅0% (95⋅5–96⋅4) 97⋅5% (97⋅1–97⋅8) 29⋅6% (25⋅4–34⋅1) 4⋅0% (3⋅6–4⋅5)* 59⋅7% (54⋅1–65⋅0)*
Piperacillin–tazobactam plus blaTEM-1, 325 (4⋅0%) of 8130 isolates phenotypically resistant†

Default coverage or ID threshold 60⋅3% (59⋅2–61⋅3) 88⋅3% (84⋅2–91⋅5) 59⋅1% (58⋅0–60⋅2) 99⋅2% (98⋅9–99⋅4) 8⋅2% (7⋅4–9⋅2) 40⋅9% (39⋅8–42⋅0)* 11⋅7% (8⋅5–15⋅8)*
100/100 coverage or ID threshold 60⋅3% (59⋅2–61⋅3) 88⋅3% (84⋅2–91⋅5) 59⋅1% (58⋅0–60⋅2) 99⋅2% (98⋅8–99⋅4) 8⋅3% (7⋅5–9⋅3) 40⋅9% (39⋅8–42⋅0)* 11⋅7% (8⋅5–15⋅8)*
Trimethoprim, 1506 (36⋅9%) of 4076 isolates phenotypically resistant

Default coverage or ID threshold 94⋅0% (93⋅3–94⋅7) 87⋅3% (85⋅5–88⋅9) 97⋅3% (97⋅3–98⋅5) 92⋅9% (91⋅9–93⋅9) 96⋅2% (95⋅0–97⋅1) 2⋅0% (1⋅5–2⋅7) 12⋅7% (11⋅1–14⋅5)*
100/100 coverage or ID threshold 94⋅0% (93⋅2–94⋅7) 86⋅7% (84⋅9–88⋅4) 98⋅2% (97⋅6–98⋅7) 92⋅7% (91⋅6–93⋅6) 96⋅6% (95⋅4–97⋅5) 1⋅8% (1⋅3–2⋅4) 13⋅3 (11⋅6–15⋅1)*

Data are % (95% CI). Coverage or ID threshold refers to the percentage of amino acid coverage or identity of the gene identified by AMRFinder compared with the reference. ID=identity. NPV=negative predictive value.
PPV=positivepredictive value. *Performancemetrics thatdid notmeet theUSFood andDrugAdministration thresholds formajor discrepancies (major error<3%) or verymajor discrepancies (verymajor errorupperbound
of 95% CI <7⋅5%). †blaTEM-1 is classified as conferring resistance against amoxicillin–clavulanic acid or piperacillin–tazobactam.

Table 1: Performance metrics for the ability of the AMRFinder database to predict phenotype from genotype
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(appendix 1 p 4). Results were broadly similar between the
different datasets included (appendix 1 p 9), although there
were some notable exceptions, including a higher major
error rate for ciprofloxacin in the Thai collection of isolates
(due to carriage of gyrA Ser83Leu in these isolates of
106 [66%] of 161 vs 1601 [19⋅3%] of 8305 in the rest of the
dataset) and higher very major error rates for ampicillin
(43⋅1% [95% CI 36⋅3–50⋅1]) and gentamicin (31⋅0%
[19⋅9–44⋅7]) in the Swedish dataset, which was relatively
enriched for antibiotic-resistant isolates (prevalence of
ampicillin resistance 209 [82%] of 254 vs 1935 [57⋅1%] of
3390 in the Oxfordshire study, and 1279 [39⋅3%] of 3251 in
the Norwegian study; prevalence of gentamicin resistance
58 [23%] of 254 vs 215 [6⋅3%] of 3397 in the Oxfordshire
study and 152 [4⋅8%] of 3144 in the Norwegian study).
We have compared the Oxfordshire and Norwegian
studies directly because they are the two unselected
longitudinal studies and, therefore, most epidemiologically
representative.
For all antibiotic classes, the majority of explainable

