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Abstract
Purpose In robotic-assistedminimally invasive surgery, surgeons often use intra-operative ultrasound to visualise endophytic
structures and localise resection margins. This must be performed by a highly skilled surgeon. Automating this subtask may
reduce the cognitive load for the surgeon and improve patient outcomes.
Methods We demonstrate vision-based shape sensing of the pneumatically attachable flexible (PAF) rail by using colour-
dependent image segmentation. The shape-sensing framework is evaluated on known curves ranging from r = 30 to r = 110
mm, replicating curvatures in a human kidney. The shape sensing is then used to inform path planning of a collaborative robot
arm paired with an intra-operative ultrasound probe. We execute 15 autonomous ultrasound scans of a tumour-embedded
kidney phantom and retrieve viable ultrasound images, as well as seven freehand ultrasound scans for comparison.
Results The vision-based sensor is shown to have comparable sensing accuracy with FBGS-based systems. We find the
RMSEof the vision-based shape sensing of the PAF rail comparedwith ground truth to be 0.4975±0.4169mm.The ultrasound
images acquired by the robot and by the human were evaluated by two independent clinicians. The median score across all
criteria for both readers was ‘3—good’ for human and ‘4—very good’ for robot.
Conclusion We have proposed a framework for autonomous intra-operative US scanning using vision-based shape sensing
to inform path planning. Ultrasound images were evaluated by clinicians for sharpness of image, clarity of structures visible,
and contrast of solid and fluid areas. Clinicians evaluated that robot-acquired images were superior to human-acquired images
in all metrics. Future work will translate the framework to a da Vinci surgical robot.
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Introduction

Robotic-assisted minimally invasive surgery is now widely
employed in hospitals worldwide as its benefits are exten-
sive [1]. Namely, it shortens procedure time and hospital
stays, reduces postoperative pain and minimises recovery
time. The robotic approach also benefits surgeons; the con-
sole has an ergonomic design, meaning reduced discomfort
and fatigue, while the increased dexterity of the robotic arms
allows surgeons to operate on hard-to-reach areas. This gives
the potential for far greater precision to achieve better resec-
tion margins and reduces the risk of damage to healthy areas
[2]. However, robotic procedures often require years of spe-
cialist training[3].

The robotic approach is frequently employed in abdomi-
nal cancer resections [4], including robotic-assisted partial
nephrectomy (RAPN) [5], as it facilitates the sparing of
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nephrons, improving long-termoutcomes.However, this pro-
cedure remains one of the most demanding in urological
surgery [3].

One of the difficult subtasks of these surgeries is iden-
tifying tumour margins with intra-operative imaging, par-
ticularly for endophytic subtypes [6]. Usually, a drop-in
ultrasound (US) probe is introduced to the surgical scene,
and the surface of the kidney is swiped multiple times to
visualise the tumour lying beneath the surface [6].

Mobilising the kidney for tumour resection is a challeng-
ing task due to its complex anatomy, the perirenal fat layer
typically present on its highly vascularised surface and the
need to interpret preoperative images. The surgeon must
simultaneously manipulate the kidney, interpret images and
mark resection margins, a process prone to errors and exces-
sively large margins.

In previouswork,wehave introduced a novel soft silicone-
based device to assist with the US scanning subtask [7].
The pneumatically attachable flexible (PAF) rail is a soft
mechanical interface that adheres to the surface of organs
via pneumatic suction. The complete deployment process of
the PAF rail and its use with US probes is detailed in [8].
We demonstrated how the PAF rail could acquire US images
for 3D reconstruction in [10]. We also showed how shape
and interaction information can be extracted by embedding
a fibre-optic shape sensor into the body of the PAF rail in
[9–11].

