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Abstract  
 

The Earth can be viewed as a one-dimensional, layered, chemically differentiated planet, 

composed of crust, mantle, and core. These layers, and sub-layers within them, are 

separated by boundaries. Seismic tomography is the primary source for this information 

showing a change in chemistry and/or of crystal structure by locating and mapping reflections, 

refractions, and conversions of seismic waves along these boundaries. To understand the 

behaviour of the Earthôs upper mantle and mantle transition zone, the convection 

mechanisms, thermal properties, rheology, and to create accurate mineralogical models that 

reflect these properties, requires investigation of their constituent mineral phases. Most 

researchers tend to focus on the olivine content of the mantle, this being the most common 

mineral up to 660 km, underestimating the contribution of garnets and pyroxenes. This has 

led to gaps in the published literature with many garnet and pyroxene phases being very 

poorly constrained and, in some cases, not even explored. But even for olivines, there are 

properties that have not yet been determined. The aim of this PhD thesis is to fill some of 

these gaps and to provide new information for phases within the olivine, garnet, and pyroxene 

mineral groups. Both polycrystalline and single-crystal samples were synthesised using the 

multi-anvil press at UCL. After structure characterisation using X-ray diffraction at ambient 

conditions, all samples were analysed with either low/high-temperature or high-pressure X-

ray and neutron diffraction methods at university-based and synchrotron radiation facilities.  
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Impact Statement  
 

The primary source of information about the Earthôs interior comes from seismological 

studies. However, to better understand these observations and to create accurate 

mineralogical models for the Earthôs upper mantle and mantle transition zone it requires 

investigation of all its constituent mineral phases at realistic mantle temperature and pressure 

conditions. Despite the numerous investigations of the past years and the recent 

technological advances allowing us to collect high-precision data at extreme pressures and 

temperatures there remain many material phases whose properties remain very poorly 

constrained and, in some cases, even unknown.  

Olivine and its high-pressure polymorphs, along with garnet and pyroxene comprise the most 

important mineral groups of the Earthôs upper mantle up to 660 km. By synthesising and 

analysing compositions within those groups, this research study has contributed into filling 

some gaps of the published literature and has introduced new information by determining the 

structure, magnetic, thermodynamic, and thermoelastic properties of synthetic polycrystalline 

Fe2SiO4 and Mg2SiO4 olivines, NaMg2Si5O12 majorite garnet and Na(Mg0.5Si0.5)Si2O6 

pyroxene as well as the structure of synthetic single-crystals including some Mg3Al2Si3O12 ï 

MgSiO3 pyrope-majorite garnets, ɓ-Mg2SiO4 wadsleyite, and the high-pressure properties of 

natural single-crystal almandine-spessartine garnet. This was achieved by combining low and 

high temperature or high-pressure X-ray diffraction, and neutron diffraction techniques at 

university-based and synchrotron radiation facilities.  

The results of this research study, introduce new information about these mineral phases. In 

particular, the neutron diffraction experiment on fayalite conducted at the High-Resolution 

Powder Diffractometer (HRPD), Harwell Campus, Didcot, Oxfordshire, is the first study to 

measure the effect of magnetism to the volume thermal expansion and to produce a model 

for the magnetostriction for the Fe olivine end-member. The high-quality fayalite data, 

acquired at the HRPD, allowed for an additional in-depth investigation of the olivine structure 

that shows the geometric differences between the forsterite-fayalite end-members and the 

origin of fayaliteôs anisotropy in axial expansivities. The thermodynamic parameters 

calculated from these models can apply additional constrains to mineralogical databases. 

The thermal expansion of Na-pyroxene and Na-majorite garnet are also introduced for the 
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first time with estimates of their thermoelastic and thermodynamic parameters with those of 

Na-majorite suggesting changes in already published mineralogical databases.  
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Chapter 1  

 
Introduction  

The thermal and chemical nature of the Earthôs interior, particularly that of the Mantle 

Transition Zone (MTZ), has been the subject of continuous debate. Not being able to directly 

sample the mantle at those depths, our knowledge about major high-pressure phases whose 

physical properties are believed to have a significant effect on mantle dynamics and elasticity 

remains limited. This introductory chapter summarises our current understanding of the 

composition of the upper mantle and MTZ, as well as the relationship between materialsô 

thermoelastic properties and mantle dynamics. Emphasis is directed towards two competing 

mineralogical phase models for the MTZ and the role of poorly constrained mineral phases 

within the .Á/--Ç/-&Å/-!Ì/ -3É/ systems in resolving inconsistencies reported in the 

literature. Crystallographic knowledge of the materials studied in this thesis is discussed 

along with previous experimental approaches developed to study their elastic behaviour at 

high pressures and temperatures. Finally, the motivation and aims of this research thesis are 

outlined. 

1.1 The Upper Mantle   

The Earth can be viewed as a one-dimensional (1D), layered, chemically differentiated 

planet, composed of crust, mantle, and core. These layers, and sub-layers within them, are 

separated by boundaries across which seismically detectable material properties show strong 

contrasts. These boundaries give rise to reflections, refractions and conversions of seismic 

waves which reveal their variable topography and allow us to model them in terms of depth 

versus seismic velocity and/or density (Fig. 1.1). Major stratification of the mantle is signified 

by global seismic-velocity discontinuities at 410 and 660 km that define the upper and lower 

boundaries of the MTZ. Weaker globally observed features are detected at 220 km and 520 

km, which are characterised by a small change in seismic wave velocities. The 220 km 

feature coincides in depth with the bottom boundary of the mantle region identified as the 

asthenosphere, also known as the upper mantle Low-Velocity Zone (LVZ); a region of 

lowered viscosity (Richards et al., 2001) and anomalous electrical conductivity (Shankland et 
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al., 1981) that may be an enabler of tectonic plate motion. The 520 km discontinuity is 

commonly associated with the transformation of wadsleyite to ringwoodite and is 

accompanied by a small increase in seismic velocities.  

Seismic wave velocities depend on mineral elasticities. Compressional, ὠ, and shear, ὠ, 

wave velocities of an elastically isotropic material can be calculated so long as the shear, Ὃ, 

and adiabatic bulk, ὑ, moduli and material density, ” are known (Poirier, 2000).  

ὠ  
ὑ

τ
σὋ

”
       Ǫ     ὠ  

Ὃ

”
 

The shear modulus, Ὃ, also known as rigidity, describes the response of a material to shear 

stress while the adiabatic bulk modulus, ὑ, or incompressibility, measures the resistance of 

a material against volume change. By comparing the elastic properties of mantle materials to 

global 1D seismic velocity models (e.g., PREM, Dziewonski & Anderson, 1981; AK135, 

Kennett et al., 1995;  IASP91, Kennett & Engdahl, 1991) we can apply constraints on the 

mineralogy and elasticity of the Earthôs mantle.  

The composition of the upper mantle (up to 660 km) is widely believed to resemble some 

variety of peridotite; a plutonic rock rich in olivine component. Accessory minerals, such as 

pyroxenes, garnets, and perovskites, stable at different mantle regions, have elastic 

properties that contribute separately to the seismic velocities (Birch, 1969). An upper mantle 

composed of an aggregate containing mostly olivine (or dunite) and basaltic glass, although 

not perfectly consistent with uniform chemistry, has thus far served as a good starting model 

of elasticity for a mantle of peridotitic composition.  
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Figure 1. 1: PREM 1D seismic velocity model (after Dziewonski & Anderson, 1981) of the upper mantle and the 

transition zone. Compressional, VP, and shear, Vs, wave velocities in black and red, respectively. Density, ɟ, in 

black dashed line. Highlighted areas show the Low-Velocity Zone (LVZ) between 100-220 km, the MTZ between 

410-660 km and the 520-550 km velocity gradient. 

 

1.1.1 The Upper Mantle Low -Velocity  Zone 

The upper mantle LVZ is a depth interval, of about 120 km, with negative seismic velocity 

gradients as compared to the surrounding mantle. It was fist recognised as a feature of the 

Earthôs upper mantle in 1959 by Gutenberg with seismic data showing that it appears globally 

at an approximately constant depth of 100±20 km, but its absolute seismic velocity and 

thickness differ between regions. It is bound by two boundaries; the top has been named the 

8° discontinuity (i.e., 100 km; Thybo & Perchuĺ, 1997) or the Hales discontinuity (Hales, 

1991), while the base at 220 km is known as the upper mantle Lehmann discontinuity (Karato, 

1992; Lehmann, 1961).  

The existence of partial melt in the LVZ has been suggested by several writers (e.g., 

Ringwood, 1969; Stixrude & Lithgow-Bertelloni, 2005; Birch, 1942; Birch, 1961; Beloussov, 

1966; Shimozuru, 1963a, 1963b), following the recognition that a completely molten 

substratum could not be inferred by seismological studies. While retaining the assumption of 

an olivine upper mantle composition, Birch (1961) assumed that iron enrichment to about  
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23±2 wt% in fayalite (&Å3É/) within LVZ depths could explain the observed reduced seismic 

velocities since the melting point of &Å3É/, i.e., 1480 K, is below the pyrolite solidus (1500-

1600 K) at those depths. In addition, Adams (1931) found that &Å3É/, though denser than 

its isostructural forsterite (-Ç3É/), is more compressible. Compression increases the 

density difference between the two olivine end-members, thus yielding lower seismic 

velocities for &Å3É/ (Adams, 1931), findings were eventually confirmed by velocity 

measurements of dunites with 50% &Å3É/ (Birch, 1960a; Simmons, 1964a). While providing 

vital information about the composition and behaviour of the uppermost mantle, these studies 

assume a pure olivine mantle composition whereas, in reality, olivine accounts for about 60 

wt% of its volume. Studies of the non-olivine fraction are important as the relative proportions 

of pyroxene and garnet change significantly within the same pressure and temperature range 

and exhibit different elastic properties.  

Stixrude & Lithgow-Bertelloni (2005), introduced a new method for constructing more 

accurate upper mantle mineralogical models within a five-component system (#Á/--Ç/-&Å/-

!Ì/ -3É/). Their results indicated that partial melt in the LVZ occurs in amounts that are so 

small that they do not significantly influence seismic wave velocities Alternatively, they 

suggest a change in major element composition, due to the increase of pyroxenite near the 

220 km discontinuity (see Fig.8 in Stixrude & Lithgow-Bertelloni, 2005, p.9). Pyroxenite has 

unusually high velocities because of its greater garnet content and therefore can better 

explain the sharp velocity increase at 220 km. Nominally volatile-free pyroxenites begin 

melting at greater depths than peridotite, with melting initiating at Ḑ120km beneath normal 

ridges (Pertermann & Hirschmann, 2003; Yasuda et al., 1994) and at Ḑ80 km for more 

refractory compositions (Hirschmann et al., 2003). 

1.1.2 The Mantle Transition  Zone 

The characteristics in this region play a major role in Earth dynamics, as the MTZ influences 

mantle convection, slowing the subduction of slabs and the ascent of plumes (e.g., Zhao, 

2004; Li et al., 2008). It is characterised by petrological complexity and despite the large body 

of work on the composition and the mineralogical changes within its boundaries, a consensus 

has failed to emerge, with several phases remaining uncharacterized or very poorly studied. 

The prevailing idea that discontinuous changes in seismic velocities within the MTZ 

correspond to phase transitions arose almost simultaneously with the discovery of the 410 
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km and 660 km boundaries. Bernal (1936) speculated that the discontinuous increase at 410 

km could be due to pressure-induced changes in the olivine structure. Birch (1952) on the 

other hand recognized that the anomalous high-velocity gradients in the MTZ were most 

easily explained by a shift of equilibrium mainly induced by an increase in pressure in a 

multicomponent system rather than by changes within a single phase. Birch (1952)  was the 

first to emphasize the importance of careful laboratory measurements of material physical 

properties at elevated pressure and temperature and argued that, apart from the olivines, 

structural changes of !Ì and .Á-rich materials such as garnets and pyroxenes, with a jadeite 

composition, also take place at about 410 km.  

Ringwood's (1958a, b) experiments on olivineôs high-pressure polymorphs produced seismic 

velocities and densities that fitted the observed 1D velocity profiles, and he attributed the 

MTZ velocity gradients to phase, rather than to compositional changes. Subsequent studies, 

however, have suggested that compositional changes also occur at these depths (e.g., Irifune 

& Isshiki, 1998), . 

