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Abstract
We consider numerical approximations of ill-posed elliptic problems with conditional
stability. The notion of optimal error estimates is defined including both convergence
with respect to discretisation and perturbations in data. The rate of convergence is
determined by the conditional stability of the underlying continuous problem and the
polynomial order of the approximation space. A proof is given that no approximation
can converge at a better rate than that given by the definition without increasing the
sensitivity to perturbations, thus justifying the concept. A recently introduced class of
primal-dual finite element methods with weakly consistent regularisation is recalled
and the associated error estimates are shown to be optimal in the sense of this definition.
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1 Introduction

Arguably one of the most fundamental results in finite element analysis is the best
approximation result for the Galerkin method, known as Cea’s lemma [20], which
together with approximation estimates for finite element functions results in quasi-
optimal error estimates for finite element methods [3, 27, 44, 48]. This result, that
we will review below, essentially says that if a (2m)-order elliptic problem, m ≥ 1,
is approximated with Hm-conforming finite elements of local polynomial order p
the error in Hm-norm is of the order h p+1−m for a sufficiently smooth solution and
that this rate is optimal compared to approximation: the best interpolant of the exact
solution has similar accuracy.

For ill-posed elliptic problems the situation is different. On the continuous level
existence can only be guaranteed after regularisation of the problem. The two main
approaches are Tikhonov regularisation [45] and quasi-reversibility [31]. These two
approaches are strongly related (see for instance [7]). The main effort in the error
analysis has been to estimate the perturbation induced by the addition of regularisation,
and how to choose the associated regularisation operator or parameter [6, 28, 35, 38,
43]. The error due to approximation in finite dimensional spaces of such regularised
problems has also been analysed [24, 36, 41].

There is also a rich literature on projectionmethods for ill-posed problemswhere the
discretisation serves as regularisation and refinement has to stop as soon as the effect
of perturbations in data becomes dominant [22, 23, 26, 30, 42]. These methods are
often based on least squares methods and the convergence of the approximate solution
to the exact solution for unperturbed data has been proven in several works. There are
also different stopping criteria for mesh refinement in order to avoid degeneration due
to pollution from perturbations. However no results on rates of convergence where
the discretisation errors and the perturbation errors are both included appear in these
references.

The use of conditional stability (continuous dependence on data under the assump-
tion of a certain a priori bound) to obtain more complete error estimates has been
proposed in [9–11, 18] for a class of finite element methods based on weakly consis-
tent regularisation/stabilisation in a primal-dual framework. Here stability is obtained
through a combination of consistent stabilisation and Tikhonov regularisation, scaled
with the mesh parameter to obtain weak consistency. The upshot is that for this class
of methods an error analysis exists, where the computational error is bounded in terms
of the mesh parameter and perturbations of data, with constants depending on Sobolev
norms of the exact solution. Similarly to the well-posed case, the error estimates for
this approach combine the stability of the physical problem with the numerical stabil-
ity of the computational method and the approximability of the finite element space.
Contrary to the well-posed case, numerical stability can not be deduced from the phys-
ical stability, but has to be a consequence of the design of the stabilisation terms. This
means that the stabilisation in this framework is bespoke, and must be designed to
combine optimal (weak) consistency and sufficient numerical stability. There is often
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a tension between these two design criteria. As noted above, sometimes Tikhonov
regularisation, scaled with the mesh parameter, may be used in the framework. An
interesting feature is that the bespoke character also allows for the integration of the
dependence of the estimates on physical parameters and different problems regimes
[16, 17]. Other physical models that have been considered in this framework include
data assimilation for fluids [5, 13, 18], or wave equations [12]. Common for all these
references is the fact that the error estimates reflect the stability of the continuous
problem and the approximation order of the finite element space, which seems to be
an optimality property of the methods. No rigorous proof, however, has been given
for this optimality. The objective of the present work is to show, in the model case of
unique continuation for Laplace equation, that the proposed error estimates are indeed
optimal.

For ill-posed PDEs that are conditionally stable, error estimates in terms of the
modulus of continuity in the conditional stability, the consistency error and the best
approximation error have also been obtained in [21]. Based on least squares with
the norms and the regularisation term dictated by the conditional stability estimate,
this variation of quasi-reversibility relies on working with discrete dual norms and
constructing Fortin projectors. By choosing the regularisation parameter in terms of the
consistency error and the best approximation error, the obtained error bound reflects the
conditional stability estimate (qualitatively optimal). Conditional stability estimates
have also been used to obtain some bounds on the generalisation error for physics-
informed neural networks solving ill-posed PDEs [39]. The question of optimality for
both these kind of methods is included in our discussion.

Another well-known ill-posed problem is analytic continuation, which, similarly to
unique continuation, possesses conditional stability under the assumption of an a priori
bound.We will not discuss this problem here; for its conditional stability/conditioning
and numerical approximations, we refer the reader to [46, 47] and the references
therein.

1.1 Unique Continuation Problem

Let 0 < r1 < r2 < R and write ω := B(r1) and B := B(r2) where B(r) is the open
ball of radius r > 0, with the centre at the origin in R

n . The objective is to solve the
continuation problem: given the restriction u|ω to the subset ω, find the restriction u|B
when u satisfies �u = 0 in B(R).

