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1. Introduction

Recent advancements in artificial intelli-
gence (AI) have demonstrated its disruptive
potential in knowledge extraction from
data.[1,2] Spreading its influence beyond
the realm of diffusion models and large
language models, ML excels in modelling
experimental research, where numerous
variables influence the outcome. It has
gained favor among researchers as a pow-
erful tool for prediction as well as inference
in a wide spectrum of areas, such as
biology, pharmaceutics, and materials
science.[3–8] Regardless of field, the signifi-
cant role of the training data is widely
acknowledged, as it forms the foundation
of any model and establishes an upper limit
on model performance. Many current
AI applications rely on extensive datasets,
exemplified by repositories like ImageNet,
housing over a million images, and tera-
bytes of training data required for the
GPT-4 model.[9,10] Adequate training data
is crucial to achieve satisfactory prediction
accuracy and to derive reliable insights.
In the area of experimental research, initia-

tives such as the Materials Project and Protein Data Bank (PDB)
have been launched to facilitate data accumulation, yielding
promising and fruitful results.[11,12] Nevertheless, due to the
unique nature of experimental studies, researchers often
encounter challenges in obtaining datasets tailored for their
research questions. In such cases, datasets must be painstakingly
curated through resource-demanding in-house laboratory experi-
ments, which has deterred many attempts to implement data-
driven modeling and gave rise to the data scarcity bottleneck.[13]

To address the issue of data scarcity in experiments, a meth-
odological approach emerged as a potential solution. Traditional
experiment planning often involved designating one factor as the
independent variable while holding all others constant, a one-
factor-at-a-time (OFAT) approach.[14] However, given the vast
variable space, such OFAT experiments were impractical in
providing sufficient information for data-driven modelling.[15]

As an improvement, design of experiments (DoE) aimed to sys-
tematically plan experiments to obtain optimal information.[14,16]

DoE has found extensive application in pharmaceuticals, materi-
als science, and engineering research for comprehensively
assessing the impact of multiple variables on responses.[15,17]

Typically, DoE results were analyzed using techniques like anal-
ysis of variance (ANOVA) and response surface methods (RSM).
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Machine learning (ML) has been harnessed as a promising modelling tool for
materials research. However, small data, or data scarcity, is a bottleneck when
incorporating ML in studies involving experimentation. Current experiment
planning methods show several disadvantages: one-factor-at-a-time (OFAT)
experimentation became impractical due to limited laboratory resources;
conventional design of experiments (DoE) failed to incorporate high-dimen-
sional features in ML; Surrogate-based or Bayesian optimization (BO) shifted
the goal to optimize material properties rather than guiding training data
accumulation. The present research proposes leveraging active learning (AL) to
strategically select critical data for experimentation. Two AL strategies, query-
by-Committee (QBC) algorithm and Greedy method, are benchmarked against
random query baseline on various materials datasets. AL is shown to efficiently
reduce model prediction errors with minimal additional experiment data.
Investigation of hyperparameters revealed benefits of applying AL at an early
stage of experimental dataset construction. Moreover, AL is implemented and
validated for an in-house materials development task - electrospray modelling.
AL exploration as a paradigm is highlighted to guide experiment design
for efficient data accumulation purposes, and its potential for further ML
modelling. In doing so, the power of ML is expected to be fully unleashed
to experimental researchers.
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More recently, ML methods have been introduced to the model-
ing of DOE experiment results.[18] Nevertheless, DoE methods
demand well-structured experiment plans that must be strictly
followed. This rigidity forbids any changes during the experi-
ment process. Furthermore, current DOE methods, including
Taguchi orthogonal design, Central Composite Designs
(CCD), and Box-Behnken (BB) Designs, impose strict constraints
on the number of variables and levels.[14,19] For example, CCD
and BB were developed for evaluating three-level variables, while
Taguchi orthogonal design struggles with experiments involving
more than five variables, each with five levels.[19,20] These limi-
tations have undermined the utility of DoE as a tool for experi-
ment planning in the ML data accumulation phase.

Therefore, a more advanced and flexible experiment design
paradigm is highly desired to allow researchers to grasp the
power of ML. Here, we introduce the concept of active learning
(AL), a field in human-in-the-loop learning. Settle succinctly
described AL as a recommendation system to propose unlabeled
instances to be labeled by an oracle.[21] This approach is particu-
larly valuable in situations where the cost of labeling data is sig-
nificant, like hiring radiologists to identify cancer sites.[22,23]

Recommendations given by AL are designed to prioritize critical
instances and thus help maximize the information gained
through labelling. From our viewpoint as researchers, such
capacities of AL could assist researchers to allocate limited
resources in laboratory. In such context, researchers become
the oracle in AL, and the labelling process is essentially experi-
mentation. As illustrated in Figure 1, the insufficient initial
dataset led to poor modeling performance. AL’s role was to stra-
tegically select potential experiments, followed by researchers
performing laboratory experiments. With a few rounds of AL,
the enriched dataset would allow better modeling results.

The majority of AL strategies proposed in the literature had a
primary focus on the classification tasks. One prominent
strategy, known as the query-by-committee (QBC) method,
was put forward by Seung et al. in 1992 and further developed
by Abe and Mamitsuka.[24–26] In QBC, each committee member
votes for the potential class of an unlabeled instance. The

recommendation strategy is based on the maximum disagree-
ment, which is calculated by the entropy between these votes.
However, AL for classification is less applicable to experimental
research, where most of variables are continuous (e.g., materials
properties and processing parameters). Efforts to incorporate AL
algorithms into regression expanded AL’s potential for broader
applications. Burbidge et al. derived the theoretical grounding for
the regression version of QBC algorithm, where the disagree-
ment of a committee was measured by the standard deviation
of predictions.[27] Other algorithms like expected model change
maximization (EMCM) were introduced later to use the deriva-
tion of the loss function during training as the selection criteria
for recommendations.[28]

More recently, there is a growing interest in leveraging adap-
tive learning strategies to assist experiment planning in materials
research. Under the umbrella of adaptive learning, AL and BO are
both goal-driven learning strategies with different focuses.[29]

BO, or more broadly surrogate-based optimization (SBO), placed
emphasis on the identification of optimum candidates.[30] SBO
algorithms seek balance of exploration and exploitation to avoid
being trapped in local minimum. For example, Pandi et al. devel-
oped an SBO framework and tested it on various biological net-
work optimization tasks.[31] Furthermore, in the field of materials
research, Lookman et al. performed an extensive review on how
these optimization strategies could facilitate novel material
discovery.[32] In contrast, AL placed focus on exploration to min-
imize the uncertainty in the training dataset. Rodríguez-Pérez
et al. used entropy-based AL strategy for improving classification
accuracy of kinase inhibitor binding types.[33] Li et al. recently
examined AL using prediction probability calculated by surro-
gates with chemistry datasets.[34] Both studies revealed the poten-
tial of AL to construct a refined dataset for training purposes.
However, only limited studies investigated applications of AL
for regression in materials discovery and development. Also,
key hyperparameters in AL were not fully understood in a
real-life experiment planning setting.

