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Abstract. We show that a totally dissipative system has all nonsin-
gular systems as factors, but that this is no longer true when the factor
maps are required to be finitary. In particular, if a nonsingular Bernoulli
shift has a limiting marginal distribution p, then it cannot have, as a
finitary factor, an independent and identically distributed (iid) system
of entropy larger than H(p); on the other hand, we show that iid sys-
tems with entropy strictly lower than H(p) can be obtained as finitary
factors of these Bernoulli shifts, extending Keane and Smorodinsky’s
finitary version of Sinai’s factor theorem to the nonsingular setting. As
a consequence of our results we also obtain that every transitive twice
continuously differentiable Anosov diffeomorphism on a compact mani-
fold, endowed with volume measure, has iid factors, and if the factor is
required to be finitary, then the iid factor cannot have Kolmogorov-Sinai
entropy greater than the measure-theoretic entropy of a Sinai-Ruelle-
Bowen measure associated with the Anosov diffeomorphism.

1. Introduction

Let (Ω,F , µ) be a σ-finite measure space. We will often be concerned
with the case where µ is a probability measure, so that µ(Ω) = 1. Let
T : Ω → Ω. The map T is ergodic if µ(E4T−1(E)) = 0 implies that
0 ∈ {µ(E), µ(Ω/E)}. We say that T is nonsingular if µ◦T−1 ∼ µ, that is,
the measures have the same null sets; in the case that µ◦T−1 = µ we say that
T is measure-preserving. We refer to (Ω,F , µ, T ) as a nonsingular dy-
namical system. In the case where T is ergodic and probability-preserving,
Kolmogorov-Sinai entropy [26, 34, 62], a single nonnegative real number, is
assigned to the dynamical system and measures the amount of randomness
contained in the system, all of which can be accounted for by a Bernoulli
subsystem in the following way.

Let A be a finite set of symbols, (ρi)i∈Z be a sequence of probability
measures on A, and ν =

⊗
i∈Z ρi be the product measure on the sequence

space AZ endowed with the usual product topology and the Borel product
sigma-algebra B = B(AZ). When the product probability space (AZ,B, ν)
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is endowed with the left-shift S : AZ → AZ given by (Sx)i = xi+1, we refer
to the dynamical system as a Bernoulli shift; if all the measures ρi ≡ p
are identical, then we say that system is independent and identically
distributed (iid); sometimes we will also refer to iid systems as station-
ary Bernoulli shifts. Thus in the nonsingular setting, a Bernoulli shift is
a sequence of independent, but not necessarily identical, random variables.
Sometimes we will simply refer to a system by its corresponding measure or
endowed mapping. The Kolmogorov-Sinai entropy of iid systems is given by
the usual Shannon entropy [61]: H(p) := −

∑
a∈A p(a) log p(a). We say that

a nonsingular system (Ω,F , µ, T ) has an iid factor of entropy h′ if there
exists a factor map φ : Ω → AZ such that the mapping is equivariant,
φ ◦T = S ◦φ, and µ ◦φ−1 ∼ qZ, where q is a probability measure on A with
H(q) = h′; we emphasize that in the nonsingular case, we allow the possi-
bility that the push-forward of µ under φ is not exactly qZ, only that it is
a measure that is equivalent to qZ. The Sinai factor theorem [63] gives that
an ergodic probability-preserving system with entropy h has all iid factors
of entropies less than or equal to h.

A common notion of chaos for nonsingular dynamical systems is that
the system can be used to simulate a bi-infinite collection of iid coin tosses
and the Sinai factor theorem shows that the chaotic probability-preserving
systems are precisely the systems with positive Kolmogorov-Sinai entropy
[50]. In the absence of a similarly robust notion of entropy and entropy
theory, it is unclear which nonsingular systems are chaotic and how to define
entropy. We show that all totally dissipative systems are chaotic and that
the analogue of Keane and Smorodinsky’s finitary version of Sinai’s factor
theorem [30] remains true for a large class of nonsingular Bernoulli shifts.

1.1. Dissipative systems are universal. Recently, we showed that a
large class of nonsingular Bernoulli shifts have stationary Bernoulli shift
factors [36, 37]. A curious aspect of our results is that it also applies to
dissipative Bernoulli shifts, and it turns out there was a deeper reason why
we never had to assume conservativity. We say that a nonsingular system
is factor-universal if it has every nonsingular system as a factor. Recall a
nonsingular system is dissipative if it has a wandering set of positive mea-
sure, is conservative if there are no wandering sets of positive measure, and
is totally dissipative if the measurable union of the wandering sets is the
whole space; see Section 2 for more precise definitions.
Theorem 1.1. A totally dissipative system on a non-atomic measure space
is factor-universal.

We prove Theorem 1.1 in the slightly more general setting of a countable
group action; see Theorem 2.2. We will also consider a version of Theorem
1.1 in the setting of a flow in Theorem 2.5; the case of flows is more subtle,
and it is not true that every totally dissipative flow is factor-universal.

Theorem 1.1 may come as a surprise, since a totally dissipative transfor-
mation is, by a result of Hopf, isomorphic in the nonsingular category to the
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simple shift transformation x 7→ x+ 1 equipped with Lebesgue measure on
the real line, and the latter is a rather predictable and seemingly uninterest-
ing system; see Proposition 2.1. Although the proof is surprisingly simple,
our result has several interesting applications in bridging several definitions
of chaos in dynamical systems.

In the context of Ilya Prigogine’s theory of dissipative structures [53],
Theorem 1.1 provides an abstract mathematical explanation of how dissi-
pative structures are systems which can possess both chaotic behavior and
elliptic islands, since under this mathematical framework any system is a
subsystem of a dissipative system.

Theorem 1.1 together with the works of Sinai and Livsic [42] and Gurevic
and Oseledec [23], implies that every transitive C2 Anosov diffeomorphism
has stationary Bernoulli factors, and thus all transitive C2 Anosov diffeo-
morphisms can be used to simulate an iid sequence, in an equivariant way.
Theorem 1.2. A transitive C2 Anosov diffeomorphism on a compact mani-
fold, endowed with the natural volume measure, has iid factors, which may be
chosen to have infinite entropy in the case the diffeomorphism is dissipative.

See Section 2.3 for definitions and more details; see also Section 2.3.2 and
Theorem 2.7 for the case of an Anosov flow.

We note that in Theorem 1.1 there is a key assumption that the system
is totally dissipative, and that there is no regularity assumption on the
associated factor mapping, other than measurabililty. If the factor map is
required to be continuous almost-surely, then we have the following upper
bound on the entropy of an iid factor.
Theorem 1.3 (Upper bound for Anosov diffeomorphisms). An iid system
that is obtained as a continuous almost-surely factor of a transitive C2

Anosov diffeomorphism on a compact manifold, endowed with the natural
volume measure, will have Kolmogorov-Sinai entropy that is bounded by the
measure-theoretic entropy of a Sinai-Ruelle-Bowen measure associated with
the Anosov diffeomorphism.

See Section 4.3 for details. In this context, a factor map that is continuous
almost-surely is sometimes referred to as being finitary. In some special
cases, such as the measure-preserving case of a hyperbolic toral automor-
phism [4, 32], we know that the upper bound in Theorem 1.3 is achieved;
these results rely on symbolic dynamics and the finitary constructions of
Keane and Smorodinsky [30, 31] for stationary Bernoulli shifts, which we
will extend to the nonsingular setting.

1.2. Finitary factors of nonsingular Bernoulli shifts. When we turn
our attention to the case of nonsingular Bernoulli shifts, and consider factor
maps that are finitary [60], so that they are continuous almost surely, we
have results that are consistent with those of entropy theory and Keane and
Smorodinsky [30]. We note that there are both dissipative and conserva-
tive nonsingular Bernoulli shifts that do not have an absolutely continuous
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invariant probability measure, with the first examples of the latter given
by Krengel [39] and Hamachi [24]. It follows from Theorem 1.1 that many
Bernoulli shifts have infinite entropy iid factors. Specifically, all dissipative
nonsingular Bernoulli shifts are totally dissipative and thus shift universal;
see also Example 1.8 and Proposition 1.9. It what follows, we address to-
gether, dissipative and conservative nonsingular Bernoulli shifts, with the
added finitary regularity assumption on the factor mapping.

A product measure ρ =
⊗

i∈Z ρi on AZ satisfies the Doeblin condition
if there exists δ > 0 such that for all a ∈ A and i ∈ Z, we have ρi(a) > δ.
We say that the limiting marginal measure is p if ρ|i|(a) → p(a) for all
a ∈ A. Motivated by Sinai’s original factor theorem, we say that a family
of iid factor maps of this system have near optimal entropy if they can
produce systems of entropy H(p) − ε for every ε > 0. An iid factor has
optimal entropy if it has entropy H(p) and has super optimal entropy if
it has entropy greater than H(p).

Let A and B be finite sets. Consider a factor map φ : AZ → BZ, where AZ

is equipped with a nonsingular measure µ. Consider the zeroth coordinate
projection φ̄ given by φ̄(x) = φ(x)(0). We say that φ is finitary if for
every b ∈ B there exists Cb which is a countable union of cylinder subsets
of AZ such that µ(φ̄−1(b)4Cb) = 0. This condition is equivalent to the map
being continuous almost surely with respect to µ and also equivalent to φ
having an almost surely finite coding radius, see for example [52, page 281].
This condition was first introduced by Weiss [71] and studied by Denker and
Keane [15], see also [60].

Theorem 1.4 (Upper bound for finitary factors). A nonsingular Bernoulli
shift that has a limiting measure, does not have a finitary iid factor with
super optimal entropy.

We will prove Theorem 1.4 as a consequence of a more general result,
Theorem 4.1, which by using symbolic dynamics [64] and some finer results
regarding Anosov diffeomorphisms [12], will also allow us to infer Theorem
1.3.

Turning our attention to positive results, we recently proved the following
theorem regarding finitary factors in [37, Theorem 1].

Theorem 1.5 (Low entropy factors [37]). Every nonsingular Bernoulli shift
which satisfies the Doeblin condition has a finitary iid factor.

In Theorem 1.5, it is obvious from our construction that the finitary factor
is non-optimal with respect to entropy. Keane and Smorodinsky [30, 31]
defined finitary factor isomorphisms between any two measure-preserving
Bernoulli shifts of finite entropy using a marker-filler method; our proof of
Theorem 1.6 will also make use of these ideas adapted to the nonsingular
setting.
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Theorem 1.6 (Near optimal entropy factors). If a nonsingular Bernoulli
shift satisfies the Doeblin condition, and has a limiting measure, then it has
near optimal entropy finitary iid factors.

By an elementary argument, we obtain the following extension, where we
remove the Doeblin condition and allow for the possibility of a countable
number of symbols.
Corollary 1.7. If nonsingular Bernoulli shift on a countable (or finite)
number of symbols has a limiting measure, then it has near optimal entropy
finitary iid factors.

In Theorem 1.7, in the case that the Bernoulli shift has infinite entropy,
the finitary iid factors can be taken to have arbitrarily large finite entropy;
see Section 3.5 for details.