Based on a mantle of pyrolitic composition it is now generally accepted that the MTZ is 

composed of about 60% of olivineôs high-pressure polymorphs, and about 40% pyroxene and 

garnet. Olivine transforms to wadsleyite at ~410 km, then to ringwoodite, at ~520 km, which 

finally, at ~660 km, decomposes to an assemblage of -Çȟ&Å3É/-rich perovskite and 

-Çȟ&Å/ magnesiowÕstite (Fig.1.2). On the other hand, pyroxene progressively transforms 

to garnet with increasing pressure, forming an !Ì-deficient garnet, majorite, although small 

amounts of clinopyroxene and #Á3É/ -rich perovskite may be present at shallower and 

deeper regions of the MTZ, respectively. Establishing the underlying cause of these changes 

in material properties has been a major effort of the past years, and the work continues. 
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Figure 1. 2: P-T slopes for MTZ phase transitions compared to average discontinuity depths (vertical solid lines) 

and global topography (vertical shaded regions) of the 410 (green), 520 (blue) and 660 km (red) discontinuities 

(see Frost, 2008). Double curves for the olivineïwadsleyite and wadsleyiteïringwoodite transitions indicate the 

depth intervals where (Mg,Fe)2SiO4 solid-solutions coexist (Frost, 2003). These curves are shaded to indicate 

temperature ranges compatible with global discontinuity topography. The figure also shows individual curves 

for the (Mg,Fe)2SiO4 ringwoodite to perovskite + periclase reaction from different studies: [1] Irifune et al. (2008) 

[2] Katsura et al. (2003), [3] Fei et al. (2004) [4] Ito & Takahashi (1989) and [5] Shim et al. (2001). 

 

1.1.2.1 Compositional Models for the Mantle Transition Zone 

The thermal and chemical properties of the Earthôs interior depend critically on whether the 

MTZ is bounded by changes within a single phase, or by changes in one phase as well as 

composition. The former is in general consistent with whole mantle convection, while the 

latter, according to Ita & Stixrude (1992) requires convection in at least three layers which 

significantly reduces the efficiency of chemical mixing and heat transport. A layered mantle 

points towards a slowly evolving Earth with large-scale chemical heterogeneities maintaining 

most of its primordial heat. Some models of the early evolution of the Earthôs mantle (e.g., 

Anderson & Bass, 1986; Ohtani, 1988) indicate strong chemical fractionation and the 

formation of multiple compositional layers with a reduced olivine component in the uppermost 

part of the mantle, and a relative denser perovskite component in the lower part of the mantle, 

producing a chemically distinct MTZ. This theory is also supported by later studies that 
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suggest the upper mantle and MTZ may not be entirely chemically balanced or uniformly 

mixed (e.g. Xu et al., 2008; Goes et al., 2022; Munch et al., 2020; Ritsema et al., 2009). 

Recent geodynamic models indicate that whole-mantle convection of this mechanically mixed 

material can lead to compositional gradients in the MTZ (Goes et al., 2022) but there are 

insufficient data to confirm or rule out this hypothesis.  

On the other hand, assuming the MTZ is composed of one single homogenous bulk 

composition, the literature at the moment is focused on two primary mineralogical models; 

the óclassicalô pyrolite (Ringwood, 1975) and the more óextremeô piclogite (Anderson & Bass, 

1986; Bass & Anderson, 1984; see Fig. 1.3). Pyrolite is dominated by olivine and 

orthopyroxene (one-part basalt to three-parts dunite). The range of compositions 

encompassing the piclogite model, on the other hand, is such that the eclogite component 

(clinopyroxenes plus garnet) becomes dominant, and the olivine content is reduced to less 

than 40%. The piclogite model is much richer in both #Á/ and 3É/  with lower !Ì-content, 

consisting of more than 50% majorite (-Ç3É/ garnet at mid-MTZ depths (Table 1.1).  
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Figure 1. 3: Volume percentage of minerals present in pyrolite and piclogite compositional models as a function 

of depth (see, Ita & Stixrude, 1992). 

 

Above 410 km and below 500 km both phase assemblages are consistent with observed 

density and bulk sound velocity profiles (Ita & Stixrude, 1992) but around the 410 km 

boundary, the character of these models changes, with the pyrolite model predicting a 4.5% 

velocity jump in both ὠ and ὠ occurring within a 10-20 km depth range followed by a smooth 

increase in velocity up to 520 km (Bina & Wood, 1986). These values are in good agreement 

with ὠ and ὠ predicted by the PREM model (4.5-6.0%; Bina & Wood, 1986) and indicate a 

mantle composition, at 410 km, of ~70% olivine. The lesser olivine content in piclogite, on the 

other hand, produces a smaller ~3.3% jump in bulk sound velocity and shows a higher 

velocity gradient throughout the MTZ which, nevertheless, remains marginally consistent with 

observed seismic wave velocities (Bock & Kind, 1991). Due to the smaller amount of !Ì in 

piclogite, the pyroxene to garnet transition occurs at higher pressures, yielding to 
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anomalously low velocities and densities up to 440-460 km, which then rise to the expected 

values within a 30 km depth range, at about 500 km. Gradually enriching piclogite in !Ì-rich 

garnet, though, fits the observed seismic data at all depths (Ita & Stixrude, 1992; Cammarano 

& Romanowicz, 2007). In both assemblages, the velocity increases near the proposed 

(Shearer, 1990) 520 km seismic discontinuity, being more pronounced in piclogite.  

Ringwood (1979) explained that the 3É/  depletion in pyrolite may result from selective 

evaporation of Earth-forming materials in the solar nebula due to the high volatility of 3É/  at 

high temperatures. In the models proposed by Ringwood (1975, 1979, 1982), pyrolite ranges 

in chemical composition (especially in #Á/ and !Ì/ ) from chondritic to higher than 

chondritic, and because fractionation of #Á and !Ì are not likely to occur in the nebula, the 

preferred compositional model for the upper mantle and the MTZ has remained that of 

pyrolite. Nonetheless, the overall difference between the more accepted pyrolite and the 

more óextremeô piclogite is very small (~1%) (Cammarano & Romanowicz, 2007; Ita & 

Stixrude, 1992; Nolet & Zielhuis, 1994; Vacher et al., 1998), thus allowing the likelihood for a 

piclogitic MTZ (Bass & Anderson, 1984; Duffy et al., 1995). Seismically, the velocity jumps at 

410, 520 and 660 km are not very well constrained in either model (Shearer, 2000), with 

many upper mantle and MTZ compositions poorly measured (Gaherty et al., 1999). To find 

which compositional model provides the best match to the observed seismic velocities it is 

first required to carefully measure, analyse, and understand the properties of all mineral 

phases present at those depths. 

 

  



18 
 

 
 

Table 1.1: Chemical composition for pyrolite and piclogite mineralogical models (Ita & Stixrude, 1992). 

 Pyrolite mol% Piclogite mol% 

SiO2 38.29 41.94 

MgO 49.33 42.32 

FeO 6.27 5.29 

CaO 3.27 8.67 

Al2O3 2.22 1.78 

Na2O 0.33 é 

Cr2O3 0.15 é 

Ti2O 0.14 é 

Si#* 3.23 3.46 

* Si atoms per every 12 O atom 

1.1.2.2 The 410 km Discontinuity  

The key minerals in this region of the mantle are olivine, pyroxenes and garnet, and the 

dominant rock types are presumably harzburgites, lherzolites, pyroxenites and eclogites. The 

410 km discontinuity separates the MTZ from the upper mantle and has traditionally been 

ascribed to the isothermal transformation of Ŭ-olivine to the ɓ-modified spinel structure, 

wadsleyite, in a mantle of peridotitic composition (Ringwood, 1975; Jeanloz & Thompson, 

1983). Seismic data (e.g., Vidale et al., 1995) indicate an average width of the 410 

discontinuity of about 10 km, but in some places, it becomes broader (20-25 km), a feature 

that may reflect water incorporated into the wadsleyite crystal structure (e.g., Van der Meijde 

et al., 2003). It has been suggested (Anderson & Bass, 1986; Bass & Anderson, 1984) that 

the observed increase in seismic velocities at 410 km is too sudden and too small to result 

from a single-phase change in olivine, but instead, requires the MTZ be chemically distinct in 

bulk composition from the uppermost mantle. Duffy & Anderson (1989) found that velocity 

gradients at the 410 km indicate a mineralogy consisting of 30-50% olivine; significantly 

reduced as compared to that predicted by pyrolite. In another study,  Sawamoto et al. (1984) 

also suggested the olivine content of the mantle may be about 40% while later, Irifune (1987) 

argued that pyrolite indeed provides a good match to seismic velocity profiles, but his data 

do not agree with any 1D seismic velocity profile. In fact, at 410 km, his combined models 

produce velocities that are far greater than those seismically observed. Similarly, 

compositional models of Bina & Wood (1987) and Weidner & Ito (1987) based on a mantle 
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of pyrolitic composition failed to reproduce the seismic wave velocities observed in this region 

and emphasised that compositional models as a function of depth are still poor in resolution 

and accuracy. Agee (1985) showed that wadsleyiteôs and ringwooditeôs sound velocities do 

not agree with observed wave velocity data above the 410 km, and argued that for the MTZ 

a better match is obtained if the composition is closer to that pure majorite garnet (Fig. 1.4).  

Subsequent studies have indeed shown that the pyroxene to majorite garnet phase transition 

can add significantly to the velocity increase near the 410 km boundary. Sinogeikin & Bass, 

(2002) performed high-pressure Brillouin elasticity measurements on pure -Ç3É/ majorite 

garnet and a 50-50 -Ç!Ì3É/  (pyrope) ï -Ç3É/ (majorite) solid-solution. Their results 

showed that the pyroxene to majorite reaction is a likely candidate to explain high velocity 

gradients at 410 km, because it involves an increase in elasticity that occurs over the 

appropriate pressure range (Bass & Anderson, 1984). Other experimental studies (e.g.,  

Irifune & Isshiki, 1998; Nishihara & Takahashi, 2001) found that, at upper MTZ depth, an 

assemblage of about 30% clinopyroxene plus 40% garnet, gradually reacting to form -Ç3É/ 

majorite by 520 km, will produce a velocity gradient consistent with that of 1D seismic velocity 

models. Ultrasonic and static compression experiments on powdered samples (Gwanmesia 

et al., 1998; Kavner et al., 2000; Liu et al., 2000) have also suggested the velocity structure 

of the MTZ could be caused by unusually high-pressure derivatives of the elastic moduli of 

-Ç!Ì3É/ --Ç3É/ garnets. 



20 
 

 
 

 

Figure 1. 4: Shear velocities of upper mantle and MTZ phases compared to PREM model (after Agee, 1985). 

Mineral curves were calculated along the 1673 K adiabat after Duffy & Anderson (1989). 

 

An additional mineralogical model proposed by Gasparik (1989, 1990, 1993, 1997) suggests 

the existence of a sodium reservoir in the upper mantle and suggests the 410 km discontinuity 

may be caused by the transformation of pyroxene to garnet with a composition close to the 

enstatite-jadeite join. It has been observed (Angel et al., 1988; Bindi et al., 2011; Bobrov et 

al., 2008, 2009; Dymshits et al., 2010, 2013; Gasparik, 1990) that incorporation of .Á into the 

pyroxene structure stabilizes and expands its stability field to higher pressures, therefore 

producing sharp changes in seismic wave velocities at 410 km (Gasparik, 1997). While the 

alkali content of the Earthôs mantle remains uncertain, its solubility in the structures of upper 

mantle and MTZ minerals is of considerable interest due to the ongoing discovery of ultrahigh-

pressure .Á-bearing mineral inclusions in diamonds (e.g., Moore & Gurney, 1985; Wang & 

Sueno, 1996; Moore & Gurney, 1985; Gasparik & Hutchison, 2000; Collerson et al., 2010; 

Koemets et al., 2020; Bobrov et al., 2009; Stachel, 2001; Bobrov et al., 2019; Thomson et 

al., 2021). 
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1.1.2.3 The 520 km Discontinuity  

Contrary to the well-established discontinuities at 410 and 660 km, which are sharp features 

with reasonably well-defined velocity gradients (Dziewonski & Anderson, 1981), the 520 km 

discontinuity is rather broad, (25-50 km; Benz & Vidale, 1993; Revenaugh & Jordan, 1991a) 

and is likely associated with the ɓ-olivine (wadsleyite) to ‎-olivine (ringwoodite) transition. 

The small impedance contrast between wadsleyite and ringwoodite along with temperature-

induced variations at these depths (e.g., Xu et al., 2008) makes it difficult to observe the 520 

km globally (Lawrence & Shearer, 2006; Shearer, 1996). Saikia & Frost (2008), suggested 

that to associate the 520 km discontinuity solely with the wadsleyite-ringwoodite phase 

transition, it is required to lower the temperature of the surrounding mantle to about 300 K 

below the adiabat (i.e., to 1373 K). This is in fact achieved by stagnant subducted slabs at 

the base of the MTZ. As temperatures in the centre of such slabs could be 600 K below the 

1673 K adiabat they could form significant lateral cold heterogeneities (e.g., Kárason & van 

der Hilst, 2000) that can reduce the transition temperature of wadsleyite to ringwoodite as 

well as the temperature of the surrounding mantle.  

Displacive phase transitions within the -Ç!Ì3É/ -Ç3É/ garnet solid-solution, might 

also contribute to velocity changes observed at those depths. At mid-MTZ depths majoritic 

garnets can account for up to 50% of mantle volume, therefore a transition to higher and/or 

lower symmetry, with changing composition and pressure, could cause changes in elasticity. 

Unfortunately, information on the thermoelastic and thermodynamic properties of this solid-

solution at extreme conditions, particularly for compositions around the transition point (see 

Paragraph 1.2.2 below), are insufficient. 