Current bottleneck in lacking enough training data made it
extremely difficult to obtain ML models with satisfactory perfor-
mance for prediction and inference. Such challenges are
especially severe in experiment-based materials development,
where simulation tools (e.g., ab initio calculations) are less avail-
able compared to materials discovery tasks. In the present study,
we propose implementing AL as a generalizable tool for experi-
ment designing that could strategically allocate limited experi-
ment budget to critical datapoints. As an improvement on
prior arts, we conducted a comprehensive evaluation, bench-
marking the performance of two AL algorithms—namely, the
QBC method and the Greedy method—against a baseline by
random query. The evaluation was performed on a diverse range
of datasets, spanning materials development (including process-
ing and engineering tasks) as well as materials discovery
(related to quantitative structure-property relationship, or
QSPR, tasks) which involved complicated high-dimensional
inputs. Furthermore, hyperparameters in AL algorithms were
examined to shed light on their impact. In addition, we show-
cased AL on our in-house datasets, using them to recommend
wet-lab experiments for data-driven modeling. We anticipate that
this new experiment design paradigm to achieve previously unat-
tainable tasks. For example, removing constraints of features in

Figure 1. A schematic illustration of the AL process to supply additional
data to the original scarce dataset for ML training.
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traditional DoE, receiving high-dimensional inputs like molecu-
lar descriptors, suggesting crucial data to tackle data scarcity in
ML modeling, and eventually boosting ML applications for
research in general.

2. Results

2.1. AL on Published Datasets

To evaluate the performance of AL on material datasets, we first
benchmarked two AL strategies, the Greedy method and QBC
algorithm, against a baseline method random query. The data-
sets were selected to represent various tasks in material research.
For example, the concrete compressive strength dataset pos-
sessed 8 input variables detailing concrete preparation, with
the compressive strength yielded from the corresponding param-
eters. Another example was the ESOL dataset where aqueous sol-
ubilities were correlated to molecular structures, comprising a
QSPR materials dataset. In this retrospective setting of AL, each
full dataset was randomly divided into two sets, a starting set and
a pool set, with the aim to resemble the scenario of AL applica-
tions with limited amount of data as the starting set. The
improvement in performance, represented by the reduction in
root mean squared error (RMSE), was plotted for the five datasets
(Figure 2a).

An instant observation was that, regardless of AL algorithms,
model performance consistently improved as more training data
became available, while some minor fluctuations were noted
(e.g., the first few rounds with the FreeSolv and lipophilicity
datasets). This coincided with the common observation that
model performance would benefit from more data.[35] For the
“bumping” jitters that occurred during AL, a similar observation

was reported by Faulds et al. where the authors explained it with
local minimum during the training process.[36]

Furthermore, it was observed that the QBC and Greedy meth-
ods outperformed the random query baseline after 20 AL rounds
in all datasets (Table S1, Supporting Information). The kinetics
of RMSE reduction for both methods were considerably faster
than the random baseline. The percentage reduction in RMSE
before and after AL was used as an indicator of AL algorithm
performance, as illustrated in the bar plots in Figure 2b. Both
QBC and Greedy methods led to more significant (p< 0.01)
reduction of RMSE compared with random baseline except
the FreeSolv dataset (p= 0.09 for QBC and p= 0.21 for
Greedy). Taking a step further, such observations were still
prominent even in the initial rounds of AL, as reflected by
Figure 2a. The benchmarking results suggested that AL algo-
rithms like QBC, or Greedy methods were able to suggest poten-
tial experiments that more effectively improve MLmodeling than
random baseline. This was in agreement with a previous bench-
marking work on text labelling tasks.[37]

2.2. Impact of AL Parameters

The impact of parameters on AL performance was further
explored, which included the hyperparameters in QBC algorithm
and two global parameters in AL. In the benchmark experiment,
hyperparameters for the QBC algorithm were selected based on a
previous study.[28] Here, we examined the number of committee
members and the type of committee members. It was observed
that there was only a trivial effect on model performance when
varying committee sizes (Figure S1a, Supporting Information).
For the type of committee members, a limited influence could
be seen based on results of three datasets (Figure S1b,
Supporting Information). Only with ESOL dataset, committee

Figure 2. a) Model performance improvement by implementing AL with different strategies (green squares: Random, blue triangles: QBC, and orange
diamonds: Greedy). Shaded areas show 95% confidence interval (N= 100). b) Percentage reduction of RMSE after 20 rounds of AL. Error bars show 95%
confidence interval (N= 100). (Annotations: ns: p> 0.05, **: p< 0.01, ***: p< 0.001, ****: p< 0.0001).
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D exhibited leading performance. These results suggested that
even a small committee of two or three members in QBC algo-
rithm exhibited a satisfactory performance. Some reports also
support our observation.[26,37]

Furthermore, two global parameters in AL were inspected.
One was the batch size, which determined the number of instan-
ces to be recommended in each round. The other was the starting
ratio, which controlled the percentage of data allocated to the
starting set as opposed to the pool set. As depicted in
Figure 3a, varying batch size from the default 4 to 1, 2, or 8
did not result in significant differences in algorithm perfor-
mance for the random and Greedy methods. However, it is worth
noting that in the concrete dataset, increasing the batch size was
beneficial to the performance of the QBCmethod. For other data-
sets, QBC’s performance remained consistent regardless of
batch size (Figure 3b).