We remark that there are many conservative Bernoulli shifts which do
not have an absolutely continuous invariant measure, and understanding
these shifts is an active area of research; see for example, [9, 24, 35, 14].
Specifically, Theorem 1.6 does not follow from Theorem 1.1 or Keane and
Smorodinsky’s version of the Sinai factor theorem.
Example 1.8. We illustrate our theory with following example which was
studied in [69], where the theory provides simple examples of nonsingular
conservative Bernoulli shifts that do not admit an absolutely continuous
invariant measure. Consider A = {0, 1}, and the family of product measures
ρc with marginals

ρcn(0) =
1

2
+

c√
n
· 1[n ≥ 1, c/

√
n < 1/2], (1)

where c > 0 is a parameter. It is easy to check using Kakutani’s theorem
(see Section 3.2) that ρc is nonsingular and is not equivalent to the product
measure (12 ,

1
2)

Z, but by Theorem 1.6, it still has a finitary iid factor of
entropy almost H(12 ,

1
2) = log 2 and by Theorem 1.4 finitary iid factors must

have entropy at most log 2.
We proved that there exists a critical c∗ ∈ (1/6,∞) such that the shift

is totally dissipative for c > c∗ and for c < c∗ the shift is conservative [37,
Theorem 3]. Thus when c > c∗, by Theorem 1.1, the shift has any system
(even a circle rotation) as a (non-finitary) factor. ♦

With regards to nonsingular Bernoulli shifts, we do not know if finitary
optimal entropy factors must exist, and we cannot exclude the possibility of
super optimal entropy non-finitary factors, even when the shift is conserva-
tive.

A nonsingular dissipative Bernoulli shift that does not satisfy the Doeblin
condition and has a trivial limiting measure may have the following varied
behaviour.
Proposition 1.9. There exists a nonsingular Bernoulli shift which has all
iid factors, but no finitary iid factor.
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Our proof of Proposition 1.9 will follow from Theorem 1.1 and Theorem
1.4. See Section 5.

1.3. Some remarks about random number generation and Theo-
rem 1.6. The practical problem of random number generation has a long
history [40, 70] and continues to be a topic of current research. A central
goal of (true) random number generation is to generate iid fair coin tosses
from an iid biased source, in an efficient way, see for example [51]. A some-
what more realistic, and less studied assumption is to assume the source is
noisy, that is given by independent, but not identical random variables [73];
the goal in this setting is often to efficiently generate independent bits that
are approximately fair. In the language of random number generation, we
are interested in generating, in an equivariant way, from a noisy source, a
sequence that is statistically indistinguishable from an iid sequence of near
optimal entropy. The equivariance requirement means that if the source
input is given on a ticker tape, then the same procedure is applied every-
where on the ticker tape, and positions on the ticker tape do not need to be
additionally labelled. The factor map given by Theorem 1.6 is finitary, so
that our procedure, in principle, can be implemented by a machine.

1.4. Some tools used in our proofs. Our proof of Theorem 1.1 for count-
able group actions is simple and given in the next section. The corresponding
version for flows is more involved, and as a result the version of Theorem 1.2
for Anosov flows is a bit harder and requires understanding of their ergodic
decompositions.

In Section 3, our proof of Theorem 1.6 draws from a combination of ideas
of Keane and Smorodinsky [30, 31], Harvey, Holroyd, Peres, and Romik [25],
Karen Ball [8], some tools from information theory, and our last paper on
factors in the nonsingular setting [37]. In [25], the authors used marker-filler
methods in combination of with a version of Elias’ [18] construction of an
unbiased (random length) iid binary sequence from a stationary source to
produce source universal finitary factors. Ball also employed marker-filler
methods in her construction of monotone finitary factors; see also [54]. We
will prove a disintegration of a non-stationary product measure that will
have enough regularity which will allow us to recover enough stationarity.

In Section 4, our proof of Theorem 1.4 will make use of some ideas from
Kalikow’s [29, Chapter 4.1, Theorem 365] beautiful elementary proof of
Kolmogorov’s theorem [33, 34] that the three-shift is not a factor of the two-
shift; whereas Kolmogorov’s proof was an easy consequence that entropy
cannot increase under factor maps, Kalikow’s proof has the advantage that
it uses “essentially nothing.” This proof can be modified and extended to our
nonsingular setting, at the cost of restricting to finitary factors, leaving the
possibility that the analogue of Kolmogorov’s theorem in the nonsingular
setting does not hold, even when the shift is conservative. We will prove an
abstraction of Theorem 1.4 which will also apply to other symbolic systems.
In order to obtain the bound for Anosov diffeomorphisms, we use symbolic
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dynamics, and carry out entropy calculations that simultaneously involve
two measures; the first volume lemma of Bowen and Ruelle [12], allows us
to reconcile the volume and its Sinai-Ruelle-Bowen measure.

2. Dissipative actions are factor universal

Let (Ω,F , µ) be a non-atomic (standard) σ-finite measure space. An
(nonsingular) automorphism of (Ω,F , µ) is an invertible measurable map
R : Ω → Ω which satisfies µ ◦ R−1 ∼ µ. Denote the automorphism group
of (Ω,F , µ) by Aut(Ω,F , µ). A G-action of a locally compact group G on
(Ω,F , µ), sometimes abbreviated as G y (Ω,F , µ), is a group homeomor-
phism g 7→ Tg from G to Aut(Ω,F , µ).

The action (Ω′,F ′, µ′, (Sg)g∈G) is a factor of (Ω,F , µ, (Tg)g∈G) if there
exists a measurable map π : Ω → Ω′ such that π is equivariant, so that µ
almost everywhere, for all g ∈ G, we have π ◦ Tg = Sg ◦ π, and in addition
µ′ ∼ µ ◦ π−1; if π is invertible, modulo null sets, then we say that the
two systems are isomorphic. We say that the action G y (Ω,F , µ) is
factor-universal if every G-action Gy (Ω′,F ′, µ′) is a factor.

2.1. Discrete group actions. Let G be a countable group. Given an
action G y (Ω,F , µ), a set W ∈ F is wandering if {TgW}g∈G are pair-
wise disjoint; the action is dissipative if there exists a wandering set with
µ(W ) > 0 and it is totally dissipative if there is a wandering set W
such that the union of its translates is the whole space modulo a null set:⊎
g∈G TgW = Ω mod µ. The action is conservative if every wandering set

is of measure zero. A set A ∈ F is G-invariant if for all g ∈ G, we have
T−1
g A = A.
The following action is the prototypical example of a totally dissipative

action of a non-atomic measure space. Let Z = [0, 1] × G and ν be the
product measure of the uniform measure on [0, 1] and the counting measure
on G. The translation action of G on Z is defined by Sg(x, h) = (x, hg).
The following result is due to Hopf, and closely related to the Hopf decom-
position which partitions the space into a dissipative part and a conservative
part; see [1, Propostion 1.1.2 and Exercise 1.2.1].

Proposition 2.1 (Hopf). If Gy (Ω,F , µ) is a totally dissipative action of
a non-atomic measure space, then is isomorphic to the translation action of
G on [0, 1]×G.

Proof. By passing to an absolutely continuous probability we may assume
that µ(Ω) = 1. Since the action is totally dissipative, let W ∈ F be a
wandering set whose disjoint union of translates are the whole space. Recall
we assume that the measure space is standard and non-atomic and µ(W ) >
0. By the Borel isomorphism theorem [67, Theorem 3.4.23], let β : W →
[0, 1] be a bijective measurable map such that dµ◦β

dµ = 1
µ(W ) . Define π : Ω →

[0, 1]×G by π(x) =
(
β
(
T−1
g x

)
, g
)

where g ∈ G is the unique group element
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such that x ∈ TgW . Clearly, π is bijective and equivariant from which it
follows that π is an isomorphism. �

Theorem 2.2. A totally dissipative action of countable group on a non-
atomic measure space is factor universal.

Proof. Let the first coordinate, (Ω1,F1, µ1, (Tg)g∈G) be a totally dissipa-
tive G-action of a non-atomic measure space, and let the second coor-
dinate, (Ω2,F2, µ2, (Sg)g∈G) be any nonsingular G-action. Consider the
direct product action (Tg ⊗ Sg)g∈G, which is a nonsingular G-action on
(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). Clearly the projection proj2 from Ω1 × Ω2 to
the second coordinate is a factor map.

It is easy to verify that the product action inherits the totally dissipative
property from the first coordinate. By Proposition 2.1, there exists an iso-
morphism ψ : Ω1 → Ω1×Ω2 between the first action and the direct product
action. We deduce that the composition proj2 ◦ ψ illustrated by

Ω1
ψ−→ (Ω1 × Ω2)

proj2−−−→ Ω2,

is the desired factor map from the first coordinate to the second. �

The following shows that the latter are the only factor universal actions.

Proposition 2.3. If G y (Ω,F , µ) has a totally dissipative factor, then it
is totally dissipative.

Proof. Towards a contradiction, suppose that the action is not totally dis-
sipative and it has a totally dissipative factor (Ω′,F ′, µ′, (Sg)g∈G), via the
factor map π. Since the conservative part in the Hopf decomposition is
G-invariant, it follows that by restricting the factor map to the conserva-
tive part we may assume without loss of generality that G y (Ω,F , µ) is a
conservative action.

Choose some W ∈ F ′ a wandering set for (Sg)g∈G of positive µ′-measure.
It is easy to see that set π−1W ∈ F is a wandering set of positive measure,
contradicting the conservativity of Gy (Ω,F , µ). �

2.2. R and Rd-flows. A nonsingular Rd-action
(
Ω,F , µ, (φt)t∈Rd

)
is a Rd-

flow, and the case d = 1 will simply be referred to as a flow. An Rd-flow is
totally dissipative if for every s > 0, we have that (φsn)n∈Zd is a totally
dissipative sZd action; this is equivalent to verifying the dissipativity for the
single case of s = 1 [1, Corollary 1.6.5]. Sometimes we will denote Lebesgue
measure on Rd by Leb = LebRd . Let (Γ, C, ν) be a standard probability space
[56]. A translation flow of Rd with respect to Γ is the dissipative action
on Γ×Rd, equipped the product measure ν⊗Leb, given by τs(z, t) = (z, t+s),
for all s, t ∈ Rd. When Γ is the unit interval and ν is Lebesgue measure,
then we say that translation flow is canonical. Note that when Γ = {∗}
is a one point space, the translation flow is ergodic, and we may omit Γ;
by the theorem below, all ergodic dissipative flows are isomorphic to this
translation flow.
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The following analogue of Proposition 2.1 was proved by Krengel [38, Satz
4.2] for flows and by Rosinski [57, Theorem 2.2] for Rd-flows by constructing
a relevant cross section.

Theorem 2.4 (Krengel and Rosinski). For every totally dissipative Rd-flow
on a nonatomic measure space, there exists a standard probability space,
(Γ, C, ν) such that the flow is isomorphic to the translation flow of Rd with
respect to Γ.

We note that in Rosinski [57], (Γ, C, ν) is a σ-finite standard, measure
space. By passing to an ν equivalent probability measure, we may assume
that ν is a probability measure since the identity map gives the obvious
isomorphism. In addition, we may substitute for (Γ, C, ν), any other prob-
ability space that is isomorphic in the category of measure. The space
Γ corresponds to the ergodic decomposition of the flow. In particular, the
translation flow τ is ergodic if and only if Γ is a one point space. By Theorem
2.4, an ergodic dissipative flow of a non-atomic measure space is isomorphic
to the translation flow on Rd with respect to the one point space Γ = {∗},
which we refer to as the ergodic dissipative Rd-flow.

Theorem 2.5 (Factors of totally dissipative flows).
(a) The canonical translation flow of Rd is factor-universal.
(b) The ergodic dissipative Rd-flow is a factor of any totally dissipative Rd-

flow on a non-atomic measure space.

Proof. For the proof of part (a), let (Ω,F , µ, (φs)s∈Rd) be a given nonsingular
flow, which may not be dissipative. Let τ be the canonical translation flow.
The product flow φ⊗τ = (φs⊗τs)s∈Rd is a totally dissipative flow on a non-
atomic measure space. By Theorem 2.4, there exists a standard probability
space, (Γ, C, ν) such that φ ⊗ τ is isomorphic to the translation flow of Rd
with respect to Γ; let Θ : Ω× ([0, 1]× R) → Γ× Rd be isomorphism.