Further, letting r2 < r3 < R and writing � := B(r3), it is classical [29] that the
following conditional stability estimate holds:

‖u‖L2(B) � ‖u‖α
L2(ω)

‖u‖(1−α)

L2(�)
, (1)

where α ∈ (0, 1) and the implicit constant do not depend on the harmonic function u.
Estimate (1) is often called a three-ball inequality and in this case the constants can be
given explicitly, see Theorem 1 below. We may view the unique continuation problem
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as finding u ∈ H1(�) such that

{−�u = 0 in �,

u|ω = q in ω,
(2)

with a priori knowledge on the size of the solution in � as prescribed by the L2(�)-
norm in (1).

1.2 Motivation and Outline

Themotivation of this paper comes from error estimates obtained for primal-dual finite
element methods applied to this problem, with perturbed data u|ω = q + δq, of the
form

‖u − uh‖L2(B) � hα‖u‖H2(�) + hα−1‖δq‖L2(ω), (3)

which have been shown in [14, 16, 17] in different variations of the second order
elliptic equation. Here α ∈ (0, 1) is the exponent in (1) and h > 0 denotes the mesh
parameter defining the characteristic length scale of the finite dimensional space. This
is in the case of piecewise affine approximation, however the estimate generalises in
a natural way to higher order approximation, as we shall see below. One can obtain
a similar bound in the H1-norm over B. In the counterfactual case that α = 1 one
would then recover an estimate that is optimal compared to interpolation. Hence a
natural question is if the bound (3) in the L2-norm can be improved upon, since it is
suboptimal with one order in h when compared to interpolation in the case α = 1.

We show in this paper that if the coefficient α in (1) is optimal and depends contin-
uously on r3 (Theorem 1), then regardless of the underlying method, no sequence of
approximations to (2) can convergewith a rate better than that given by (3) (Theorem2)
without increasing the sensitivity to perturbations. We also point out that although the
discussion focuses on the finite element method, the definition of optimal convergence
given and the proof of optimality hold for any method producing an approximating
sequence in H1 (or relying on such a sequence for the analysis).

The paper is organised as follows. In Sect. 2 we will discuss the notion of optimality
of finite element approximations. First we revisit the classical finite element analysis
for well-posed problems. In Sect. 2.2 we then discuss how the ideas of the well-
posed case translate to the ill-posed case. This leads us to a definition of optimal
approximation for the problem (2) and we prove in Sect. 2.3 that no approximation
method can converge in a better way than that given by this definition. Finally in Sect. 3
we show that optimality can indeed be attained by presenting a finite element method
with optimal error estimates which extend (3) for higher order approximations.

2 Optimal Error Estimates for Elliptic Problems

In this section we will first briefly recall the theory of optimal error estimates for
Galerkin approximations of well-posed second order elliptic problems. We then con-
sider the ill-posed model problem (2) and discuss how the construction that led to
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optimal approximation in the well-posed case can be adapted to this situation. This
leads us to a definition of optimality of approximate solutions in the ill-posed case.
We let V := H1(�) and V0 := H1

0 (�).
For simplicity we consider the Poisson problem for f ∈ V ′

0:

{−�u = f in �

u = 0 on ∂�.
(4)

We define the associated weak formulation by: find u ∈ V0 such that

a(u, v) = �(v) ∀v ∈ V0, (5)

where a(u, v) := ∫
�

∇u · ∇v dx and �(v) := 〈 f , v〉V ′
0,V0

. It is well known that a is
a coercive (V -elliptic), continuous bilinear form on V0 × V0, and � is bounded and
continuous on V0.

It then follows from Lax-Milgram’s lemma [32] that the weak formulation admits
a unique solution satisfying the stability estimate

‖u‖V ≤ ‖�‖V ′
0

(6)

where ‖ · ‖V := √
a(·, ·) and the dual norm is defined by

‖�‖V ′
0

:= sup
v∈V0\{0}

|�(v)|
‖v‖V .

Introducing a finite dimensional subspace V0h ⊂ V0 we define the Galerkin method,
find uh ∈ V0h such that

a(uh, vh) = �δ(vh) ∀vh ∈ V0h, (7)

where �δ denotes a perturbed right hand side �δ(v) := 〈 f +δ f , v〉V ′
0,V0

, with δ f ∈ V ′
0

and we assume ‖δ f ‖V ′
0
to be known. The associated linear system is invertible since

a is coercive.
Let ūh ∈ V0h be the solution for the unperturbed right hand side, satisfying

a (ūh, vh) = � (vh) ∀vh ∈ V0h .

