
SAME AVERAGE IN EVERY DIRECTION

IMRE BÁRÁNY AND GÁBOR DOMOKOS

Abstract. Given a polytope P ⊂ R3 and a non-zero vector z ∈
R3, the plane {x ∈ R3 : zx = t} intersects P in a convex polygon
P (z, t) for t ∈ [t−, t+] where t− = min{zx : x ∈ P} and t+ =
max{zx : x ∈ P}, zx is the scalar product of z, x ∈ R3. Let A(P, z)
denote the average number of vertices of P (z, t) on the interval
[t−, t+]. For what polytopes is A(P, z) a constant independent of
z?

1. Introduction

Assume P is a convex polytope and z is a non-zero vector in 3-space.
Set t− = t−(P, z) = min{zx : x ∈ P} and t+ = t+(P, z) = max{xz :
x ∈ P}, where zx is the scalar product of z, x ∈ R3. For t ∈ [t−, t+] the
intersection of P with the plane {x ∈ R3 : zx = t} is a convex polygon
P (z, t). Define A(P, z) as the average of the number of vertices of
P (z, t) on the interval [t−, t+], that is

(1.1) A(P, z) =
1

t+ − t−

∫ t+

t−
number of vertices of P (z, t)dt.

Note that in this definition we may assume that z is a unit vector
because A(P, z) = A(P, sz) for every non-zero real number s. In this
case t+−t− = w(P, z), the width of P in direction z, otherwise t+−t− =
‖z‖w(P, z) where ‖z‖ is the Euclidean norm of z 6= 0.

The quantity A(P, z), the average number of vertices (or of edges)
of the convex polygons P (z, t), has come up in geology, and a strange
phenomenon has been observed. Namely that A(P, z) = 4 for every z
when P is a cube in R3. Subsequently the following question emerged.
For what polytopes A(P, z) is a constant independent of z? We answer
this question for centrally symmetric polytopes in Theorem 1.1 below.
We return to the connection of A(P, z) to geology, in particular to rock
formations in the last section of this paper.

A zonotope P is the Minkowski sum of intervals [0, ai], where a1, . . . , an
are non-collinear vectors (called the generators of P ) in Rd, n ≥ d, see
[13]. In particular the cube in R3 is a zonotope with 3 generators. More
generally the following is true.
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Fact 1.1. If P ∈ R3 is a zonotope with n generators no three of which
are collinear, then A(P, z) = 2(n− 1) for every vector z 6= 0.

The proof is given in Section 4. For the statement of our main
theorem a definition is needed. Assume P ⊂ R3 is a zonotope with
generators v1, . . . , vn and with A(P, z) constant, say λ. Define a hy-
pergraph F with vertex set V = {v1, . . . , vn} and W ⊂ V is an edge
in F if dim linW = 2 and W is maximal with this property, that is,
dim lin(W ∪ {v}) = 3 for every v ∈ V \W. The degree, deg v, of v ∈ V
is the number of edges of F containing it.

Theorem 1.1. Assume P ⊂ R3 is a centrally symmetric polytope with
generator set V . Then A(P, z) = λ for every z 6= 0 if and only if P is
a zonotope with 2 deg v = λ for every v ∈ V in the hypergraph F .

This theorem shows that λ is an even integer when P is centrally
symmetric. We are going to give examples of non-symmetric polytopes
with A(P, z) = λ, a constant for every z. In these examples λ is
always an even integer. However this is not the case in general because
there are polytopes P ⊂ R3 with A(P, z) = λ, a constant that is not
an integer. This is a result of Attila Pór [12]. He proves a stronger
theorem, namely, that there is in open (and non-empty) interval I ⊂ R
such that for every λ ∈ I there is a polytope P ⊂ R3 with A(P, z) = λ
for every z.

2. Higher dimensions

The definition of A(P, z) extends without any change to polytopes P
in Rd. The case d = 2 is trivial as P (z, t) is a segment and A(P, z) = 2
for every convex polygon P . The higher dimension version of Theo-
rem 1.1 says the following.

Theorem 2.1. Assume P ⊂ Rd is a centrally symmetric polytope.
Then A(P, z) = λ for every z 6= 0 if and only if P is a zonotope with
generator set V such that the number of edges of P parallel with v
equals λ for every v ∈ V.