By a routine variation of the Borel isomorphism theorem, there exists a
homomorphism of probability spaces g : [0, 1] → Γ such that Leb[0,1] ◦ g−1 =

ν. Let projΩ : Ω × ([0, 1] × Rd) → Ω be the projection onto Ω. Then the
following compositions of mappings given by the diagram

[0, 1]× Rd
g⊗idRd−−−−→ Γ× R Θ−1

−−−→ Ω× ([0, 1]× Rd) projΩ−−−→ Ω,

gives a factor map from the canonical translation flow of Rd to the given
flow.

For part (b), again by Theorem 2.4, every dissipative Rd-flow is isomorphic
to the translation flow of Rd with respect to some standard probability space
Γ. Next, note that the projection projRd : Γ × Rd → Rd is a factor map
from the dissipative translation flow of Rd with respect to Γ to the ergodic
dissipative Rd-flow. �

Remark 2.6. The case of flows differs from the countable group case since
the translation flow on Rd given by τs(x) = x+ s is ergodic. Consequently,
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not all totally dissipative flows on a non-atomic measure space are factor
universal. We thank Jon Aaronson for pointing out a misinterpretation of
Theorem 2.4 which led to an incorrect formulation of Theorem 2.5 in an
earlier version of this manuscript. ♦

2.3. Applications to chaos in C2 Anosov diffeomorphisms and flows.
Let M be a compact Riemannian manifold without boundary and volM
be the volume measure on M . By the change of variables formula, for
every diffeomorphism f , the system (M,B(M), volM , f) is nonsingular. Let
Diffk(M) be the collection of Ck-diffeomorphisms. A diffeomorphisms is
(topologically) transitive if there exists x ∈M such that {fn(x) : n ∈ Z}
is dense in M . Similarly a C2-flow is a homeomorphism s 7→ φs from R to
Diff2(M) and the flow is transitive if it has a dense R-orbit. Anosov systems
are a central object of study in ergodic theory and dynamical systems [7,
11, 66].

2.3.1. Applications to Anosov diffeomorphisms. A diffeomorphism f :M →
M is Anosov (uniformly hyperbolic) if for all x ∈ M , there exists a de-
composition of the tangent bundle over x, given by TxM = Es

x ⊕ Eu
x such

that:
• For all x ∈M , we have Df(x)Es

x = Es
f(x) and Df(x)Eu

x = Eu
f(x).

• For any metric on TM , there exists a > 0 and λ ∈ (0, 1) such that
for all v ∈ Es

x, for all n ∈ Z+, we have

‖Dfn(x)v‖ ≤ aλn ‖v‖ ,

and similarly for all v ∈ Eu
x , for all n ∈ Z+, we have∥∥Df−n(x)v∥∥ ≤ aλn ‖v‖ .

Our proof of Theorem 1.2 is a consequence of Livsic-Sinai [42], when
a Sinai-Ruelle-Bowen (SRB) measure [72] is available; on the other hand,
Gurevic and Oseledec [23] showed that in the absence of a volume absolutely
continuous invariant probability (a.c.i.p), the Anosov diffeomorphism is dis-
sipative and thus Theorem 2.2 applies; see also Theorem 2.8. We remark
that in the categorical sense most C2 Anosov diffeomorphism do not have a
volume a.c.i.p. [65]; see also [11, Corollary 4.15].

Proof of Theorem 1.2. Let f be a C2 Anosov diffeomorphism. If there exists
a volume absolutely continuous invariant probability (a.c.i.p) µ, then µ is
an SRB measure and (M,B(M), µ, f) has positive entropy [42]. By Sinai
factor theorem (M,B(M), µ, f) has an iid factor, and since µ ∼ volM , this
remains true when µ is replaced by volM .

In the absence of a volume a.c.i.p., (M,B(M), volM , f) is a totally dis-
sipative transformation of a non-atomic measure space [23], and it follows
from Theorem 2.2 that every stationary Bernoulli shift is a factor. �
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2.3.2. Applications to Anosov flows. We will prove a version of Theorem 1.2
for the case of flows. Following Ornstein [46], we say that a probability-
preserving flow

(
Ω,F , µ, (φt)t∈Rd

)
is a Bernoulli flow if for every s > 0,

the discrete-time system (Ω,F , µ, φs) is isomorphic to a stationary Bernoulli
shift. Bernoulli flows are the analogues of iid-systems for R-flows and two
Bernoulli flows whose time-one maps have equal Kolmogorov-Sinai entropy
are isomorphic [45, 46]. Canonical examples of Bernoulli flows include the
Totoki flow [22, 68, 46], and infinite entropy flows arising from Brownian
motions and Poisson processes [47, 49].

A C2 flow (φt)t∈R on compact Riemannian manifold M is an Anosov
flow if for all x ∈ M , the decomposition TxM = Es

x ⊕ Ec
x ⊕ Eu

x is Dφt
equivariant, Ec is one dimensional and corresponds to the direction of the
flow, and there exists A > 0 and b > 0 such that for all x ∈M ,

‖Dφtv‖ ≤ Ae−bt ‖v‖ , for every t > 0 and v ∈ Es
x.

‖Dφ−tv‖ ≤ Ae−bt ‖v‖ , for every t > 0 and v ∈ Eu
x .

Theorem 2.7. A transitive C2 Anosov flow, endowed with the natural vol-
ume measure, has a Bernoulli flow as a factor.

Our proof of Theorem 2.7 proceeds as in Theorem 1.2. Sinai [65] showed
that for every transitive C2 Anosov flow there exists two probability mea-
sures µ+ and µ− such that for every continuous function g : M → R, for
volM -almost every x ∈M , we have

lim
N→∞

1

N

∫ N

0
g ◦ φt(x)dt =

∫
gdµ+, and

lim
N→∞

1

N

∫ 0

−N
g ◦ φt(x)dt =

∫
gdµ−;

see also [12] for the more general setting of Axiom A flows. Again, the
measures µ+ and µ− are called SRB measures. The following was proved
by Gurevic and Oseledec for C2 Anosov diffeomorphisms, and we present
the identical proof for flows for completeness.

Theorem 2.8 (Gurevic and Oseledec). Let (M, (φs)s∈R) be a transitive C2

Anosov flow. If there is no volume a.c.i.p., then (M, volM , (φs)s∈R) is totally
dissipative.

Proof. There exists a volume a.c.i.p. measure if and only if µ+ = µ− [42], so
we have µ+ 6= µ−. Let T = φ1 be the time-one map of the flow. Recall that
it suffices to show that T is totally dissipative [1, Corollary 1.6.5]. Moreover,
note that T is totally dissipative if and only if T−1 is totally dissipative.

Fix a continuous function on g : M → R with
∫
gdµ+ 6=

∫
gdµ−. Set

δ := 1
2

∣∣∫ gdµ+ −
∫
gdµ−

∣∣ > 0. Let ε > 0. As µ+ is a SRB measure, there
exists N > 0 such that the set

A =

{
x ∈M : ∀n > N, we have

∣∣∣∣ 1n
∫ n

0
g ◦ φt(x)dt−

∫
gdµ+

∣∣∣∣ < δ

}
,
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satisfies µ(A) > 1− ε. For all n ∈ N, we have(∫ n

0
g ◦ φtdt

)
◦ T−n(x) =

∫ 0

−n
g ◦ φt(x)dt.

As the latter tends to
∫
gdµ− as n → ∞ for almost every x ∈ M , for

volM -almost every x ∈ A, we have

#{n ∈ N : T−nx ∈ A} <∞.

Since ε > 0 is arbitrary, it follows from Halmos recurrence theorem [1,
Theorem 1.1.1] that (M, volM , T

−1) is totally dissipative. �

In order to use Theorem 2.5 (a), we will need the following lemma.

Lemma 2.9. A transitive and totally dissipative C2 flow (φs)s∈R on a com-
pact manifold M is isomorphic to the canonical translation flow of R.

Proof. We already know from Theorem 2.4 that the flow is isomorphic to
the translation flow of R, with respect to some standard probability space
(Γ, C, ν); thus it suffices to show that Γ is non-atomic. Towards a contradic-
tion, let π : Γ× R → M be the isomorphism and g ∈ Γ be a ν-atom. Since
π is an isomorphism, there exists x ∈ M such that following its orbit on a
manifold for one unit of time is the same as moving along the unit interval,
so that

(ν ⊗ Leb) ◦ π−1({φs(x) : s ∈ [0, 1]}) = (ν ⊗ Leb)({g} × [0, 1])

= ν(g)Leb([0, 1]) > 0.

As (ν ⊗ Leb) ◦ π−1 and volM are equivalent measures we have that

volM {φs(m) : s ∈ [0, 1]} > 0.

We recall that the orbit s 7→ φs(x) is smooth and is the solution to first
order autonomous ordinary differential equation [66, page 795]. However,
it is well-known that the image of a smooth curve on a manifold, with
dimension two or higher, has no volume [59]. �

Proof of Theorem 2.7. If the flow has a volume a.c.i.p. µ, then µ is a Gibbs
measure [42]. It follows from a result of Ornstein and Weiss [48] and Ratner
[55] that flow endowed with µ ∼ volM is isomorphic to a Bernoulli flow.

If there is no volume a.c.i.p., then by Theorem 2.8 the flow endowed with
volume measure is totally dissipative. By Lemma 2.9, the flow is isomorphic
to the canonical translation of R, and hence by Theorem 2.5 (a), every
Bernoulli flow is a factor. �
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3. Near optimal Sinai factors

3.1. Markers and fillers. Let kmark ∈ Z+ be a large positive integer which
we will specify later. Let A be a finite set containing the two distinct symbols
a and b. Given x ∈ AZ, we call an integer interval [n, n+2kmark] a marker,
if xn+i = a for all 0 ≤ i ≤ 2kmark − 1 and xn+2kmark

= b. Any integer
that does not belong to a marker, belongs to a maximal filler, so that
markers and fillers partition the integers. Thus with markers and fillers, our
task is to find an encoding of a finite non-stationary sequence into a finite
stationary sequence that retain most of the entropy. A technical problem
arises that we cannot control the size of the fillers, and for our construction,
it will be convenient to have a version of fillers of a fixed size. The following
idea is from Ball [8] and its presentation is adapted from [54]. We define
a bi-infinite sequence of alternating intervals I(x) = (Ii)i∈Z that partition
Z into intervals of length kmark and 1 in the following way. Locate all the
markers of x. Any n ∈ Z that belongs to the right endpoint of a marker is an
interval of length 1, following a marker will always be an interval of length
kmark, and if x restricted to the interval of length kmark is not a string of
kmark consecutive a’s, then the following interval will also be one of length
kmark, otherwise, the following intervals will all be of length 1, until the a
stops occurring; the following interval will be one of length kmark. We say
that a switch occurs in an alternating interval if it is an interval of length
kmark and is a string of consecutive a’s or if its an interval of length 1 and the
symbol that is not a has appeared. For definiteness, we require that 0 ∈ I0,
and sup Ii < inf Ij if i < j. In what follows it will be more convenient to
use the language of random variables.

Proposition 3.1 (Ball’s alternating intervals). Let X = (Xi)i∈Z be random
variables corresponding to the law of a Bernoulli shift on A. Let kmark be
a positive integer. Conditioned on the alternating intervals I(X) = (Ii)i∈Z,
the random sequence X has the following properties:

• The random variables (X|Ii)i∈Z are independent.
• On each alternating interval Ii of size 1 not immediately left of an

interval of size kmark, we know that X|Ii = a; otherwise X|Ii 6= a,
and a switch occurs.