Then we have that ‖u − ūh‖V = infwh∈V0 h ‖u − wh‖V , by Galerkin orthogonality,
and that ‖uh − ūh‖V ≤ ‖δ f ‖V ′

0
. Since � : V0 → V ′

0 is an isomorphic isometry, an
application of the triangle-inequality for the approximation error e := u − uh gives
that

‖e‖V ≤ inf
wh∈V0h

‖�(u − wh)‖V ′
0
+ ‖δ f ‖V ′

0
. (8)

This is equivalent to the classical result of Cea’s lemma, but written in a form suitable
for our purposes. If u ∈ Hk+1(�) and V0 h is the space of H1-conforming piecewise
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polynomial finite elements of order k we immediately have by approximation that

‖e‖V � hk |u|Hk+1(�) + ‖δ f ‖V ′
0
, (9)

where | · |Hk+1(�) stands for the seminorm. Observe how the Lipschitz stability of (6)
combines with the approximation properties of the finite element space to yield an
optimal error estimate. Perturbations in data lead to stagnation of the error at the level
of the perturbation.

2.1 Optimal Three-Ball Estimate

Three-ball estimates such as (1) for solutions of second-order elliptic equations are
well-known in the literature, see e.g. the review [1] or [8]. However, such results
typically contain constants that depend implicitly on the geometry and the coefficients
of the differential operator, and whose optimality is not clear [8]. We aim here to give
a result in the case of the Laplace operator which, barring optimality, is a variation
of existing results in the literature, see [37, Theorem 1] and [2, Eq. (1.2)]. We will
consider only the two and three dimensional cases, for which we prove the following
three-ball estimate in L2-norms with optimal explicit constants.

Theorem 1 Let n ∈ {2, 3} and B(r) ⊂ R
n be the open ball of radius r > 0. Let

0 < r1 < r2 < r3. Then for all harmonic functions u there holds

‖u‖L2(B(r2)) ≤ ‖u‖α
L2(B(r1))

‖u‖(1−α)

L2(B(r3))
, (10)

where

α := β

1 + β
= log(r3) − log(r2)

log(r3) − log(r1)
, β := log(r3) − log(r2)

log(r2) − log(r1)
. (11)

Moreover, there does not exist α̃ > α such that

‖u‖L2(B(r2)) � ‖u‖α̃
L2(B(r1))

‖u‖(1−α̃)

L2(B(r3))
. (12)

Proof For any r > 0 and θ ∈ (0, 1) there holds

‖u‖L2(Br ) ≤ ‖u‖1/2
L2(Bθr )

‖u‖1/2
L2(B

θ−1r )
, (13)

see e.g. [2, Eq. (1.2)].We aim to transform this estimate into (10).We take the logarithm
of (13) and write f (t) = log ‖u‖L2(B(exp(t))) to obtain

f (log(r)) ≤ 1

2
f (log(θr)) + 1

2
f (log(θ−1r)).
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Notice that log(θr) + log(θ−1r) = 2 log(r), so that writing t = log(θr) and s =
log(θ−1r), we obtain that

f ( 12 (s + t)) ≤ 1
2 ( f (s) + f (t)), (14)

yielding convexity of f . Hence, for every α ∈ (0, 1) and s, t ∈ R

f (αs + (1 − α)t) ≤ α f (s) + (1 − α) f (t). (15)

We now set r = r2 and θ = r1/r2. Then r1 = θr and r3 = θ−βr , with β given by
(11). Taking s = log(θr) and t = log(θ−βr) there holds

αs + (1 − α)t = α log θ + α log r − (1 − α)β log θ + (1 − α) log r

= (α − (1 − α)β) log θ + log r = log r ,

since (1 − α)β = α. With this choice, taking the exponential of (15) gives (10).
Suppose now that (12) holds for some α̃ > 0. We will show that α̃ ≤ α. Let us

consider first the two dimensional case. Identifying R
2 with C, consider the function

u(z) = zn−1 which is harmonic for n ∈ N. The following argument is similarly valid
for its real part. Using polar coordinates we have that, for ρ > 0,

‖u‖2L2(B(ρ))
= 2π

∫ ρ

0
r2(n−1)+1 dr = cnρ

2n, cn = π

n
. (16)

Notice that we have equality in (10) for α = β/(1 + β) = log(r3)−log(r2)
log(r3)−log(r1)

.

Recalling that r1/r2 = θ, r3/r2 = θ−β , estimate (12) reads as

1 � θn(α̃−β(1−α̃)). (17)

As n ∈ N is arbitrary and θ ∈ (0, 1) we must have α̃ − β(1− α̃) ≤ 0. In other words,

α̃ ≤ β

1 + β
= α.

We turn to the three dimensional case, and consider the function

u(x1, x2, x3) = zn−1, z = x1 + i x2. (18)

As above, this is harmonic for n ∈ N. Passing to spherical coordinates there holds

‖u‖2L2(B(ρ))
= 2π

∫ π

0

∫ ρ

0
(r sin θ)2(n−1)+1r drdθ = cnρ

2n+1, (19)
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where the constant cn can be written using the Gamma function

cn = 2π3/2Γ (n)

(2n + 1)Γ (n + 1/2)
.

The conclusion follows as in the two dimensional case. ��
Note that the same explicit constants as in Theorem 1 appear in Hadamard’s three-
circle theorem (in L∞-norms) for holomorphic functions.