We then considered the starting ratio, which referred to the
proportion during the partitioning of the full dataset into two
parts: the starting set and the pool set. Intuitively, the ratio deter-
mined the level of prior information that was possessed before
the implementation of AL. Thus, it would be easy to imagine that
the reduction of RMSE would be more prominent when supply-
ing additional data to an extremely deficient dataset, compared
with a “saturated” dataset. This assumption was confirmed in
our experiments (Figure 4). The reduction of RMSE was more
evident across all methods when the starting data size was the

smallest (2%). Additionally, it showed that the QBC and greedy
method consistently outperformed the baseline in the first two
ratios 2% and 10%. This suggested that researchers would ben-
efit more from implementing AL at an early stage.

2.3. AL on in-House Datasets

The following section will shift the focus toward evaluating AL
within our in-house problem setting - electrospray particle
generation. To provide some context, electrospray (also called
electrohydrodynamic atomization) is a versatile micro-/nano-
manufacturing technology employed for the controlled break-
down of a liquid jet into droplets utilizing an electric field.[38]

When a volatile solvent is used during the process, it evaporates,
resulting in the formation of solid fine particles (Figure 5a).
Electrospray as a technology stands out for its ability to generate
significantly smaller droplets with tightly controlled size distribu-
tions, making it an attractive candidate for fine particle prepara-
tion, particularly in pharmaceutical, analytical chemistry, and
energy applications.[39,40] Nonetheless, harnessing the versatility
offered by electrospray technology was far from straightforward.
The characteristics of the generated particles, such as size distri-
bution and morphology, were governed by a complex interplay of
various parameters. Moreover, characterization presented a chal-
lenge because the sizes of electrospray-generated particles were
typically below a few micrometers. In practice, the optimization

Figure 3. a) Model performance improvement with varying AL batch size settings and AL algorithms (green: Random; blue: QBC; and orange: Greedy) on
three datasets. Shaded areas show 95% confidence interval (N= 100). b) Percentage reduction of RMSE after querying 80 instances. Error bars show 95%
confidence interval (N= 100). Bar plots are color-shaded based on batch size (from light to dark: 1, 2, 4, and 8). (Statistical testing: Mann–Whitney–
Wilcoxon two-tailed U test. Annotations: ns: p> 0.05, **: p< 0.01, and ****: p< 0.0001).
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process required excessive trial-and-error and prior experience.
Thus, it was of great interest to leverage data-driven modeling
to understand the complicated relationships in electrospray.

Considering the similarity between the concrete dataset and
the electrospray dataset, both being processing datasets, the
experiment of batch size was repeated (Figure 5b,c). Unlike
the case in the concrete dataset, here, no significant impact
on AL performance could be seen. Furthermore, the starting
dataset size was varied from 10%, 20%, 40%, and up to 60%
of the full poly(lactic-co-glycolic acid (PLGA) dataset
(Figure 5d,e). Results from the random method revealed the
diminishing benefit of model performance with additional data.
Starting with 23 instances, the RMSE reduced by 28.4% after
10 rounds of AL. In contrast, the reduction was 18.0% for the
47 instances (20%) group. For the remaining two groups, the
reduction of RMSE after 10 rounds of AL dropped to 9.58%
(the 40% group) and merely 2.00% (the 60% group).

Notably, the QBC algorithm yielded unsatisfactory results on
the PLGA dataset. The reduction in RMSE with the baseline
method was significantly more than that with QBC in most start-
ing size ratios, including 20%, 40%, and 60%. In Figure 5d, it
appeared that the QBCmethod reached a plateau and was unable
to further reduce the RMSE after reaching around 80 datapoints.
It was assumed that the poor performance of the QBC algorithm
could be related to the nature of this literature-originated dataset.
Experiments extracted from various papers, as opposed to a

well-designed experiment space (e.g., in the concrete strength
dataset), may deteriorate QBC algorithm’s performance. This
issue will be further elaborated in the next section with PCL data-
set. In summary, datapoints collected from different papers
would form clusters instead of an evenly distributed space.
In a retrospective setting, a portion of these clusters would be
masked out to simulate a potential experiment space.
Furthermore, it was limiting what could be “queried” from
the pool set. In published datasets tested above, the QBC algo-
rithm had a better performance than the baseline, which may
be related to their larger and more evenly distributed pool sets.
This problem, however, was less of a concern for implementing
AL prospectively, where the potential experiments were usually
generated from a set of variables and levels. An encouraging
observation was that the Greedy method outperformed the
baseline, prompting us to evaluate these three methods in
wet-experiment scenarios.

After completing retrospective AL on our in-house PLGA
dataset, we attempted putting AL algorithms in practice
(prospectively) to guide laboratory experiments. The PCL dataset
had a much smaller dataset with 113 data points, giving a poor
performance in preliminary modelling attempts (Figure S2,
Supporting Information). An XGBoost model with default
hyperparameters yielded an RMSE of 3.47, a mean absolute
percentage error (MAPE) of 21% and an R2 of 0.55 under 6-fold
cross-validation. It was evident that there was room for

Figure 4. Model performance improvement with varying starting set size and AL algorithms (green: Random; blue: QBC; and orange: Greedy) on three
datasets. Starting data size ranged from 2%, 10%, 20%, and 40% of the corresponding full dataset. Y-axes are shared between plots in the same row.
Shaded areas show 95% confidence interval (N= 100).
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improvement compared to the ML model’s performance on the
PLGA dataset.

To perform AL, the available 113 instances were treated as the
starting set and proceeded with defining the pool set. Potential
values of the corresponding parameters were set based on the

domain knowledge about the electrospray process, forming
720 possible combinations. It is important to note that conduct-
ing all 720 experiments would be an extremely challenging, if not
impossible, task due to resource constraints. Furthermore, to the
best of our knowledge, there was no conventional DoE method

Figure 5. a) A close-up illustration of an electrospraying needle. The outer electrode (gold) is connected to a high-voltage power supply. The inner metal
needle runs the polymer solution fed from a syringe pump. A grounded metal board is placed in a distance as the collector for particles. Processing
parameters are listed in italic. b) Model performance improvement with varying AL batch size settings and AL algorithms on PLGA dataset. Shaded areas
show 95% confidence interval (N= 100). c) Percentage reduction of RMSE after 80 instances recommended. Error bars show 95% confidence interval
(N= 100). Bar plots are color-shaded based on batch size (from light to dark: 1, 2, 4, and 8). d) Model performance improvement with varying starting set
size and AL algorithms. e) Percentage reduction of RMSE after 20 rounds of AL with different starting dataset size. Error bars show 95% confidence
interval (N= 100). (Annotations: ns: p> 0.05, *: p< 0.05, **: p< 0.01, and ****: p< 0.0001).
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Table 1. Details of experiments recommended with AL algorithms and the results obtained. The needle’s outer diameter was kept constant at 0.71 mm.
Each experiment was repeated in triplicates (N= 3 independent experiments). Particle mean diameters and standard deviations were obtained by
counting at least 100 particles from three SEM images taken at different locations.

