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Abstract— Safety-guaranteed trajectories are important for
multi-agent systems to work in an unknown constrained envi-
ronment. To address this issue, this paper proposes a coopera-
tive path planning strategy for a swarm of agents such that they
can achieve a target formation and handle unknown obstacles
during complex tasks. By considering the sensing range and
agent dimension, a group of artificial potential field func-
tions are designed aiming at enabling agents reconfiguration
(e.g., split and merge) for reinforced flexibility. A distributed
path planning scheme is then developed to achieve formation
tracking while avoiding any potential collisions. Theoretical
analysis using the Lyapunov theory is given to guarantee the
performance of the system. Finally, numerical simulations are
carried out to verify the effectiveness of the proposed algorithm
and its superiority against conventional methods.

I. INTRODUCTION

A multi-agent system (MAS) refers to a system consisting
of a group of interacting agents that can accomplish complex
tasks through intelligent control. Since this concept was first
introduced in the early 1980s [1], it has received considerable
research attention due to its wide real-world applications.
With the recent advancement in robotics, communication,
and artificial intelligence technologies, planning and control
of MASs has become a popular topic in this field during the
past decade.

Motion/path planning (also known as navigation problem)
represents one of the most typical MAS control problems,
and it appears in a variety of modern engineering appli-
cations including connected and autonomous vehicles [2]–
[4], mobile robots [5], [6] and unmanned aerial vehicles
(UAV) [7], [8]. In addition to the traditional methods such as
probabilistic roadmap [9], A* [10], Dijkstra [11] and Tangent
Bug [12], which are mainly used for single agent path
planning. Numerous algorithms have been recently proposed
for the MAS including the artificial potential field (APF)
[13]–[17], distributed model predictive control (DMPC) [2],
and reinforcement learning [18]. It is noteworthy that due to
the limited onboard computation power, communication and
sensing range, and potential transmission delay [19], most of
the available research focuses on distributed or decentralized
coordination schemes, whereas centralized methods are used
only in case there exists an agent or a central coordinator
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features sufficient communication and computation resources
[20]–[23].

Distributed MAS path planning methods are typically
developed based on the leader-follower approach or swarm
intelligence. For example, in [2], a DMPC scheme is pro-
posed for a heterogeneous vehicle platoon with a leader
vehicle. Provided that there is a spanning tree rooted in
the leader, the control feasibility and system stability can
be guaranteed. In [24], a multi-robot coordination strategy is
proposed based on bearing measurements, where a network
of unmanned aerial vehicles can be controlled to achieve a
desired formation. A hierarchical plan-and-track framework
is created in [5], where the upper layer motion planning
is achieved by an APF method, which introduces a po-
tential field to attract the agents towards the targets and
to achieve obstacle avoidance. The lower layer involves a
DMPC scheme for tracking the trajectories generated by the
APF. A robust APF-based trajectory generation algorithm
is designed in [15] for a swarm of agents to cope with
uncertainties involved in the target information. The APF has
also been considered in the 3D space. As shown in [14], a
three-dimensional rotating potential field is proposed for path
planning of the multi-UAV system. The common strategy
to allow multi-agent systems to interact with an unknown
environment is to generate the leader’s trajectory based on
APF and confine followers within the swarm throughout the
mission [25], [26]. Although the network connectivity can be
maintained, the flexibility may be sacrificed, thus yielding a
more conservative path in the presence of densely distributed
obstacles, e.g., by pass all obstacles.

Motivated by the aforementioned research progress and
limitations, in this paper, we investigate a two-dimensional
space path planning problem for a swarm of N agents in
a constrained environment. A novel APF-based distributed
planning algorithm is designed with capability of flexible
reconfigurable formation. As such, a swarm of agents may
be split into several sub-groups to accomplish complex
tasks. Specifically, topology reconfiguration is reactivated
in the event of newly detected obstacles, and thus the
overall scheme offers great flexibility in tackling unknown
obstacles. In addition, the proposed APF algorithm ensures
the boundedness of the resulting velocity trajectory, which
can be beneficial for the control layer in practice. The conver-
gence of the algorithm is analyzed under the framework of
the Lyapunov-like theory. The benefit of the reconfigurable
scheme is shown by comparing it with a single swarm APF-
based path planning strategy.