Remark 1 In Theorem 1 we proved the optimality and continuous dependence of the
exponent α for unique continuation subject to the Laplace equation. In a more general
setting, a discussion of optimality of three-ball inequalities can be found in [25] for
elliptic and parabolic problems. In [33, 34] some cases in fluidmechanics and elasticity
are considered for which optimality is claimed.

2.2 Definition of Optimal Convergence for Ill-Posed Problems with Conditional
Stability

In this section we will try to mimic the development in the well-posed case for the
problem (2) and point out where things go wrong. We will do this with minimal refer-
ence to a particular approximation method to keep the discussion general. However,
in Sect. 3 we introduce a method for which the programme can be carried out.

First we will derive a weak formulation. This time, since no boundary conditions
are set on u, we must consider the trial space V . To make form a consistent with
the problem, the test space must be chosen to be V0, as keeping V would imply
a homogeneous Neumann condition on the boundary. We may then write a weak
formulation of the problem (2), find u ∈ V such that u|ω = q and

a(u, v) = 0 ∀v ∈ V0.

We know that the exact solution satisfies this formulation and that (1) holds. Assume
now that we have an approximation uh ∈ Vh obtained using the perturbed data q̃ :=
q + δq, where δq ∈ L2(ω). Observe that although for this data, most likely, no exact
solution will exist, a discrete approximation of the unperturbed exact solution u may
still be constructed. Similarly as before the error e := u − uh satisfies

a(e, v) = �h(v) ∀v ∈ V0,

where

�h(v) := −a(uh, v), with ‖�h‖V ′
0

= ‖�uh‖V ′
0
.

Observe that even if uh is produced using a Galerkin procedure we can not use here
the same techniques as when proving (8), since the trial space V in this case is bigger
than the test space V0.
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As before we would now like to apply a stability estimate, this time (1), using the
right hand side on the perturbation. However this is not possible, since there is no right
hand side in (2) and (1). Instead we first decompose e = e0 + ẽ, where e0 ∈ V0 solves
the well-posed problem

a(e0, v) = �h(v) ∀v ∈ V0,

and ẽ solves (2) with ẽ|ω = (e−e0)|ω. Using the triangle inequality and then applying
(6) to e0 and (1) to ẽ we arrive at

‖e‖L2(B) ≤ ‖e0‖V + ‖ẽ‖L2(B) � ‖�uh‖V ′
0
+ ‖ẽ‖α

L2(ω)
‖ẽ‖1−α

L2(�)
.

Using once again the triangle inequality this leads to

‖ẽ‖α
L2(ω)

‖ẽ‖1−α

L2(�)
� (‖e‖L2(ω) + ‖�uh‖V ′

0
)α(‖e‖L2(�) + ‖�uh‖V ′

0
)1−α.

We conclude that any approximation uh must satisfy the bound

‖e‖L2(B) � ‖�uh‖V ′
0
+ (‖e‖L2(ω) + ‖�uh‖V ′

0
)α(‖e‖L2(�) + ‖�uh‖V ′

0
)1−α

� (‖q − uh‖L2(ω) + ‖�uh‖V ′
0
)α(‖e‖L2(�) + ‖�uh‖V ′

0
)1−α.

(20)

If we assume that the term ‖e‖L2(�) is bounded, then inequality (20) gives an a pos-
teriori bound for the error on B in the L2(B)-norm.

For the sake of discussion, we will, for a moment, consider an approximation uh
satisfying certain properties. These properties can be thought of as design criteria for
the numerical method, since as it turns out they lead to optimal convergence. In Sect. 3
we construct a finite element method with these properties.

1. Bound on the equation residual:

‖�uh‖V ′
0

� Chk |u|Hk+1(�) + ‖δq‖L2(ω). (21)

Observe that this means that the residual convergence in the ill-posed case is as
good as the residual convergence in the well-posed case, see (9).

2. Bound on the data fitting term:

‖q − uh‖L2(ω) � Chk |u|Hk+1(�) + ‖δq‖L2(ω) (22)

This term is suboptimal by one order in h compared to interpolation, but nothing
can be gained by assuming better convergence since the term always is dominated
by the contribution from ‖�uh‖V ′

0
in the bound (20). Strengthening the norm on

ω on the other hand is possible provided the perturbation δq also has additional
smoothness.

3. Finally we need to assume an a priori bound on uh :

‖uh‖L2(�) � |u|Hk+1(�) + h−k‖δq‖L2(ω). (23)
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The rationale for this choice is that it is the strongest control that can be achieved
through Tikhonov regularisation without affecting the convergence order when the
data is unperturbed, assuming that the previous two assumptions hold.