For the proof an auxiliary lemma is needed.

Lemma 2.1. If P ⊂ Rd is a d-dimensional polytope and A(P, z) is a
constant independent of z, then P − P is a zonotope.

We are going to call a convex body K ⊂ Rd a half-zonotope if K−K
is a zonotope. It is clear that a half-zonotope is always a polytope.
Moreover a zonotope P is always a half-zonotope because, assuming
that the centre of P is the origin, P − P = P + P = 2P is clearly a
zonotope. In view of Lemma 2.1 one would like to see what polytopes
are half-zonotopes. One case is easy:

Fact 2.1. A centrally symmetric half-zonotope is a zonotope.
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The proof is very simple: if P is a 0-symmetric half-zonotope, then
P = −P and P − P = P + P = 2P is a zonotope, so P is always a
zonotope. �

In Section 5 we give an example of a half-zonotope which is not a
zonotope, and another non-zonotope P ⊂ R3 with A(P, z) = 6 for
every z, and more generally, for every m ≥ 2 another non-zonotope P
with A(P, z) = 2m for every z.

3. Another expression of A(P, z) and proof of Fact 1.1

An edge of P is a segment [u, v] where u, v are vertices of P and
there is a supporting hyperplane h such that P ∩ h = [u, v]. The edge
is also a vector u−v or v−u and we can always choose (liberally) which
one. If there is another edge e′ parallel with e and with a supporting
hyperplane h′ also parallel with h, then e and e′ are called opposite
edges. Note that the edge opposite to e may not be unique. It may
also happen that an edge opposite to e does not exist. Then there
is a vertex w of P and two parallel hyperplanes h and h′ such that
P ∩ h = [u, v] and P ∩ h′ = {w}, and w is considered a (virtual)
opposite edge to e.

The edge set E of P is split into equivalence classes E1, . . . , En by the
equivalence relation “being parallel”. We derive an alternate formula
for A(P, z). Assume z ∈ Rd is a non-zero vector which is in general
position with respect to E, that is, ze 6= 0 for any e ∈ E. Let u and
v be the vertices of P where the function zx takes its maximum and
minimum on x ∈ P , respectively. Clearly t+ − t− = z(u− v).

Let S be a two-dimensional plane, parallel with z, and let π denote
the orthogonal projection from Rd to S. Choose S so that π(e) is not
a single point for any e ∈ E. Then π(P ) is a convex polygon in S and
there is a path π(e1), π(e2), . . . , π(en), say, with ei ∈ Ei going along the
boundary of π(P ) from π(v) to π(u), see Figure 1. There is at most one
edge from every Ei on this path, but an edge may be virtual, meaning
that ei = 0 which is fine. The path e1, e2, . . . , en goes from v to u on
the boundary of P and t+(z)− t−(z) =

∑n
1 |zei|. Then

(3.1) A(P, z) =
1∑n

1 |zei|
∑
e∈E

|ze| = 1∑n
1 |zei|

n∑
1

∑
e∈Ei

|ze|,

because the edge e = [x, y] gives a vertex of P (z, t) for all t ∈ [zx, zy].
Equation (3.1) is the new expression for A(P, z).
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u′

Figure 1. The paths from v to u and from v′ to u′.

4. Proof of Lemma 2.1

We go back to Figure 1 and the notation there. We assume that
ze > 0 for every e ∈ E by changing the orientation of e if necessary.
Define ei =

∑
e∈Ei

e. Formula (3.1) says that

λ

(
n∑
1

zei

)
=

n∑
1

(∑
e∈Ei

ze

)
= z

n∑
1

ei.

This holds for every z ∈ Rd satisfying ze > 0 for every e ∈ E. Conse-
quently

λ

n∑
1

ei =
n∑
1

ei.