The rest of this paper is organized as follows. In Section



II, the problem formulation is introduced, encompassing the
kinematic model with a linearization-based control law and
the modeling of obstacles. The Section III proposes the
APF-based path planning methodology with capability of
flexible reconfigurable topology. In Section IV, the conver-
gence properties of the proposed algorithm are characterized.
Simulation results and numerical comparisons are presented
in V. Finally, concluding remarks are given in Section VI.

Notation: Let R and R>0 denote the real set and the
positive real set, respectively. Given a vector x ∈ Rn

and a positive semi-definite matrix R ∈ Rn×n, ||x||R =
(x⊤Rx)1/2 denotes the weighted Euclidean norm of x. The
difference between two given sets A ⊆ Rn and B ⊆ Rn is
denoted as A\B = {x : x ∈ A, x /∈ B}. Given a vector
η ∈ Rn and a positive scalar ρ ∈ R>0, the closed ball
centered at η and of radius ρ is denoted as B(η, ρ) = {ξ ∈
Rn : ||ξ − η|| ≤ ρ}.

II. PROBLEM STATEMENT

Consider a group of N agents in a two-dimensional space
which are initially confined in a swarm with the radius of
Rc, and are requested to travel from their initial positions
to the predefined target positions without crashing into each
other or the obstacles. The motion of each agent is governed
by the dynamic model

ṡi,x(t) = vi(t) cos θi(t)

ṡi,y(t) = vi(t) sin θi(t)

θ̇i(t) = ωi(t), ∀i ∈ A
(1)

where si(t) = [si,x(t) si,y(t)]
⊤ denotes the position of ih

agent, A ≜ {1, 2, . . . , N}. θi(t) represents the orientation,
and vi(t) and ωi(t) are the velocity and the angular velocity,
respectively. Considering the nonholonomic kinematic con-
straint, the head position of the ith agent can be defined as
pi(t) = [pi,x(t) pi,y(t)]

⊤. In details,

pi,x(t) = si,x(t) + li cos θi(t),

pi,y(t) = si,y(t) + li sin θi(t)
(2)

where li represents the distance between the head position
and the inertial position. As introduced in [27], the system
(1) can be controlled by the feedback linearized kinematic
control law:

ṗi(t)=

[
ṗi,x(t)
ṗi,y(t)

]
=

[
cos θi(t) −li sin θi(t)
sin θi(t) li cos θi(t)

][
vi(t)
ωi(t)

]
=ui(t)

(3)

There are M static obstacles in the environment, which are
unknown until they are visible to the agents. As shown in
Fig. 1, let Rv > 0 be the radius of the visual range (based on
all onboard radars or cameras of agent i). The sensing range
of agent i can be expressed as B(pi(t), Rv). Furthermore, the
following assumption is introduced to address the collision
avoidance against the obstacles in the unknown environment
[25], [26].

Assumption 2.1: All obstacles are convex polygons
with a sequence of detected obstacle contour points

Fig. 1. A demonstration of the collision avoidance constraints.

{pol (1), pol (2), ..., pol (n)}, which are denoted by the red
crosses in Fig. 1.

The objective of the proposed approach is to regulate
all the agents so that the MAS can safely converge to a
pre-set structure in the steady state by reconfigurable agent
formations, such that

lim
t→∞

||pi(t)− (p∗ +∆i)|| = 0, ∀i ∈ A (4)

||pi(t)− pj(t)|| ≥ dij,min, ∀j ∈ Ni(t), ∀t ≥ 0 (5)
||pi(t)− pol (n)|| ≥ doil,min, ∀l ∈ Oi(t), ∀t ≥ 0 (6)

where p∗ denotes the center of the target swarm B(p∗, Rc)
whose radius is also Rc. D = {∆i | i = 1, 2, ..., N} is a
set related to the target formation, where ∆i represents a
vector indicating a fixed offset from p∗. During the initial-
ization stage, p∗ and ∆i are given to corresponding agent i,
respectively. dij,min = ri+rj+dsafe is the minimal distance
between neighboring agents (see Fig. 1), where ri, rj ∈ R>0

are the radii of agents i and j, respectively, and dsafe ∈ R>0

is the collision avoidance distance between agents. Similarly,
the minimum distance between an agent and an obstacle,
doil,min ∈ R>0, follows doil,min = ri + dsafe. In addition,
Ni(t) denotes the time-varying neighboring set of agent i
with Ni(0) = A\{i}, and Oi(t) ⊆ O collects the indices of
all obstacles detected by agent i at time t (the set O includes
all obstacles).