Injecting these three bounds in (20) we get the error estimate

‖u − uh‖L2(B) � hαk‖u‖Hk+1(�) + h−(1−α)k‖δq‖L2(ω). (24)

A generic version of this estimate can be obtained by decoupling the rate of con-
vergence from the sensitivity to perturbations, by considering the following bound

‖u − uh‖L2(B) � hα1k‖u‖Hk+1(�) + h(α2−1)k‖δq‖L2(ω), (25)

for α1, α2 ∈ (0, 1). Denoting the upper bound here by

E(h) := hα1k‖u‖Hk+1(�) + h(α2−1)k‖δq‖L2(ω),

we see that E has a unique critical point

hmin :=
(
1 − α2

α1

‖δq‖L2(ω)

‖u‖Hk+1(�)

)1/((1+α1−α2)k)

, (26)

which is a minimum since E ′′(hmin) > 0. Hence from (25) we get that

‖u − uhmin‖L2(B) � ‖u‖1−α̃

Hk+1(�)
‖δq‖α̃

L2(ω)
, (27)

with α̃ := α1
1+α1−α2

. Notice that α̃ = α when α1 = α2 = α. Considering convergence
with respect to perturbations δq in this bound, one would like to have α̃ as large as
possible.

Based on the discussion above we here propose a definition of what it means that
a family of approximations {uh} to an ill-posed problem of the form (2) is optimally
convergent.

Definition 1 Assume that u ∈ Hk+1(�), k ∈ N, solves the unique continuation prob-
lem (2). Let α ∈ (0, 1) be the largest value for which the conditional stability estimate
(1) holds. Let {uh}h>0 be a family of functions in H1(�). If the family {uh} satisfies
the inequality (25) with α1

1+α1−α2
= α, then we say that its convergence is optimal.

Remark 2 An optimal α ∈ (0, 1) in the stability estimate (1) is provided in Theorem
1. We prove below that, independently of the method used, no family {uh} ⊂ H1(�)

of approximations to the solution of (2) can satisfy (25) with α1
1+α1−α2

> α. In par-
ticular, no method can exceed the convergence rate in (24) without increasing the
sensitivity to data perturbations nor can it improve this sensitivity without decreasing
the convergence rate, i.e. there exist no α1, α2 ∈ [α, 1) with α1 > α or α2 > α, such
that

‖u − uh‖L2(B) � hα1k‖u‖Hk+1(�) + h(α2−1)k‖δq‖L2(ω).
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Remark 3 The question of constructing such an optimal method with α1 > α is cur-
rently an open question. For a small enough noise level, such a method would realize
the best possible error upper bound (27)with a larger hmin, i.e. at a lower computational
cost. Indeed, if

‖δq‖L2(ω) < α‖u‖Hk+1(�)/(1 − α),

then setting α1
1+α1−α2

= α we see that (26) becomes

hmin =
(

(α−1 − 1)
‖δq‖L2(ω)

‖u‖Hk+1(�)

) α
α1k

.

2.3 Proof of Optimality

The following Caccioppoli-type inequality is known but we give a short proof for the
convenience of the reader.

Lemma 1 Let r3 < r4 < R and k ≥ 0. Then for all w ∈ Hk+1(B(R)) satisfying
�w = 0 in B(R) there holds

‖w‖Hk+1(B(r3)) � ‖w‖L2(B(r4)).

Proof Divide the interval (r3, r4) in k+1 subintervals (R j , R j+1) of equal length with
R j = r3 + jδR, R0 = r3, Rk+1 = r4, δR = R j+1 − R j = (r4 − r3)/(k + 1). For
an index j = 0, . . . , k choose a χ ∈ C∞

0 (B(R j+1)) such that χ = 1 in B(R j ) and
write v = χ y, where y ∈ H1(B(R j+1)) and �y = 0. Then, if [�,χ ] denotes the
commutator �χ − χ�,

{
�v = [�,χ ]y in B(R j+1)

v = 0 on ∂B(R j+1).

and therefore by (6) we have that

‖y‖H1(B(R j ))
≤ ‖v‖H1(B(R j+1))

≤ ‖�v‖H−1(B(R j+1))

� ‖[�,χ ]y‖H−1(B(R j+1)
� ‖y‖L2(B(R j+1))

.
(28)

Here in the last step we used that

([�,χ ]y, w)B(R j+1) = ((�χ)y + 2∇χ · ∇ y, w)B(R j+1)

= −((�χ)y, w)B(R j+1) − 2(y,∇χ · ∇w)B(R j+1)

� ‖y‖L2(B(R j+1))
‖w‖H1(B(R j+1))

.
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Let y = Dk− jw where Dk− j denotes an arbitrary partial derivative of order k − j ,
j = 0, . . . , k. Then �y = 0. It follows from equation (28) that

‖y‖H1(B(R j ))
� ‖y‖L2(B(R j+1))

.

By applying this to all partial derivatives of order k − j , we see that

‖w‖Hk+1− j (B(R j ))
� ‖w‖Hk− j (B(R j+1))

.

Hence by applying this inequality sequentially for j = 0, . . . , k we see that

‖w‖Hk+1(B(r3)) = ‖w‖Hk+1(B(R0))
� . . . � ‖w‖H1(B(Rk ))

� ‖w‖L2(B(r4)).