1.1.2.4 The 660 km Discontinuity  

The 660 km seismic discontinuity has long been associated with the transformation of 

ringwoodite to -Çȟ&Å3É/  perovskite plus -Çȟ&Å/ ÍÁÇÎÅÓÉÏ×ÕÓÔÉÔÅ. This is based on 

experimental studies of quenched materials (e.g., Ito & Takahashi, 1989; Helffrich, 2000) 

which have shown that this transition is consistent with the seismically observed sharpness 

at the depth of the discontinuity. However, the extent to which the majorite-perovskite 

transition contributes to the 660 km discontinuity is uncertain. Weidner & Wang (1998) 

proposed that the post-spinel transition triggers the garnetȤperovskite transition by supplying 

!ÌȤfree perovskite from the post-spinel transition to the garnetȤperovskite system. If this is the 
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case, the garnetȤperovskite transition should contribute significantly (Hirose, 2002; Kubo & 

Akaogi, 2000; Anderson 1976).  

1.1.3 So what is the composition of the MTZ?  

The two undepleted pyrolite and piclogite mineralogical models do not provide conclusive 

answers as to what is the composition of the upper mantle and the MTZ due to their small 

differences in seismic velocities and densities as compared to 1D global velocity models. As 

found in previous studies (Ita & Stixrude, 1992; Jackson & Ridgen, 1998; Vacher et al., 1998; 

Weidner, 1985) a pyrolytic model along a 1673 K adiabat provides a reasonable 1st-order fit 

to global seismic velocity models. However, as seen in Fig. 1.4, the high velocities of 

wadsleyite and ringwoodite (‍ and ‎) (Agee, 1985) have led to some authors proposing an 

alternative MTZ chemistry, composed of mostly garnet and pyroxene with reduced olivine 

content. Duffy et al. (1995), in a Brillouin spectroscopy experiment, showed that at 13.8 GPa 

the seismic velocities of ‌--Ç3É/ were 2.7±0.7% lower than predicted by pyrolite, 

suggesting that the 410 km seismic velocity contrast is satisfied only by a mantle containing 

less than ~50% olivine. This result supports the idea of a piclogitic MTZ composition and 

also agrees with the results of Sinogeikin & Bass (2002b) who suggested that garnetôs 

seismic velocities can better explain the 1D models, provided that the proportion of olivine 

becomes significantly reduced. More recent sound velocities experiments (Chantel et al., 

2016; Gwanmesia et al., 2006; Irifune et al., 2008; Liu et al., 2015; Pamato et al., 2016; 

Rigden et al., 1994; Zhou et al., 2021) of pyrope-majorite garnets (Fig. 1.5) indeed indicate 

a MTZ composition closer to majoritic garnet (also see Fig. 1.4). Munch et al. (2020) have 

shown that the mantle is neither fully equilibrated not completely mechanically mixed, but it 

is best described as a combination of both (Fig. 1.6). Similarly, Goes et al. (2022) and Xu et 

al. (2008) concluded that the two prevailing models for the MTZ should be a pyrolitic 

chemically equilibrated assemblage and a mechanical mixture with a pyrolitic composition 

(Fig. 1.7).  
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(c) Pyrope-Majorite  Figure 1.  5:  Experimental measurements of the sound velocities of 

pyrope-majorite solid-solution at high-PT. (a) Pyrope:    Rigden et al. 

(1994)    Gwanmesia et al. (2001) and     Chantel et al. (2016). (b) 

majorite:      Zhou et al. (2001) and     Irifune et al.  (2008). (c) Pyrope-

Majorite:     Mj24 of Pamato et al. (2016)      Mj80 of Liu et al. (2015). 

PREM is shown as the solid black line. 

 

(a) Pyrope (b) Majorite  
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Figure 1. 6: (a) Global map of cratonic regions (pink areas) and distribution of stations for which the observed 

data of Munch et al. (2020) are best explained by either a mechanically mixed or a fully equilibrated mantle 

compositional model. (b) Global variations in mantle composition. (see Fig. 4 and Fig. 7 in Munch et al. 

(2020) 

 

Figure 1. 7: Phase diagrams for (a) a chemically equilibrated (EA) mantle and (b) a mechanically mixed 

(MM) mantle with identical pyrolitic composition with a 20% basalt fraction and an adiabatic geotherm with 

a potential temperature of 1600 K. Indicated phases are: plagioclase (pl), orthopyroxene (opx), high 

pressure Mg-rich clinopyroxene (c2/c), clinopyroxene (cpx), garnet (gt), akimotoite (ak), olivine (ol), 

wadsleyite (wa), ringwoodite (ri), stishovite (st), Ca-silicate perovskite (capv), Mg-rich silicate perovskite 

(mgpv), and ferropericlase (fp) (modified, from Xu et al., 2008). 

(a) 

(b) 

(a) (b) 
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1.2 The Structure of Upper Mantle and MTZ Materials  

1.2.1 Forsterite -Fayalite Olivines  

Olivine is the most common mineral in the Earthôs mantle and is typically found in mafic 

and ultramafic igneous rocks, such as basalt, gabbro, dunite and peridotite, but also 

occurs in impure metamorphosed carbonate rocks (e.g., calcitic marble). It is the first 

mineral to crystallize from a cooling mantle melt, usually in the presence of plagioclase 

and pyroxene, obeying Bowenôs reaction series. It has been identified in a large number 

of stony and stony-iron meteorites (e.g., Pallasites) and has been observed to ófallô as rain 

around a distant, sun-like embryonic star, or protostar, referred to as HOPS-68, in the 

constellation Orion, by NASAôs spitzer space telescope in 2011; a finding that may also 

explain why olivine crystals have been found in comets outside our solar system.  

The crystal structure of the orthorhombic Ŭ-olivine (Fig. 1.8), with space group ὖὦὲά and 

ὤ=4, can be considered in terms of a layered hexagonal close-packed (hcp) oxygen 

network, with 3É ions occupying tetrahedral and 

the &Å and -Ç cations occupying octahedral 

voids. These layers consist of two symmetrically 

non-equivalent octahedral sites namely, -ρ and 

-ς (orange polyhedra in Fig. 1.8), cross-linked by 

independent 3É/ tetrahedra (blue polyhedra in 

Fig. 1.8). Isolated 3É/ tetrahedra are bound to 

each other only by ionic bonds from interstitial 

cations. Minerals of the olivine group have the 

general chemical composition ὃ3É/, with ὃ 

being &Åȟ-Çȟ#Áȟ-Î ÏÒ .É. Most of these elements 

will substitute for one another, in any ratio, 

producing several solid-solutions series of which 

fayalite (&Å3É/) and forsterite (-Ç3É/) are the 

most geologically relevant end-members. In the -Ç-&Å solid-solution, the &Å and -Ç   

ions have almost the same size (0.076 nm for &Å and 0.072 nm for -Ç) so substitution 

should make very little structural change. However, my work (Chapter 4; also, Tripoliti et 

al., 2023) has demonstrated that substitution of -Ç with &Å can affect the evolution of the 

lattice parameters with increasing temperature.  

Figure 1. 8: Crystal structure of orthorhombic 

olivine. Mg atoms in orange, Si atoms in blue 

and O atoms in red. 
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Since the original determination of the crystal structure of olivine by Bragg and Brown in 

1926 subsequent refinements were reported by Belov et al. (1951), Hanke & Zemann, 

(1963), Birle et al. (1968) and Brown (1970). Ŭ-olivine is stable down to 410 km where it 

transforms to wadsleyite at pressures dependent upon the &Å content and temperature. 

For example, at 1673 K, for a pure forsterite composition the transformation occurs at 

about 14 GPa, while for -ÇȢ&ÅȢ 3É/  it occurs between 12.8 and 13.5 GPa (Frost, 

2003). Wadsleyite, is orthorhombic, with space group Ὅάάὥ, if (/-poor, and ὍςȾά if (/-

rich (Smyth et al., 1997), and ὤ=8. At about 18 GPa, which corresponds to a depth of 

about 520 km, wadsleyite transforms into ringwoodite. Ringwoodite is cubic with space 

group ὊὨσά and ὤ=8. Experiments show that ringwoodite may incorporate essential 

amounts of .Á, that enters the octahedral sites. .Á prefers ringwoodite more than 

bridgmanite, thus, ringwoodite is suspected to be an important sink for .Á at MTZ depths 

(Bindi et al., 2016). Finally, at 23 GPa, ringwoodite decomposes into a mixture of 

ferrosilicate perovskite and magnesiowÕstite, which are the two most dominant phases of 

the lower mantle (Ito & Takahashi, 1989).  

There are numerous published studies concerning the high temperature behaviour of 

-Çȟ&Å3É/ olivines with the first linear thermal expansion studies made by Kozu et al. 

(1934) and Rigby et al. (1946) using dilatometers for their measurements. The first high-

temperature X-ray diffraction study was performed by Skinner (1962) for pure forsterite 

(-Ç3É/) while that for fayalite (&Å3É/) was conducted by Suzuki et al. (1981) with 

dilatometry between 298 K and 1123 K. Suzuki et al. (1981) were the first to reveal the 

anomalous expansion of fayaliteôs ὦ-axis (Fig. 1.9) which they attributed to the 

antiferromagnetic transition at 65 K that is also reflected in the variation of ὅ , ὅ  and 

ὅ , shear elastic moduli. My work, (in Chapter 4 and Tripoliti et al., 2023) also identifies 

the high-temperature anomalous expansion of ὦ-axis which may arise from magnetic 

entropy affecting the geometry of -ρ and -ς octahedra that share edges via oxygen 

atoms along the ὦ direction. The crystal and magnetic properties of -Ç3É/  &Å3É/  

have been studied by many authors (e.g., Kroll et al., 2012, 2014, 2019; Cococcioni et al., 

2003; Lottermoser et al., 1986; MÕller et al., 1982; Santoro et al., 1966; Tripoliti et al., 

2023) and will be discussed later. Overall, the literature provides some high-temperature 

thermal expansion data for the end-members forsterite and fayalite. Information on solid-

solutions, on the other hand, particularly for those near the end-member fayalite, are 

sparse leading to ambiguities since it has been found that &Å in olivine can lead to 

structural anomalies.  

https://www.mindat.org/min-45900.html
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Figure 1. 9:  Thermal expansion coefficient of single-crystal fayalite for all three directions and volume 

(Suzuki et al., 1981). 

 

1.2.2 Pyrope -Majorite Garnets  

Garnet minerals are some of the most common in the Earthôs upper mantle and lower 

crust. They are found in a wide range of geologic settings, from metamorphic rocks like 

schist and gneiss, to high-pressure igneous rocks, and may account for as much as half 

of the volume of the MTZ between 500 and 660 km (e.g., Ita & Stixrude, 1991). They are 

extremely important in metamorphic petrology studies because they can trap and 

preserve high-pressure and high-temperature phases, as inclusions, which are quite 

often the other products of the garnet-forming reaction (Angel et al., 2022). In an upper 

mantle of pyrolitic composition, garnet becomes stable at the expense of spinel at 

pressures starting from 1.5 GPa. The reaction relationship between the two aluminous 

minerals (spinel and garnet) may be represented as (Wood et al., 2013)  

πȢτ#Á-Çȟ&Å 3É/  σȢς-Çȟ&Å 3É/  -Çȟ&Å !Ì/  

Clinopyroxene + orthopyroxene + spinel 

#Áȟ-Çȟ&Å !Ì3É/   -Çȟ&Å 3É/  
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Garnet + olivine 

Garnets have the general formula ὃὄ3É/ . The 8-fold coordinated site ὃ is usually 

occupied by divalent cations (#Áȟ&Åȟ-Çȟ-Î)2+ and the 6-fold coordinated site ὄ by 

trivalent cations !Ìȟ#Òȟ&Å  in an 

octahedral/tetrahedral framework with 3É  

occupying the tetrahedra. End-member 

-Ç!Ì3É/  pyrope (Py) has cubic symmetry 

with space group ὍὥσὨ with ὤ=8 (Fig. 1.10). 

Starting at about 16 GPa, pyroxene undergoes a 

continuous solid-solution reaction with garnet to 

form the !Ì-deficient garnet, ὃ3É/ majorite (Mj).  

-Ç!Ì3É/ + -Çȟ&Å3É/Ÿ -Çȟ&Å3É/  . 

Majorite has higher proportions of silicon with site ὃ occupied by either -Ç or &Å. The 

formation of majorite involves the substitution of 3É for !Ì and -Ç atoms in the 

standard, ὃὄ3É/ , garnet structure.  

This reverse of this transition has been petrographically observed as pyroxene exsolution 

laminae in garnet in mantle xenoliths, and as partially re-equilibrated inclusions in diamond  

found in kimberlites derived from the Archean lithosphere at depths of 300ï400 km 

(Haggerty & Sautter, 1990). At room 

temperature, Garnets in the system 

-Ç!Ì3É/  - -Ç3É/ are cubic in 

space-group ὍὥσὨ, and tetragonal in 

space-group ὍτȾὥ (Kato & Kumazawa, 

1985) (Fig. 1.11), with ὤ = 8 (Angel et al., 

1989). The symmetry reduction from 

ὍὥσὨ to ὍτȾὥ occurs at about -Ê0Ù 

(Fig. 1.12) and splits the single 16a 

octahedral site (of ὍὥσὨ) into two distinct 

positions 8ὧ and 8Ὠ. Both tetragonal and cubic structures consist of orthogonal corner-

linked chains of alternating octahedra and tetrahedra.  