resistance was conferred by a small number of ARGs or
mutations in the AMRFinder database, with a large number
of rarer alleles contributing relatively little (figure 2). The
high major error rate for ciprofloxacin (table 1) was partly
www.thelancet.com/microbe Vol 5 November 2024
explained by the fact that although 1110 (95⋅6%) of
1161 resistant isolates had a gyrA Ser83Leumutation, so did
528 (7⋅2%) of 7305 sensitive isolates. The greatest pheno-
typic variability occurred with carriage of blaTEM-1 for
amoxicillin–clavulanic acid (1100 [52⋅0%] of 2115 resistant
isolates) and piperacillin–tazobactam (194 [6⋅3%] of
3084 resistant isolates).All antibiotics had a sensitivity gap, a
proportion of resistance that couldnot be explainedusing all
ARGs or mutations included in the current AMRFinder
catalogue (ie, 1–sensitivity shown in table 1 at the default
identity thresholds), but this varied by drug, from 75⋅4% for
amoxicillin–clavulanic acid to 3⋅4% for ciprofloxacin
(figure 2).
There were 6682 (74⋅7%) of 8945 isolates with at least one

AMRFinder hit among the antibiotic classes of interest.
Only 18 199 (51⋅5%) of the 35 343 ARGs detected had a
100% amino acid identity and coverage match to the refer-
ence. From these 35 343 ARGs we detected 136 unique
AMR-associated gene families containing 1042 unique
alleles. 126 (12⋅1%)of these 1042ARGswerepresent at least
ten times in the dataset, of which 61 (48⋅4%) had a 100%
amino acid identity to the reference sequence in the
AMRFinder database; 313 (30⋅0%) of the 1042 ARGs were
present between two and nine times, of which 110 (35⋅1%)
5
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had a 100% amino acid identity to the reference sequence.
Alleles of blaTEM-1, aph(6)-Id, aadA1, dfrA1, aph(3”)-Ib, and
dfrA14 were among the most commonly observed uncata-
logued ARGs (appendix 1 p 11). 603 (57⋅9%) of the
1042 unique ARGs were singletons (ie, occurred only once;
appendix 1 p 12); these could either have a low phenotypic
effect and therefore not be readily selected for, be associated
with a high fitness cost and therefore be commonly lost, be
currently rare (eg, because they have recently emerged), or
be bioinformatic or sequencing noise.
There was no evidence of a difference in the proportion of

singletons versus non-singletons that had a 100% amino
acidmatch in the AMRFinder database (214 [35%] of 603 vs
171 [39%] of 439, p=0⋅28). We found similar average
sequencingdepths for singletonversusnon-singletongenes
(median69 [IQR50–100] vs68 [46–106], p=0⋅47), suggesting
www.thelancet.com/microbe Vol 5 November 2024
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that sequencing error is unlikely (appendix 1 p 13).
Although assembly discrepancies between SKESA and
Shovill assemblies (considering a random selection of
1000 isolates with at least one singleton ARG) were
significantly more common in singleton versus non-
singleton ARGs (11 [13%] of 87 vs 117 [1⋅7%] of 6762,
p<0⋅0001), the fact that assemblies were consistent for the
majority of singletons (76 [87%] of 87) suggests that the
majority of these are still more likely to represent true
background diversity rather than bioinformatic or
sequencing noise.
Similar patterns of uncatalogued variation (ie, frequent

singletons, fewer examples of gene variants that appear in
two or more isolates, and the fewest examples appearing in
ten or more isolates) in known ARGs were observed for all
drugs andacross studies,withnoevidenceof aplateau in the
rate of discovery of new singletonARGalleleswith increasing
number of isolates (figure 3; appendix 1 pp 12, 14). By con-
trast, the accumulation curves for all drug classes plateaued
when considering ARG alleles observed at least twice in the
dataset, which might be less likely to be bioinformatic or
sequencing noise.
Overall, there was a strong relationship between the

number of times anARGallelewas observed inOxfordshire
isolates and the number of times it was observed in non-
Oxfordshire isolates (Spearman coefficient 0⋅76 [95% CI
0⋅73–0⋅80], p<0⋅0001; appendix 1 p 15). For all drugs there
were no ARG alleles observed six times or more in
Oxfordshire isolates that were unique to this dataset
(appendix 1 p 15).
Using the examples of the β-lactam–β-lactamase inhibitor