This concludes the proof. ��

Theorem 2 Let 0 < r1 < r2 < r3 < R and let ω = B(r1), B = B(r2), � = B(r3).
Let α ∈ (0, 1) be the optimal exponent in Theorem 1. Let u ∈ Hk+1(B(R)) satisfy
�u = 0 in B(R) and let q = u|ω. Consider a family of mappings {Fh}h>0, Fh :
L2(ω) → H1(�), Fh(q + δq) =: uh, for all δq ∈ L2(ω). Then there exist no
α1, α2 ∈ (0, 1) with α1

1+α1−α2
> α, such that

‖u − uh‖L2(B) � hα1k‖u‖Hk+1(�) + h(α2−1)k‖δq‖L2(ω). (29)

In particular, there exist no α1, α2 ∈ [α, 1) with α1 > α or α2 > α such that (29)
holds.

Proof We give a proof by contradiction. Assume that there exist α1, α2 ∈ (0, 1) with

α̃ := α1

1 + α1 − α2
> α

such that (29) holds. Taking u = 0 and δq = ũ|ω for ũ satisfying �ũ = 0 in B(R),
the estimate (29) reduces to

‖Fh(ũ|ω)‖L2(B) � h(α2−1)k‖ũ‖L2(ω).

Using (29) again with u = ũ and δq = 0, we get

‖ũ − Fh(ũ|ω)‖L2(B) � hα1k‖ũ‖Hk+1(�).

Hence
‖ũ‖L2(B) ≤ ‖ũ − Fh(ũ|ω)‖L2(B) + ‖Fh(ũ|ω)‖L2(B)

� hα1k‖ũ‖Hk+1(�) + h(α2−1)k‖ũ‖L2(ω).
(30)
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We will write u = ũ from now on, and recall that u is an arbitrary solution to �u = 0
in B(R). For a nonzero u, we define

r := ‖u‖L2(ω)

‖u‖Hk+1(�)

,

and choose h > 0 such that

hα1k‖u‖Hk+1(�) = h(α2−1)k‖u‖L2(ω),

that is,

h = r1/((α1+1−α2)k).

With this choice, inequality (30) reduces to

‖u‖L2(B) � ‖u‖α̃
L2(ω)

‖u‖1−α̃

Hk+1(�)
, (31)

which trivially holds for the zero solution also. Observe that (31) would right away
contradict the optimality ofα in Theorem1 if the Hk+1-normon its right-hand sidewas
an L2-norm. To weaken this norm, we can use Lemma 1 to get that ‖u‖Hk+1(B(r3)) �
‖u‖L2(B(r4)) for r3 < r4 < R. Hence, using this bound in (31) leads to

‖u‖L2(B) � ‖u‖α̃
L2(ω)

‖u‖1−α̃

L2(B(r4))
. (32)

Wenowdenote by α̂ the optimal exponent corresponding to r4 in the three-ball estimate
in Theorem 1, for which

‖u‖L2(B) � ‖u‖α̂
L2(ω)

‖u‖1−α̂

L2(B(r4))
, (33)

for any harmonic function u. This means that such an inequality cannot hold with an
exponent larger than α̂. However, since α̂ depends continuously on r4, by considering
r4 > r3 sufficiently close to r3 we can get α̂ arbitrarily close to α, i.e. α̃ > α̂ > α.
Thus inequality (32) holds with α̃ > α̂, which contradicts the optimality of α̂ in (33).

Let us finally show that if α1, α2 ∈ [α, 1) with α1 > α or α2 > α, then α̃ > α.
Consider first the case α1 < α2. As α j ∈ [α, 1), j = 1, 2, there holds α2 −α1 ∈ (0, 1)
and

α̃ ≥ α

1 − (α2 − α1)
> α.

For the case α1 ≥ α2, we have that α1 = α + ε for some ε > 0, and

α̃ − α ≥ α + ε

1 + ε
− α = (1 − α)ε

1 + ε
> 0,

which concludes the proof. ��
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Remark 4 The proof of Theorem 2 is still valid if we assume (29) to hold with a weaker
norm instead of ‖u‖Hk+1(�).

Remark 5 The approximation uh in Theorem 2 depends only on h and q + δq. This
result does not exclude the possibility of a regularisation method that uses more infor-
mation, for example the size of the perturbation δq. The optimal method that we
present in the following section can also use this information, see Remark 6.

3 Primal-Dual Finite Element Methods withWeakly Consistent
Regularisation

In this section we will use a finite element method with weakly consistent stabilisation
to construct a sequenceof approximate solutions for unique continuation (2) that satisfy
the error estimate (24), showing that the optimal convergence for this ill-posed problem
can be attained by a discrete approximation method. This discussion is based on ideas
from [11, 14], modified to match the assumptions of the theoretical developments
above.

Let {T } be a quasi-uniform family of triangulations of �, where triangles T with
curved boundaries are allowed so that the the covering of � is exact [4, 49]. On these
meshes we define a C0 finite element space Vh ⊂ H1(�), consisting of piecewise
polynomials of order k (after mapping of the triangles to a reference element). We also
let V0h = Vh ∩H1

0 (�). It then follows that there exist interpolants�h : H1(�) �→ Vh
[4, Corollary 4.1] and �0

h : H1
0 (�) �→ V0 h [4, Corollary 5.2] for which the following

interpolation estimates hold

‖u − �hu‖T + h‖∇(u − �hu)‖T + h2‖D2(u − �hu)‖T � hk+1|u|Hk+1(�T ), (34)

where �T := {T ′ ∈ T : T ′ ∩ T �= ∅} and D2u is the Hessian of u, and

‖w − �0
hw‖L2(�) + h‖�0

hw‖V � h‖w‖V . (35)

We will also use the broken norm defined by

‖v‖T :=
(∑
T∈T

‖v‖2T
)1/2

.