AL Round Method Sample Flow Rate
[mL h�1]

Voltage
[kV]

Collection
Distance [mm]

Solvent Polymer
[w/v%]

Particle Diameter
Mean [μm]

Particle Diameter Standard
Deviation [μm]

Round 1 QBC Q-1-1 3.60 14.0 160 Acetone 5.0 3.49 0.87

Q-1-2 3.60 14.0 220 Acetone 5.0 3.60 0.93

Q-1-3 3.60 14.0 200 Acetone 5.0 3.30 0.95

Random R-1-1 0.30 12.0 200 Acetone 1.0 1.90 0.43

R-1-2 2.50 16.0 160 Chloroform 5.0 9.07 1.17

R-1-3 3.60 16.0 180 Acetone 1.0 2.99 0.64

Greedy G-1-1 0.30 16.0 220 Acetone 1.0 0.97 0.22

G-1-2 0.30 14.0 220 Acetone 1.0 1.35 0.30

G-1-3 0.30 16.0 200 Acetone 1.0 1.06 0.22

Round 2 QBC Q-2-1 3.60 16.0 160 DCM 5.0 9.42 2.00

Q-2-2 3.60 14.0 160 DCM 5.0 12.13 1.25

Q-2-3 3.60 16.0 160 Chloroform 5.0 10.75 1.47

Random R-2-1 1.40 12.0 180 Acetone 5.0 3.23 0.85

R-2-2 0.30 10.0 160 Acetone 1.0 1.32 0.33

R-2-3 0.30 8.0 160 DCM 1.0 6.75 1.28

Greedy G-2-1 1.40 16.0 220 Acetone 1.0 1.86 0.40

G-2-2 0.30 16.0 160 Acetone 1.0 1.24 0.34

G-2-3 0.30 16.0 180 Acetone 1.0 1.12 0.32

Round 3 QBC Q-3-1 3.60 8.0 200 Acetone 5.0 5.15 2.09

Q-3-2 3.60 8.0 180 Acetone 5.0 4.88 1.80

Q-3-3 3.60 8.0 220 Acetone 5.0 4.98 2.02

Random R-3-1 0.30 16.0 160 Chloroform 5.0 9.14 2.66

R-3-2 3.60 14.0 220 Chloroform 5.0 15.32 1.98

R-3-3 3.60 10.0 220 Chloroform 1.0 11.03 1.41

Greedy G-3-1 0.30 12.0 220 Acetone 1.0 1.06 0.22

G-3-2 2.50 16.0 220 Acetone 1.0 2.03 0.49

G-3-3 0.30 8.0 220 Acetone 1.0 1.16 0.30

Round 4 QBC Q-4-1 2.50 16.0 160 Acetone 3.0 2.93 0.73

Q-4-2 2.50 16.0 180 Acetone 3.0 2.82 0.79

Q-4-3 1.40 16.0 160 Acetone 3.0 3.00 0.75

Random R-4-1 2.50 14.0 200 DCM 1.0 9.55 1.38

R-4-2 2.50 8.0 220 DCM 1.0 10.93 1.80

R-4-3 1.40 16.0 160 Chloroform 5.0 14.14 2.29

Greedy G-4-1 3.60 16.0 220 Acetone 1.0 2.17 0.56

G-4-2 0.30 10.0 220 Acetone 1.0 1.09 0.31

G-4-3 0.30 16.0 220 Acetone 3.0 2.37 0.68

Round 5 QBC Q-5-1 0.30 8.0 220 Acetone 3.0 3.64 0.63

Q-5-2 3.60 8.0 220 Acetone 3.0 3.23 0.57

Q-5-3 0.30 8.0 200 Acetone 3.0 2.20 0.47

Random R-5-1 0.30 8.0 200 Chloroform 3.0 11.83 2.19

R-5-2 1.40 12.0 220 Chloroform 3.0 11.76 1.68

R-5-3 2.50 16.0 160 Acetone 3.0 2.75 0.53

Greedy G-5-1 0.30 14.0 200 Acetone 1.0 1.03 0.17

G-5-2 1.40 14.0 220 Acetone 1.0 2.02 0.44

G-5-3 1.40 16.0 200 Acetone 1.0 1.99 0.40
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that supports the planning for factors and levels outlined. In total,
five rounds of AL were performed with laboratory-based experi-
mentation to compare the performance of three strategies.
Wet-lab electrospray experiments were conducted following
the recommended parameters from AL. Particles obtained from
experiments were further characterized by SEM to understand
the particle size (Figure S3, Supporting Information). The results
were summarized in Table 1.

We first explain the rationale for choosing hyperparameters in
prospective AL. The batch size of three was selected based on the
consideration of practical capacity limits in the lab, knowing that
the batch size showed limited influence on AL performance
(Figure 5a). A batch size of one candidate per round could be
performed but would result in the waste of laboratory reagents
and preparation time. This will be further elaborated in the
discussion section. Furthermore, since AL was prospectively

Figure 6. a) ML model performance, as evaluated by 6-fold cross-validation with RMSE, MAPE, and R2, with prospective AL on PCL dataset.
b) Visualization of the starting PCL dataset, potential experiments space, and AL selected instances with principal component analysis (PCA).
Zoom-in plots are three areas where potential experiments were located in. Each point represents an instance in the dataset and is color-coded (black
circles: starting set, grey dots: potential experiments, and colored markers: instances selected by AL algorithm). AL strategies adopted are represented
with different hues and markers (green squares: Random, blue triangles: QBC, and orange diamonds: Greedy). Selected instances with AL are shaded to
indicate in which round they were selected (from light to dark: 1st to 5th Round). c) contributions of features to the two principal components.
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implemented on the PCL dataset, the pool dataset defined here is
≈6 times larger than the initial dataset. Thus, it was roughly
equivalent to 10% partition in a retrospective scenario. We
expected, under this setting, the difference of AL strategies would
be more prominent. The hyperparameters in QBC algorithm
remained the same as in the benchmarking setting, since the size
and type of committee showed no significant impact on AL per-
formance. For the evaluationmodel, XGBoost with default hyper-
parameters were used due to its superior performance compared
with other algorithms, as reported in our previous publication.[41]

In addition, the comparative nature of the prospective AL experi-
ment did not pose a strict requirement on hyperparameter
optimization.