III. PATH PLANNING APPROACH WITH RECONFIGURABLE
TOPOLOGY

In this section, an APF-based path planning algorithm is
designed to find the trajectories of all N agents subject to
collision avoidance. In line with the nominal APF algorithm,
we propose the distributed control law for (3)

ui(t)=∇Ui,att

(
pi(t)

)
+∇Ua

i,rep

(
pi(t)

)
+∇Uo

i,rep

(
pi(t)

)
(7)

where Ui,att

(
pi(t)

)
: R2 → R is the attractive potential

field, Ua
i,rep

(
pi(t)

)
: R2 → R and Uo

i,rep

(
pi(t)

)
: R2 → R

are the repulsive potential field against neighbouring agents
and obstacles, respectively. ∇Ui,att

(
pi(t)

)
, ∇Ua

i,rep

(
pi(t)

)



Fig. 2. Schematic diagram about normalized radius R∗
i (t) design.

and ∇Uo
i,rep

(
pi(t)

)
are the gradients with respect to pi(t).

More specifically, the attractive potential field follows

Ui,att(pi(t)) =

1

2
katt||pi(t)− (p∗ +∆i)||2

( Rc

R∗
i (t)

)
: pi(t) ∈ B(p∗, Rc)

Rckatt||pi(t)− p∗|| − 1

2
kattRcR

∗
i (t)

: pi(t) /∈ B(p∗, Rc)
(8)

where katt < 0 is an adjustable intensity parameter of
the attractive potential field. Furthermore, R∗

i (t) ∈ R>0

is a normalizing distance introduced to ensure convergence
of an agent at the target position after entering the target
range B(p∗, Rc). As shown in Fig. 2, it is defined as
R∗

i (t) = ||p∗ −Qi(t)||, where Qi(t) is the intersection with
the circumscribed circle of B(p∗, Rc) and the directed line
segment

−−−−→
p∗pi(t). The gradient of Ui,att(pi(t)) follows

∇Ui,att

(
pi(t)

)
=

katt
(
pi(t)− (p∗ +∆i)

)( Rc

R∗
i (t)

)
: pi(t) ∈ B(p∗, Rc)

Rckatt
(
pi(t)− p∗

)
||pi(t)− p∗||

: pi(t) /∈ B(p∗, Rc)

(9)

As it can be noticed, when pi(t) is outside the target range
B(p∗, Rc), ∇Ui,att introduces a constant attractive control
that drives pi(t) towards p∗. In case that pi(t) is inside the
circle, it holds that ∇Ui,att

(
pi(t)

)
= 0 when ||pi(t)−

(
p∗+

∆i

)
|| = 0. Furthermore, it can be verified that Ui,att

(
pi(t)

)
and ∇Ui,att

(
pi(t)

)
are continuous at the switching boundary,

i.e., the two segments of the piece-wise function are identical
when ||pi(t)− p∗|| = R∗

i (t).
Next, the two repulsive potential functions are designed as

follows to avoid collisions against other agents and obstacles

during the mission

Ua
i,rep(pi(t)) =

∑
j∈Ni(t)

( Ψ

2(dij,min − dij,max)
d2ij(t)−

Ψdij,max

dij,min − dij,max
dij(t)

+
Ψd2ij,max

2(dij,min − dij,max)

)
: dij(t) ≤ dij,max

0 : dij(t) > dij,max

(10)

where dij(t) = ||pi(t)−pj(t)|| denotes the distance between
agent i and agent j. Ψ is the pre-set threshold for the
repulsive field and dij,max = ri + rj + dmax with dmax the
designed maximum distance interval to activate the repulsive
field.

∇Ua
i,rep(pi(t)) =
∑

j∈Ni(t)

( Ψ

dij,min − dij,max
dij(t)−

Ψdij,max

dij,min − dij,max

)
∇dij(t)

: dij(t) ≤ dij,max

0 : dij(t) > dij,max

(11)

where ∇dij(t) =
pi(t)−pj(t)

||pi(t)−pj(t)|| . The repulsive potential
function (10) is continuous and linearly dependent on the
interval between agents. The motivation is to circumvent
unbounded gradient as with the existing APF algorithms
where the repulsive force is proportional to the reciprocal
of the interval. By analogy, ∇Uo

i,rep

(
pi(t)

)
with respect to

obstacles can be constructed following the same form of (11),
but replacing the index j ∈ Ni with l ∈ Oi(t). It is worth
noting that Oi(t) can be shared with all neighboring agents to
avoid mutual occlusion. As obstacles are not available at the
beginning, generation of the trajectory pi(t) by reproducing
ui(t) using the proposed APF algorithm will be necessary
during the mission.