The physical properties of garnet end-members (e.g., pyrope, almandine, grossular, 

andradite, spessartite) were first calculated by Ford (1915) and revised by Stockwell 

Figure 1 .10: Crystal structure of cubic pyrope. 

Mg atoms in orange, Si in blue, O in red and Al 

in grey. 

Figure 1. 11: Crystal structure of tetragonal majorite. Mg 

atoms in orange, Si in blue and O in red. 

https://www.britannica.com/science/calcium
https://www.britannica.com/science/iron-chemical-element
https://www.britannica.com/science/magnesium
https://www.britannica.com/science/manganese
https://www.britannica.com/science/chromium
https://en.wikipedia.org/wiki/Octahedron
https://en.wikipedia.org/wiki/Tetrahedron
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pyroxene
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/exsolution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/xenolith
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/peridotite
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(1927) and Fleischer (1937). These predictions were made by extrapolating the 

properties of natural garnet solid-solutions back to the pure end-members. The first study 

on synthetic garnet end-members, including pyrope, was conducted by Skinner (1956). 

The unit-cell parameters, and volume, of -Ç!Ì3É/  pyrope as a function of 

temperature have been measured by many authors (Bosenick & Geiger, 1997; Du et al., 

2015; Hartwig & Galkin, 2021; Nakatsuka et al., 2011; Skinner, 1956). Some of these 

studies indicate static disorder for the -Ç atoms responsible for the anomalously large 

values of atomic displacement parameters. Additional static disorder of !Ì, 3É and / atoms 

has been also suggested due to the extremely large heat capacity, ὅ, of pyrope at low 

temperatures, but as it is seen in (Fig. 1.13) there are insufficient thermal expansion data 

below 300 K (24 data points in total, from 5 different studies). 

 

 

Figure 1. 12: (a) Lattice parameters and (b) unit-cell volumes of garnets in the system Mg3Al2Si3O12-MgSiO3 . 

Also shown are the extrapolated cubic lattice constant Ŭ0 and the calculated average cubic lattice constant 

Ŭô0 (after Heinemann et al., 1997). 
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Figure 1. 13: Experimental volume thermal expansion data of the literature for end-member pyrope, 

Mg3Al2Si3O12. Most measurements are in good agreement up to 800 K. For temperatures between 800 K 

and 1000 K, expansion data of Nakatsuka et al. (2011) and Skinner (1956) follow a concave trend. 

 

Kato & Kumazawa (1985) were the first to confirm the formation of !Ì-free garnet with 

-Ç3É/ composition at MTZ temperature and pressure conditions, while Angel et al. 

(1989) were the first to refine and analyze its structure. Contrary to pyrope, -Ç3É/ 

majorite end-member favours, at least after quench, tetragonal ὍτȾὥ symmetry with 

ordered -Ç-3É distribution over two distinct octahedral sites (Angel et al., 1989; Phillips et 

al., 1992) after the !Ì coupled substitution ς!Ì = -Ç + 3É. End-member majorite is 

found to be stable at pressures between 17 GPa and 23 GPa and temperatures above 

1873 K in the simplified -Ç/-!Ì/ -3É/ chemical system. Although its natural occurrence 

has not yet been confirmed, garnets with a non-zero majoritic content (based on them 

containing more than 3 silicon cations per 12 oxygens) have been found in shocked 

chondrites  (Chen et al., 1996; Coleman, 1977; Langenhorst et al., 1995; McMillan et al., 

1989; Price et al., 1979) and as inclusions in diamonds (see Figs. 7 and 9 in Thomson et 

al., 2021) from mantle xenoliths of kimberlitic origin (e.g., Koemets et al., 2020; Moore & 

Gurney, 1985; Moore et al., 1991; Sautter et al., 1991; Stachel, 2001; Thomson et al., 

2014; Sobolev et al., 1977, 1997). 

Several studies have been carried out to confirm the structure of majorite, with some 

suggesting that natural majorite garnet remains cubic under mantle conditions and only 

transforms to tetragonal after quenching during synthesis experiments (e.g., Hatch & 
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Ghose, 1989). Furthermore, all natural majoritic garnets from meteorites and diamond 

inclusions have been found to have cubic, ὍὥσὨ, symmetry. This is expected for garnets 

with significant !Ì content and 3É= 3.64 - 3.78 atoms per formula unit (apfu) (Chen et al., 

1996; Langenhorst et al., 1995; Smith & Mason, 1970), but it is rather surprising for low-

!Ì majorites with 3É=3.91 - 4.01 apfu (Coleman 1977; Price et al., 1979; Jeanloz, 1981; 

Chen et al., 1996). After studying several garnets along the -Ç!Ì3É/ --Ç3É/ join, 

Heinemann et al. (1997) found that the intensity of the 222 reflection - which should be 

systematically absent in the ὍὥσὨ space group - as a function of pyrope composition, 

indicates a 2nd-order phase transition near 20-25 mol% pyrope and so proposed that the 

phase transition must occur during synthesis at about 2273 K and 19 GPa. Microstructural 

analysis from Angel et al. (1989) showed that majorite exhibits both merohedral and 

pseudomerohedral twinning, which was interpreted as evidence of a phase transition from 

cubic to tetragonal symmetry during growth of the garnet phase. Angel et al. (1989) 

argued that quenching is unlikely to cause the transition to a lower-symmetry phase, as 

it would require the disordered -Ç and 3É cations, over the octahedral sites, in the high-

symmetry phase, to become ordered during the very rapid, i.e., 1 sec, quench from the 

synthesis run conditions. Wang et al. (1993) also agreed with this statement and 

suggested that majoritic garnets within the MTZ are likely to be tetragonal. 

 

A transition from tetragonal, ὍτȾὥ, to cubic, ὍὥσὨ, symmetry in the MTZ would have 

implications for elasticity and seismic velocities as the degree of the tetragonal distortion 

is found to increase with increasing pressure (e.g., Yagi et al., 1992; see Fig.1.14). 

Sinogeikin & Bass (2002a) showed that compression alone cannot explain the high 

velocity gradients observed by global seismic models. A tetragonal to cubic phase 

transition resulting from cation order/disorder alone, cannot significantly affect the 

variation of sound velocity and elastic modulus, indicating that !Ì substitution may play a 

more dominant role. The garnet structure consists of a relatively rigid, cornered linked 

framework of alternating silicate tetrahedra and octahedra (6-fold coordination) with the 

interstices defining the larger dodecahedral (8-fold coordination) sites. Therefore, the 

compressibility of garnet depends almost entirely on the extent to which the tetrahedral-

octahedral framework varies with pressure (Hazen et al., 1994). In the pyrope-majorite 

solid-solution octahedral site occupancies and valences differ significantly. An increase 

of pyrope content in majorite means that !Ì will substitute for the more compressible -Ç, 
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and 3É, both in the 6-coordinated sites, increasing the bulk and shear moduli (Fig.1.15) 

and decreasing the unit-cell volume (Fig.1.16).  

 

Finally, below the 520 km discontinuity, the volume of #Á-perovskite increases with depth 

at the expense of majorite garnet. The formation of #Á-perovskite is completed at 660 km 

and is accompanied by a significant increase in ὠ and ὠ. Combination of all experimental 

elasticity data from the literature (Armbruster et al., 1992; Chantel et al., 2016; Gwanmesia 

et al., 2000, 1998, 2006; Liu et al., 2000, 2019; OôNeill et al., 1991,1989; Parise et al., 

1996; Rigden et al., 1994; Sinogeikin & Bass, 2002, 2000; Sinogeikin et al., 1997; Pacalo 

& Weidner,1997; Leitner et al., 1980; Conrad et al., 1999), reflects the discontinuous 

behaviour of garnets within the pyrope-majorite solid-solution (Fig.1.15) but also proves 

the conclusion of Sinogeikin & Bass (2002) that compression alone cannot significantly 

change the seismic velocities to cause the observed MTZ velocities gradients. It should 

be noted, though, that the data in Fig.1.15 are collected at ambient conditions and do not 

correspond to the PT environment of the MTZ.  

 

Figure 1. 14: c/a ratio of MgSiO3 majorite showing an increase in tetragonal distortion with increasing 

pressure after Yagi et al. (1992). 
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Figure 1. 15: (a) Bulk, KS, and shear, G, moduli, and (b) seismic velocities of garnets within the pyrope-

majorite join at ambient conditions from the literature (Gwanmesia et al., 1998, 2000, 2006; Pacalo & 

Weidner,1997; Sinogeikin et al., 1997; Leitner et al., 1980; Armbruster et al., 1992; Parise et al., 1996; 

Rigden et al., 1994; Liu et al., 2000, 2019; Chen et al.,1999; Conrad et al., 1999; Sinogeikin & Bass, 2000, 

2002; Chantel et al., 2016; Sinogeikin et al., 1997; OôNeil et al., 1989, 1991). The discontinuous behaviour 

at about 0.75 mol% majorite is reflected in all elastic parameters and velocities but it is not sufficient to 

cause the sharp velocity gradient observed within the MTZ. 

 

Figure 1. 16: P-V relationship of pyrope, Mg3Al2Si3O12 (coloured circles) and majorite, MgSiO3 (coloured 

squares) end-members from different experimental and computational studies. For pyrope: Zou et al. 

(2012), Leger et al. (1990),  Gwanmesia et al. (2006), Zhang et al.(1998) and for majorite: Hazen et al., 

(1994), Nishihara et al., (2005), Lou et al. (2020). 

 

(a) (b) 
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Gasparik (1989), was the first to propose the possible existence of .Á-rich reservoir in the 

upper mantle, suggesting the 410 km discontinuity may be caused by the transformation 

of pyroxene to garnet with a composition close to the enstatite-jadeite join at 13-13.5 GPa. 

The transition of .Á-pyroxene to .Á-majorite has been studied by Dymshits et al. (2015) 

who found that the minimum pressure for the formation of .Á-majorite is at ~15 GPa; a 

lower pressure relative to that of the -Ç3É/ system. The pyrolite model predicts that the 

bulk concentration of .Á/ in the garnet structure, within the MTZ, cannot exceed 0.9 

wt%. Instead, if we accept the model of the layered or heterogeneous mantle, according 

to which garnetite transformed from eclogite at ὖ > 18 GPa predominates at the base of 

the upper MTZ (e.g., Anderson, 1979), garnet will contain from ~1 to ~5 wt% .Á/. This 

is confirmed by the discovery of majoritic garnet inclusions in diamonds with up to 2.16 

wt% .Á/ (Harte & Cayzer, 2007; Sobolev & Lavrentôev, 1971; Gasparik & Hutchison, 

2000; Wang & Sueno, 1996).  

Pyroxene is an important non-olivine component of the upper mantle, the chemistry of 

which may be significant in the nature of the 

MTZ and mantle convection, (Ringwood, 

1994; Vacher et al., 1998) but incorporation of 

.Á into its structure has been very poorly 

studied with insufficient data related to its 0-4 

stability field. End-member Na-pyroxene, 

.Á-Ç3É/ȟ crystallizes in space group ὅςȾὧ 

with ὤ=4. The structure of .Á-ÇȢ3ÉȢ3É/  

(Na-prx), on the other hand, crystallizes in 

space-group ὖςȾὲ and is topologically 

analogous to ordered ὖςȾὲ omphacites (Angel 

et al., 1988). It consists of single tetrahedral 

chains (light blue in Fig.1.17) that cross-link 

bands of octahedrally coordinated cation sites 

(Fig.1.17). Between these bands are two symmetrically non-equivalent octahedral sites 

(-ρ and -ρρ) occupied by -Ç and a part of 3É (orange and blue in Fig.1.17). Between 

these bands are two symmetrically equivalent eight-coordinated sites (-ς and -ςς) 

which accommodate the larger .Á cations  (yellow in Fig.1.17). In .Á-ÇȢ3ÉȢ3É/ , as 

in all omphacitic pyroxenes, the difference in the sizes of the -Ç and 3É ions is so big that 

it results in their total, rather than partial, ordering in the -ρ and -ρρ positions, which 

Figure 1. 17: Polyhedral representation of Na-

prx unit-cell. Na in yellow, Mg in orange, Si in 

blue and O in pink, red and burgundy for O1, 

O2 and O3 respectively. 
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is indicated by their different sizes causing a reduction of the symmetry from ὅςȾὧ to ὖςȾὲ. 

Yang et al. (2009), showed that clinopyroxenes with VI3É Ò 0.33 apfu possess ὅςȾὧ 

symmetry whereas those with VI3É Ó 0.45 apfu have ὖςȾὲ symmetry. Investigation of 

materials containing 6-coordinated silicon (VI3É) plays a key role in our efforts to 

understand the composition and structure of the Earthôs interior. Excess silica in the 

octahedral sites causes changes in physical properties such as density, bulk, and shear 

moduli (Dymshits et al., 2015) which may cause changes in seismic velocities. The 

physical properties of .Á-pyroxene are likely to contribute to the dynamics of the upper 

mantle and MTZ regions, yet it remains unclear by how much.  