The performance after each round was recorded and plotted in
Figure 6a. The Greedy method managed to reduce the RMSE
from 3.47 to 3.29, whereas the random baseline increased it
to 3.56. The QBC method experienced some fluctuations and
slightly reduced the RMSE to 3.43. In terms of MAPE, neither
of these three methods contributed to reducing MAPE. Both
QBC and Greedy methods maintained it around 23% and
22%, respectively, while the random baseline leveled up the
MAPE from the starting 21% to 27%. Regarding the R2, starting
from 0.55, the Greedy method achieved the highest R2 of 0.71,
surpassing the QBC (0.64) and random (0.56) methods. It was
unsurprising that the Greedy method performed better than
QBC, as it was consistent with the PLGA dataset and some pub-
lished datasets.

To further shed light on the details of AL, we visualized it
through principal component analysis (PCA) in Figure 6b.
The black circles were datapoints from the starting set, some
of which followed specific patterns, like on crosses or straight
lines (Figure S4, Supporting Information). Upon examining
the raw data, it became evident that these patterns originated
from a well-planned investigation of PCL micro/nanoparticle
production with electrospray.[42,43] Another finding of this plot
was about the relationship between the location of datapoints
and the type of solvent used. As mentioned previously, the type
of solvent was represented by the physical properties. These
properties had different contributions to principal components
as indicated in Figure 6c. Four distinct clusters were highlighted
in Figure S4 (Supporting Information), corresponding to the sol-
vents used. Specifically, DCM cluster was on the top left, and
chloroform cluster was on bottom left. It could be seen that these
two clusters on the left already had a few datapoints situated in-
between, meaning that prior knowledge (instances) existed
before AL. Sitting on the top right corner, the acetone cluster
owned only a few neighboring datapoints. Furthermore, like
the patterns created by the existing data, the potential experi-
ments (represented by grey dots) were organized into unique
lattice-like patterns.

Having interpreted the “background” datapoints of the PCA
plot, the focus was then turned to the colored markers which rep-
resented the in-house experimental data. Green squares were
points selected randomly and were therefore spreading through-
out three clusters. QBC method queried a few points within the
DCM and chloroform clusters, while most queried points stayed
in the acetone cluster. Interestingly, the Greedy method heavily
sampled the data scarce acetone cluster. Such trends were asso-
ciated with the underlining query mechanism. As outlined in

algorithm 2, the Greedy algorithm would evaluate the distance
between a potential instance and all existing data and select delib-
erately the ones that had the longest distance. The preference of
the acetone cluster was justified from the PCA plot, which
showed that this cluster was the furthest from the existing knowl-
edge. It is worth noting that both AL strategies, the Greedy
approach and QBC method, were superior to the random
baseline.

3. Discussions

Our study demonstrated the potential application of AL as an
experiment planning tool, with a focus on materials datasets.
The key parameters in AL were examined to shed light on their
impact. In addition, we have demonstrated the usage of AL on
our in-house modeling attempt for electrospraying.

Before any discussion, we believed that it would be beneficial
to clarify the relationship between AL and SBO/BO. This was
because optimization algorithms was highlighted in many pub-
lications while sharing the name of AL.[13,18,32,44] Indeed, both
methods are used for recommending experiments. However,
BO has the goal of searching for desired target, which in materi-
als discovery context is an optimized materials property.
After multiple rounds of BO and experiments, researchers will
be able to find the experiment conditions that yield, or at least
close to, the designed target.[30] If SBO/BO were to be used in
our electrospray dataset, the task would have been shifted to iden-
tifying the electrospray condition that generates the smallest, or
the largest, PCL particles. On the contrary, rounds of AL will
explore an enriched dataset which leads to the best ML model-
ling. Moreover, the algorithm of SBO/BO and AL can be differ-
ent. Typically, the strategy used in SBO/BO balances exploration
(high uncertainty) and exploitation (high expectation), whereas
AL solely focuses on exploration. In this regard, SBO/BO was
more often considered as an optimization tool and AL was con-
sidered closer to DoE. Notably, performing SBO/BO will still
accumulate new data points and benefit the training of surro-
gates. For example, Borkowski et al. utilized SBO to identify
and understand the interactions between buffer composition
and the protein production in cell-free systems.[45] They imple-
mented a modified QBC method that accounted for both explo-
ration and exploitation. After 10 rounds, the model’s coefficient
of determination (R2) increased significantly. Also, Montoya et al.
leveraged SBO to identify stable Fe-X binary compounds and
reported the reduction of prediction error.[46] However, the
improvement of prediction performance is rather a by-product
of the global searching process. As discussed by Lookman
et al. empirical observations have shown that high model accu-
racy is not necessary in SBO/BO processes.[32] Thus, we would
like to highlight again that AL has a different purpose, when
compared with optimization strategies.