• On each alternating interval Ii of size kmark that is not immediately
left of an interval of size 1, the law of X|Ii, is the law of X|Ii
conditioned not to be a string of a’s; otherwise X|Ii is a string of
a’s, and a switch occurs.

Proof. Let ρ be the law of X. Let n ∈ Z+. Consider the random variables
Y n = (Yi)

∞
i=−n sampled using the procedure. We start by sampling kmark

elements from the measure (ρ−n, . . . , ρ−n+k−1), and we continue to sample in
blocks of kmark until a switch occurs, in which case we sample one coordinate
at a time, until a switch occurs, and then we go back to sampling kmark

elements at a time. Since switches are stopping times, it follows that Y n
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has the same law as Xn = (Xi)
∞
i=−n, for all n ∈ Z+. The above properties

clearly hold for the weak limit of Y n and thus hold for X. �

3.2. A Kakutani equivalent coding. Recall that by Kakutani’s theorem
[28], we have that two infinite direct product measures µ and ν on AZ

satisfying the Doeblin condition are equivalent if and only if∑
n∈Z

∑
a∈A

(µn(a)− νn(a))
2 <∞. (2)

Note that Kakutani’s theorem can be used to identify which Bernoulli
shifts are nonsingular and which Bernoulli shifts are equivalent to stationary
ones. One can imagine a coin flipper who progressively get better at flipping
a coin, but does not get better so quickly that their flips are indistinguishable
from iid ones.

We will say that a statement holds for a product measure µ modulo or
up to Kakutani equivalence if there is an equivalent measure ν for which
the corresponding statement holds. A key idea in our proof of Theorem
1.5 is that although a Bernoulli shift may not be given by independent and
identical observations, non-identical observations can be combined in a way
to yield identical observations, up to Kakutani equivalence. Specifically, we
adapted von Neumann’s observation that one can simulate a fair coin from
a possibly biased coin, using what is now commonly referred to as rejection
sampling [70]; flip the biased coin twice: if we get HT, we report this as H
and if we get TH, we report this as a T, and we are repeat this procedure if
we get either HH or TT. We remark that in the nonsingular setting, we are
faced with the added difficulty of using different coins for each flip.

Given a product measure ρ =
⊗

i∈Z ρi, we let ρ⊕ki be the probability
measure on Ak distributed as (ρi, . . . , ρi+k−1); we will use the notation ρ⊗ki =
(ρi, . . . , ρi) to denote the k-fold product of the measure ρi. An important fact
we will exploit is that the sequence of measures ρ⊕ki and ρ⊗ki are equivalent,
in the sense of Kakutani; see Lemma 3.5 and also [37, Theorem 20]. Some
of the proofs and lemmas are concerned with demonstrating that we can
substitute a more difficult statement involving ρ⊕ki with a simpler statement
involving ρ⊗ki . If Q is a probability measure and B is a measurable subset,
then the probability measure given by

Q(·|B) :=
Q(· ∩B)

Q(B)

will sometimes be referred to as the conditional probability of Q given
B.

Proposition 3.2 (Kakutani equivalent coding). Suppose ρ is a nonsingular
Bernoulli product measure that satisfies the Doeblin condition and has a
limiting marginal measure p on A. Let ε > 0. There exists α > 0 and kmark

sufficiently large such that for all k ≥ kmark there exists a subset Gk ⊂ Ak

omitting the sequence ak ∈ Ak, a finite set Bk with the following properties:
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(a) #Bk ≥ 2k(H(p)−ε).
(b) For all but finitely many i ∈ Z, we have ρ⊕ki (Ak \ Gk) ≤ e−αk.
(c) There exists a single function ψ : Gk → Bk such that

∑
i∈Z

∑
c∈Bk

(
ρ⊕ki

(
ψ−1(c)|Gk

)
− 1

#Bk

)2

<∞. (3)

In our proof of Proposition 3.2, we make the following observation. For
simplicity consider the binary case where A = {0, 1}. Each ρ⊕ki can be
viewed as a disintegration given by first sampling from a distribution that
gives the total number of ones and then sampling from a distribution that
places the locations of the ones and zeros in the positions (i, . . . , i+ k − 1);
in the case where ρ is given by an identical product measure, the second
distribution is given by a uniform distribution. Since ρ has a limiting distri-
bution, by a large deviations argument, when k is large, we can control the
first distribution, so that we know up to an exponential error the number of
ones that do occur, and then it turns out even when ρ is a nonsingular mea-
sure, the second distribution can be assumed to be uniform up to Kakutani
equivalence. We remark that in the iid case of classical statistics, the first
distribution corresponds to a sufficient statistic in the sense of Fisher [20],
which gives all the necessary information for estimating the parameter given
by probability of an occurrence of a single one; in contrast, we are more fo-
cused on the secondary uniform distribution, which contains no information
about the parameter.

Before we give the details of the proof of Proposition 3.2, we show how it
is used to prove Theorem 1.6.

3.3. Using Proposition 3.2. We say that an alternating interval of length
kmark is good if its values are in Gkmark

. Thus Proposition 3.2 allows us to
replace kmark symbols that are asymptotically distributed as pkmark with a
single random variable that is uniformly distributed on a set of size at least
2kmark(H(p)−ε), modulo Kakutani equivalence. In our proof of Theorem 1.6,
we will use Keane and Smorodinsky’s finitary factor [30] to generate a string
of kmark+1 symbols from the uniform random variables, so that at each good
alternating interval of length kmark we will have kmark + 1 symbols, where
the one extra symbol can be possibly distributed to integers that do not
belong to a good alternating interval; the following lemma will be used to
distribute the extra symbol.

Lemma 3.3 (Matching). Consider a nonsingular Bernoulli shift that sat-
isfies the Doeblin condition and has a limiting measure. Suppose each good
alternating interval is assigned the colour green, an alternating interval of
size 1 assigned the colour red, and an alternating interval of size kmark that
is not good assigned the colour maroon. For kmark chosen sufficiently large,
there is an equivariant (non-perfect) matching of green to red and maroon
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intervals, where each red interval has 1 green partner, and each maroon
interval has kmark green partners.

As in our previous constructions of nonsingular factors [36, 37], we will
build upon a variant of the Mešalkin’s [43] explicit isomorphism of the sta-
tionary Bernoulli shifts (14 ,

1
4 ,

1
4 ,

1
4) and (12 ,

1
8 ,

1
8 ,

1
8 ,

1
8), which is adapted from

Holroyd and Peres [27].

Proof of Lemma 3.3. The Mešalkin matching has the following inductive
description. Let W ∈ {red,maroon, green}Z be a random sequence of those
colours; here think of W as a colouring of the indexed alternating intervals
I, so that Wi is the colour of Ii. In the first instance, if Wn is red or
maroon, and Wn+1 is green, then we match n to n + 1; that is, a red or
maroon integer is matched to a green integer that is to its immediate right.
Next, we remove all red and green integers that have 1 partner, and maroon
integers that have kmark partners, and repeat. The matching is successful
if all red integers have a green integer partner, and all maroon integers have
kmark green partners; the green partners will always be to the right of their
red or maroon partners. Note that by definition the resulting matching is
equivariant with respect to the left-shift, and when applied to the coloured
alternating intervals will also give an equivariant matching. It suffices to
show, via an elementary random walk argument, that we can choose kmark

sufficiently large so that the excess of green integers compared to red and
maroon integers will ensure that the Mešalkin matching is successful almost
surely, when applied to the indexed alternating intervals.

Let ρ be a nonsingular Bernoulli shift on A that satisfies the Doeblin
condition and has a limiting measure. Let X have law ρ. Without loss of
generality assume that the symbols g, ĝ, g′ 6∈ A. Let I(X) = (Im)m∈Z be
the alternating intervals. If Im is of size kmark, then let Jm = g if it is
good, Jm = ĝ if X|Im = akmark , and Jm = g′ if it is otherwise not good; if
Im is of size 1, let Jm = X|Im . By Proposition 3.1, conditional on I(X),
the sequence Jm is a non-homogeneous Markov chain on A ∪ {g, ĝ, g′} with
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transitions:

pgg(t) ≥ min
i∈Z

ρ⊕kmark
i (Gkmark

) := vkmark
,

pgĝ(t) + pgg′(t) ≤ 1− vkmark
,∑

c∈A
pĝc(t) = 1,

pg′g ≥ vkmark
,

pg′ĝ + pg′g′ ≤ 1− vkmark
,

paa(t) ≤ max
i∈Z

ρi(a) < 1,

pac(t) ≥ 1−max
i∈Z

ρi(a) > 0 for all c ∈ A \ {a} ,

pcg(t) ≥ vkmark
for all c ∈ A \ {a} ,

pcg′(t) + pcĝ ≤ 1− vkmark
for all c ∈ A \ {a} .

Thus only the state g corresponds to a green interval, the other states all
correspond to red or maroon intervals.

For all j < n, let

Snj :=

n∑
m=j

(
1[Jm = g]− kmark · 1[Jm ∈ {ĝ, g′}]− 1[Jm ∈ A]

)
,

so that Snj is an excess of the difference between green intervals and red
intervals with penalty 1, and maroon intervals, with penalty kmark. Recall
that by Proposition 3.2 (b), the probability that an alternating interval of
size kmark is not good can be made exponentially small and we can replace
vkmark

, with a term v′kmark
, such that kmark

(
1 − v′kmark

)
→ 0 as kmark → ∞,

at the cost of the inequalities above failing for finitely many times t ∈ Z.
A routine variation in a standard probabilistic argument in renewal theory
[16] gives that for kmark sufficiently large there exists 0 < C < 1 such that
for any j ∈ Z, we have

P
(
lim inf
n→∞

1

n− j + 1
Snj ≥ C | I(X)

)
= 1. (4)

For each j ∈ Z, if Ij is red (or maroon) let Zj = n if In+j is the (last
kmark) matched green interval under the Mešalkin matching; if Ij is green,
set Zj = 0, and if Zj is red or maroon and there are not enough green
partners, then set Zj = ∞. Let

Rj = inf
{
` ≥ 1 : Sj+`j > 0

}
.

From the definition of the Mešalkin matching,

P(Zj > n | I(X)) = P(Rj > n | I(X))

and the right hand side tends to zero by (4). Hence Zj is finite almost surely,
and Mešalkin matching is successful almost surely. �
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Proof of Theorem 1.6. Let ε > 0. Consider the following choice of parame-
ter.

• Let ε′ = ε/3.
• Choose kmark sufficiently large as to satisfy Lemma 3.3 and Propo-

sition 3.2, where in the notation of the proposition, ε is replaced by
ε′.

• Furthermore, choose kmark sufficiently large so that

H(p) · kmark

kmark + 1
> H(p)− ε′.

Let X be a nonsingular Bernoulli shift with law ρ. We define and identify
markers, alternating intervals, and switches as in Section 3.1. Let I(X) be
the alternating intervals. Let I ⊂ I(X) be the good alternating intervals.
By Proposition 3.1, it follows that conditioned on I, the random variables
(X|J)J∈I are independent each with law ρJ(·|Gkmark

), given by ρ restricted
to J and conditioned to take values in Gkmark

.
We apply Proposition 3.2 to associate to each good alternating intervals

a single random variable that up to Kakutani equivalence, is uniformly dis-
tributed with entropy

h > kmark(H(p)− ε′).

Furthermore, we apply Keane and Smorodinsky’s finitary factor [30] to re-
place each uniform random variable by a string of independent symbols from
B, with law q, of length kmark + 1, where

(kmark + 1)H(q) > h− ε′.

Thus at each good alternating interval (of length kmark) we have kmark+1
symbols; the extra symbol is distributed via the matching procedure given
in Lemma 3.3, so that there is an independent symbol with law q for every
integer. We disregard any remaining extra symbols that were not matched,
and thus obtain an iid factor of entropy

H(q) >
h− ε′

kmark + 1
> (H(p)− ε′) · kmark

kmark + 1
− ε′ > H(p)− ε.