Assume that e′1 (see Figure 1) is the edge (possibly virtual) opposite
to e1, and choose a vector z∗ such that z∗e > 0 for every e ∈ Ei, i > 1
and z∗e < 0 for every e ∈ E1. Then we have the path e2, e3, . . . , en, e

′
1

from v′ to u′ (see Figure 1) and by (3.1)

λ

(
n∑
2

z∗e− z∗e′1

)
=

n∑
2

z∗ei − z∗e1,

implying again that λ (
∑n

2 ei − e′1) =
∑n

2 ei − e1. This immediately
gives λ(e1 + e′1) = 2e1, meaning that for a pair of opposite edges e1, e

′
1

the sum e1 + e′1 equals 2
λ
e1, the same vector which is exactly an edge in

P − P . Analogously ei + e′i equals 2
λ
ei for every pair of opposite edges

ei, e
′
i ∈ Ei (for every Ei). This shows that P − P is indeed a zonotope

generated by the vectors 2
λ
ei, i = 1, . . . , n. �
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Proof of Fact 1.1. We work in R3 for this proof. Projecting P to the
plane orthogonal to the direction of the vectors in Ei we get a centrally
symmetric polygon with 2(n− 1) edges. Thus |Ei| = 2(n− 1). Direct
every edge e ∈ E so that ze > 0 where z comes from Figure 1. Since P
is a zonotope, each edge in Ei is the same vector vi, and each vi appears
as one of the edges on the e1, . . . , en path in Figure 1. Consequently
t+(z)− t−(z) =

∑n
1 zvi. Equation (3.1) shows that

A(P, z) =
1∑n
1 zvi

n∑
1

∑
e∈Ei

ze

=
1∑n
1 zvi

n∑
1

|Ei|zvi = 2(n− 1). �

The same argument works in every dimension d ≥ 3: If the zonotope
P ⊂ Rd has n ≥ d generators and every d of them are linearly inde-
pendent, then |Ei| = 2

(
n−1
d−2

)
and A(P, z) = 2

(
n−1
d−2

)
, indeed a constant

for every z 6= 0. For more information on zonotopes and their relations
to hyperplane arrangements see the books by Schneider [13] and by
Ziegler [16].

This proof, combined with the z, z∗ argument used in Lemma 2.1
shows as well that, A(P, z) = λ is a constant for a zonotope P ⊂ Rd if
and only if |Ei| = λ for every i.

5. Non-zonotopes with A(P, z) constant

It is evident that a convex polygon P is always a half-zonotope, and
A(P, z) = 2 for every z. For higher dimensions the key observation is
the following.

Lemma 5.1. If P and Q are half-zonotopes in Rd, then so is P +Q.

The proof is simple: (P +Q)− (P +Q) = {p+ q − p′ − q′ : p, p′ ∈
P, q, q′ ∈ Q} = (P − P ) + (Q−Q). �

It follows that a half-zonotope need not be a zonotope, for instance
if Q1 and Q2 are two-dimensional polygons in R3 lying in non-parallel
planes, then P = Q1 +Q2 is a half-zonotope but is not a zonotope. A
concrete example is when both Q1 and Q2 are triangles, see Figure 2,
where Q1 is the black and Q2 is the red triangle, and the edges of P
are drawn with heavy segments. There are several similar examples,
for instance when Q1 is a convex polygon and Q2 is a parallelogram.
In these cases A(Q1 +Q2, z) is not a constant as one can check directly.

We note further that under the above conditions and with notation
P = Q1 +Q2

w(P, z) = w(Q1, z) + w(Q2, z) when z is a unit vector.
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Figure 2. A half-zonotope which is not a zonotope.

It is evident that w(Q1, z) = 1
2

∑k
1 |zui| where u1, . . . , uk are the edge

vectors of the polygon Q1. Thus in this case the computation of t+(P )−
t−(P ) is easy even if z is not a unit vector:

(5.1) t+(P )− t−(P ) =
1

2

∑
|uz|

where the summation goes for all edges u of Q1 and of Q2.

Next we give a few examples where P is not a zonotope but A(P, z)
is a constant.