Conversely, the crystal structure of .Á-majorite 

with .Á-Ç3É/  stoichiometry, is still disputed. 

Early experimental studies (Hazen et al., 1994; 

Pacalo et al., 1992) have reported it as cubic, 

with ὍὥσὨ symmetry and ὤ = 8. In .Á-Ç3É/ , 

.Á and -Ç atoms occupy the dodecahedral 8-

fold site, -ς (yellow polyhedra in Fig.1.18), 

while Si is octahedrally (light blue polyhedra in 

Fig.1.18), -ρ, and tetrahedrally coordinated 

(blue polyhedra in Fig.1.18). Because the 

octahedral 6-fold site, -ρ, is nearly filled with 

the smaller 3É cation, interatomic octahedral 

bond distances 3É-/ and /-/ are quite small as a result, the -ς/ polyhedra are about 2 

times more distorted and the 3É/ tetrahedra are ~1.5 times more distorted than in other 

garnets. Other studies (e.g., Bindi et al., 2011; Dymshits et al., 2012; Mookherjee, 2014) 

report .Á-Ç3É/  as tetragonal with ὍτȾὥὧὨ symmetry (ὧȾὥ = 0.9948 !) with .Á and 

-Ç cations disordered over two dodecahedral sites. Bindi et al. (2011) found that in 

tetragonal .Á-Ç3É/  majorite, the strongest reflections show strong pseudo-cubic 

symmetry, but systematic absences indicate ὍτȾὥὧὨ space group. They concluded that 

ordering of the ὄ cations alone is not enough to cause a symmetry reduction from cubic, 

because it would require crystallization in space groups ὊὨὨὨ, Ὅρ, ὍςȾὧ or Ὑσὧ, and, 

instead, the lowering of the symmetry is rather due to a combination of factors, including 

cation ordering, crystal growth mechanism and condition of synthesis. The unit-cell 

volume of .Á-Ç3É/  is lower than any other garnet end-member due to !Ì-3É and -Ç-

.Á substitutions in the 6- and 8-fold coordinated sites, respectively (Dymshits et al., 2014), 

Figure 1. 18: Polyhedra representation of 

Na-mj unit-cell. Na in yellow, Mg in orange, 

Si in blue and O in pink, red and burgundy 

for O1, O2 and O3 respectively. 
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but it has the largest bulk modulus reported for any silicate garnet (Hazen et al., 1994). 

In the case of .Á-Ç3É/ , substitution of the smaller .Á into the dodecahedral 8-fold 

sites leads to a denser packing. The increased silicon content in the 

.Á-Ç3É/ structure, as compared to pyrope and end-member majorite, strengthens the 

network, especially considering that 3É-/ bonds in tetrahedral (4-fold) and octahedral sites 

(6-fold) are in general more rigid and shorter than -Ç-/ bonds in the octahedral sites (6-

fold).  

1.3 Summary  

In the past, experimental limitations led many researchers to focus only on the olivine 

content of the MTZ neglecting the pyroxene and garnet volume share of the mantle. 

Recent advances in experimental mineral physics have freed us from relying on analogue 

studies because high-pressure phases can now be synthesised and measured at the 

correct pressure and temperature conditions. Despite the technological advances of the 

past decades, though, there are still important phases within the -Ç/, &Å/, !Ì/ , .Á/, 

3É/ systems, whose crystallographic properties as well as thermodynamic and 

thermoelastic have not been accurately determined, and in some cases not even defined 

at mantle conditions. Such phases include garnets within the pyrope-majorite solution and 

.Á-rich phases (i.e., .Á-pyroxene and .Á-majorite). To create accurate mineralogical 

models for the upper mantle and MTZ (whether pyrolitic, piclogitic or unmixed and 

chemically unbalanced) and to better interpret the 1D seismic velocity models it is 

necessary to solve these discrepancies and fill some of the gaps in the literature by 

synthesizing and determining the structural properties of these phases. In this thesis I 

present data for some of these phases collected at high-temperatures and high-pressures. 

Their thermoelastic and thermodynamic properties are determined via new Equations of 

States (EoS) that can accurately analyse and reproduce these data for further geophysical 

and geochemical analysis. 
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Chapter 2  

 
Methodology  
In this chapter I explain all experimental techniques and mathematical formulae used to 

measure and analyse material properties in this thesis. A brief introduction on X-ray 

diffraction is given, outlining its role in structure characterization and analysis. Sample 

synthesis and data analysis methods are discussed in detail including Equation of State 

(EoS) derivations. 

2.1 A Short Introduction to X -Ray Diffraction  

X-ray diffraction is the most comprehensive method used to identify, characterise, and 

measure materials either at ambient or high pressures and high/low temperatures. X-rays 

are very high frequency (~1018 Hz) electromagnetic waves with wavelengths, ‗, of the 

order of 10-10 m, typically ranging from 0.5 to 2.5 B. Their interaction with periodic 

structures produces diffraction effects if the wavelength of the incident beam and atoms 

spacing in the crystal structure are of same order. The electric field of the X-rays interacts 

with the charged particles of the atoms in the unit-cell causing them to oscillate with the 

same frequency and become a secondary source of X-rays by emitting an almost 

spherical wave with the same wavelength as the incident radiation. The amplitude of the 

scattered wave is proportional to the number of electrons in the atom (i.e., atomic number). 

Diffraction redistributes the intensity produced by the whole scattering sphere into distinct 

directions giving rise to intensity peaks.  

X-ray diffraction had its beginning in 1912 when von Laue discovered that crystals diffract 

X-rays, revealing their structure. At first, X-ray diffraction was only used for crystal 

structure determination. Now, however, X-ray diffraction is used not only for chemical 

analysis but also to explore diverse problems such as, stress measurements, preferred 

orientation, the mapping out of phase equilibria diagrams, the study of randomness in 

structures, as well as particle size measurements. Laue visualized crystals in terms of a 

three-dimensional periodic networks of atoms and he found that to generate a diffracted 

beam the X-rays scattered by adjacent points in the crystal lattice must satisfy the 

conditions for constructive interference. This approach, although not incorrect, is in 

practice rather extended. In 1913, Bragg  gave the first mathematical explanation of the 

actual positions of the X-ray diffraction spots. He assumed that X-rays are reflected from 
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a family of planes (ὬὯὰ) in the crystal and derived a mathematical relationship involving 

the wavelength, ‗, the spacing between the planes, Ὠ , and the angle of reflection, —. 

Braggôs law has been since used to determine the structure of crystalline solids with the 

first experiments in 1913 by Bragg & Bragg identifying the structures of .Á#Ì, +#Ì, :.3, 

#Á& and &Å3. The law states that diffracted  X-ray beams will only be reproduced when 

‗ ςὨ ίὭὲ— is satisfied, with incident and diffracted beam angles both equal to —, i.e., 

as if the planes were acting as a mirror (Fig. 2.1). 

 
Figure 2. 1: Parallel rays reflected from points on neighbouring partially-reflecting planes are in phase when 

Bragg's law is obeyed. 

 

In principle, an X-ray diffraction experiment can be performed in any kind of material. 

Nevertheless, in most of these cases the materials are solid samples. Depending on the 

properties of a solid material and the kind of information one needs to obtain, either single-

crystals or polycrystalline samples can be considered but, in general, all X-ray 

diffractometers consist of three basic elements: the X-ray tube, the sample holder, and 

the X-ray detector. 

Powder diffraction techniques were first developed by Debye and Scherrer between 1914 

and 1919 (e.g., Scherrer, 1918; Debye & Scherrer, 1916). For powders it is assumed that 

there are crystals in all possible (i.e., random) orientations and diffraction patterns are 

measured as a function of ς—. This type of experiment is termed angle-dispersive as the 

Bragg reflections are measured at different angles with fixed wavelength (monochromatic 

radiation). An additional technique for recording a powder diffraction pattern, termed 

energy-dispersive, requires measurements at fixed ς— and a polychromatic source with 

varying wavelengths (i.e., white incident beam) with an energy sensitive detector; 
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however, in comparison the data produced by this approach has lesser resolution. 

Nevertheless, energy dispersive diffraction is extremely rapid, and ideally suited to use at 

Synchrotron X-ray sources for high pressure/temperature experiments in multi-anvil 

presses. Angle-dispersive synchrotron X-ray powder diffraction probably provides more 

definitive information about crystalline solid materials and operates like conventional 

laboratory X-ray diffraction. UCLôs laboratory-based powder diffractometer is described in 

a following Paragraph.  

In-house single-crystal X-ray diffraction experiments require robust samples, of about 50-

250 ɛm in size. These are mounted on thin glass fibres which are attached to brass or 

carbon pins. The assembly is then mounted onto a goniometer head. The single-crystals 

are then manually aligned, along the ὢ, ὣ and ὤ orthogonal directions, to be centred within 

the X-ray beam. Modern single-crystal diffractometers use CCD (charge-couple device) 

technology to transform collected X-ray photons into an electronic image.  

Heavier atoms, containing more electrons scatter X-rays more strongly and therefore X-

ray diffraction studies are ideal. Lighter atoms, on the other hand, such as hydrogen, or 

oxygen scatter less strongly; however, modern detectors are sufficiently sensitive that they 

can be detected easily when studying chemical crystals. However, if studying materials 

containing heavy and light elements, it is generally preferred to use neutron diffraction as 

neutrons are scattered principally by the nuclei of atoms, and so the scattering does not 

depend simply on atomic number. Though being uncharged, neutrons carry spin and can 

interact with magnetic moments, including those arising from the electron cloud around 

an atom revealing the microscopic magnetic structure of materials. If one has a pulsed 

neutron source (i.e., as at the  Rutherford Appleton Laboratory, UK) the time-of-flight 

method can be used for diffraction data collection. This is also an energy-dispersive 

method, but unlike the one previously mentioned, it does not suffer from poor resolution. 

2.2 Sample Synthesis  

Materials investigated in this thesis are stable at different pressure and temperature 

conditions, ranging from upper mantle (e.g., olivines) to lower MTZ depths (e.g., majorite-

garnet). All high-pressure phases were synthesised in the multi-anvil press (MAP) at UCL 

while samples stable at 1-atm, were synthesised using a high temperature furnace. Both 

polycrystalline and single-crystal samples were prepared from glasses and/or oxides.  
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2.2.1 Synthesis of Fe Materials  at Atmospheric Pressure  

Being stable at ambient conditions, olivine does not require a MAP to be synthesized. For 

pure fayalite, the new solid-state buffering reaction, namely 7# #/7, developed by 

Dobson (2021), was applied. This technique is effective at maintaining the oxygen fugacity 

at a level between iron-wüstite and quartz-iron-fayalite during solid-state synthesis of Fe-

bearing silicates at 1 atm and 1273-1373 K. It relies on the reaction of tungsten carbide 

with oxygen so as to produce metal tungsten and carbon monoxide: 

7# πȢυ#/ ᵵ #/ 7 

This buffer reaction is performed in a nested cylindrical crucible arrangement (see Fig.2 

in Dobson, 2021) with fayalite starting material being initially prepared by stoichiometric 

mixture of hematite, metallic iron and quartz and ground under isopropanol in an agate 

mortar. 

&Å&Å/ ρȢυ3É/ ᵵ ρȢυ&Å3É/ 

This mixture was then compressed in three 13 mm diameter pellets under 4 tonnes load. 

The pellets were placed inside the inner crucibles made of made of !Ì/ . This was then 

enclosed within a larger outer crucible whose bottom was filled with 1 gr of powdered 

tungsten carbide, 7#, while on top of the inner one, pieces of metallic &Å and powdered 

# were sprinkled to remove oxygen from the crucible (see, Dobson, 2021). The nested 

crucibles were placed in a carbolite muffle furnace pre-heated at 1323 K. The pelleted 

sample was sintered for a total of 6 days, in 3 sintering cycles, at that temperature. Each 

sintering cycle lasted for 2 days with the &Å3É/ being re-ground and re-pelleted in-

between cycles. The recovered material between each cycle was analysed by X-ray 

powdered diffraction to ensure the technique was effective at removing metallic iron and 

hematite from the sample. Analysis of the final product by X-ray powder diffraction showed 

a composition (determined by Rietveld refinement) of 99.8% &Å3É/ and 0.2 % 3É/ (Fig. 

2.2). 
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Figure 2. 2: X-ray diffraction pattern of pyre synthetic Fe2SiO4. Fe2SiO4 in black lines and SiO2 in red. 