To set up the numerical method, we formulate the continuation problem (2) as pde-
constrained optimisation and consider the Lagrangian Lh : Vh × V0h → R,

Lh(uh, zh) := 1
2‖uh − q̃‖2L2(ω)︸ ︷︷ ︸

data fit

+ a(uh, zh)︸ ︷︷ ︸
pde constraint

+ 1
2 s(uh, uh) − 1

2a(zh, zh)︸ ︷︷ ︸
discrete regularisation

.
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By taking its saddle points, we define the finite element method as follows: find
(uh, zh) ∈ Vh × V0h such that

a(uh, wh) − a(zh, wh) = 0

a(vh, zh) + s(uh, vh) + (uh, vh)L2(ω) = (q̃, vh)L2(ω)

(36)

for all (vh, wh) ∈ Vh × V0h , with

s(uh, vh) :=
∑
T∈T

(
(h2T�uh,�vh)T +

∑
F∈∂T

(hT �∇uh�F , �∇vh�F )F\∂�

)

+ h2k(uh, vh)L2(�)

(37)

where F denotes a face of a triangle T and the jump of the gradient over a face F
is defined by �∇uh�F := ∇uh |T1nT1 + ∇uh |T2nT2 for F = T̄1 ∩ T̄2, with nTm the
outward pointing unit normal of the triangle Tm . For a more compact formulation we
introduce the global form Ah ,

Ah[(xh, yh), (vh, wh)] := a(xh, wh) − a(yh, wh)

+ a(vh, yh) + s(xh, vh) + (xh, vh)L2(ω)

to write: find (uh, zh) ∈ Vh × V0h such that

Ah[(uh, zh), (vh, wh)] = (q̃, vh)L2(ω) (38)

for all (vh, wh) ∈ Vh × V0h . Observe that this form satisfies the consistency property

Ah[(u − uh,−zh), (vh, wh)] = h2k(u, vh) − (δq, vh)L2(ω). (39)

To show that this method satisfies the error bound (24), we only need to verify that it
satisfies (21), (22) and (23) (which represent the design criteria for the method). To
this end we introduce the norm

|||(vh, wh)|||2S := s(vh, vh) + ‖wh‖2V + ‖vh‖2L2(ω)

and we observe that the formulation satisfies the positivity property

|||(uh, zh)|||2S = Ah[(uh, zh), (uh,−zh)] (40)

which ensures the existence of a discrete solution (uh, zh) ∈ Vh × V0 h for all h > 0.
We proceed by first proving convergence in the S-norm, which immediately gives

(22). The proof of the other two bounds and satisfaction of (24) then follow as a
corollary. First we establish an approximation result for the S norm.
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Lemma 2 Let v ∈ Hk+1(�), then there holds

|||(v − �hv, 0)|||S � hk‖v‖Hk+1(�).

Proof By the definition of the S-norm we see that

|||(v − �hv, 0)|||2S = ‖h�(v − �hv)‖2T +
∑
T∈T

∑
F∈∂T \∂�

hT ‖�∇�hv�F‖2F

+ h2k‖v − �hv‖2L2(�)
+ ‖v − �hv‖2L2(ω)

.

By the approximation property (34) we have that

‖h�(v − �hv)‖2T + h2k‖v − �hv‖2L2(�)
+ ‖v − �hv‖2L2(ω)

� h2k |v|2Hk+1(�)
.

For the term measuring the jump of �hv over element faces we note that

‖�∇�hv�F‖2F ≤ ‖�∇(v − �hv)�F‖2F
≤ h−1‖∇(v − �hv)‖2T1∪T2 + h‖D2(v − �hv)‖2T1∪T2

where we used the regularity of v and the trace inequality [40]

‖v‖∂T � h− 1
2 ‖v‖T + h

1
2 ‖∇v‖T , ∀v ∈ H1(T ).

We conclude by applying (34) once again and summing over all the faces. ��
Proposition 1 Let (uh, zh) denote the solution to (38) and let u ∈ Hk+1(�) be the
solution to (2), then there holds

|||(u − uh, zh)|||S � hk‖u‖Hk+1(�) + ‖δq‖L2(ω).

Proof First we decompose the error u−uh = u−�hu+�hu − uh︸ ︷︷ ︸
=:eh

in the continuous

and discrete parts. By the triangle inequality and Lemma 2 it is enough to bound
|||(eh, zh)|||S . Using (40) and (39) we have

|||(eh, zh)|||2S = Ah[(eh,−zh), (eh, zh)] = Ah[(�hu − u, 0), (eh, zh)]
− (δq, eh)L2(ω) + h2k(u, eh)L2(�).