Example 5.1 Let Q1 and Q2 be two convex quadrilaterals, lying in
non-parallel planes in R3 and set P = Q1 + Q2, see Figure 3, where
Q1 is the black and Q2 is the red quadrilateral. Again, the edges of P
are drawn with heavy segments. In two copies of Q1 two edges (of Q1)
are not edges of P , they are drawn with thin segments. Same applies
to Q2. One can check that each edge of Q1 and Q2 appears as an edge
of P exactly three times. With the notation of Section 3, |Ei| = 3 for
every one of the 8 classes of the edges of P . The polytope P is not a
zonotope. Its edge vectors in each class are the same, say vi in Ei. In
view of equation (5.1), t+ − t− = 1

2

∑8
i=1 |zvi| which equals 1

2

∑8
i=1 zvi

when the orientations are chosen to satisfy zvi > 0 for every i. Then
the suitably modified version of equation (3.1) applies and shows that

A(P, z) =
2∑8
1 zvi

8∑
1

|Ei|zvi = 6.

Figure 3. A non-zonotope with A(P, z) = 6.
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We’d like to mention that this example is a bit of a cheating because
it is almost the same as a zonotope with 4 generators. There we get 4
classes of edges, and 6 (identical as vectors) edges in each class. Here
the opposite sides of Qi are not parallel, so we have 8 classes with 3
edges in each.

Example 5.2 Essentially the same method works and gives a half-
zonotope P (which is not a zonotope) with A(P, z) = 2(k+1) for every
integer k ≥ 2. Just take two slightly perturbed copies of the regular 2k-
gon for Q1 and Q2, making sure that opposite vertices remain opposite
after the perturbation. Then P = Q1 + Q2 is a half-zonotope because
of Lemma 5.1, and there are 2k + 2k classes of edges, each class Ei
containing k + 1 copies of the same edge, represented by the vector
vi. Again, t+ − t− = 1

2

∑4k
i=1 zvi assuming that zvi > 0 for every

i. The modified version of equation (3.1) shows then that A(P, z) =
2(k + 1). This example is also similar to the case of a zonotope with
k + k generators where the first k generators are coplanar, and so are
the next k ones.

Example 5.3 in which there is no cheating. Write f1, f2, f3 for the
standard basis vectors of R3 and let T1 be the triangle with vertices
0, f2, f3. Similarly the triangles T2 and T3 have vertices 0, f1, f3 and
0, f1, f2, respectively. The polytope P = T1 +T2 +T3 is a half-zonotope
but not a zonotope yet A(P, z) = 4 for every z as one can check di-
rectly. Figure 4 shows the non-zonotope P , its facets are 3 triangles, 3
pentagons, and one hexagon (coloured blue in the figure).

f1
f2

f3

Figure 4. A non-zonotope with A(P, z) = 4.

There are several similar examples in R3, and also in higher dimen-
sions. For instance in R4, take two convex k-gons (or even two triangles)
Q1, Q2 in two general position planes. Their sum P = Q1 + Q2 is not
a zonotope but A(P, z) = 2k for every z.
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6. Proof of Theorem 1.1

Assume P ⊂ R3 is a centrally symmetric polytope with A(P, z)
constant, say λ. According to Lemma 2.1 P is a half-zonotope. As
it is centrally symmetric, Fact 2.1 shows that P itself is a zonotope.
Assume its generator set is V = {v1, . . . , vn}. The hypergraph F was
defined in Section 1. So it suffices to prove

Claim 6.1. Under the above conditions λ = 2 deg v for every v ∈ V .

Proof. Projecting P to the plane orthogonal to vi gives a centrally
symmetric convex polygon with 2 deg vi edges (and vertices) as each
edge of this polygon corresponds to an edge W ∈ F that contains vi.
Thus |Ei| = 2 deg vi.

Orient each edge e ∈ Ei the same way as vi is oriented. Then ei =
|Ei|vi = 2(deg vi)vi. If ei, e

′
i ∈ Ei are opposite edges then ei + e′i = 2vi

because P is a zonotope. The proof of Lemma 2.1 shows thatλ(ei+e
′
i) =

2ei. Consequently 2λvi = λ(ei + e′i) = 4(deg vi)vi. �

The same argument works for the proof of Theorem 2.1, we omit the
details.

The claim shows that, for a zonotope P ⊂ R3, A(P, z) is a constant
if and only if deg v is the same number for every v ∈ V . In particular,
the lengths of the generators do not matter, only the degrees count.
So one can identify a generator v ∈ V with the line L(v) = {αv :
α ∈ R} and consider a plane S (not containing the origin and not
parallel with any v ∈ V ), and further identify v ∈ V with the point
v∗ = L(v) ∩ S. This way we have a new representation of F , to be
called the S-representation: the vertex set is V ∗ = {v∗ : v ∈ V }, and
the edges of F are formed by sets of collinear points of V ∗. There are
several examples of zonotopes with A(P, z) a constant.