Furthermore, the maximum magnitude of the repulsive
control is achieved when dij(t) = dij,min, which yields
max{||∇Ui,rep(pi(t))||} = Ψ in view of (11). Combining
with the bounded attractive input (9), the resulting control
law (7) can be bounded by design, which greatly facilitates
tracking of the generated trajectories [28]. On the other hand,
dij,max is the maximum distance to activate the repulsive
field (10), therefore, agent i only connects with agents with
dij(t) ≤ dij,max. As illustrated in Fig. 3, there is no
connection between agent 2 and agent 4 due to the distance
d24(t) being longer than d24,max. At the next time instant,
positions of agents shift, resulting in an evolution in the
topology change which is shown in the figure.

Remark 1: To prevent agents from falling into a deadlock,
a small perturbation can be introduced to the APF control
law (7) to enforce agents escaping from deadlock [29].

IV. THEORETICAL ANALYSIS

To ensure the effectiveness of the proposed algorithm,
this section provides a mathematical analysis to show that
all agents can be driven toward the target trajectory by the



Fig. 3. Schematic diagram about topology changes of the connected agents.

proposed APF-based algorithm. The following assumption is
needed to proceed with the analysis.

Assumption 4.1: The individual target formation p∗i +∆i

is set such that the condition ||∆i−∆j || ≥ dij,max,∀i, j ∈ A
is satisfied.

Assumption 4.2: There exists a time T , such that for all
t > T , ||p∗i (t)− pol (t)|| ≥ dil,max,∀i ∈ A, ∀l ∈ O.

The purpose of Assumption 4.1 is to ensure that the
repulsive potential function is inactive when all agents form
the desired formation. This can be achieved by a proper
design of dmax. Assumption 4.2 implies that obstacles are
separated from target range B(p∗, Rc) in steady state so
that targets can be reached without activating the repulsive
potential function imposed by obstacles.

Theorem 4.1: Under Assumptions 2.1, 4.1 and 4.2, given
the agent kinematic model (3) and the APF-based control
law (7), agents can form the pre-defined desired formation,
pi(t) → p∗ +∆i, ∀i ∈ A when t → ∞.

Proof: Define the tracking error of an agent i

ei(t) = pi(t)− (p∗ +∆i), ∀i ∈ A (12)

By applying (12) to (8)-(11), Ui,att, Ua
i,rep , ∇Ui,att and

∇Ua
i,rep can be represented as functions of ei(t) rather than

pi(t). Then, in view of (7), it can be shown that

ėi(t) = ṗi(t)− (ṗ∗ + ∆̇i)

= ∇Ui,att

(
pi(t)

)
+∇Ua

i,rep

(
pi(t)

)
.

(13)

It is noted that the repulsive potential functions introduced
by the obstacles are ignored according to Assumption 4.2.

Consider the Lyapunov candidate with respect to e(t) =
[e1(t)

⊤, e2(t)
⊤, . . . , eN (t)⊤]⊤

V (t) = −
∑
i∈A

(
Ui,att

(
pi(t)

)
+ Ua

i,rep

(
pi(t)

))
(14)

where V (t) ≥ 0 as both potential field functions are semi-
negative definite. In addition, V (0) = 0 as Ui,att = 0 when
ei = 0 and Ua

i,rep = 0 when ei = ej = 0 (due to the fact
that both agents are at the target positions provided dij(t) >

dij,max). The derivative of V along the system trajectory is

V̇ (t) = −
∑
i∈A

(
ėi(t)

⊤ėi(t)
)

= −
∑
i∈A

ṗi(t)
⊤
(
∇Ui,att

(
pi(t)

)
+∇Ua

i,rep

(
pi(t)

))
= −

∑
i∈A

||ṗi(t)||2 < 0,

(15)

Hence, the proposed MAS is asymptotically stable and
pi(t) → p∗ +∆i, t → ∞, i ∈ A.

V. SIMULATION RESULTS

The numerical example is carried out in this section to
verify the effectiveness of the proposed algorithm. Consider
a MAS of ten agents, which are randomly placed within the
swarm B([0, 0], Rc) at the initial step. The final target is to
achieve a desired triangular formation at the steady state.
Table I summarizes the initial positions and dimensions of
all agents, while the chosen parameters for swarm dimension
and the parameters of the APF algorithm are provided in
Table II. Simulation results are shown in Fig. 4. The agents
can be driven to form the desired formation within B(p∗, Rc)
and avoid all three obstacles in the environments during the
mission by topology reconfiguration - splitting into multiple
swarms and merging back when necessary.