We note that the external components involved in our construction: the
Mešalkin matching furnished by Lemma 3.3 and the Keane and Smorodinsky
factor are finitary. Hence it follows, by definition that our construction is
also finitary. �

3.4. The proof of Proposition 3.2. Generalizing our earlier discussion
at the end of Section 3.2, we note that the sufficient statistic for a finite
number iid observations of a categorical distribution is given the frequency
counts of the types. In what follows, we will use the theory of types to help
prove Proposition 3.2.
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3.4.1. Types. The empirical probability measure of x ∈ Ak, denoted by
emp(x), is the probability measure on A, given by

emp(x)(a) =
1

k

k∑
j=1

1[xj = a] =
# {j : xj = a}

k
.

Given k ∈ Z+ we say that p ∈ Prob(A) is of denominator k if kp(a) ∈ N
for all a ∈ A. The collection of probability distributions of denominator k
are precisely the ones which can arise as empirical probability measures for
x ∈ Ak. For p ∈ Prob(A) of denominator k, let

typek(p) = {x ∈ Ak : emp(x) = p} ⊂ Ak

be the k-type class of p, which is all the sequences from A of length k which
have an empirical measure that is equal to p.

We will use the following version of Proposition 3.2 where we use con-
ditioning to impose strict control over the types that can occur, so that a
large deviations argument is not required.

Proposition 3.4. Suppose ρ is a nonsingular Bernoulli product measure
that satisfies the Doeblin condition. Let k ∈ Z+. Let p ∈ Prob(A) be
of denominator k and V ⊂ typek(p). Recall that ρ⊕ki (·|V ) is the probability
measure on Ak given by taking (ρi, . . . , ρi+k−1) conditioned to be on V . Then
for all F ⊂ V , we have∑

i∈Z

(
ρ⊕ki (F |V )− #F

#V

)2

<∞. (5)

Notice that if ρ is an identical product measure, then Proposition 3.4 is
not difficult since each summand is identically zero, see (6). The following
lemma, which we will use to prove Proposition 3.4 connects this elementary
observation to our nonsingular setting.

Lemma 3.5. Suppose ρ is a nonsingular Bernoulli product measure that
satisfies the Doeblin condition. For all c ∈ Ak, we have∑

i∈Z

(
ρ⊕ki (c)− ρ⊗ki (c)

)2
<∞.

Proof. For all c = (c0, . . . , ck−1) ∈ Ak, we have

ρ⊕ki (c)− ρ⊗ki (c) = ρi(c0)

k−1∏
j=1

ρi+j(cj)−
k−1∏
j=1

ρi(cj)


= ρi(c0)

k−1∑
j=1

(∏j
`=1 ρi+`(c`)

ρi+j(cj)

)
(ρi+j(cj)− ρi(cj))

(∏k−1
`=j ρi(c`)

ρi(cj)

)
.
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As ρ satisfies the Doeblin condition, there exists C > 0 such that for all
1 ≤ j ≤ k − 1, we have

ρi(c0)

(∏j
`=1 ρi+`(c`)

ρi+j(cj)

)
|ρi+j(cj)− ρi(cj)|

(∏k−1
`=j ρi(c`)

ρi(cj)

)
≤ C |ρi+j(cj)− ρi(cj)| .

Consequently for all i ∈ Z and c ∈ Ak, we have

(
ρ⊕ki (c)− ρ⊗ki (c)

)2
≤ C2(k − 1)2

k−1∑
j=1

(ρi+j(cj)− ρi(cj))
2 .

As ρ is nonsingular and satisfies the Doeblin condition, Kakutani’s theorem
implies that for all m ≥ 1, we have

Am :=
∑
i∈Z

m∑
j=1

∑
x∈A

(ρi+j(x)− ρi(x))
2 <∞.

Hence for all c ∈ Ak, we have

∑
i∈Z

(
ρi(c)− ρ⊗ki (c)

)2
≤ C(k − 1)2

∑
i∈Z

k−1∑
j=1

(ρi+j(cj)− ρi(cj))
2

≤ C(k − 1)2Ak−1 <∞. �

Proof of Proposition 3.4. Fix V ⊂ type(p) and F ⊂ V . A nice observation
that is used in [25] is that for all c, d ∈ typek(p), we have

ρ⊗ki (c) = ρ⊗ki (d).

Consequently for all i ∈ Z, and c ∈ V , we have

ρ⊗ki (c|V ) =
ρ⊗ki (c)

ρ⊗ki (V )
=

1

#V
. (6)

Since V is a finite set it follows from Lemma 3.5 that

∑
i∈Z

(
ρ⊕ki (V )− ρ⊗ki (V )

)2
=
∑
i∈Z

(∑
c∈V

ρ⊕ki (c)− ρ⊗ki (c)

)2

≤ (#V )2
∑
c∈V

∑
i∈Z

(
ρ⊕ki (c)− ρ⊗ki (c)

)2
<∞. (7)
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Fix c ∈ V . By the Doeblin condition for ρ, there exists D > 0 such that
for all i ∈ Z, we have[

ρ⊕ki (c|V )− ρ⊗ki (c|V )
]2

=(
ρ⊕ki (c)

(
1

ρ⊕i (V )
− 1

ρ⊗ki (V )

)
+
ρ⊕ki (c)− ρ⊗ki (c)

ρ⊗ki (V )

)2

≤ 4D

[(
ρ⊕ki (V )− ρ⊗ki (V )

)2
+
(
ρ⊕ki (c)− ρ⊗ki (c)

)2]
.

Hence from (7) and (6) we have,∑
i∈Z

(
ρ⊕ki (c|V )− 1

#V

)2

<∞,

from which the desired result is immediate:∑
i∈Z

(
ρ⊕ki (F |V )− #F

#V

)2

=
∑
i∈Z

(∑
c∈F

(
ρ⊕ki (c|V )− 1

#V

))2

≤ (#V )2
∑
c∈F

∑
i∈Z

(
ρ⊕ki (c|V )− 1

#V

)2

<∞.

�

3.4.2. Sanov’s theorem and the set Gk in Proposition 3.2. In order to use
Proposition 3.4, we will need to introduce some results from large deviations
theory. Let δ > 0. Recall that the total variation distance between
q1, q2 ∈ Prob(A) is defined by

dTV(q1, q2) :=
∑
a∈A

|q1(a)− q2(a)| ; (8)

we will endow Prob(A) with this metric. Recall that p = lim|n|→∞ ρn. For
k ∈ N, let

U(δ) := {q ∈ Prob(A) : dTV(q, p) < δ} (9)
and

Ĝk,δ :=
{
x ∈ Ak : dTV(emp(x), p) < δ

}
=

⋃
q∈U(δ)

typek(q).

Recall that the Kullback-Leibler divergence between p, q ∈ Prob(A) is
defined by

DKL(q||p) :=
∑
a∈A

p(a) log

(
p(a)

q(a)

)
.

The function q 7→ D(q||p) is a continuous function from

{q ∈ Prob(A) : q � p} to [0,∞),

where q � p means that q is absolutely continuous with respect to p.
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The following is an adaptation of standard results on concentration of
measure and well-known bounds of the method of types; see for example
[13, Chapter 11].

Lemma 3.6. For every ε > 0 there exists δ > 0, and a positive integer
k0 ∈ Z+ and β > 0 such that for all k > k0:
(a) If dTV(q, p) < δ and q is of denominator k, then #typek(q) ≥ 2

(
H(p)− ε

2

)
k.

(b) For all but finitely many n ∈ Z, we have ρ⊕kn
(
Ĝk,δ

)
≥ 1− e−βk.

Proof. By [13, Theorem 11.1.3], for all q ∈ Prob(A) and k ∈ Z+, if q has
denominator k, then

#typek(q) ≥
1

(k + 1)|A|
2kH(q).

Since the entropy map q 7→ H(q) is continuous, there exists δ > 0 such that
if dTV(q, p) < δ, then H(q) > H(p)− ε

3 . Let k1 be such that if k > k1, then
(k + 1)|A| < e

ε
6
k. Hence, if k > k1 and dTV(q, p) < δ, then

#typek(q) ≥ 2
(
H(p)− ε

2

)
k,

establishing part (a).
The set K := Prob(A) \ U(δ) is compact so that

2β := min
q∈K

DKL(q||p) > 0.

By Sanov’s theorem [58], for every k ∈ Z+, we have

p⊗k
(
Ak \ Ĝk,δ

)
= p⊗k

(
x ∈ Ak : emp(x) ∈ K

)
≤ (k + 1)|A|e−2kβ .

Choose a positive integer k0 ≥ k1 such that for all k ≥ k0, we have

p⊗k
(
Ak \ Ĝk,δ

)
≤ e−βk

2
. (10)

Let C := mina∈A p(a). For every n ∈ Z, and every k ≥ k0 and x ∈ Ak, we
have

ρ⊕kn (x) =

n+k−1∏
j=n

ρj (xj) =

n+(k−1)∏
j=n

p (xj)

(
1 +

ρj (xj)− p (xj)

p (xj)

)

≤ p⊗k(x)

n+k−1∏
j=n

(
1 +

ρj (xj)− p (xj)

C

)
.

Since

lim
|n|→∞

max
x∈Ak

n+k−1∏
j=n

(
1 +

ρj (xj)− p (xj)

C

)
= 1,

for all but finitely many n ∈ Z, we have

max
x∈A

(
ρ⊕kn (x)/p⊗k(x)

)
≤ 2. (11)
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Hence with (10), we obtain that for all but finitely many n ∈ Z, we have

ρ⊕kn

(
Ak \ Ĝk,δ

)
≤ 2p⊗k

(
Ak \ Ĝk,δ

)
≤ e−βk.

as desired for part (b). �

We now combine Proposition 3.4 with Lemma 3.6 to obtain Proposition
3.2. Recall the role of Proposition 3.2 in the proof of Theorem 1.6 was to
extract, using a single procedure, (up to Kakutani equivalence) an iid se-
quence of sufficiently high entropy (discrete uniform) random variables from
the good alternating intervals. Lemma 3.6 gives that for k sufficiently large
most k-type classes will be large enough so that the random variable corre-
sponding to picking an element from such a type class will have sufficiently
high entropy. Although there is a uniform lower bound on the size of the
type classes, they vary. Part of our proof of Proposition 3.2 will involve
chopping a type class up into equal sets of the desired size; exerting further
control over the sizes helps to prove that the resulting random variables are
stationary. See the proof below for details.

Proof of Proposition 3.2. Let ε > 0. Recall that p is the limiting measure.
Choose δ and k0 as in Lemma 3.6 and kmark := max

(
k0, d2εe

)
. For all k ≥

kmark set Bk =
{
1, . . . , 2dk(H(p)−ε)e}. We will first construct Gk, and then

define the mapping ψ : Gk → Bk. Set
U ′
k(δ) := {q ∈ U(δ) : q is of denominator k and typek(q) 6= ∅} ,

where U(δ) is as given in (9). Let q ∈ U ′
k(δ) ⊂ Prob(A). By Lemma 3.6,

since k ≥ 2
ε , we have that #typek(q) > #Bk. Set

m(q, k) :=
⌊
#typek(q)

#Bk

⌋
.