Example 6.1 is given in Fact 1.1 where deg vi = n − 1. V ∗ is just
n points in general position (no three on a line) in the plane S.

a b c

x y

z

u

v
w

Figure 5. Example 6.2 with ` = 3, k = 4 and Example 6.3.
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Example 6.2 is again explained in the S-representation of F . We
have ` lines in S and on each line k points and V ∗ consists of these `k
points, everything else is in general position. Then deg v = 1+(`−1)k
for every v ∈ V . This gives a zonotope P with n = `k generators and
A(P, z) = 2(n−k+1). The hypergraph F consists of ` disjoint k-tuples
(corresponding to the ` lines in S) and of all pairs of points that come
form distinct k-tuples (or lines). Figure 5, left shows the points of V ∗

when ` = 3 and k = 4.

Example 6.3. For two points p, q ∈ S let L(p, q) denote the line
connecting them. The example is three points, a, b, c on a line and three
further points, x, y, z on another line, and three more points, namely
u = L(a, y) ∩ L(b, x), v = L(a, z) ∩ L(c, x) and w = L(b, z) ∩ L(c, y),
see Figure 5 right. V ∗ consists of these nine points. By the Pappos
theorem u, v, w are also collinear. In F there are nine collinear triples
and nine pairs (namely ax, aw, by, bv, cu, cz, xw, yv, zu), and deg v = 5
for every v ∈ V .

In the S-representation we have a finite set of points in the plane
S that define lines and also the hypergraph F . It is well known that
there are ordinary lines, that is, pairs of points p, q ∈ V ∗ such that
L(p, q) contains no further point from V ∗. This was a question of
Sylvester from 1893, solved fifty years later by Gallai (see [7] and [8])
and Melchior [11]. Around 1960 Böröczky (unpublished but see for
instance [3] or [10]) constructed examples of n points in the plane with
a small number of ordinary lines. According to a famous result of Green
and Tao [10] these examples give the minimal number of ordinary lines
for n points. Interestingly, in these examples deg v is not a constant,
so A(P, z) is not a constant for the corresponding zonotope.

7. A related average

The standard tiling of R3 with unit cubes is the collection of cubes
C(a) = {(x1, x2, x3) ∈ R3 : ai ≤ xi ≤ ai+1, i = 1, 2, 3} where a =
(a1, a2, a3) is a lattice point in R3, that is, every ai is an integer. For
a 2-dimensional plane L ⊂ R3 the polygons L ∩ C(a) (for the cubes
when this intersection is non-empty) define a tiling T (L) of L. Clearly
each tile T of T (L) is a convex polygon with e(T ) = 3, 4, 5 or 6 edges
(or vertices). What is the average number Ave(L) of e(T )?

As T (L) is infinite, this average is to be taken with some caution.
Assuming Q is a (large) cube in R3, the average of e(T ) = v(T ) for
T ∈ T (L), T ⊂ Q is given as

Ave(L,C) =

∑
T∈T (L),T⊂Q v(T )

|{T ∈ T (L), T ⊂ Q}|
.
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To define Ave(L) take a sequence of large cubes Q1, Q2, . . . with their
diameter tending to infinity and set Ave(L) = lim Ave(L,Qn). Stan-
dard arguments show that the limit exists and is independent of the
choice of the sequence Q1, Q2, . . ..

Theorem 7.1. If L contains no lattice point, then Ave(L) = 4.

Proof, only a sketch. We identify the plane x3 = 0 with R2 and
assume that L is not orthogonal to this plane. The projection of a tile
T ∈ T (L) to R2 is denoted by T ∗. Then T ∗ := {T ∗ : T ∈ T (L)} is
a tiling of R2, and the tiles in T ∗ are determined by the lines `a1 :=
{x1 = a1}, `a2 := {x2 = a2} and `a3 which is the projection to R2 of
the line L ∩ {x3 = a3}, of course a1, a2, a3 are integers. The vertices of
T ∗ are formed by the intersections `ai ∩ `aj , for distinct i, j ∈ {1, 2, 3}.