combinations amoxicillin–clavulanic acid and piperacillin–
tazobactam (which both currently have poorer genotype-
to-phenotype predictive performance), we investigated
whether uncatalogued variation in known AMR-associated
gene families might have an important effect on AMR
phenotype. There were 108 unique ARGs that clustered in
the blaTEM-1 gene family, although the vast majority of
sequences identified were one of four ARGs (here des-
ignated: the reference blaTEM-1_1, n=2469 [68⋅8%] of 3587;
blaTEM-1_2, n=94 [2⋅6%]; blaTEM-1_3, n=561 [15⋅6%]; and
blaTEM-1_4, n=225 [6⋅3%]). All four had identical amino acid
sequences (and hence were indistinguishable to the
AMRFinder tool), but there were six synonymous poly-
morphic sites distinguishing these alleles (appendix 1 p 16).
The remaining 238 (6⋅6%) comprised 104 distinct ARGs, of
which 53 (51⋅0%) were exact amino acid matches to known
blaTEM variants (eg, 27 blaTEM-30, 32 blaTEM-40, 12 blaTEM-12,
and blaTEM-33). After adjusting for other known alleles pre-
dicted to confer amoxicillin–clavulanic acid resistance
(by ResFinder), blaTEM-1_2 was associated with less resistance
compared with the blaTEM-1_1 reference group (aOR 0⋅58
[95% CI 0⋅35–0⋅95], p=0⋅031; table 2). Similarly, blaTEM-1_3

was associated with reduced resistance to piperacillin–
tazobactam (aOR 0⋅50 [0⋅29–0⋅82], p=0⋅0047). These associ-
ations remained significant after adjusting for population
structure, although there was some evidence that this
www.thelancet.com/microbe Vol 5 November 2024
confounds the relationship between blaTEM-1 3 and reduced
resistance to piperacillin–tazobactam (appendix 1 p 6).

Discussion
We analysed the ARG content of a global collection of
9001 isolates (of which 8555 had phenotypic data) to inves-
tigate how much resistance to antibiotics commonly
prescribed for E coli infections is explained by
AMR-associated gene families included in existing cata-
logues, and the extent of uncatalogued variation with these.
For all classes of antibiotics considered here, we found that
the majority of resistance is conferred by a relatively small
number of ARGs. However, the fact that the AMRFinder
database did not meet FDA thresholds for any of the drugs
evaluated in this study emphasises the need for identifica-
tion of more AMR-associated gene families, and better
refinement of genotype–phenotype correlations. We
showed that there is substantial background variation
within known AMR-associated gene families, and that bet-
ter cataloguing of this (including synonymous mutations)
could improve phenotypic predictions. Although most
uncatalogued alleles were rare, those that occurred at least
six times in the Oxfordshire dataset were always also
observed elsewhere, indicating strong selective pressures
for convergent evolution or rapid global dissemination of
successful genomic variation.
For all drugs considered, there was a proportion of

resistance (around 10% for most drugs, higher for
β-lactam–β-lactamase inhibitor combinations, and slightly
lower for ciprofloxacin) that could not be explained by the
presence or absence of known AMR-associated gene
families. We hypothesise that this sensitivity gap partly
comprises laboratory mistakes, mislabelling, or technical
failure; partly of AMR-associated gene families yet to be
discovered; and partly because of phenotypic resistance
conferred by, for example, promoter mutations, combina-
tions of genes, and differential copy number or expression
that are currently not effectively captured in current
genotypic catalogues. The fact that the most known resist-
ance is conferred by relatively few alleles suggests that very
large datasets will be needed to power studies to discover
newAMR-associatedgene families.Analternative approach
using in vitro mutagenesis or synthetic biology could com-
plement and speed up discovery, and enable amore refined
understanding of the specific effects of mutations on
resistance phenotype and fitness.26

Most existing epidemiology and resistance prediction
studies report ARG presence or absence using default
thresholds and do not further categorise uncatalogued
variation within gene families. This binary presence or
absence approach is in contrast to the efforts made to
catalogue the phenotypic effects of every mutation
within AMR-associated gene families in Mycobacterium
tuberculosis,27 although, notably, the number of gene targets
is much smaller than for E coli. The tacit assumption of a
binary presence or absence approach is that the cloud of
genetic variation observed in known resistance-encoding
7

www.thelancet.com/microbe


0

200

400

600

0 2000 4000 6000

Number of isolates with at least one resistance-associated allele

N
um

be
r o

f u
ni

qu
e 

al
le

le
s

Category
Allele observed two to nine times
Allele observed at least ten times
Allele observed once