 

2.2.2 High -Pressure Syntheses  

2.2.2.1 Polycrystalline Samples  

All high-pressure phases were synthesised using the 1000-ton Walker MAP apparatus at 

UCLôs Haskel laboratory. For samples synthesised at up to 15 GPa, a 10-mm octahedron 

assembly with a graphite, #, furnace was used (Fig. 2.3a) that allowed synthesis of a large 

sample volume of about 3.00 x 2.00 mm. The # furnace does not require insulation from 

the -Ç/ octahedron and remains metastable throughout heating. However, to achieve 

heating, it was observed that its thickness should not exceed 0.55 mm to maintain a 

resistance of around 0.04 ɋhms. The maximum temperature allowed by this configuration 

is 1500ºC to avoid transforming # into diamond. Solid # lids, of 1.5 mm thickness, were 

placed at the top and bottom of the heater in order to ensure good electrical contact with 

the anvils. Solid -Ç/ spacers filled the space between the capsule and the lids. The 3.00 

x 2.00 mm capsule made of rolled 0Ô foil was enclosed in an -Ç/ sleeve. Temperature 

was computer controlled and measured with 0.05 mm thick 73%2Å-725%2Å 

thermocouples that were inserted longitudinally into the octahedra and connected under 

the capsule. On some occasions, though, thermocouples were disconnected or broken 

during the experiments. In these instances, the temperature was determined from the 

Pressure-Resistance-Power curves. For these experiments, eight 7# cubes (first anvils) 

with a 5 mm truncation and ~2.0 mm thick pyrophyllite gaskets were used to reach the 

pressure target.  
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For sample synthesis exceeding 15 GPa, a 10-mm octahedron assembly was used with 

a ,Á#Ò/ furnace that allowed a maximum temperature of 2000 ºC (Fig. 2.3b). Due to its 

instability during heating, before each experiment the ,Á#Ò/ heater was fired at 1150ºC 

in a muffle furnace for at least 3 hours. This meant the resistance was less than 50 ɋhms 

at the onset of heating, such that target temperatures could be reached. In this assembly, 

the 8.16 mm x 3.00 mm heater was separated from the -Ç/ octahedron with a :Ò/ sleeve 

insulator. Solid ,Á#Ò/ lids, of 1.2 mm thickness, were placed at the top and bottom of the 

heater in order to ensure good electrical contact with the anvils. -Ç/ spacers filled the 

space between the capsule and the lids. The 2.00 x 1.40 mm capsule made of rolled 0Ô-

foil was enclosed in a -Ç/ sleeve. For these experiments, the temperature was increased 

in steps of 10ºC/min up to 600ºC, to preserve the stability of the ,Á#Ò/ heater, and then 

increased to 20ºC/min up to the target temperature. Throughout the experiment, 

temperature was measured with 0.03 mm thick 73%2Å -725%2Å thermocouples 

connected under the capsule. One disadvantage of these experiments is the small volume 

of the recovered sample. In many cases the ,Á#Ò/ furnace also proved to be very 

unstable and instead, where possible, an alternative assembly with a 4É" furnace was 

used (Fig. 2.3c). This configuration proved ideal for material synthesis at high pressures 

to ~20 GPa and temperatures below 1500ºC. In this assembly, because 4É" reacts with 

the :Ò/ insulator, a sleeve made of -Ç/ was placed in between them. Two large, 3.00 

mm x 2.50 mm, -Ç/ spacers were put inside the 4É" heater that were separated by a 

rolled 0Ô foil capsule enclosed in a -Ç/ or ". sleeve with 2.00 x 2.00 mm dimensions. 

Due to the large temperature gradients in the 4É" configuration observed in previous 

experiments conducted using this furnace (sample not sintered throughout its volume), 

the capsule size should not exceed 2.00 mm in length to ensure complete sample 

sintering. In these experiments thermocouples could not be used either, due to reaction 

with the furnace. Instead, the temperature was estimated from the resistance of 4É" which 

reaches a maximum at around 1400-1500ºC after which point the furnace typically fails 

upon further heating, based on experience from previous experiments conducted in the 

Haskel laboratory (Fig.2.4). For these higher-pressure experiments, eight 7# cubes (first 

anvils) with a 4 mm truncation and ~2.83 mm thick pyrophyllite gaskets were used to reach 

the pressure target.  

In all assemblies, #Õ wire spiral coils were used in order to protect the thermocouples 

passing through the gaskets. In total twelve polycrystalline samples were successfully 

synthesised using the MAP (Table 2.1) between 5 and 20 GPa and 1000 and 2000ºC. All 
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samples were compressed for 5 hours and then sintered at their target temperature for at 

least 70 minutes. The experiments were then quenched isobarically to room temperature 

by shutting off the power and then recovered after a 6-hour decompression. The samplesô 

crystallography was then identified by powder X-ray diffraction. 

  

 
Figure 2. 3: Octahedral cell configuration of (a) 10/5 assembly with a C furnace (b) 10/4 assembly with a 

LaCrO3 and (c) 10/4 assembly with TiB2, for high-pressure material synthesis in 2D representations. 
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Figure 2. 4: Resistance behaviour of TiB2 furnace during heating of Na2MgSi5O12 majorite garnet. 

Resistance is plateauing at 0.308 ɋhms (equivalent to 1400-1500ºC), after which point, the furnace is 

predicted to undergo a rapid decrease in resistance, normally causing it to fail. 

 

Table 2.1 : Experimental conditions used during high-pressure sample synthesis. 

Run ID Starting MaterialÀ 

composition 

Cell 0 '0Á 4 (°C) Ὠ (min) Run Products 

E21-034 -Ç3É/  10/4 20 1900 90 Majorite  

E21-051 -Ç3É/  10/4 20 1800 120 Majorite  

E22-024* -Ç3É/  10/4 20 1700 90 Akimotoite  

E22-011 -Ç!Ì3É/   10/5 5 1020 70 Pyrope 

E21-041 .Á-Ç3É/   10/5 15 1100 140 .Á-Pyroxene+Per 

E21-050 .Á-Ç3É/   10/5 15 1100 300 .Á-Pyroxene+Per 

E22-007 .Á-Ç3É/   10/5 15 1100 90 .Á-Pyroxene 

E21-017** .Á-Ç3É/   10/5 15 ~150

0 

1020 .Á-Majorite  

E21-019** .Á-Ç3É/   10/5 15 ~150

0 

420 .Á-Majorite  

* ,Á#Ò/ nonconcentric. ** Synthesised by Dr. Andrew R. Thomson. Per: Periclase. À glass materials.  

 

2.2.2.2 Single-Crystal Samples 

Six 10 ɛm single-crystals with pyrope-majorite, -Ê0Ù , compositions (Ø = 0.5, 0.7, 0.8, 

0.9, 1 and 0 wt%) were to be synthesised for a high-pressure experiment on the I19 

beamline at the DIAMOND Light Source synchrotron. Three different synthesis techniques 

were assessed. The first involved simultaneous synthesis of all six composition in a 10/4 

octahedron cell with a ,Á#Ò/ furnace (see Fig. 2.3b). Instead of a 0Ô-foil capsule, two 

cylindrical, 750 ɛm, solid 2Å capsules were used. In each capsule, samples were placed 
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in three 220 ɛm holes that were drilled by spark erosion and then covered with a 250 ɛm 

thick lid (Fig. 2.5). Starting materials were prepared by stoichiometric mixtures of pyrope 

glass with hydrous majorite under isopropanol. Throughout the experiment, temperature 

was measured with 0.05 mm thick 73%2Å-725%2Å thermocouples connected between 

the two 2Å capsules. The samples were compressed to 20 GPa (5000 PSI) and then 

heated to 1700-1800ЈC for an hour. This technique, although producing single-crystals of 

the correct size (Fig. 2.6), was found to be rather problematic as it was very difficult to 

remove the samples from the solidified melt. Furthermore, SEM analysis showed that for 

the solid-solutions, the -Ç3É/ component was only found in the melt, with the 

-Ç!Ì3É/  making up all the samples. It was assumed it was the result of garnetôs fast 

nucleation from the pyrope glass.  

The same cell assembly, with a ,Á#Ò/ furnace, was used for the second technique. 

Welded Pt-tube capsules with 1.0 x 1.2 mm dimensions containing starting materials of 

hydrous Py and Mj oxide mixtures were compressed to 20 GPa (5000 PSI) and heated at 

1800-2000ЈC for 15 minutes. This method was proved to be very efficient and produced 

large single-crystals (Fig. 2.7) with the correct chemistry (Fig. 2.8). 

Finally, for the third technique Pyrope and Majorite glasses were mixed with -Ç#/ and 

+#/ carbonates in a 4:1 ratio. The starting mixtures were placed within 0.6 mm diameter 

welded Pt-tube capsules, which contained a small quantity of +#/ at the base to ensure 

carbonate melting occurred. Three capsules were enclosed within an -Ç/ sleeve on both 

sides of the thermocouple (i.e., 6 capsules were run in one experiment) and placed in-

between 2 -Ç/ spacers. A ,Á#Ò/ furnace was used in a 10/4 octahedron assembly. The 

samples were compressed to 20 GPa (5000 PSI) and heated at 1800-2000ЈC for 15 

minutes. The samples successfully synthesised from all three methods are summarised 

in Table 2.1.  

In some cases, in 10/4 experiments with a ,Á#Ò/ furnace, thermocouples could not work 

so the temperature was inferred by the relationship of Temperature with Power, which as 

seen in Fig. 2.9 it remains linear, assuming the ,Á#Ò/ is stable. For example, in Fig. 2.9 

red data points start to deviate. That was during the synthesis experiment where the 

furnace failed at 1300ЈC with the resistance and power becoming very unstable above 

1000ЈC. 
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Figure 2. 5: Recovered solid Re capsules after synthesis experiment with the first technique described in 

the text. 

    

Figure 2. 6: Examples of SEM analysis of (a) Mj50Py50 and (b) Mj70Py30 synthesised from mixing pyrope glass 

with hydrous majorite oxide. 

 

 

Figure 2. 7: Example of a recovered Pt welded capsule after a synthesis experiment of Mj50Py50. The single-

crystals produced by this technique varied from 10 ɛm to 100 ɛm in size. 

50 ͓ m 

50 ͓ m 

(a) (b) 

50 ͓ m 
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Figure 2. 8: Examples of SEM analysis of (a) Mj50Py50 and (b) Mj90Py10 synthesised from mixing hydrous 

pyrope and majorite oxides. 

 

Table 2.1 : Experimental conditions used during high-pressure sample synthesis in 10/4 octahedral 

assemblies. 

Run ID Starting composition 0 '0Á 4 (°C) Ὠ (min) Run products 

E23-006 Hydrous Oxides 18 1900-2000 15 Wadsleyite+SiO2 

E23-006 Hydrous Oxides 19 1900-2000 15 Mj90Py10  

E23-007 Hydrous Oxides 18 1800-1900 15 Mj50Py50 

E23-005a** Glass + Carbonates 20 1800 15 Akimotoite  

E23-005b** Glass + Carbonates 20 1800 15 Pyrope 

** Synthesised by Dr. Andrew R. Thomson 

 

 

Figure 2. 9: Temperature and Power relationship in a 10/4 octahedron assembly with a LaCrO3 furnace. 

 

50 ͓ m 

25 ͓ m 

(a) (b) 

50 ͓ m 
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2.3 Experimental Methods  

2.3.1 Low - and High -Temperature Experiments  

2.3.1.1 X-ray Powder Diffraction Studies of Thermal Expansion  

Thermal expansion of a solid is a direct consequence of the anharmonicity of lattice 

vibrations. The theory of thermal expansion of a crystal, developed in 1929 by Grüneisen, 

predicted the volumetric expansion coefficient, ὥ Ὕ, to reach zero as the temperature 

tends to absolute zero, Ὕ  O0. Measurements of a materialôs lattice parameters at high 

temperatures yield estimates of various thermodynamic parameters that allow us to make 

assumptions about the Earthôs chemistry, dynamics, and elasticity. Low-temperature 

measurements are also important as they allow us to detect deviations from the Grüneisen 

theory arising from the phonon spectrum of the crystal.  

The temperature dependence of the lattice parameters of three (3) synthetic samples with 

compositions .Á-Ç3É/ , -Ç3É/ and .Á-ÇȢ3ÉȢ 3É/  were determined using 

laboratory-based X-ray powder diffraction at UCL from 40 K to either their decomposition 

temperature, or to the maximum, i.e., 1473 K allowed by the equipment. At UCLôs X-ray 

diffraction laboratory, X-rays are generated using a high-voltage power supply and an X-

ray tube. In the tube, electrons are produced by heating the tungsten filament by passing 

an electric current through it. The electrons are then fired at a metal target by putting a 

large negative voltage between the filament and the target which are both contained in a 

vessel under very high vacuum. The back of the target must be water cooled as most of 

the energy of the electrons is turned into heat. A little of that energy is converted into X-

rays which escape through thin windows made of beryllium; a low-density metal allowing 

X-ray transmission.  

Diffraction data were collected using a PANalytical XôPert Pro powder diffractometer which 

operates in Bragg-Brentano parafocusing reflection geometry. It is equipped with an 

incident beam ὋὩ (111) Johansson geometry monochromator, producing a ὅέὑὥ incident 

beam, for which the wavelength, ‗, is assumed to be 1.788996 B (Hölzer et al., 1997). For 

samples synthesised at high pressures, where the volume of the recovered material was 

small, measurements were conducted without the monochromator in order to improve the 

observed peak intensity. For these experiments, an additional ὅέὑὥ incident beam with 

wavelength, ‗, assumed to be equal to 1.792835 B was included in diffraction pattern 

refinement. During data collection, the X-ray tube was operating at 40 kV and 30 mA. In 
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the incident diffracted beam optics, variable width divergence and anti-scatter slits were 

used, together with a 10 mm wide beam mask in the incident beam, in order to illuminate 

a constant 10 x 8.5 mm sample area. The X-ray detector was an XôCelerator position-

sensitive detector, and diffraction patterns were collected over the ς— range 10º to 150º in 

two different stages. 