Focusing on our results, the effectiveness of AL was confirmed
through benchmarking on datasets and the results were in well
agreement with literature. For example, we validated the conclu-
sion that even a small committee in QBC algorithm yielded
similar performance as the one with a large committee.
Nevertheless, some previously under-examined topics showed
surprising results. Notably, the batch size in AL only had trivial
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effect on AL performance in our experiment (Figure 3). When
scrutinizing this seemingly simple parameter, the impact turned
out to be highly sophisticated. From a theoretical standpoint,
most AL algorithms were designed for sequential AL (SAL),
where only one instance was selected at a time (i.e., batch size= 1).
As summarized by Settle, implementing the strategy of myopi-
cally choosing the top k-best instances from the pool set would
fail to consider the overlapped information between instances.[47]

Thus, having a large batch size was believed to be detrimental to
AL performance. However, from a practical point of view, con-
ducting just one experiment to label one instance could lead to
the waste of consumables, testing materials, and characterization
devices in the laboratory. Although it was widely assumed that
the performance of AL algorithms would decline with larger
batch sizes, limited evidence was provided with regression data-
sets. In this study, we conducted an evaluation of the impact of
varying the batch size, and our results did not entirely align with
previous assumptions. In one dataset, the QBC method with a
larger batch size of 4 or 8 outperformed versions with a batch
size of 1 or 2 (Figure 3). One possible explanation for our obser-
vation was that intrinsic noises in real-world data and the high
dimensionality of data require multiple datapoints for modeling.
In other words, the information in a noisy and scarce data source
may not be as ‘overlapped’ in the SAL settings. Our observation
agreed with another previous work where a marginal reduction
in performance was observed when increasing the batch size.[48]

In addition, it is essential to emphasize some potential appli-
cations of AL in experimental studies. One was inspired by the
benchmarking results of ESOL, FreeSolv, and lipophilicity data-
sets, where Morgan fingerprints were used as the input. Morgan
fingerprints was one of the most popular chemical descriptors
used in computational modelling.[49] Essentially, chemical
descriptors use a set of numbers to represent molecular struc-
tures. When it comes to the Morgan fingerprint, it uses 2048 fea-
tures to describe a molecule. Many other featurization methods,
like theMol2Vec or theMordred fingerprint, were also associated
with this high dimensionality, making it difficult to design
experiments systematically in this feature space.[50,51] The prom-
ising performance of AL in these datasets suggested its potential
in material and drug discovery applications, where preliminary
laboratory results could be highly costly and scarce. Furthermore,
the state-of-the-art molecular featurization and prediction using
graph neural networks also require a large amount of training
data.[52,53] Although our wet experiment was carried out on a
material development task, it is highlighted that, based on the
benchmarking evaluation, AL could also benefit material and
drug discovery research. For example, assisting in the construc-
tion of more reliable and accurate QSPR models. Moreover, AL
strategies could also be applied in transfer learning or model
fine-tuning scenarios for experimental studies. Taking our appli-
cation as an example, if a researcher would like to investigate a
new or greener solvent that had never been documented in the
dataset, they could implement AL to recommend a few data-
points and perform the experiments. With these supplementary
data, errors caused by extrapolation may decrease, leading to a
more robust ML model. Li et al. recently presented a study on
how AL and yoked learning could benefit the training of deep
learning models with retrospective applications on materials
datasets.[34] Another potential application was to work

synergistically with other technologies to tackle the data scarcity
issue. This includes miniaturization technologies like microflui-
dics to cut down the usage of reagents and further reduce the
expense to an acceptable range. The use of microfluidics and
high-throughput experiments were demonstrated as routes to
efficiently collect data in biology and materials research.[54–58]

Lab robots would also greatly alleviate the time constrains in
lab experiments.[59,60]

4. Conclusion

Insufficient data became a significant issue that troubled many
endeavors to leverage ML to model and analyze data from exper-
imental research. The current paradigm of data accumulation
through performing full factorial wet-lab experiments was
extremely resource-demanding and time-consuming. In the
present study, we proposed and evaluated AL as a potential
new paradigm of experiment planning. The QBC and Greedy
methods demonstrated superior capacity in improving ML
model performance with significantly smaller amounts of data.
Explorations on parameters in AL suggested trivial impact of
batch size on the performance of AL methods on materials data-
sets. Further examination confirmed the limited influence of
QBC committee size and type on its performance. Finally,
wet-lab experiments of electrospray preparation of PCLmicropar-
ticles showcased AL in assisting experiment planning. It was
thus concluded that AL could serve as an effective and versatile
tool to strategically address the current bottleneck of data scarcity
in experimental studies, enabling researchers to fully harness the
power of ML.

5. Experimental Section

Data Extraction and Processing for in-House Dataset: The in-house data-
set was extracted from previous publications with detailed procedures
described in our previous publication.[41] In brief, seven key parameters
in electrospraying were manually collected into a spreadsheet. These
parameters included polymer type, polymer concentration, solvent type,
flow rate, applied voltage, needle outer diameter, and collection distance
(Table S2, Supporting Information). Subsequently, the type of solvent in
the original dataset was substituted by their respective physical properties.
Notably, eight solvent physical properties were carefully selected to best
characterize solvent behavior during electrospray. These properties
included boiling point, density, dipole moment, dielectric constant, viscos-
ity, surface tension, relative evaporation rate (where butyl acetate= 1), and
the Hansen solubility distance calculated with respect to the polymer.
Then, the data was further divided based on the type of polymer, resulting
in two different datasets: the PLGA dataset and the PCL dataset. In these
datasets, the remaining 13 features were subjected to preprocessing. They
were first standardized by subtracting the mean and dividing by the stan-
dard deviation. To address the missing values, a k-nearest neighbor (kNN)
imputation was performed. Finally, the data underwent a shuffling process
to ensure random arrangements. All data processing was performed using
sklearn ver. 1.1.3 in a Conda environment (Python version 3.9.17).

AL: Essentially, AL algorithms evaluate the existing data and give rec-
ommendations by selecting from a potential experiment pool (the pool
set). In the present study, three AL strategies were chosen and evaluated.
The simplest strategy was the random query method where recommen-
dations were randomly picked from the pool set (Algorithm 1). The second
strategy was the Greedy method. To perform the Greedy method,
Euclidean squared distances from a specific sample in the pool set to
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all existing training data were first calculated. The total distance of that
specific experiment to the training set was obtained by summing up
the Euclidean squared distances. This step was then repeated on all sam-
ples in the pool set to understand which samples were the furthest from
the training data. Finally, depending on the batch size, the top k potential
experiments in the pool set with the largest total Euclidean squared dis-
tances were recommended (Algorithm 2). The third method implemented
in the current paper was the QBC method. The concept of the QBC
method was to select the most “uncertain” samples in the pool set judged
by the committee, which was constructed from models trained with exist-
ing data. The uncertainty of a specific sample in the QBC method was
characterized by disagreement, or more specifically the standard deviation
of the predictions given by the committee members in regression.[26,27]

Thus, procedures to conduct QBC strategy were: 1) bootstrapping
(resampling with replacement) c times from the training data to construct
c new groups of training data, 2) train a group of regression models
respectively with the bootstrapped data, 3) for each sample in the pool
set, make predictions with models in the committee and calculate the
standard deviation of c predictions as the measurement of uncertainty,
and 4) repeat the previous step to all samples in the pool set and recom-
mend the top k samples with the largest uncertainty (Algorithm 3). The
performance of models was evaluated RMSE, which was calculated by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
i¼1 ðyi � ŷiÞ2

N

r

(1)

where yi is the ground truth value, ŷi is the predicted value, and N is the
total number of samples.