One of the purposes of the PAF rail is to provide a stable
track for the US probe to attach to (via a custom attach-
ment), limiting the range of motion to 2 degrees of freedom
to reduce the cognitive load on the surgeon. It also pro-
vides an anchor for the US probe, meaning the surgeon is
not solely responsible for keeping the probe in the surgical
field. Concurrently, it allows the surgeon to execute the same
trajectory repeatedly, which will improve US image quality
for 3D volume reconstruction, with potential for augmented
reality systems. Furthermore, automating this subtask could
help reduce the steep learning curve associated with RAPN.
While numerous studies have focused on investigating auto-
mated extracorporeal ultrasound scanning on the patient’s
skin [12–14], intracorporeal or intra-operative ultrasound
presentsmanychallenges that are yet to be addressed [15, 16].
One such challenge is the registration of ultrasound images
with spatial information to make them suitable for automat-
ing. Researchers have largely focused on optical tracking
using fiducial markers [15]. Other approaches have consid-
ered electromagnetic tracking [16], but this is limited by
metallic instruments and the need for a separate generator.
Several studies have focused on creating hardware for this
purpose [16].More recently, [17] building on thework of [18]
used a deep learning approach to ensure robust probe tissue
on a convex surface, replicating the intra-operative scenario.
Their approach was only tested on vessel segmentation, and

while showed promising results, would require more exper-
imentation and data to prove reliable for other anatomy and
tissue types. A comprehensive review of robot-assisted US
systems is found in [19].

Considering the PAF rail will already be in the operative
field when deployed, we can exploit its presence in the endo-
scopic field of view. With little and inexpensive hardware
modification, we propose using the PAF rail as a fiducial
marker for vision-based tracking and extraction of informa-
tion. In thiswork,we explore the exploitation of colour-based
segmentation and feature extraction to extract shape informa-
tion of the PAF rail. It is quick and inexpensive to modify
the colour(s) of the PAF rail without altering the mechanical
properties of the device. We hypothesise that from sensing
the shape of the PAF rail, the shape of the organ it is attached
to can be inferred.We can then use this information to inform
path planning for a robot holding the US probe to execute an
autonomous scan.

Vision-based shape-sensing methods for continuum and
flexible robots’ have existed for some time [20, 21]. For soft
robots, shape sensing often involves strain [22], optical [23]
or electromagnetic sensors [24],which can undesirably affect
their material properties and incur extra costs due to addi-
tional hardware.

Vision-based sensing using external cameras has effec-
tively measured soft body deformations in tactile tasks by
tracking fiducial markers like dot patterns [25, 26]. Such
methods not only estimate contact force frommaterial defor-
mation but also provide an accurate approach for softmaterial
shape sensing. Data-driven shape sensing using embedded
cameras and CNNs for capturing deformation patterns has
been explored [27]. Additionally, a fusion of FBG sensing
with stereo vision has achieved precise shape sensing, even
in cases of visual occlusion [28].WhileFBGsensinghas been
successfully explored in thePAF rail [9], our applicationfinds
vision-based sensing more suitable due to its non-intrusive
nature and the availability of stereo endoscopes in surgical
settings.

In this paper, we propose a vision-based shape-sensing
framework to guide autonomous robotic US scanning in
surgeries. This system estimates the 2D shape of a flexi-
ble interface in real time, enabling a robot arm with a US
probe to follow a planned trajectory for scanning, leveraging
equipment already present in surgical environments.

Materials andmethods

Design and fabrication of the PAF rail

The design of the PAF rail suction line used in this work
is based on the optimisation study first presented in [8, 27],
and later iterations in [9, 11]. In this version, we wanted to
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Fig. 1 Process of the vision-based shape sensing of the PAF rail: a
Input RGB image is calibrated. b)RGB image is converted to HSV
colourspace c Image is thresholded based on user-selected colour, and
a mask is generated. d A contour of the mask is found. Corners of

the contour are detected. e A portion of the contour between the edges
is selected and a spline approximation is applied to those points. The
spline curve is downsampled to a 2× 100 array and published to a ROS
topic

manufacture the rail in solid block colours such that the suc-
tion area and grasping fin are in one colour, and the rail is
in another contrasting colour, as shown in Fig. 2d. This was
achieved using a two-step injection moulding process. We
moulded rail prototypes in DragonSkinTM 30 (Shore hard-
ness 30 A) silicone elastomer (Smooth-On Inc., Macungie,
PA, US) with added green pigmentation.