For each q ∈ U ′
k(δ), let Fk(q) be a fixed subset of typek(q) of cardinality

m(q, k)(#Bk); here we can think of chopping up the set #typek(q) into
m(q, k) portions, stacked upon each other, and discarding away the rest.
Let

Gk :=
⊎

q∈U ′
k(δ)

Fk(q) ⊂ Ĝk,δ (12)

be given by a disjoint union.
In order to define ψ : Gk → Bk, note that since for all q in the disjoint

union (12), the cardinality of Fk(q) is an integer multiple of the cardinality
of Bk, we choose a m(q, k)-to-1 mapping ψ|Fk(q) : Fk(q) → Bk such that for
all c ∈ Bk, we have

# {x ∈ Fk(q) : ψ(x) = c}
#Fk(q)

=
1

#Bk
; (13)

putting together these choices, we obtain the desired map ψ.
We now verify the conditions (a),(b), and (c) of the proposition. Condi-

tion (a) holds by our choice of Bk.
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Now we verify that we did not chop too much away. By construction, for
all q ∈ U ′

k(δ), by Lemma 3.6 (a), we have

p⊗k (typek(q) \ Fk(q))
p⊗k(typek(q))

=
#(typek(q) \ Fk(q))

#typek(q)

≤ #Bk
#typek(q)

≤ e−
εk
2 . (14)

In addition, from the proof of Lemma 3.6, specifically inequality (11), for
all but finitely many n ∈ Z, for all V ⊂ Ak, we have

1

2
p⊗k(V ) ≤ ρ⊕kn (V ) ≤ 2p⊗k(V ).

Consequently, for all but finitely many n ∈ Z, we have

ρ⊕kn

(
Ĝk,δ \ Gk

)
ρ⊕kn

(
Ĝk,δ

) ≤ 4 ·
p⊗k

(
Ĝk,δ \ Gk

)
p⊗k

(
Ĝk,δ

)
=

4

p⊗k
(
Ĝk,δ

) ∑
q∈U(δ)

typek(q)6=∅

p⊗k (typek(q) \ Fk(q))
p⊗k(typek(q))

p⊗k(typek(q)),

and by (14), we obtain

≤ 4

p⊗k
(
Ĝk,δ

) ∑
q∈U(δ)

typek(q)6=∅

e−
εk
2 p⊗k(typek(q))

≤ 4e−
εk
2 .

Hence it follows from Lemma 3.6 (b) that there exists β > 0 such that for
all but finitely many n ∈ Z, we have

ρ⊕kn

(
Ak \ Gk

)
= ρ⊕kn

(
Ak \ Ĝk,δ

)
+ ρ⊕kn

(
Ĝk,δ \ Gk

)
≤ e−βk + 4e−

εk
2 .

By enlarging kmark if necessary, property (b) in Proposition 3.2 holds for
any α < min(β, ε2).

We will now prove that property (c) holds. Fix c ∈ Bk. Since Bk is a
finite set, it suffices to show that∑

i∈Z

(
ρ⊕ki (ψ−1(c)|Gk)−

1

#Bk

)2

<∞.

By Proposition 3.4 for all q ∈ U ′
k(δ), we have with (13) that

∑
i∈Z

[
ρ⊕ki

(
ψ−1(c) ∩ Fk(q)|Fk(q)

)
− 1

#Bk

]2
<∞. (15)
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Recall by (12), by definition,∑
q∈U ′

k(δ)

ρ⊕ki (Fk(q))

ρ⊕ki (Gk)
= 1

and by [13, Theorem 11.1.1] or elementary counting, we have

#U ′
k(δ) ≤ (k + 1)|A|.

Thus for all c ∈ Bk and i ∈ Z, we have(
ρ⊕ki (ψ−1(c)|Gk)−

1

#Bk

)2

=

 ∑
q∈U ′

k(δ)

ρ⊕ki (Fk(q))

ρ⊕ki (Gk)

[
ρ⊕ki

(
ψ−1(c̄) ∩ Fk(q)|Fk(q)

)
− 1

#Bk

]2

≤ (k + 1)|A|
∑

q∈U ′
k(δ)

(
ρi (Fk(q))

ρi(Gk)

)2 [
ρ⊕ki

(
ψ−1(c̄) ∩ Fk(q)|Fk(q)

)
− 1

#Bk

]2

≤ (k + 1)|A|
∑

q∈U ′
k(δ)

[
ρ⊕ki

(
ψ−1(c̄) ∩ Fk(q)|Fk(q)

)
− 1

#Bk

]2
.

Hence summing over both sides of the inequality in the index i ∈ Z, and
applying (15), we obtain condition (c). �

3.5. The proof of Corollary 1.7. Let A be a countable set. Recall that a
product measure ρ =

⊗
n∈Z ρi on AZ has a limiting measure p if ρi converges

to p in the usual total variation distance; see (8).

Proof of Corollary 1.7. Let ρ be a nonsingular Bernoulli shift on a possibly
countable set A that has a limiting measure p.

We start with removing the Doeblin assumption for the case of a finite
set A.

Assume that for all a ∈ A, we have p(a) > 0. (16)
Since lim|i|→∞ dTV(ρi, p) = 0, there exists N ∈ Z+ such that for all |i| ≥ N ,
we have

ρi(a) >
1

2
min
a∈A

p(a) = δ′.

Since ρ is nonsingular, for all i ∈ Z and a ∈ A, we have ρi(a) > 0. Hence
the Doeblin condition is satisfied with

δ := min
((
pi(a) : a ∈ A, |i| ≤ N

)
, δ′
)
,

and Theorem 1.6 applies.
Otherwise set B = {a ∈ A : p(a) > 0}. If B is a singleton, then H(p) = 0

and the Theorem is vacuously true. Suppose that B has more than one
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element. Fix b ∈ B and let π : AZ → BZ be given by

π(x)j =

{
b, if xj ∈ {b}

⊎
(A \B),

xj , if xj ∈ B \ {b}.

Since the value of π(x)j just depends on the coordinate xj , it is easy to see
that π is a finitary factor map from ρ to ν := ρ ◦ π−1; furthermore ν is a
product measure on BZ with limiting marginal p|B, and H(p|B) = H(p).
Thus condition (16) holds for ν, and we already know it has near optimal
entropy finitary iid factors, from which it follows by composition with π that
same holds for ρ.

Now with the Doeblin condition removed for the case of a finite set A,
we consider the countable case, where for concreteness we take A = N. The
following cut-off functions will allow us to apply the result for the case of a
finite set, established earlier. For each n ∈ N, consider θn = N → {0, . . . , n}
given by

θn(k) = θ(k) = min {k, n} ,
and Θn : NZ → {0, . . . , n}Z given by

Θn(x)j = Θ(x)j = θ(xj) = min {xj , n} .
Clearly, Θ is a finitary factor map from ρ to ν := ρ ◦ Θ−1 and ν is a
product measure on {0, . . . , n}Z with limiting measure p ◦ θ−1

n ; moreover,
H(p ◦ θ−1

n ) → H(p), as n→ ∞. Thus choosing n finite and sufficiently large
we again obtain near optimal entropy finitary iid factors by composing Θ
with the finitary factor that we obtained in the finite case. �

4. Upper bounds on the entropy of a finitary factor

4.1. Entropy rates for for bounding the entropy of symbolic factors.
The next theorem is a mathematical abstraction of Theorem 1.4 that will
allow for applications to Anosov diffeomorphisms and Bernoulli shifts.

Let A be a finite set. For x ∈ AZ and n ∈ Z+, we write for M < n the
set,

[x]nM = {y ∈ AZ : yk = xk for all M ≤ k ≤ n}
for the unique [M,n]-cylinder set containing x. Let µ be a Borel regular
measure on AZ which is nonsingular with respect to the left-shift. It will
be convenient to use the language of random variables. For example, recall
that if Z is a discrete random variable or vector, then its Shannon entropy
is given by

H(Z) = −
∑
a

P(Z = a) logP(Z = a).

Let (nk) be a subsequence of Z+ and X ∈ AZ be a random variable with
law µ, so that P(X ∈ ·) = µ(·). The lower entropy rate of the measure
µ with respect to (nk) is given by

h(µ, (nk)) := lim inf
k→∞

H(X1, . . . , Xnk
)

nk
.
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We recall that in the measure-preserving case, we may take nk = k and
subadditivity ensures the actual limit exists and is the Kolmogorov-Sinai
entropy. We will be able to use the lower entropy rate as a substitute for
Kolmogorov-Sinai entropy in the nonsingular setting, provided the existence
of certain physical proxies for µ, which are akin to SRB measures.

We say measure µph on AZ is a mean-physical measure for µ with
respect to (nk), if for every cylinder set C ⊂ AZ, we have

lim
k→∞

1

nk

nk−1∑
k=0

µ
(
T−kC

)
= µph(C).

When nk = k we simply say that µph is a mean-physical measure for µ.
We say µph is a physical measure for µ if for µ-almost every x ∈ AZ, we
have

1

n

n−1∑
k=0

δTnx −−−→
n→∞

µph, weakly,

where δy is the usual point mass giving unit mass to a set containing the
point y and zero mass otherwise. The portmanteau theorem [17, Theorem
2.4, page 87] implies that for every cylinder set C ⊂ AZ and for µ-almost
every x ∈ AZ, we have

lim
n→∞

1

n

n−1∑
k=0

1C ◦ T k(x) = µph(C).

It is easy to see that every physical measure is a mean-physical measure,
and every mean-physical measure is shift-invariant.

Theorem 4.1. Let
(
AZ,B, µ, T

)
be a nonsingular symbolic system. If there

exists µph, a mean-physical measure for µ with respect to a subsequence (nk),
then every iid system that is obtained as a finitary factor of µ has entropy
no greater than h(µ, (nk)), the lower entropy rate of µ with respect to (nk).

The following lemma will allow us to transfer the finitary assumption into
a form involving finite union of cylinder sets, which will be useful in the proof
of Theorem 4.1.

Lemma 4.2. Let
(
AZ,B, µ, T

)
be a nonsingular symbolic dynamical system,

π : AZ → BZ a finitary nonsingular factor map from µ to qZ and {Bs : s ∈
B} be the partition of BZ according to the zeroth coordinate. For every
continuous probability measure ν on AZ and ε > 0, there exists {Cs}s∈B and
C∅ such that:
(a) For each s ∈ B, the set Cs ⊂ B is a finite union of cylinder sets of AZ;

the set C∅ is a complement of a finite union of cylinder sets.
(b) The sets {Cs}s∈B∪{∅} form a partition of AZ.
(c) For all s ∈ B, we have µ

(
Cs \ π−1Bs

)
= 0.

(d) µ
(
C∅4

⊎
s∈B

(
π−1Bs \ Cs

))
= 0 and ν(C∅) < ε.
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Proof. As a consequence of the finitary property of π, for every s ∈ B, there
exists a sequence {Dn(s)}n∈Z+ of pairwise disjoint cylinder sets such that

µ
(
π−1Bs4

⊎
n∈Z+

Dn(s)
)
= 0.

Since
{
π−1Bs

}
s∈S is a partition of AZ modulo µ, we have⊎

s∈B

⊎
n∈Z+

Dn(s) = AZ mod µ.

As ν is a continuous probability measure, for N sufficiently large, we have

ν
( ⊎
s∈B

∞⊎
n=N+1

Dn(s)
)
< ε.

Set C∅ :=
⊎
s∈B

⊎∞
n=N+1Dn(s). For each s ∈ B, let Cs :=

⊎N
n=1Dn(s). The

lemma is immediate. �

We will also require some elementary inequalities from information theory.
Recall that Fano inequality [19] gives that if Z and Z ′ are finite-valued
(A-valued) random variables, defined on the same probability space and
pe = P(Z 6= Z ′), then

H(Z|Z ′) ≤ H(pe, 1− pe) + pe(log(#A)− 1). (17)

In our proof of Theorem 4.1, we will use Fano’s inequality to compare the
entropies of two finite random strings, one of which is an approximation of
the other.