For temperatures between 40 & 300 K, diffraction patterns were collected using an Oxford 

Cryosystems PheniX-FL low-temperature stage, a modified version of the standard 

PheniX stage (Wood et al., 2018). The PheniX-FL stage operates by means of a Gifford-

McMahon (GM) closed-cycle (Å refrigerator. It requires no refrigerants and so can run for 

an extended period (at least 5 days) without intervention by the user (Wood et al., 2018). 

The sample is cooled both by thermal conduction through the metal sample holder, and 

by (Å exchange gas at ambient pressure within the chamber. (Å gas consumption is 

extremely low, being only 0.1 L/min during normal operation (Wood et al., 2018). Data 

were collected at intervals of 20 K on warming the sample with collection times of ~120 

min. Initially, the temperature was cooled as quickly as possible (~2.5 K/min) to 80 K, and 

then at 1 K/min to 40 K. Subsequent increases in temperature were made manually at 1 

K/min (60 K/hr) after which the sample was equilibrated for 5 min before the diffraction 

patterns were measured. The temperature control was ± 0.1 K throughout. For the low-

temperature measurements, specimens with small sample volume were smeared onto a 

#Õ disk with a 2 mm thickness and a 15 mm diameter. Before the experiments, the #Õ disk 

was annealed at 400°C in an !Ò furnace for about eight hours. After annealing the #Õ plate 

was measured by X-ray diffraction at room temperature. It was found that a better fit to 

the diffraction pattern from the #Õ (which presumably originated as a rolled metal sheet) 

could be obtained by treating it as being trigonal (rhombohedral) in space group Ὑσ with 

a lattice constant ὥ = 2.557214 B and angles ὥ= ‍= ‎= 60.0342°.  

After the low-temperature measurements the samples were recovered for use in the high-

temperature stage using an Anton Paar HTK1200N furnace. Diffraction patterns were 

collected from room temperature, Ὕ = 298 K, up to 1453 K, or until decomposition, with 

all measurements performed in ὔ (N6) gas with a flow rate through the stage between 6 

- 10 cc/min. The samples were heated at 5 K/min, after which they were equilibrated for a 

time which varied from 25 min at 323 K to 6 min at 413 K and above. Measurements were 

made at intervals of 20 K with the temperature control being better than ±0.1 K throughout. 

For the high-temperature measurements, powdered samples with small volume were 

slurred, using ethanol, onto a 0Ô foil (99.999% purity, cubic crystal structure, Ὂάσά, ὤ=4, 
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and lattice constant ὥ = 3.9231 B) attached onto a !Ì/  disk with dimensions 12 x 12 x 8 

mm. The 0Ô-!Ì/  substrate was bonded to an Anton Paar sample carrier with 

Haldenwanger high-temperature ceramic cement and baked in muffled furnace at 800ºC 

for about two hours.  

2.3.1.1.1 Systematic errors in Bragg-Brentano Reflection Geometry Powder 

Diffractometry 

Internal strains in a crystal are a direct consequence of the thermal expansion and change 

the position of the peaks in the powder diffraction pattern. This peak shift can be calculated 

by differentiating Braggôs law: 

‗ ςὨίὭὲ— 

Ὠ

ῳὨ
ςὨίὭὲ— 

Ὠ

ῳὨ
‗ 

ςίὭὲ—ςὨὧέί—
ῳ—

ῳὨ
‗ π 

ῳ—  
ῳὨ

Ὠ
ὸὥὲ— 

where ῳὨὨ is the internal strain. As ς— approaches 180º, ὸὥὲ— becomes large and it is, 

therefore, important to take measurements at high Bragg angles in order to obtain precise 

unit-cell parameters. However, the observed ς— values obtained from each experiment 

depend not only on the unit-cell parameters but also on the zero point of the diffractometer, 

the specimen position and the specimen transparency.  

The zero ς— angle of the diffractometer was determined using a 3É standard (NBS SRM 

640). This 3É-powder has a mean grain size of 10 ɛm and an accurately measured lattice 

parameter of ὥ = 5.430898 B at 298.15 K(Yoder-Short, 1993), which ï since the lattice 

parameter known - subsequently allows a precise estimate of the zero-point, specimen 

position, and specimen transparency to be determined from its powder diffraction pattern. 

Furthermore, since repeated measurements made many days apart show no significant 

change in its value, it can be assumed that the zero-point of the instrument does not 

change for the entirety of an experiment.  

As the sample is heated, or cooled, small changes in the position of the sample within the 

diffractometer will occur. If accurate unit-cell parameters are to be obtained, it is necessary 

to include this specimen displacement as a variable parameter in sample refinement, and 
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to do this successfully, it requires data to be collected over the widest possible range of 

ς—. The displacement of the specimen can have a big effect on the diffraction peaks, 

especially at low ς— angles since the peak shift depends on ὧέί—, The ς— error in degrees 

is defined by: 

ῳς—  
σφπίὧέί—

“
 

Where Ὑ is the radius of the diffractometer circle, and ί is the deviation from the correct 

position on the focusing circle. In the powder refinement data analysis program used here, 

(i.e., GSAS I; Larson and Von Dreele, 1994) in which 2ɗ angles are considered in units of 

0.01o the refinable sample shift parameter, Ss, and the physical shift of the sample, ί, from 

the diffractometer axis are related by: 

ί  
“ὙὛ

σφπππ
 

Where Ὑ is the diffractometer radius, in this case 240 mm. Additionally, the peak shift due 

to specimen transparency is caused by diffraction occurring at depth within the specimen 

(assuming of course that there is sufficient sample). If the powdered sample is relatively 

thin (i.e., recovered samples from high-pressure synthesis) then the effects of 

transparency are negligible and can be  set equal to zero. In GSAS I, the ς— error from 

transparency is defined by: 

ῳς—  ὝίὭὲς— 

where the refinable parameter, Ὕ, is related to the effective linear attenuation (or linear 

absorption) coefficient, m , of the sample for the X-ray wavelength by 

Ὕ  
ωπππ

ʌὙА
 

 Finally, for Bragg-Brentano geometries, like that at UCLôs X-ray diffraction laboratory, it 

is important that the incident beam be kept on the sample at all angles to ensure a 

constant-illumination condition. If the divergence slits used are too wide  the beam will hit 

the sample holder at low angles producing low intensities. Given the need to measure 

reflections at high Bragg angles, however, which are usually relatively weak, the data 

collection method adopted in this study was to use motorised divergence and anti-scatter 

slits so as to illuminate a constant (maximum) area of the sample and then to convert with 
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software the resulting diffracted intensities to those appropriate for a divergence slit of 

fixed angular aperture. 

2.3.1.2 Neutron Powder Diffraction 

Neutrons provide a unique probe of the atomic properties of matter. They are scattered 

by the nuclei of atoms rather than the electron cloud and therefore they have many 

advantages over X-rays. They are relatively more sensitive to the presence of ólightô 

atoms, such as / and (, compared with X-ray diffraction, as their scattering cross-section 

is independent of atomic mass. Because they are scattered by the atomic nucleus, the 

scattering length, ὦ, which is equivalent to the atomic scattering factor in X-ray diffraction, 

Ὢ, does not fall with increasing ίὭὲ—Ⱦ‗. As a result, diffraction peaks for small Ὠ-spacing 

(i.e., large ς—) will be stronger in a neutron rather than in an X-ray diffraction pattern. 

Neutrons carry no electric charge and interact much more weakly with matter; this allows 

the bulk rather than the surface of the sample to be studied as well as effects of preferred 

orientation. They have a permanent intrinsic magnetic moment (1/2 spin, ‘  ρȢω) and 

are ideal for studying materials that are magnetically ordered. Accelerator-based neutron 

sources are usually pulsed (typically with a pulse repetition rate of the order of 50 Hz), like 

the one in Rutherford Appleton Laboratory in Oxfordshire. This approach produces a 

pulsed neutron flux which is ideally suited for the time-of-flight neutron diffraction 

technique. This is an energy dispersive method, that has extremely good resolution and 

involves measuring the time, ὸ, taken for a neutron to travel the total flight path, ὒ, from 

the moderator to the detector, via the sample (i.e., source-sample + sample-detector 

distance). In this approach a polychromatic beam of neutrons with many different 

wavelengths, or energies, is directed towards the sample. Those with shorter 

wavelengths, higher energies, travel faster and after being diffracted by the sample, arrive 

at the detector earlier. Knowing that ὺ  ὒȾὸ and the flight path, ὒ, Braggôs law, combined 

with de Broglieôs relation, may be re-written as  

Ὤὸ

άὒ
 ςὨίὭὲ— 

Thus, the time-of-flight in ms 

ὸ  
ςάὒίὭὲ—

Ὤ
Ὠ 

with Ὤ Planckôs constant and ά the mass of the neutron. Substituting these values, we 

obtain the expressions 
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ὸ υπυȢυφὒίὭὲ—Ὠ or Ὠ ρȢωχχØρπὸὒίὭὲ—  

With the target-to-specimen flight path measured in metres (~96 m for the beamline used 

in this thesis, see below) and Ὠ-spacing in Bngstrom units (see, Fortes et al., 2008). 

Neutron diffraction data for this thesis were collected with the High-Resolution Powder 

Diffractometer (HRPD) (Ibberson, 2009; Ibberson et al., 1992) at the STFC ISIS spallation 

neutron source, Rutherford Appleton Laboratory, UK. The ~96 m flight-path allows HRPD 

to achieve a resolution (ὗ) independent of d-spacing, in backscattering geometry, of 

ψØρπ, making the HRPD one of the highest resolution powder diffractometers in the world. 

Data were collected using two different sample environments; the low-temperature closed-

cycle refrigerator (CCR) and the high-temperature furnace with vanadium elements and 

the sample held in a 4É-:Ò--Ï (TMZ) alloy cylindrical sample can. At all temperatures, data 

were collected in HRPDôs standard 100 ms wide time-of-flight window in the range of 30-

130 ms (Ὠ-spacing 0.65-2.6 B) normalised to the incident spectrum and corrected for 

detector efficiency by reference to a 6ȡ.Â standard. Data were exported in a format 

suitable for analysis with GSAS/EXPGUI (Larson and Von Dreele, 1994; Toby, 2001) 

using the Mantid library of diffraction algorithms (Arnold et al., 2014; Mantid, 2013). 

For the low-temperature data collection, between 10-340 K, 4.5 gr of sample were loaded 

into an 18 x 23 mm !Ì-alloy óslab canô sample holder with a 5 mm depth. The holder had 

holes drilled on either side of the specimen area, one to accept the 2È&Å resistance 

thermometer, and another to take a cartridge heater (Fortes, 2019). Both faces of the 

holder were sealed with 125 ɛm thick vanadium, 6, foil windows held in place with steel 

frames and indium wire. The exposed steel and !Ì surface on the front face of the holder 

were masked from the incident beam with 'Ä and #Ä foils (Fortes, 2019). The assembly 

was then loaded into the ὅὅὙ which was held under a partial pressure of 30 mbar of (Å 

exchange-gas. Initial data collection was taken at 100 K for 80 ɛAh of proton beam current 

(~104 min) with subsequent measurements for 8 ɛAh (~10 min) taken every 5 K on cooling 

until 10 K (Tripoliti et al., 2023). The temperature was then increased to 110 K and data 

were collected in 10 K increments for 8 ɛAh per data point up to 340 K. Longer data 

collection (80 ɛAh) at 10, 40 and 300 K was performed to give data more suitable for 

structure refinement.  

In the high-temperature environment, 4.8 gr of sample were sealed under (Å gas at room 

temperature in a 4-: cylindrical sample can, with internal diameter of 8 mm and a 0.25 
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mm wall thickness. This was then placed in a vacuum furnace (10-6 mbar) and heated 

using 6 foil elements. Two +-type thermocouples were secured on either side of the 

sample can. After an initial data collection at 297 K (20 ɛAh) a measurement was taken 

at 373 K (40 ɛAh) after which data were collected in 20 K increments from 373 k to 1273 

K counting for 10 ɛAh at each point, except at 573, 873 and 1173 K where counting times 

were increased to 80 ɛAh (at both 573 and 873 K) and 120 ɛAh, respectively.  

2.3.2 Structure Refinement  

All diffraction data, collected in this thesis were refined with the Rietveld method using the 

GSAS I & II suite of programmes (Larson and Von Dreele, 2000; Toby & Von Dreele, 

2013) with the EXPGUI graphical interface (Toby, 2001). For successful refinement, it is 

essential that data be collected appropriately. Factors to consider prior to data collection 

are the geometry of the diffractometer, instrument alignment and calibration, the 

wavelength, appropriate sample preparation and thickness, slit sizes, and necessary 

counting times. The principle of this method is to represent a diffraction pattern, both peaks 

and background, with a multi-parameter mathematical model. These parameters can be 

divided into two groups, the profile parameters that define the positions, halfwidths 

(ὋὟȟὋὠȟὋὡ, possible asymmetry of the diffraction peaks and preferred orientation, and 

the structure parameters that define the contents of the asymmetric unit-cell. The best set 

of these parameters is then found by an iterative least-squares calculation that minimizes 

the differences between measured (observed) and calculated diffraction patterns. The 

goodness-of-fit is given by:  

Ὑ  
ρ

ὔ
ὔ ὔ  

Where ὓ is the number of data points in the diffraction pattern and ὔ  and ὔ are the 

number of counts in the observed and calculated data points Ὥ. The statistical error is 

assumed proportional to ὔ .  