Colour-based shape estimation

The colour-based shape estimation was performed using the
Python OpenCV library. The shape estimation and conver-
sion to robot trajectory steps are shown in Fig. 1.

Experiments

The experimental setup is shown in Fig. 2d) and comprises of
single RGB camera (Logitech International SA, Lausanne,
Switzerland) positioned with a birds-eye view, normal to the
profile of the object of which shape we want to detect. Three
datasets of images were obtained to test the accuracy of the
shape sensor.

1. Colourbands inside their moulds Fig. 2a))
2. Colourbands on the staircase (Fig. 2b))
3. Rails sunctioned to the staircase (Fig. 2c))

In each of these datasets, images were acquired from
the top-down view. The camera was manually positioned
to ensure it was parallel to the scene. To assess the accu-
racy of the vision-based shape sensor compared with data we
obtained from the FBGS-based sensing in our previous paper
[10], we manufactured five green-coloured silicone bands in
DragonSkinTM 30 silicone elastomer (shore hardness 30 A)
(Smooth-On Inc., Macungie, PA, US), as shown in Fig. 2a).
These colourbands were left in their moulds to ensure they
were in the correct shape. In the first experiment, ten images
were taken of each of the bands in the experimental setup
shown in Fig. 2a). The shape sensing was performed as out-
lined in Sect. 2.2 to get a series of 2D coordinate points.

Then, the bands were removed from their moulds and
placed on the staircase, as shown in Fig. 2b) and the image
acquisition was repeated.

Then, the PAF rail was suctioned to each of the curved
profiles of the staircase, as shown in Fig. 2c) and the image
acquisition was repeated. The data obtained from the shape
sensor was a set of experimental curves Y in the form of a
2D array. To perform a meaningful comparison between the
experimental data Y and the ground truth curves X , obtained
from the CAD model of the staircase, procrustes alignment
was performed. The outcome of this process aligns the two
coordinate frames of the ground truth curves and the experi-
mental ones. Root mean square error (RMSE) was employed
to quantify the difference between the aligned curves.

Robot control

To facilitate proof-of-concept experiments, we used a Uni-
versal Robots UR3 (Universal Robots, Odense, Denmark).
The shape sensing aims to obtain a set of 2D coordinates
that represent the shape of the PAF rail so that this can be
converted into a trajectory for robot arm to execute while
gripping the US probe. In doing so, the robot should be able
to acquire US images autonomously.

We equipped the UR3 end effector with a hand-held
laparoscopic grasping tool (Ruihui Electronic Technology
Co. Ltd., Zhengzhou, China), by printing a custom attach-
ment, designed in SolidWorks (Dassault Systèmes, Vélizy-
Villacoublay, France) and printed using a FormLabs Form
3 (Somerville, MA, US) printed in Tough 2000 resin. The
grasping tool was then fixed to grasp an X12C4 BK Robotic
Drop-In US Transducer connected to a BK5000 Ultrasound
cart (both by BK-Medical Holding Inc., Peabody, Mas-
sachusetts) for US image acquisition. The US probe is
encased in a custom 3D-printed mount as introduced in [29].
This allows it to be grasped by the grasp tool while also being
connected and able to roll along the PAF rail.

We communicated with the robot using robotic operat-
ing system 2 (ROS2) installed on Windows Subsystem for
Linux 2 (WSL2), such that the shape-sensing application,
robot control and US image acquisition could be performed
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Fig. 2 a First experiment on colourbands in their moulds. b Second
experiment on colourbands placedon the staircasewith profiles of radius
ranging from 110 mm to 30 mm in 20 mm increments. c PAF rail suc-

tioned to the profiles of each step of the staircase. d Experimental setup
for the vision-based shape sensing

Fig. 3 Schematic diagram of the setup for robot-acquired US images.
The system comprises of three main subsystems; the vision shape-
sensing subsystem, the US subsystem and the robot subsystem. The
US cart and Universal Robots UR3 robot are connected to the com-

puter using ethernet cables. The camera is connected to the computer
via USB. The PAF rail is attached to a kidney phantom using pneumatic
suction

simultaneously. The robot is controlled using the MoveIt
open motion planning library (OMPL). A full schematic of
the experimental setup and the scheme of the control system
for the robot is depicted in Fig. 3.