Category

Aminoglycoside
Beta-lactam
Cephalosporin
Quinolone
Trimethoprim

0

50

100

150

200

250

0 1000 2000 3000 4000

N
um

be
r o

f u
ni

qu
e 

al
le

le
s

ARG allele observed once

Number of isolates with at least one ARG allele

0

50

100

150

0 1000 2000 3000 4000

Number of isolates with at least one ARG allele

N
um

be
r o

f u
ni

qu
e 

al
le

le
s

ARG allele observed two to nine times

0

20

40

60

0 1000 2000 3000 4000

Number of isolates with at least one ARG allele

N
um

be
r o

f u
ni

qu
e 

al
le

le
s

ARG allele observed at least ten times

A

B
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(A) Relationship between the total number of unique ARGs observed across all antibiotic classes and the number of isolates with at least one ARG in the dataset. Coloured lines represent median estimates
with 95% CIs (estimated by bootstrap approximation) shown in grey. (B) Relationship between the total number of unique ARGs observed and the number of isolates with at least one ARG of the antibiotic
class denoted by the colour of the line in the dataset. Note that the y-axis scale is different for each plot. ARG=antibiotic resistance gene.

Articles

8 www.thelancet.com/microbe Vol 5 November 2024

www.thelancet.com/microbe


Univariable regression analysis
for amoxicillin–clavulanic acid

Multivariable regression analysis
for amoxicillin–clavulanic acid

Univariable regression analysis
for piperacillin–tazobactam

Multivariable regression analysis
for piperacillin–tazobactam

OR p aOR p OR p aOR p

blaTEM-1_1 1⋅00 (reference) ⋅⋅ 1⋅00 (reference) ⋅⋅ 1⋅00 (reference group) ⋅⋅ 1⋅00 (reference group) ⋅⋅
blaTEM-1_2 0⋅51 (0⋅31–0⋅83) 0⋅0068 0⋅58 (0⋅35–0⋅95) 0⋅031 0⋅69 (0⋅23–1⋅62) 0⋅43 0⋅87 (0⋅28–2⋅04) 0⋅76
blaTEM-1_3 0⋅89 (0⋅70–1⋅11) 0⋅30 1⋅00 (0⋅79–1⋅26) 0⋅98 0⋅42 (0⋅24–0⋅68) <0⋅0001 0⋅50 (0⋅29–0⋅82) 0⋅0047
blaTEM-1_4 1⋅19 (0⋅85–1⋅67) 0⋅31 1⋅34 (0⋅96–1⋅89) 0⋅085 0⋅88 (0⋅47–1⋅51) 0⋅66 1⋅10 (0⋅59–1⋅90) 0⋅74
blaTEM-1_other 2⋅13 (1⋅52–3⋅04) <0⋅0001 2⋅29 (1⋅62–3⋅28) <0⋅0001 1⋅73 (1⋅09–2⋅66) 0⋅021 1⋅98 (1⋅23–3⋅07) 0⋅0057
blaCMY-2 23⋅7 (3⋅17–3035⋅88) <0⋅0001 21⋅38 (2⋅79–2745⋅94) <0⋅0001 2⋅43 (0⋅48–7⋅98) 0⋅25 1⋅90 (0⋅35–6⋅65) 0⋅41
blaOXA-1 23⋅05 (9⋅13–83⋅21) <0⋅0001 24⋅52 (9⋅69–88⋅65) <0⋅0001 8⋅80 (5⋅55–13⋅75) <0⋅0001 8⋅68 (5⋅41–13⋅72) <0⋅0001
bla_other 29⋅06 (3⋅93–3707⋅68) <0⋅0001 31⋅22 (4⋅21–3986⋅66) <0⋅0001 14⋅52 (5⋅46–38⋅62) <0⋅0001 13⋅46 (4⋅89–36⋅67) <0⋅0001

Data areOR (95%CI), aOR (95%CI), or p value. blaTEM-1_1, blaTEM-1_2, blaTEM-1_3, and blaTEM-1_4 denote the fourmost commonalleles of blaTEM-1 in the dataset (all others are denotedas
blaTEM-1_other). blaTEM-1_1 is the reference version of the gene (ie, 100%nucleotidematch to the version found in the AMRFinder database). In themultivariable models, estimates are
adjusted for the independent presence of the two most common β-lactam–β-lactamase inhibitor resistance-conferring ARGs (blaCMY-2, blaOXA-1, and of any other β-lactam–β-
lactamase inhibitor ARGs grouped as blaother). aOR=adjusted odds ratio. ARG=antibiotic-resistance gene. OR=odds ratio.