Lemma 4.3. Consider the nonsingular system
(
AZ,B, µ, T

)
and µph be a

mean-physical measure for µ with respect to the subsequence (nk). Let ε > 0.
Consider the set-up and notation of Lemma 4.2, take ν = µph and obtain
the set C∅ with µph(C∅) < ε. Define β : AZ → (B ∪ {∅})Z via

β(x)n = s if and only if Tnx ∈ Cs.

Let X ∈ AZ be a random variable with law µ. Set

pk := P(π(X)k 6= β(X)k) = µ ◦ T−k(C∅).

Then for all n ∈ Z+, we have

H(π(X)1, . . . , π(X)n) ≤ H(β(X)1, . . . , β(X)n) +
n∑
k=1

H(pk, 1− pk) + (log(#B + 1)− 1)

n∑
k=1

pk.

Proof. The proof follows from a routine application of the chain rule for
entropy and Fano’s inequality. �
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Proof of Theorem 4.1. We will continue to use the notation of Lemmas 4.2
and 4.3. Let δ > 0. It is elementary that we may choose ε > 0 in Lemma
4.3 so that if lim supn→∞

(
1
n

∑n
k=1 pk

)
< ε, then for all sufficiently large n,

we have
1

n

n∑
k=1

H(pk, 1− pk) +
(log(#B + 1)− 1)

n

n∑
k=1

pk < δ. (18)

Since C∅ is a (disjoint) finite union of cylinder sets and µph is a mean-physical
measure for µ with respect to (nk), we have

lim
k→∞

1

nk

nk∑
j=1

pj = µph(C∅) < ε.

By Lemma 4.3 and (18), for all sufficiently large k, we have
H(π(X)1, . . . , π(X)nk

)

nk
≤ H(β(X)1, . . . , β(X)nk

)

nk
+ δ. (19)

Since π is a factor map, and µ ◦ π−1 ∼ qZ, it follows from a variation of the
Shannon-McMillan-Breiman theorem [21, Theorem 8] that

lim
n→∞

H(π(X)1, . . . , π(X)n)

n
= H(q). (20)

Let M be sufficiently large so that each finite union of cylinder sets Cs
for s ∈ B ∪ {∅} is a finite union of cylinder sets defined on the coordinates
[−M,M ]. Consequently, (β(X)1, . . . β(X)n) is a function ofX−M , . . . , Xn+M

and
H(β(X)1, . . . , β(X)nk

)

nk
≤ 2M log(#B + 1)

nk
+
H(X1, . . . , Xnk

)

nk
,

where we have used the chain rule for entropy together with the fact that
βi(X) take at most #B + 1 values. Hence

lim inf
k→∞

H(β(X)1, . . . , β(X)nk
)

nk
≤ lim inf

n→∞

H(X1, . . . , Xnk
)

nk
= h(µ, (nk));

together with (19) and (20), for an arbitrary δ > 0, we have

H(q) = lim
k→∞

H(π(X)1, . . . , π(X)nk
)

nk
≤ lim inf

k→∞

H(X1, . . . , Xnk
)

nk
+ δ. �

4.2. Bernoulli shifts. We will prove the following more general version of
Theorem 1.4 from which the advertised result is immediate.

For a nonsingular Bernoulli measure ρ, write

h+ = h := lim inf
n→∞

1

n

n∑
k=1

H(ρk) and h− = lim inf
n→∞

1

n

−1∑
k=−n

H(ρk).

Theorem 4.4. If qZ is a finitary factor of a nonsingular Bernoulli shift ρ,
then

H(q) ≤ min(h−, h+).
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Proof of Theorem 1.4. We have the additional assumption of a limiting mea-
sure p, which, with the continuity ofH, implies h+ = h− = H(p), from which
the result is immediate from Theorem 4.4. �

Proof of Theorem 4.4. Let (nk) be a subsequence such that

lim
k→∞

1

nk

nk∑
j=1

H(ρj) = h+.

Consider the sequence of measures on AZ given by ζk = 1
nk

∑nk
j=1 ρ ◦ T j . By

the Banach-Alaoglu theorem [5] there exists a further subsequence m` = nk`
and a probability measure ν on AZ such that ζm`

converges to ν weakly.
Since cylinder sets are clopen, it follows that ν is a mean-physical measure
for ρ with respect to (m`). By Theorem 4.1, we have

H(p) ≤ h(ρ, (m`)) = h+.

Finally, we note that a mapping is equivariant with respect to the left-
shift T if and only if it is also equivariant with respect to the right-shift
T−1. Interchanging T with T−1 in the argument gives H(q) ≤ h− and thus
H(q) ≤ min(h+, h−) as desired. �

4.3. Anosov diffeomorphisms. We recall symbolic dynamics for Anosov
diffeomorphisms will allow us to employ Theorem 4.1. Let V be a finite set.
Given an adjacency matrix A ∈ {0, 1}V×V , the subshift of finite type
corresponding to A is defined by

ΣA :=
{
s ∈ V Z : ∀k ∈ Z, Ask,sk+1

= 1
}
,

where it is endowed with the usual left-shift T . For more information on
symbolic dynamics and shifts of finite type see [41, 44].

Theorem 4.5 (Symbolic dynamics from Sinai [64]). Let f ∈ Diff2(M) be a
transitive C2 Anosov diffeomorphism on a compact manifold M and ε > 0.
Then there exist a finite set V , an adjacency matrix A, and a covering
R = {Rv}v∈V of M by closed sets of diameter less than or equal to ε such
that
(a) For distinct v, v′ ∈ V , the interiors of Rv and Rv′ have no intersection.
(b) The coding map π : ΣA →M given by

π(s) =
⋂
n∈Z

Rsn

is continuous, onto and finite-to-one map which is equivariant so that
all s ∈ ΣA, we have f ◦ π(s) = π ◦ T (s); that is, π is a finite-to-one
semi-conjugacy of the topological dynamical systems.

(c) For every y /∈
⋃
n∈Z

⋃
v∈V f

n∂Rv, the inverse mapping π−1(y) is a single
point in ΣA.
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In the context of Theorem 4.5, the sets R are referred to as a Markov
partition and the subshift a topological Markov chain; see also [3, 10] and
[2]. By Theorem 4.5 if an iid system is an almost-surely continuous (finitary)
factor of an Anosov diffeomorphism endowed with the natural volume mea-
sure, then it will also be a finitary factor of a symbolic system, and making
it possible to apply Theorem 4.1. We will need some technical lemmas to
deal with the boundary of the Markov partition.

Recall that f has in addition an SRB measure µf which is an ergodic
f -invariant measure such for all continuous function ϕ : M → M , we have
for volM -almost every y ∈M that

1

n

n−1∑
k=0

ϕ ◦ fk(y) −−−→
n→∞

∫
ϕdµf .

This asymptotic condition has a useful reformulation in terms of weak con-
vergence of measures. For y ∈M , define a sequence of measures

νyn :=
1

n

n−1∑
k=0

δfky.

The SRB property gives that volM -almost every y ∈ M , the measure νyn
converges weakly to µf as n → ∞. A point y ∈ M is a generic point for
µf if νyn converges weakly to µf . We will use this formulation in the proof
of the following lemma.

Lemma 4.6. Let f be a transitive, C2 Anosov diffeomorphism on a compact
manifold M . Consider symbolic dynamics for f as given in Theorem 4.5.
Then volM

(⋃
n∈Z

⋃
v∈V f

n∂Rv
)
= 0.

We note that in Lemma 4.6, a volume a.c.i.p. may not exist, making the
proof a bit harder. Our proof will involve revisiting some technical lemmas
and arguments regarding Markov partitions that can be found in [11]. We
will show that a point on the boundary fails to be generic with respect to
an SRB measure. We thank Yuri Lima for his interest in the lemma and
pointing out an important error in an earlier version of its proof.

Proof of Lemma 4.6. It suffices to show that ∂R =
⋃
v∈V ∂Rv has zero vol-

ume, since the volume measure is nonsingular, and the union in question is
countable.

We recall that by [11, Lemma 3.11] we may express the closed boundary in
question as the union ∂R = ∂Ru∪∂Rs, where these sets are often referred to
as the unstable and stable boundaries; furthermore from [11, Proposition
3.15], we have containments,

f(∂Rs) ⊆ ∂Rs and f−1(∂Ru) ⊆ ∂Ru.

The stable containment implies that each point z in the stable boundary
has a forward orbit-closure orb+(z) := {fn(z) : n ∈ N} that will have an
empty intersection with some closed neighbourhood of each point that is
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not in the boundary. Fix a point y0 6∈ ∂R. By Urysohn’s separation lemma
[67, Proposition 2.1.18], for each z ∈ ∂Rs there exists Υz : M → [0, 1] such
that Υ = 0 on orb+(z) and Υ = 1 on a closed neighbourhood of y0. Since
the SRB measures are fully supported, we have that

∫
Υzdµf > 0. Similarly,

the unstable containment implies an analogous statements for the backward
orbit-closure for a point on the unstable boundary.

From [65], let µf and µf−1 be SRB measures so that on a subset M ′ of
full volume, we have that for all y ∈M ′ the weak convergences:

1

n

n−1∑
k=0

δfky −−−→n→∞
µf and 1

n

n−1∑
k=0

δf−ky −−−→n→∞
µf−1 .

However by definition of Υ, for z ∈ ∂Rs, for all n ∈ Z+ we have

1

n

n−1∑
k=0

Υz ◦ fk(z) = 0 <

∫
Υzdµf ,

and the forward weak convergence fails for z, and it is not a generic point
for µf . Similarly, if z belongs to the unstable boundary, the backwards weak
convergence fails. Hence if z is in the boundary, one of the weak convergences
fails, so that ∂R ⊆M \M ′, and must have zero volume. �

Remark 4.7. Lemma 4.6 gives that the symbolic coding π in Theorem 4.5 is
a nonsingular continuous almost everywhere (finitary) isomorphism between
the symbolic dynamics with the left-shift (ΣA,B, η, T ) and the Anosov sys-
tem (M,B(M), volM , f), where η = volM ◦ π. Note that ΣA ⊆ V Z has unit
measure under η.

Notice that an SRB measure µf corresponds to a mean-physical measure
for η in the symbolic space given by ηph = µf ◦ π. Thus Theorem 4.1
immediately gives that the entropy of any finitary factor is bounded by
h(η, (k)). ♦

Lemma 4.8. With the notation of Remark 4.7 in force, if the maximum
diameter of the Markov partitions is sufficiently small, then

h(η, (k)) ≤ min(hµf (f), hµf−1 (f)).

Proof of Theorem 1.3. In Theorem 4.5, one can choose the diameter of the
Markov partition to be sufficiently small. Thus the proof is immediate from
Remark 4.7 and Lemma 4.8. �

4.3.1. The proof of Lemma 4.8. We will execute entropy calculations with
the notation of Remark 4.7 and also the Markov partition of Theorem 4.5.
These entropy calculations are somewhat more difficult as they involve two
measures simultaneously, only one of which is measure-preserving. In this
subsection, we will typically use ‘x’ to denote an element of the symbolic
space, and ‘y’ and ‘z’ to denote elements of the manifold.
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Let X ∈ ΣA be a random variable with law η. Given k ∈ Z+, define
Ik : ΣA → (0,∞) via

Ik(x) = − logP(X0 = x0|X−1 = x−1, . . . , X−k = x−k).

Also, we recall the standard notation that for a probability space (Ω,F , ζ)
and a partition α of Ω, where α(ω) is the part to which ω belongs, we have

Hζ(α) = −
∑
a∈α

ζ(a) log ζ(a) and Iζ [α](ω) = − log ζ(α(ω)),

so that ∫
Iζ [α]dζ = Hζ(α).