We simplified the shape-sensing problem to two dimen-
sions: x and y as the motion of the probe is constrained in
the z direction due to the pairing with the PAF rail. In the
real-world frame, we achieved this by manually positioning
the US probe at one end of the PAF rail by connecting the
roller to it.

In real time and online, we performed the shape sensing
on the PAF rail suctioned to a kidney phantom. These coordi-
nates were then published to a ROS2 topic. A ROS2 package
was created containing a node which subscribed to the coor-

dinate topic and node which subscribed to the output robot
pose of the robot. The UR3 executed the trajectory at 20% of
its maximum velocity to replicate the clinical scenario most
closely. The US stream was recorded simultaneously using
the Scikit-SurgeryBK library [30] and saved as a.mp4 file.
The frame rate of the system is 25 frames per second.

The end effector pose was recorded by subscribing to the
ROS2 robot pose publisher node. We extracted the executed
trajectory from the x and y coordinates of the pose of the end
effector joint. We validated the system by comparing free-
handUS acquired images of the phantomwith those obtained
by theUR3-controlled probe. Seven freehandUSvideoswere
obtained by manually moving the US probe along the rail.
Two clinicians of varied experience were asked to review 22
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Fig. 4 Plots show ground truth geometric curve (red) for each of the
radii tested (30 to 110mm) compared with the FBGS curve (yellow)
and experimental curves obtained by vision- based shape sensing of the

colourbands (black) and PAF rails (blue) suctioned to the curved pro-
files of the staircase. Pointwise RMSE between the experimental data
and ground truth is calculated for each of the radii

US videos. The videos were ordered randomly, and review-
ers were blind to whether a human or robot acquired the US
videos. They were asked to comment by rating on a 5-point
Likert scale (Excellent,Good, Fair, Poor,Very Poor), on three
criteria:

1. RES Sharpness and crispness of image, and a lack of
haziness/blurriness.

2. DET Clarity of structure outlines/ease of which bound-
aries are seen.

3. IQ Contrast of solid and fluid-filled structures and
absence of noise.

These criteria were based on those in [31]. It must be noted
that this comparison is subjective and that US evaluation is
highly dependent on how it is acquired and for what purpose.

Results and discussion

Colour-based shape estimation

As a first step, we wanted to evaluate the vision-based shape
sensor. To do so, we tested the system on coloured curves of

known radius, held in moulds to ensure their shape. Then,
we plotted the sensed shape of the colourbands against the
known geometrical curve to visualise the accuracy of the
shape-sensing system.

We evaluated the vision-based shape sensor on the stair-
case described in Sect. 2.3 to provide comparison data for the
PAF rail. The results of this are shown in Fig. 4. The average
pointwise RMSE between the vision-sensed curve of colour-
bands placed on the staircase and geometric ground truth is
3.0794 ± 0.3161 mm. We attribute this discrepancy to the
fact that in practice, it is difficult to perfectly align the curve
of the colourbands with the profile of staircase.

Finally, we evaluated the vision-based shape sensing
on the PAF rail suctioned to the staircase. The results of
this are shown in Fig. 4. We found the average pointwise
RMSE between the vision-sensed curve of the PAF rail and
geometric ground truth to be 3.5769± 0.2718 mm. The dif-
ference in RMSE between vision-sensed colourbands and
vision-sensed PAF rail is 0.4975 ± 0.4169 mm, indicating
sub-millimetre accuracy of the vision-based sensing system.
The largest source of error compared to ground truth occurs
at r = 30mm. As seen in Fig. 4, the sensed curve of the PAF
rail has a greater radius than ground truth FBGS. The suction
cup depth of the PAF rail is 4 mm, introducing an offset error
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Fig. 5 Distribution of Likert scores assigned to each of the 22 ultrasound videos from reader 1 (left) and reader 2 (right), for the following criteria:
RES, DET and IQ