Table 2: Univariable and multivariable associations of ARGs shown with amoxicillin–clavulanic acid and piperacillin–tazobactam resistance
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targets is either biologically unimportant or represents an
artefact created by sequencing or bioinformatic errors, and
does not have an important effect on phenotype; we have
shown here that this is not the case. The frequent presence
of uncharacterised genetic variation with an unknown
effect on phenotype is problematic for potential clinical
application of existing databases. We hypothesise that
analysis of minimum inhibitory concentration data would
further illustrate this point by providing evidence of
small but potentially important incremental effects of
variation on resistance. Our data also show that new ARG
variants are being continuously generated, highlighting
the potential risk that this kind of rapid genetic churn
might quickly generate extended resistance phenotypes,
as has been shown with blaKPC and resistance to
ceftazidime-avibactam.28

Although our study was not primarily designed to assess
the AMRFinder tool, by evaluating its performance on a
dataset of 8586 isolates, we have nevertheless conducted the
largest such validation to date. None of the antibiotic classes
evaluated met the FDA criteria for acceptable major error
and very major error rates. For ciprofloxacin, several
common resistance-associatedmutations did not invariably
cause resistance when present in isolation, resulting in a
high major error rate (particularly for isolates from
Thailand) that could cause unnecessary avoidance of this
antibiotic were AMRFinder to be used without further
expert interpretation in a clinical setting. More granular
drug-level classification of ARGs should be a priority for the
AMRFinder tool and would likely improve predictive
performance (as exemplified by the overall slightly better
performance of ResFinder in a recent validation study,10 and
by better performance of existing tools when using curated
gene–drug associations).9,29 Our study also highlights the
potential phenotypic importanceof synonymousmutations,
suggesting that classification of ARGs using amino acid
sequences alone should be avoided.
Limitations of this study include the fact that the dataset

over-represents European bloodstream infection isolates
www.thelancet.com/microbe Vol 5 November 2024
(8130 [95⋅0%] of 8555). There is a risk of bias from over-
representing clonal isolates in outbreaks, which was
minimised by the inclusion of large unselected longitudinal
studies. Although our data suggest that novel variants of
knownARGs are selected across geographical contexts, and
that the AMRFinder tool performs similarly in the studies
included in this analysis, there is a risk of extrapolating
performance characteristics from evaluations on northern
European datasets to areas with a higher incidence of AMR.
More data to evaluate the emergence and selection of novel
ARG alleles in higher-incidence settings will be valuable to
evaluate optimal sampling strategies for ongoing surveil-
lance efforts. Although all included studies used European
Committee on Antimicrobial Susceptibility Testing break-
points, it is possible that differences in standard operating
procedures and use of different versions of the Committee
guidelines might explain some of the variation of pheno-
types and concordance with genotype. Resistance to
β-lactam–β-lactamase inhibitor (and possibly other)
antibiotics might be explained by considering other factors
related to ARG presence that we did not explore here.11

For some classes of antibiotics (eg, fluoroquinolones),30

resistance-associated mutations or ARGs are found in
phenotypically susceptible isolates; more complex models
accounting for this might perform better than the simple
presence or absence interpretation of genotype evaluated in
this study.The statistical associations identified in this study
between variants of blaTEM-1 1 and reduced or increased
relative susceptibility to β-lactam–β-lactamase inhibitor
combinations require further experimental validation.
Although we found no evidence of a difference in ARG
content in excluded isolates, the missing antibiotic resist-
ance phenotype data for 390 (4⋅4%) of 8945 isolates are an
additional limitation, as is the fact that we only evaluated a
single ARG database.
In summary, we have shown substantial variation in

known AMR gene targets in E coli, some of which are
selected across space and time. Surveillance approaches
taking this uncatalogued variation into account might be
9
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able to more rapidly identify genetic variants that are
emerging or disseminating. We highlight three areas of
focus for the improvement of existing ARG databases. For
mostdrugclasses, current knowledge explainsmost, butnot
all, resistance and so new gene target discovery is needed.
Fornew, as yet undiscoveredAMR-associatedgene families,
it will be important to develop rules for systematically
cataloguing new alleles so that their phenotypic effect can be
properly considered. Finally, the application of databases
needs to be improved to consider mutations at both the
nucleotide and amino acid level, aswell as theeffects of these
changes on phenotypes at the specific drug species level.
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