For the last two terms on the right hand side we have

−(δq, eh)L2(ω) + h2k(u, eh)L2(�) ≤ (‖δq‖L2(ω) + hk‖u‖L2(�))|||(eh, 0)|||S .

Finally, the following continuity holds

Ah[(�hu − u, 0), (eh, zh)] � ‖�hu − u‖∗|||(eh, zh)|||S (41)
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where

‖v‖∗ := ‖v‖V + |||v|||S.

To prove the continuity (41) recall that by definition

Ah[(�hu − u, 0), (eh, zh)]
= a(�hu − u, zh) + s(�hu − u, eh) + (�hu − u, eh)L2(ω).

Using the Cauchy–Schwarz inequality we have that

a(�hu − u, zh) ≤ ‖�hu − u‖V |||(0, zh)|||S

and

s(�hu − u, eh) + (�hu − u, eh)L2(ω) ≤ |||(�hu − u, 0)|||S|||(eh, 0)|||S .

We end the proof by observing that by equation (34) and Lemma 2 there holds

‖�hu − u‖∗ � hk |u|Hk+1(�).

��
Corollary 1 Under the same hypothesis as for Proposition 1 there holds

‖uh‖L2(�) � ‖u‖Hk+1(�) + h−k‖δq‖L2(ω)

and

‖�uh‖H−1(�) � hk‖u‖Hk+1(�) + ‖δq‖L2(ω).

Finally uh satisfies the error bound (24).

Proof First we observe that the third claim is an immediate consequence of the first
two and Proposition 1. Indeed, this follows from the discussion of Sect. 2.2, using the
error bound (20) and Eqs. (21)–(23).

The first inequality is immediate by Proposition 1 observing that

‖uh‖L2(�) ≤ ‖u − uh‖L2(�) + ‖u‖L2(�),

and, for the first term in the right hand side,

‖u − uh‖L2(�) ≤ h−k |||(u − uh, 0)|||S � ‖u‖Hk+1(�) + h−k‖δq‖L2(ω).
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For the second inequality, by definition

‖�uh‖H−1(�) = sup
w∈V0\{0}

a(uh, w)

‖w‖V .

Using (39), followed by integration by parts, we see that for all wh ∈ V0h

a(uh, w) = a(uh − u, w) = a(uh − u, w − wh) + a(zh, wh)

=
∑
T∈T

(−(�(uh − u), w − wh)L2(T ) + (�∇uh�F , w − wh)L2(∂T \∂�)

) + a(zh, wh).

Choosing wh = �0
hw and using the Cauchy–Schwarz inequality in the first term of

the right hand side and the continuity of a in the second, followed by (35), we see that

∑
T∈T

(−(�(uh − u), w − wh)L2(T ) + (�∇uh�F , w − wh)L2(∂T \∂�)

) + a(zh, wh)

� |||(uh − u, zh)|||S‖w‖V .

The conclusion now follows using Proposition 1 to obtain the desired bound

‖�uh‖H−1(�) = sup
w∈V0\{0}

a(uh, w)

‖w‖V � hk‖u‖Hk+1(�) + ‖δq‖L2(ω).

��
Remark 6 Both for the well-posed problem (4) and the ill-posed problem (2) there is
a lower bound for how well the exact solution can be approximated if the data are
perturbed. In the well-posed case the limit is trivially given by ‖δ f ‖V ′

0
in (9), whereas

in the ill-posed case the lower bound occurs when

h = hmin = (‖δq‖L2(ω)/‖u‖Hk+1(�))
1/k,

see (26). If hmin is known, the numerical scheme can be designed to stagnate at
the level of the best approximation, by modifying the last term in the definition of
the stabilisation (37) to read max(h, hmin)

2k(uh, vh)L2(�). This shows the connection
between this stabilising term and classical Tikhonov regularisation and similar tools as
for the latter can be applied here to optimise the parameter compared to perturbations
in data. It is straighforward to show that this leads to stagnation at

‖u − uh‖L2(B) � hαk
min‖u‖Hk+1(�) = ‖δq‖α

L2(ω)
‖u‖1−α

Hk+1(�)
.

Here the implicit constant may depend on k. We see that increasing k will increase the
value of hmin, so that the best approximation is obtained on a coarser mesh. However
due to the k dependence of ‖u‖Hk+1(�) stagnation may take place on a different,
potentially higher, value of the error. A similar kind of bound was obtained in [21,
Theorem 2.2].
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4 Conclusion

In this paper we have shown that the convergence order of the approximation error for
unique continuation problems, obtained by combining the approximation orders of
the data fitting and the pde-residual with the conditional stability, can not be improved
without increasing the sensitivity to perturbations. This shows that the asymptotic
accuracy of the methods for unique continuation discussed in [10, 11, 14–17, 21] is
optimal, in the sense that it is impossible to design a method with better convergence
properties. The only remaining possibilities to enhance the accuracy of approxima-
tion methods is either to resort to adaptivity, or to introduce some additional a priori
assumption to make the continuous problemmore stable, such as finite dimensionality
of target quantities (see [19]).
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