TABLE I
INITIAL POSITIONS AND AGENT RADII

Agent 1 2 3 4 5 6 7 8 9 10
pi,x(0) 41.3 19.2 40.8 -12.8 -15.0 49.0 24.5 -21.0 -42.2 -51.5
pi,y(0) 50.5 9.7 -49.0 -35.9 10.4 0.6 -20.8 41.1 -43.4 -9.9
ri[m] 2.60 4.58 3.17 2.73 3.46 3.87 4.62 3.44 4.16 4.85

Moreover, in order to highlight the advantages of the pro-
posed algorithm, a state-of-the-art swarm-based APF control
algorithm [5] is set as benchmark in the same simulation
environment. In contrast to the proposed method, the method
in [5] requests all agents to remain in a swarm by following
a predefined virtual leader (illustrated by the red circle
labeled as “v”). The comparison results are shown in Fig.
5. In details, Fig. 5(a) demonstrates how the tracking errors
converge under the control of the proposed algorithm. As
it can be noticed, agents form the pre-determined structure
in B(p∗, Rc), taking 200 seconds. Meanwhile, the result of
the benchmark method is illustrated in Fig. 5(b). Due to the
agents being confined to a fixed area, they are unable to
pass through the obstacles from both sides, resulting in a
longer convergence time of 241 seconds. Additionally, as
shown in Fig. 6, agent 9 and agent 10 are forced to leave
the swarm to avoid collisions owing to limited space. Due
to the repulsive force applied at the outer edge of the swarm
by the benchmark, once an agent leaves, it cannot rejoin the
swarm. Such an issue might be addressed by refining the
reference, which, however, is challenging in the presence of
initially unknown obstacles, and the flexibility introduced by
the proposed algorithm can circumvent the challenge.
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Fig. 4. Episodes of the generated trajectories by the proposed method, where the coordinate unit is ‘meter’. (a) agents’ initial positions are randomly
generated in the initial range B([0, 0], Rc). (b) t = 40s, the diamond obstacle appears and enforces the agents to re-generate the trajectories. (c) t = 80s,
agents pass over the first obstacle and start to tackle the hexagonal obstacle and the triangle obstacle via topology reconfiguration. (d) t = 92s, the proposed
strategy enables all agents to make use of the small space between obstacles. (e) t = 110s, agents completely pass all obstacles. (f) t = 200s, agents
reach the target swarm range B(p∗, Rc) and form the pre-defined formation.

(a) Tracking error ||pi(t)−
(
p∗ +∆i

)
|| of the proposed algorithm.

(b) Tracking error ||pi(t)− p∗|| of the benchmark.

Fig. 5. The Sub-figure (a) illustrates the tracking error ||pi(t)−
(
p∗+∆i

)
||

of the proposed algorithm; The Sub-figure (b) shows the tracking error
||pi(t)− p∗|| of the benchmark.

TABLE II
PARAMETERS ABOUT APF MODEL AND SWARM SIZE

Description Symbols Values
Intensity parameter katt -0.08

External circle radius of swarm Rc 80m
Max repulsive field gradient Ψ 65m/s

Safe distance dsafe 2m
Max distance for repulsion activation dmax 10m
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v

Fig. 6. Path planning following a fixed swarm configuration subject to the
given virtual leader denoted by ‘v’. Agents are pushed out of the swarm in
event of a large obstacle.



VI. CONCLUSIONS AND FUTURE WORKS

This paper investigates a two-dimensional space coordi-
nation problem for multiple agents in a constrained environ-
ment. A reconfigurable distributed path planning approach
is designed using the concept of the artificial potential field.
Instead of confining all agents within a swarm, the proposed
algorithm allows the swarm of agents to split into multiple
groups or merge into a single swarm to cope with the
emerging obstacles for enhanced flexibility during the task.
The convergence of the algorithm is proved by using the
Lyapunov theory. Numerical results verify the effectiveness
of the proposed method and the benefit of enabling topology
reconfiguration.

Future work consists in developing the trajectory tracking
algorithm, where uncertainties can be addressed. In addition,
different communication topologies will be studied to reduce
the communication load during the mission.
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