We further introduced two other metrics to evaluate model perfor-
mance in prospective AL, namely MAPE and R2. They were calculated by:

MAPE ¼ 1
N

X

N

i¼1

jyi � ŷij
jyij

(2)

R2 ¼ 1�
P

N
i¼1 ðyi � ŷiÞ2

P

N
i¼1 ðy� yiÞ2

(3)

where yi is the ground truth value, ŷi is the predicted value, y is the mean of
all ground truth values, and N is the total number of samples.

AL: Retrospective: In this section we describe the process to conduct AL
on readily available data for the purpose of validating the performance of
AL algorithms and exploring the effect of various settings in AL.
Furthermore, the algorithm was implemented on the PLGA dataset to ver-
ify the effectiveness prior to utilizing them for prospective AL.

To perform retrospective AL, a full dataset was first split into the start-
ing set and the pool set at a predefined ratio. Here, the starting set was
treated as prior knowledge for the user, whereas the ground truth labels in
the pool set were hidden to simulate ‘potential experiments’. Before start-
ing, an initial model performance was obtained by 6-fold cross validated
training and evaluation on the starting set. XGBoost with default hyper-
parameters (py-XGBoost ver. 1.5.0) was selected as the ML model in
our case.[53,61,62] Then, retrospective AL was conducted by repeating
the following three steps. Firstly, three AL algorithms were implemented
on the pool set to select ‘potential experiments’ respectively. The number
of experiments was controlled by the batch size of AL. Furthermore,
ground truth values of these suggested experiments were revealed and
put back to the starting set as if the wet lab experiments were performed
to obtain results. Finally, model performance was evaluated with the same
6-fold cross validation process for three updated starting sets (with respect
to the three AL algorithms). These three steps together were referred to as
one round of AL process. Three AL algorithms were first implemented ret-
rospectively on several published datasets (Table 2) to evaluate perfor-
mance on engineering and materials tasks. Specifically, the concrete
compressive strength dataset was obtained from UCI.[63] The ESOL,
FreeSolv, and Lipophilicity datasets were retrieved from the corresponding
implementations in DeepChem library (ver. 2.7.1) with the default
molecular featurizer (extended-connectivity fingerprint (ECFP4, 2048
bits)).[35,64–67] The double perovskite bandgap dataset was sourced from
Matminer library (ver. 0.9.0) with the default Magpie elemental descriptor
and oxidation states as the featurization.[68,69] The ratio to split starting
sets and pool sets was set at 2:98 for all datasets and data random shuf-
fling was performed prior to partitioning. In the benchmarking study, the
number of committee members was set at 4. Gradient boost decision tree
(GBDT, with default hyperparameters in the implementation by sklearn
ver. 1.1.3) was selected as algorithms for models that constructed the
QBC committee. The batch size for one round of AL query was initially
set at 4. And 20 rounds of AL were performed on each dataset to observe
the efficiency to improve model performance. The percentage reduction of
RMSE was calculated by subtracting the RMSE at the 20th round from the

Algorithm 1. Random query method for AL in regression.

Input: the potential experiment pool P ¼ fðxiÞgni¼1, the batch size k per round of

query.

1: Randomly sample k times without replacement from the pool set P

2: Construct recommendation set RR ¼ fðx�i Þgki¼1

Output: the recommendation set RR.

Algorithm 2. Greedy method for AL in regression.

Input: the potential experiment poolP ¼ fxigni¼1, the training dataset with known

labels L ¼ fðx j , yjÞgmj¼1, the batch size k per round of query.

1: for each x the pool set P do

2: Calculate Euclidean squared distances fd2j ¼ ðx � xjÞ2gmj¼1
between x and

each sample x j in the training dataset (labels not included) Lx ¼ fxjgmj¼1

3: Calculate the total Euclidean square distance d by summing up the distances

with respect to all samples in the training dataset d2 ¼ P

m
j¼1 d

2
j

4: end for

5: Construct recommendation setRG ¼ fx�i gki¼1 by selecting the top k samples

with the largest total Euclidean square distance d2

Output: the recommendation set RG.

Algorithm 3. QBC method for AL in regression.

Input: the potential experiment poolP ¼ fxigni¼1, the training dataset with known

labels L ¼ fðxj , yjÞgmj¼1, the batch size k per round of query, the number of

committee members c, the learning algorithm f used for the committee.

1: Bootstrap c times from training set L ¼ fðx j , yjÞgmj¼1 to construct

B ¼ fL1,L2, : : : , Lcg
2: Train a committee of regressors C ¼ ff 1, f 2, : : : , f cg with resampled sets in

B respectively

3: for each x in the pool set P do

4: Calculate the prediction result ŷi of the given x with each committee member

f i to obtain the committee results fŷ1, ŷ2, : : : , ŷcg where ŷi ¼ f iðxÞ
5: Calculate the standard deviation σx of the committee results as the

measurement of disagreement

6: end for

7: Construct recommendation set RQ ¼ fx�i gki¼1 by selecting the top k samples

with the largest disagreement, as characterized by σx

Output: the recommendation set RQ .
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starting RMSE, and then divided by the starting RMSE. To better charac-
terize the results, the mean RMSE and its 95% confidence intervals were
obtained based on 100 times repetition of AL processes. In each repeti-
tion, the starting set and pool set were randomly partitioned.

To investigate the influence of hyperparameters in the QBC algorithm,
additional experiments were performed on published datasets. This
included observing QBC algorithm performance under different commit-
tee sizes and committee compositions. More specifically, the effect of
committee size was examined through benchmarking with committees
constructed from 2, 4, and 8 GBDT models. The effect of committee com-
position was evaluated by selecting other ML algorithms other than GBDT.
Committee A was composed of the default 4 GBDT models. Committee B
had 4 random forest (RF) models. Committee C had a wide selection of
one GBDTmodel, one RF model, one XGBoost model, and one multi-layer
perceptron (MLP) model. For committee D, 4 MLP models were used.
All models used the default hyperparameter settings implemented in
sklearn ver. 1.1.3. The maximum iteration for MLP was set at 10 000.