Let Q be one of the cubes in the sequence Q1, Q2, . . . with diam Q =
m, m large. It is not hard to check (we omit the details) that the
number of vertices of T ∗ lying in Q is cm2 + O(m) where c > 1 is a
constant explicitly computable from the parameters of L.

This implies that the number n(T ∗) of tiles in T ∗ contained in Q is
also cm2 +O(m). This is done by well-known argument: let b ∈ R2 be
a vector such that the linear functional bx takes distinct values on the
vertices of T ∗, and associate with each tile T ∗ ∈ T ∗ its vertex where
the functional bx takes its minimal value on T ∗. These vertices are all
distinct, so n(T ∗) ≤ cm2 +O(m). The opposite inequality follows from
the fact that there are only O(m) tiles that intersect Q and are not
contained in Q.

We are almost finished. Each vertex in T ∗ is adjacent to four edges in
the tiling (because L contains no lattice point). The edges are counted
twice by their two endpoints, apart from a few, at most O(m), bound-
ary edges, and each edge appears in two tiles (again apart from a few
boundary edges). Thus the total number of edges is 4n(T ∗) + O(m)
and the ratio defining Ave(L,C) tends to 4 as m→∞.

The condition “L contains no lattice point” is important, because
for instance Ave(L) = 3 for the plane L defined by the equation x1 +
x2 − x3 = 0: all tiles in T (L) are triangles. We mention further that
the above argument extends to higher dimensions.

8. Motivation from geology

8.1. Primary fracture and the cube. The geometry of fractured
rock is in the forefront of interest in geology [1]. A recent study [4]
showed that a large portion of so-called primary crack patterns can
be very well approximated by hyperplane mosaics which are space-
filling, convex tessellations generated by hyperplanes in random posi-
tions [9, 14, 15]. There is one striking feature of d-dimensional hyper-
plane mosaics which does not depend on the specific distribution (to
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which we will refer as the primary distribution) generating the random
positions of hyperplanes: the average values of combinatorial features
(e.g. numbers of faces, edges and vertices [6]) of the convex polyhe-
dra (to which we will refer to as primary fragments) agree with the
respective values corresponding to the d-dimensional cube [14].

Rock fragments are the result of a multi-level fracture process [1, 2,
5]: primary (global) fracture is followed by secondary (local) fracture.
In secondary fracture, individual primary fragments are locally bisected
by planes picked from a secondary random distribution and secondary
fragments are created in this process. Secondary fracture can also be
viewed as a recursion which we introduce below.

8.2. Secondary fracture interpreted as a recursion.

8.2.1. The general case. Let P0,1 be a d-dimensional convex polytope
with V0,1 vertices and let us consider a cut by a hyperplane H0,1 which
intersects P0,1 in a generic manner to create one (d − 1)-dimensional
convex polytope P ?

0,1 with k? vertices. P ?
0,1 separates P0,1 into two con-

vex, d-dimensional descendant polytopes P1,1, P1,2 with respective ver-
tex numbers V1,1, V1,2. We introduce the notation P0 = {P0,1}, P1 =
{P1,1, P1,2} for the set of polytopes in steps 0 and 1, respectively and
the notation H0 = {H0,1} for the set of hyperplanes in step 0. The av-
erage number of vertices of P1,1, P1,2 we denote by V1 = (V1,1 + V1,2)/2.
Now we can write

(8.1)
P1 = f(P0, H0)
V1 = g(P1),

where the function f , operating sets of polytopes and corresponding
hyperplanes, is the binary cut described above, and the function g, op-
erating on sets of polytopes, is counting the average number of vertices
in the given set.

Our aim is to generalize (8.1) to a recursion formula. However, before
doing so, we introduce some related concepts.

Definition 8.1. We call the hyperplane cut H0,1 critical,( supercritical,
subcritical) if V1 = V0 (V1 > V0, V1 < V0).

We can write the following simple

Lemma 8.1. The hyperplane cut H0,1 is critical (supercritical, subcrit-
ical) if and only if k? = V0

2
(k? > V0

2
, k? < V0

2
).