More specifically, for y ∈M , we have

Ivol[R| ∨ki=1 f
−iR](y) = − log

(
vol
(
∨ki=0f

−iR(y)
)

vol
(
∨ki=1f

−iR(y)
)) . (21)

Lemma 4.9. Let k ∈ Z+. For η-almost every x ∈ ΣA, we have

1

n

n−1∑
j=0

Ik ◦ T j(x) −−−→
n→∞

∫
Ivol[R| ∨ki=1 f

−iR]dµf .

Proof. By the definition of η = volM ◦π as the lift of the volume, for a subset
of full η-measure, for all x ∈ Σ′

A, we have

Ξxn :=
1

n

n−1∑
j=0

δfjπ(x) −−−→
n→∞

µf , weakly.

Let x ∈ Σ′
A. If π(x) = y ∈

⋂k
i=0 f

−iRxi , then

Ik(x) = Ivol[R| ∨ki=1 f
−iR](π(x)) = − log

(
vol
(
∩ki=0f

−iRxi
)

vol
(
∩ki=1f

−iRxi
)) .

We have

1

n

n−1∑
j=0

Ik ◦ T j(x) =
1

n

n−1∑
j=0

Ivol[R| ∨ki=1 f
−iR] ◦ f j(π(x)). (22)

By Lemma 4.6, the function Ivol[R|∨ki=1 f
−iR] is Riemann integrable, since

it is discontinuous only on the boundaries of the Markov partition. By the
portmanteau theorem,

1

n

n−1∑
j=0

Ivol[R| ∨ki=1 f
−iR] ◦ f j(π(x)) =

∫
Ivol[R| ∨ki=1 f

−iR]dΞxn

−−−→
n→∞

∫
Ivol[R| ∨ki=1 f

−iR]dµf ,

from which the desired result follows from (22). �
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Notice that in Lemma 4.9, we did not obtain convergence to Hµf (R|∨ki=1

f−iR), but instead ended up with an expression that contains both the
volume measure and its SRB measure; in order to replace this expression
with one involving only the SRB measure, we will also need to make use
of the description of an SRB measure as a Gibbs measure of the geometric
potential, and refer to results from Bowen and Ruelle [12]. Let ϕ(u) : M →
[0,∞) be defined by ϕ(u)(y) = − log λ(y), where λ(y) is the Jacobian of the
linear map, given by Df : Eu

y → Eu
f(y).

By [12, Lemma 4.1], the map ϕ(u) is Hölder continuous and by [12, Propo-
sition 4.4], µf is the unique equilibrium measure for ϕ(u) and

hµf (f) = −
∫
ϕ(u)dµf . (23)

We also recall the first volume lemma [12, Lemma 4.2]. Fix a metric d on
M . For ε > 0, n ∈ N, and z ∈M , consider the Bowen ball given by

Bz(ε, n) :=
{
y ∈M : max

0≤j≤n
d(f jz, f jy) ≤ ε

}
.

Lemma 4.10 (First volume lemma [12]). Fix a Riemannian metric d on
M so that the volume measure vol is derived from d. For all small ε > 0,
there exists C = Cε > 1 such that for all z ∈M and n ∈ N, we have

1

C
exp

 n∑
j=0

ϕ(u) ◦ f j(z)

 ≤ vol(Bz(ε, n)) ≤ C exp

 n∑
j=0

ϕ(u) ◦ f j(z)

 .

In what follows, we will always assume that the maximum diameter of the
atoms of the Markov partition, say ε, is small enough so that the Lemma
4.10 holds.

Lemma 4.11. Under the assumption that the maximal diameter of the
Markov partition is sufficiently small, we have

lim inf
n→∞

1

n

n∑
k=1

∫
Ivol[R| ∨ki=1 f

−iR]dµf ≤ hµf (f).

Proof. For k ∈ N, set

ak := −
∫

log

(
vol
(
∨ki=0f

−iR(y)
)

µf
(
∨ki=0f

−iR(y)
) ) dµf (y),

and the version of ak, where we start the join of the partitions at i = 1:

bk := −
∫

log

(
vol
(
∨ki=1f

−iR(y)
)

µf
(
∨ki=1f

−iR(y)
) ) dµf (y).
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A key observation is that since µf is f -preserving, for all k ∈ Z+, we have
bk = ak−1; applying this key relation to (21), we have∫

Ivol[R| ∨ki=1 f
−iR]dµf =

∫
Iµf [R| ∨ki=1 f

−iR]dµf + ak − ak−1

= Hµf

(
R
∣∣∣∨kj=1f

−jR
)
+ ak − ak−1.

Consequently for all n ∈ Z+, we have

1

n

n∑
k=1

∫
Ivol[R| ∨ki=1 f

−iR]dµf =
an − a1

n
+

1

n

n∑
k=1

Hµf

(
R
∣∣∣∨kj=1f

−jR
)
.

Since µf is f -invariant and R is a generating partition,

lim
k→∞

Hµf

(
R
∣∣∣∨kj=1f

−jR
)
= hµf (f).

Therefore the second term on the right hand side converges to hµf (f) as
n→ ∞. Hence it remains to show that

a := lim inf
n→∞

an
n

≤ 0.

Let ε be the maximal diameter of the atoms in the Markov partition so
that for all y ∈M and n ∈ N, we have the inclusion

∨ni=0f
−iR(y) ⊂ By(ε, n).

This inclusion together with Lemma 4.10 imply that

1

n

∫
log vol

(
∨ni=0f

−iR(y)
)
dµf (y) ≤

1

n

∫
log vol (By(ε, n)) dµf (y)

≤ logCε
n

+
1

n

∫  n∑
j=1

ϕ(u) ◦ f j(y)

µf (y)

=
logCε
n

+

∫
ϕ(u)µf

=
logCε
n

− hµf (f),

where the first equality uses that µf is f -preserving, and the last equality is
from (23).

Since R is a generating partition, we have

hµf (f) = lim
n→∞

1

n
Hµf

(
∨ni=0f

−iR
)

= − lim
n→∞

1

n

∫
logµf

(
∨ni=0f

−iR(y)
)
dµf (y).



36 ZEMER KOSLOFF AND TERRY SOO

Hence

a = − lim sup
n→∞

1

n

(∫
log vol

(
∨ni=0f

−iR(y)
)
dµf +Hµf

(
∨ni=0f

−iR
))

≤ − lim sup
n→∞

(
logCε
n

− h(µf ) +
1

n
Hµf

(
∨ni=0f

−iR
))

≤ 0. �

Proof of Lemma 4.8. Let X be a random variable with law η. By the chain
rule for entropy, for every n ∈ Z+, we have

1

n
H(X1, . . . , Xn) =

1

n
H(X1) +

1

n

n∑
j=2

H(Xj |Xj−1, . . . X1)

≤ 1

n

k∑
j=1

H(Xj) +
1

n

n∑
j=k+1

H(Xj |Xj−1, . . . Xj−k)

≤ 1

n
k log(#V ) +

1

n

n∑
j=k+1

H(Xj |Xj−1, . . . Xj−k). (24)

Here, the second inequality uses that entropy can only decrease under further
conditioning and for the last one we recall that Xj takes values on the set
V values. For every k < j ≤ n, we have

H(Xj |Xj−1, . . . Xj−k) =

∫
Ik ◦ T jdη,

and

1

n

n∑
j=k+1

H(Xj |Xj−1, . . . Xj−k) =

∫  1

n

n∑
j=k+1

Ik ◦ T j(x)

 dη(x).

The bounded convergence theorem and Lemma 4.9 give that

lim
n→∞

1

n

n∑
j=k+1

H(Xj |Xj−1, . . . Xj−k) =

∫
Ivol[R| ∨ki=1 f

−iR]dµf .

Hence from (24), for every k ∈ Z+, we have

lim sup
n→∞

1

n
H(X1, . . . , Xn) ≤

∫
Ivol[R| ∨ki=1 f

−iR]dµf .

Moreover, summing over the index k in the inequality above, by Lemma
4.11 we have

lim sup
n→∞

1

n
H(X1, . . . , Xn) ≤ lim inf

n→∞

1

n

n∑
k=1

∫
Ivol[R| ∨ki=1 f

−iR]dµf ≤ hµf (f).

Thus we have h(η, (k)) ≤ hµf (f); applying a similar argument involving
T−1 and f−1, we also obtain that h(η, (k)) ≤ hµf−1 (f

−1) = hµf−1 (f). �
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5. A dissipative Bernoulli shift with no finitary factors

Recall that Kakutani’s theorem [28] gives that two infinite direct product
measures µ and ν on AZ are either equivalent or mutually singular, and they
are equivalent if and only if∑

n∈Z

∑
a∈A

(
√
µn(a)−

√
νn(a))

2 <∞.

Lemma 5.1. Let µ =
⊗

n∈Z µi be the product measure on {0, 1}Z with
marginals given by

µi(0) =
10√
|i|+ 2

= 1− µi(1).

The associated Bernoulli shift is nonsingular and totally dissipative action
of a non-atomic measure space.

The proof will require some calculations; in particular, to show that the
shift is dissipative we will apply a sufficient condition from [35, Lemma 2.2],
which requires verifying that

∑
n∈Z

∫ √
dµ ◦ Tn
dµ

dµ <∞. (25)

Proof of Lemma 5.1. Since∑
n∈Z

min(µn(0), µn(1)) =
∑
n∈Z

1√
1 + |n|

= ∞,

it follows that the measure µ is non-atomic; see [6]. The shift is nonsingular
because ∑

n∈Z

((√
µn(0)−

√
µn−1(0)

)2
+
(√

µn(1)−
√
µn−1(1)

)2)

≤ 20
∑
n∈Z

(
4
√
|n|+ 2− 4

√
|n− 1|+ 2

( 4
√

|n|+ 2) · ( 4
√

|n− 1|+ 2)

)2

<∞.

It remains to show that the shift is dissipative. By Kakutani’s theorem,
for all n ∈ Z+, for µ almost every x ∈ {0, 1}Z, we have

dµ ◦ Tn

dµ
(x) =

∏
k∈Z

µk−n(xk)

µk(xk)
.

As in [69], since for all 0 < a, b < 1, we have

√
ab+

√
(1− a)(1− b) ≤ 1− (b− a)2

2
,
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and as µ is a product measure, for all n ∈ Z+, we have∫ √
dµ ◦ Tn
dµ

dµ =
∏
k∈Z

∫ √
µk−n(s)

µk(s)
dµk(s)

=
∏
k∈Z

(√
µk(0)µk−n(0) +

√
µk(1)µk−n(1)

)
≤
∏
k∈Z

(
1− (µk(0)− µk−n(0))

2

2

)
≤ exp(−1

2

∑
k∈Z

(µk(0)− µk−n(0))
2).

For all sufficiently large n ∈ Z+ and 0 ≤ k ≤ n, we have
n

(
√
2 + k + n)(

√
2 + k + n+

√
2 + k)

≥ 1

5
.

Consequently,∑
k∈Z

(
µk(0)−µk−n(0)

)2 ≥ 2n∑
k=n+1

(µk(0)− µk−n(0))
2

=
n∑
k=0

(
10√
k + 2

− 10√
2 + k + n

)2

=
n∑
k=1

1

2 + k

(
10n

(
√
2 + k + n)(

√
2 + k + n+

√
2 + k)

)2

≥
n∑
k=1

4

2 + k
= 4(1 + o(1)) log(1 + n).

Hence we have for all n sufficiently large,∫ √
dµ ◦ Tn
dµ

dµ ≤ exp
(
−3

2 log(n+ 1)
)
=

1

(n+ 1)
3
2

,

a summable p-series. �

Proof of Proposition 1.9. Immediate from Theorems 1.1 and 1.4, and Lemma
5.1. �
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