Two parameters in retrospective AL, namely the batch size and the
starting ratio, was studied. A batch size of 4 instances per round was cho-
sen empirically in the previous benchmarking experiment. With 20 rounds
of AL performed, it added up to a total number of 80 instances.
Considering that running 20 rounds of AL with different batch sizes would
not provide comparable results, the budget of 80 instances was fixed
throughout this experiment. For example, in the batch size setting with
1 instance per query, 80 rounds of AL were performed, whereas 10 rounds
of AL queries were conducted when the size was chosen as 8. For the
starting ratio, the starting set was partitioned from the full dataset with
a 2:98 ratio to the pool set. This 2% ratio was further altered to 10%,
20% and 40% in the AL process (20 rounds with a batch size of 4).
All experiments were repeated 100 times, and the dataset was randomly
shuffled each time.

Finally, AL strategies were benchmarked retrospectively on our manu-
ally curated PLGA dataset. The batch size and starting ratio experiments
were performed on this dataset. The batch sizes were similarly changed
from 1, 2, 4 to 8. Due to the small dataset size, 10%, 20%, 40% and 60%
were tested for the starting ratio.

AL: Prospective: Prospective AL was implemented on the data scarce
PCL dataset. The PCL dataset was constructed by 113 instances of experi-
ment records describing the electrospray results of PCL polymer.
The same feature engineering process as the PLGA dataset was performed
to this dataset. All instances in the PCL dataset were treated as the ‘starting
set’ and the potential experimental parameters were defined based on
prior experiment experience (Table 3). In total, the number of potential
experiments (the pool set) was 720. In a prospective setting for AL, three
different algorithms, random query, Greedy, and QBC, were implemented
in parallel. In total, five rounds of AL were performed, and the batch size of
3 experiments was chosen per round. Experiments recommended by AL
algorithms were performed in the laboratory in triplicates. Results after
characterization were put back to the starting dataset and evaluated
with an XGBoost model (similarly, with default hyperparameters).

The evaluation was implemented through a 6-fold cross validation with
RMSE, MAPE, and R2 used as metrics for model performance. To further
illustrate the process of AL, all datapoints in PCL, including starting data,
potential experiment space, and additional experiments, were visualized
through PCA (sklearn ver. 1.1.3).

Wet-Lab Experiments: Materials: The polymer PCL with an average
molecular weight of 80 000 gmol�1 was purchased from Sigma-Aldrich
(Gillingham, UK). For solvents, chloroform (99% purity) and DCM
(99.8% purity) were purchased from Sigma-Aldrich (Gillingham, UK).
Acetone (99% purity) was obtained from LP Chemicals Limited
(Cheshire, UK).

Wet-Lab Experiments: Electrospray of PCL Particles: Polymer solutions
were prepared by mixing the PCL pellets in the corresponding solvent
at ambient temperature with magnetic stirring overnight. For PCL with
acetone as the solvent, the solutions were kept to 50 °C overnight to allow
complete dissolution. The solutions were then fed through a syringe pump
(Harvard PHD 4400, Edenbridge, UK) which was connected to a 22-gauge
needle (outer diameter 0.71mm) through a capillary. The positive output
of a high voltage power supply (Glassman High Voltage Inc., NJ, United
States) was connected to the needle through a crocodile clamp and the
collection plate was connected to the ground. Before electrospray, the dis-
tance between the needle and collection plate, flow rate, and voltage were
adjusted to the suggested value according to AL algorithms. Experiments
were conducted at atmospheric pressure. The temperature and humidity
in the room were controlled to be 23–25 °C and 40–50%. Particles were
collected with a glass slide placed on the collection plate for further char-
acterization. Each experimental condition recommended by AL was
repeated three times on different days.

Wet-Lab Experiments: Characterization of PCL Particles: Scanning
electron microscopy (SEM) was used as the main characterization method
of particle size. The glass slides were observed with a Zeiss Gemini 360
SEM (Germany) under an acceleration voltage of 1.00 kV through an In-
Lense detector. Three images were taken randomly on different locations
of the glass slide for each sample. Images were further analyzed using

Table 2. Datasets used to evaluate AL algorithms.

Dataset Type Dataset Name Feature Type Prediction Target Number
of Features

Number
of Instances

Data Source

Processing Concrete Compressive
Strength Dataset

Processing parameters Compressive strength 8 1030 UCI[63]

Physical Chemistry ESOL Dataset Molecular structure Aqueous solubility 1024 902 Delaney, DeepChem[64]

Physical Chemistry FreeSolv Dataset Molecular structure Hydration free energy 1024 513 Mobley and Guthrie, DeepChem[65]

Physical Chemistry Lipophilicity Dataset Molecular structure Lipophilicity 1024 3360 Hersey, DeepChem[66]

Materials Design Double Perovskite
Bandgap Dataset

Composition Bandgap of double
perovskites

136 1306 Pilania et al. Matminer[68]

Processing PLGA Electrospray Processing parameters Particle diameter 13 235 Wang et al. in-house curated[41]

Table 3. Potential experiment parameters to be selected by AL algorithms.

Parameters Unit Potential Values

Type of Polymer – PCL

Polymer Concentration %ðw=vÞ 1.0, 3.0, 5.0

Type of Solvent – Dichloromethane (DCM), Acetone, Chloroform

Flow Rate mL h�1 0.3, 1.4, 2.5, 3.6

Applied Voltage kV 8.0, 10.0, 12.0, 14.0, 16.0

Needle Outer Diameter mm 0.71

Collection Distance mm 160, 180, 200, 220

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2300798 2300798 (12 of 14) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300798 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


ImageJ (National Institute of Health, USA). To obtain the particle size dis-
tribution, diameters of particles were measured randomly on the images
and this value for 100 particles was recorded. The mean size of a specific
sample was calculated by taking the mean of these 100 measurements.

Statistics: All statistics were performed with Mann-Whitney-Wilcoxon
two-tailed U tests. The tests were implemented through Scipy (version
1.10.1) in a Conda environment (Python version 3.9.17).
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Supporting Information is available from the Wiley Online Library or from
the author.
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