Proof. Let us denote the number of vertices of P0,1 which are also ver-
tices of P1,i by V0,i. Then we can write:

(8.2)
V0,1 + V0,2 = V0

V1,1 = V0,1 + k?

V1,2 = V0,2 + k? = V0 − V0,1 + k?.
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Based on the above, for the average vertex number V1 = (V1,1 +
V1,2)/2 of the descendants we have:

(8.3) V1 =
V0
2

+ k?.

Formula (8.3) proves the statement of the Lemma. �

In the next step we can generalize equation 8.1 to

(8.4)
Pi = f(Pi−1, Hi−1)
Vi = g(Pi),

where Pi is the set of descendant polytopes after i steps and Pi has
2i elements. Similarly, Hi is the set of 2i hyperplanes bisecting the
corresponding elements of the set Pi. We develop equation (8.4) into a
recursion formula for the sequence Pi (which also defines the sequence
Vi) using a stochastic model, which is another way of defining A(P, z).

Let z be a unit vector. Recall the definition of t± = t±(P, z). Con-
sider the hyperplane {x ∈ Rd : zx = t} as a random hyperplane H0,1

where t is a random and uniform element of the interval [t−, t+]. Then
V1 is a random variable. We will denote its expected value by V1(z).
Based on equations (1.1) and (8.3), we have

(8.5) V1(z) =
V0
2

+ A(P0,1, z).

Next we let z be selected uniformly randomly on the sphere.

Definition 8.2. We will denote the expected value of V1(z) by V̄1 and
we will call a polytope critical (supercritical, subcritical) if V̄1 = V0
(V̄1 > V0, V̄1 < V0).

Using this definition and formula (8.4), now we can write

(8.6)
Pi = f̄(Pi−1)
Vi = g(Pi),

where the function f̄ , operating on sets of polytopes, is the random
binary cut described in Definition 8.2. We can see that equation (8.6)
defines the sequence Vi as a projection of a direct recursion (defining
the sequence Pi of polytopes, with set Pi containing 2i polytopes). Now
we may ask about the convergence properties of Vi. More precisely, we
call a value Vi = V ? weakly critical if Vi+1 = Vi and we are interested
whether such weakly critical values may exist because such weakly
critical values could become dominant in experimental data. In general,
this question is very difficult as it depends on the average vertex number
of a collection of 2i descendant polytopes.

We call the set Pi uniform if all 2i polytopes in the set Pi are identi-
cal. (This is, in essence equivalent of executing the first step on a single
polytope 2i times and ask for the time average.) We are interested in
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the existence of critical polyhedra because if such shapes exist then, in
the uniform case, the sequence Vi will be stationary, at least for one
step.

If A(P0,1, z) = λ (i.e. it does not depend on z) then, based on
equation (8.5), we have

(8.7) V̄1 =
V0
2

+ λ

and we can see that the initial polyhedron P0,1 will be critical if

(8.8) λ = V0/2.

8.2.2. The 2D case. In d = 2 dimensions, the polytope P ?
0,1 is always a

finite line segment so we have k? = 2 and (8.3) translates into

(8.9) V1 =
V0
2

+ 2,

so we can see that only quadrangles can be critical polygons and it is
easy to show that parallelograms are indeed critical.

8.2.3. The 3D case. In d = 3 dimensions, the polytope P ?
0,1 is a 2D

polygon and can have any number of vertices. Despite this apparent
broad ambiguity, for a class of secondary distributions computer exper-
iments showed [4] that starting with a cube, the average V̄ = 8 vertices
remained a good approximation of the computed averages of secondary
fragments. This computational observation showed a very good match
with field and laboratory measurements of fragments which were the
result of successive steps of primary and secondary fragmentation.

Since we know very little about the recursion (8.6), the full mathe-
matical explanation of these computational result is lacking. However,
in this paper we showed that in 3D parallelepipeds are critical poly-
topes. We can also prove that they are the only critical polytopes that
are centrally symmetric with A(P, z) = λ, a constant. Perhaps they are
the only critical polytopes. Our results suggest that the V̄ = 8 average
observed in the computer experiment may indeed play a central role in
secondary fragmentation, for a broad range of secondary distributions.
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