that is not systematic due to the way in which the suction
cup deforms on profiles of different radius. In addition, at
smaller radii, the PAF rail is under greater strain to facilitate
suction, and deforms tangentially rather than concentrically
with the profile it is suctioned to. Therefore, this large error
to geometric ground truth is attributed to the deformation of
the PAF rail and not the sensing system. Omitting the 30 mm
data, the average pointwise RMSE between vision-sensed
curve of the PAF rail and geometric ground truth becomes
3.505±0.1878 mm, representing an average sensing error of
4.7% relative to the measured radii. While the magnitude of
the error remains somewhat the same over each of the radii
measured, the significance of this error is smaller for larger
radii. Given that the curvature of the kidney surface where
the PAF rail is suctioned during RAPN is more likely to be
closer to 110 mm, we believe that this RMSE is therefore
sufficient for sensing the shape of the PAF rail.

Robot control

Using the scheme depicted in Fig. 3, 20 trajectories were
executed using coordinate information obtained from the
vision-based sensor. As such, 20 US streams were recorded
at a frame rate of 25 frames per second (fps).

Of these 20 US acquisitions, 15 had continuous visual-
isation of the kidney phantom, indicating adequate contact
between the US element and phantom for imaging. Of the
5 that did not contain a continuous image, despite the suc-
cessful execution of the planned trajectory, the US element
either lost contact or did not apply enough pressure for imag-
ing. The custom attachment that pairs the US probe with the
PAF rail allows translational movement along the PAF rail
and pivoting around the rail’s axis for consistent contact.
This small amount of rotational freedom caused the probe to
lift off the organ’s surface during certain paths. To address
this, future work will involve using stereo cameras for 3D
depth information to enhance path planning and incorporat-

ing force sensing to provide feedback on probe contact with
the imaging target.

Clinical evaluation of ultrasound

For clinical evaluation, the US videos were pre-sorted by a
non-expert as to whether they contained a continuous image
stream. As described in Sect. 3.2, five videos were discarded,
leaving 15 for clinical evaluation. As well as this, seven
freehand US videos were obtained by manually moving the
ultrasound probe along the rail by a non-expert. The scoring
results from each reader are shown in Fig. 5. The scores are
colour-coded using a traffic light colour scheme to indicate
1 as ‘Very Poor’ and 5 as ‘Very Good’. For both reader 1 and
reader 2, across all criteria, the median score for human was
3—‘Good’, and the median score for robot was 4—‘Very
Good’. This figure indicates that, at a minimum, all images
acquired were of good enough quality for clinical evalua-
tion. In particular, clinicians noted that the resolution of the
robot-acquired images was superior to the human-acquired
ones, with 100 % of RES scores assigned to at least ‘Good’
by both readers. The full breakdown and frequency of scores
allocated are shown in Table I and Table II in the supplemen-
tary material. The key result here is that two independent
clinical interpreters regarded the robot-acquired US images
to be at least as good as the freehand-acquired ones.

Conclusion and future work

We propose a vision-based system for autonomous intra-
operative US scanning, using colour image segmentation
withOpenCV. This low-cost framework, adaptable to various
soft interfaces and robotic devices, estimates the 2D shape
of a flexible interface. We tested the system against coloured
curves between R = 30 mm and R = 110 mm, finding the
vision system’s average error to be 3.0794 ± 0.3161 mm.
We evaluated the system against the PAF rail on the same
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curves and found an average error of 0.4975 ± 0.4169 mm.
We show that this precision proves adequate for robotic con-
trol. In real time, our method informs a UR3 robot to follow
the desired path of the PAF rail on an organ phantom. Paired
with an intra-operative ultrasound (IOUS) probe, the robot
performs consistent US scans. We validate this by obtaining
expert clinical evaluation of the obtained US images. The
clinicians concurred that the robot-acquired images were of
at least ‘Good’ in all quality metrics and outperformed the
human-acquired images in all quality metrics.

In future work, we will translate this framework to a da
Vinci surgical robot paired with the da Vinci Research Kit
(dVRK). We aim to further quantitatively evaluate the US
image acquisition process and resultant US images with clin-
ical experts.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03178-
z.
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