In addition to the structural parameters (e.g., fractional coordinates, ὼ, ώ, ᾀ). Rietveld 

refinement can determine precise lattice parameters, peak shape, atomic displacements, 

polyhedra bond lengths and angles variation with temperature etc. Therefore, all samples 

studied in this thesis were refined with the Rietveld method. On the other hand, the #Õ 

disk and 0Ô-foil standards were refined with the Le Bail method (Le Bail et al., 1988) as it 
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produces less-biased cell parameters when fitting data from materials that might not be a 

true random polycrystalline sample. 

2.3.3 High Pressure Experiments  

High-pressure X-ray diffraction is the most widely used method by which the material, held 

under pressure, can be measured to determine pressure induced strains. It can be 

performed on single-crystals or powders. High-pressure X-ray diffraction experiments are 

usually performed using diamond-anvil cells (DAC) or multi-anvil presses (MAP). The 

former uses a relatively small force applied to the back of the diamonds, applied to a very 

small area and the latter uses a much greater force applied to a much larger area.  

2.3.3.1 Synchrotron Experiments at DIAMOND I19 Beamline 

Beamline I19 at DIAMOND Light House Source, Harwell Campus, Oxfordshire, UK, is a 

high-flux tuneable-wavelength facility for the study of small molecule systems by single-

crystal X-ray diffraction. The diffractometer, manufactured by Crystal Logic, has a Newport 

4-circle goniometer (ς—) and is equipped with a Pilatus 300K photon-counting ,• ,‖ ,‫ 

area detector that can operate in shutterless mode, eliminating step-scanning and 

allowing for continuous scans with increased resolution. The zero-noise detector reduces 

the problem of simultaneous saturated reflections at low angles and extremely weak high-

angle data. Wavelength selection is achieved using a cryo-cooled doubled-crystal 

monochromator (DCM) equipped with a 3É-111 crystal set. The DCM is designed to select 

energies in the range of 5 eV to 28 eV while maintaining fixed-exit X-ray beam geometry 

(Nowell et al., 2012). For the purposes of this thesis, to collect high-resolution data, the 

reference energy of 25.514 keV was used with ‗=0.4859 B (!Ç +-edge) to give a complete 

dataset from a single 340º • sweep (1700 images, 0.2º/image). Two DACs were (Å-

loaded, each with three single-crystals of ~ 10 ɛm size and one Ruby pressure marker. 

The first DAC with 7# seats contained -Ê0Ù, .Á-Ê and -Ê0Ù garnets (where Mj = 

-Ç3É/  majorite and Py = -Ç!Ì3É/  pyrope). The second DAC contained Py, natural 

Almandine-Spessartine (!ÌÍ3ÐÅ) and Akimotoite (Ak). Compression failed in both 

DACs due to (Å-gas leak in both pressure cells. A third DAC was loaded with two garnet 

single-crystals with compositions &ÅȢ-ÎȢ !Ì3É/  Almandine-Spessartine, and 

-Ê0Ù along with a Ruby pressure marker. Almandine was natural sample provided by 

the Natural History Museum mineral collection, while the majorite solid-solution was 

synthesised at UCLôs multi-anvil press see Table 2.3. Pre-indented rhenium, Re, gaskets 

were used in all three loadings. During the experiment, the pressure was determined by 
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the shift of the Ruby Ὑ fluorescence line, under blue-green excitation, measured with a 

Betsa spectrometer with Ὑ being equal to 694.2 nm at ambient conditions (Fig. 2.10). The 

pressure at each measuring point, was then derived via (see, Mao et al., 1978, 1986; Bell 

et al., 1986): 

ὖ  
ὃ

ὄ
 ρ  

ɝʇ

‗
ρ 

Where  ̈́= 19.04 ɀbar and ὄ a constant equal to 7.665 ( ɀao et al., 1986). After image 

collection on the area detector, the diffraction patterns were integrated with the DIALS 

package functions (Winter et al., 2022) after which the unit-cell parameters, volume and 

space-group of the samples were determined in CrysAlis Pro, Agilent Technologies 

(Oxford Diffraction 2006). Before compression, all samples were measured at ambient 

conditions outside the DAC for structure refinement. Structure factors, Ὂ , extracted from 

CrysAlis Pro in .ὬὯὰ files were refined along with atomic positions, displacement 

parameters and site occupancies using the GSAS I suite of programmes (Larson and Von 

Dreele, 2000; Toby & Von Dreele, 2013) with the EXPGUI graphical interface (Toby, 2001) 

(Fig.2.11).  

 

 

Figure 2. 10: Ruby fluorescence under blue-green excitation from 0 to 37 GPa measured with a Betsa 

spectrometer on the I19 Beamline, Diamond Light Source during my high-pressure experiment on the 

Equation of State (EoS) of a natural almandine-spessartine single-crystal. R1 fluorescence line is the 

strongest, marked at 0 GPa equal to 694.2 nm. 
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Figure 2. 11: Examples of X-ray diffraction images processed in CrysAlis Pro. Powder rings shown in the 

pictures are from the metal gaskets within the DAC. 
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2.4 Mathematical Formulae and Equations of State Modelling  

Diffraction experiments provide measurements of the unit-cell parameters of a sample at 

high pressures and/or temperatures. An Equation of State (EoS) is a mathematical 

expression that establishes the relationship between the materialôs unit-cell parameters, 

and thereby its volume, with pressure, temperature, or any other variable. It allows 

interpolation, extrapolation, and derivation of other, non-measured, thermoelastic or 

thermodynamic quantities that are unique to each sample by assuming some underlying 

physical principles that enable access to the character of the Earthôs interior. Choosing 

the correct EoS depends on the type of experiment and environment, i.e., ambient 

conditions or high pressure and temperature (Fig. 2.12).  

 

Figure 2. 12: P-T diagram showing different EoS used to calculate the unit-cell volume (after Angel et al., 
2018). 
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2.4.1 The Thermal Expansion  

The volume thermal expansion is defined as: 

‌ Ὕ                    (2.1) 

and is used to express the volume change of a substance that occurs in response to a 

temperature change. In a microscopic sense, ‌ Ὕ is caused by the anharmonic nature 

of the crystal lattice vibrations. It is a 2nd-rank symmetric tensor relating the temperature, 

Ὕ, a scalar, and the strain tensor, ‐, by 

‐  ‌ ȢὝ 

where 

‌  

‌ ‌ ‌
‌ ‌ ‌
‌ ‌ ‌

  

To first order, the volume coefficient of the thermal expansion is therefore given by 

‌  ‌ ‌ ‌ 

The constants ‌ȟ‌ and ὥ, which correspond to ‌ , ‌  and ‌ , respectively, are known 

as the principal expansion coefficients. The number of independent constants ‌  of the 

thermal expansion depends on the system to which the crystal belongs. The maximum 

number of independent constants is six but is reduced for crystals of higher symmetry; 6 

for triclinic, 4 for monoclinic, 3 for orthorhombic, 2 for tetragonal and hexagonal, and 1 for 

cubic (Table 2.4).  

The thermal deformation ellipsoid is a sphere in the cubic system and a spheroid of 

revolution in the tetragonal and hexagonal systems. In all crystals, except those belonging 

to triclinic and monoclinic systems, the principal axes of the ellipsoid coincide with the 

principal crystallographic axes. For triclinic and monoclinic crystals, the orientation of the 

ellipsoid, with respect to ὥ-, ὦ- and ὧ-axes, is given by the additional number of constants.   
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Table 2.4 : Thermal expansion tensors referred to axes in the conventional orientation. 

Crystal System Axial relations No. of constants ‌ Ὕ tensor 

Triclinic ὥ  ὦ Í ὧ 

‌ Í ‍ Í ‎ 

6 ‌ ‌ ‌
‌ ‌ ‌
‌ ‌ ‌

 

Monoclinic ὥ  ὦ Í ὧ 

‌ = ‍ = 90º and ‎ Í 90Ü 

4 ‌ π ‌
π ‌ π
‌ π ‌

 

Orthorhombic ὥ  ὦ Í ὧ 

‌ = ‍ = ‎ = 90º 

3 ‌ π π
π ‌ π
π π ‌

 

Tetragonal ὥ = ὦ Í ὧ 

‌ = ‍ = ‎ = 90º 

2 ‌ π π
π ‌ π
π π ‌

 

 

 

Trigonal 

 

 

Hexagonal 

ὥ = ὦ = ὧ 

‌ = ‍ = ‎ Í 90Ü <120Ü 

ὥ = ὦ Í ὧ 

‌ = ‍ = 90º and ‎ = 120º 

2 

Cubic ὥ = ὦ = ὧ 

‌ = ‍ = ‎ = 90º 

1 ‌ π π
π ‌ π
π π ‌
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Figure 2. 13: Example of Forsterite's 3D thermal expansion tensor, using the GUI WinTensor (Kaminski, 

2004), at room temperature 298 K along with cross-sections showing the expansion of each crystallographic 

direction. 

 

To describe the volume thermal expansion relative to a reference temperature, Ὕ, the 

equation suggested by Fei (1995) is commonly employed.  

ὠὝ  ὠ ᷿ ‌ Ὕ ‬Ὕ                 (2.2) 

With ὥ Ὕ given by the polynomial expression of the form 

‌ Ὕ  ὥ  ὥ ὥὝ                  (2.3) 

Where ὥ, ὥ and ὥ (Ò 0) are constants determined by fitting the experimental data (Fei, 

1995).  

When the thermal expansion coefficient is temperature independent Eq. (2.2) becomes 

ὠὝ  ὠ ÅØÐὥ Ὕ Ὕ                  (2.4) 
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Conversely, Grüneisen theory provides a more physically useful interpretation of the 

thermal expansion curve while simultaneously allowing estimates of the materialôs Debye 

temperature, — . Specifically, the 2nd-order Grüneisen-Debye approximation has been 

observed to be more appropriate for covering a wide temperature range (e.g., Wood et 

al., 2002; Lindsay-Scott et al., 2007; Pamato et al., 2016; Hunt et al., 2017).  

ὠὝ  ὠ                  (2.5) 

where, ὠ is the unit-cell volume at 0 K, —  the Debye temperature, and ὗ and ὦ constants 

that relate the volume with the bulk modulus, ὑ ȟ  and its first derivative, ὑᴂ , at 0 K via 

ὗ  and ὦ . The parameter ‎ is a dimensionless Grüneisen parameter that is 

assumed unique for each material. In the Grüneisen-Debye model, these four parameters 

are required to describe the thermal expansion of a solid. When the thermal expansion is 

accurately measured experimentally, over a wide range of temperatures, the four 

parameters may be uniquely defined by fitting the experimental data to the model. The 

internal energy, Ὗ, may be calculated from the Debye model 

ὟὝ ωὔὯὝ ᷿ ‬ὼ
Ⱦ

                (2.6) 

Where ὔ is the number of atoms in the unit-cell, and Ὧ  the Boltzmannôs constant.  

A further check on the reliability of the Grüneisen-Debye model of Eq. (2.5) is provided by 

considering the relationship between the thermal expansion coefficient of the unit-cell 

volume and the heat capacity. The isochoric heat capacity, ὅ, is the change in internal 

energy ὟὝ with temperature at a constant volume, ὅ  . The assumption of 

the Debye model for the internal energy therefore yields to the isochoric or volumetric heat 

capacity.  

ὅ ωὲὃὯ ᷿  ‬ὼ
Ⱦ

               (2.7) 

Where ὲ the number of formula units and ὃ  the Avogadroôs number. The volumetric, ὅ, 

heat capacity is related to the isobaric, ὅ, via the lattice vibration model proposed by 

(Kieffer, 1985). 

ρ Ὕ‎ὥ Ὕ                  (2.8) 
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Where ‎  the thermal Grüneisen parameter (Poirier, 2000), which is assumed to be 

constant and equal to the Grüneisen parameter ‎ and is defined as  

‎ ‎                    (2.9) 

Differentiating Eq. (2.9) and recalling Eq. (2.7) gives the following expression for ‎  within 

the 2nd-order Grüneisen approximation (e.g., Wood et al., 2002) 

‎  ὑ                            (2.10) 

Heat capacity is a fundamental thermodynamic parameter, with ὅ usually directly 

measured from experiments and ὅ calculated directly from lattice dynamics. When 

corrected from ὅ to ὅ, the limiting value of σὲὙ, or σὲὃὯ , else know as the Dulong-

Petit limit, measured in J mol-1 K-1, is found for all substances at high temperatures. Where 

Ὑ the gas constant equal to 8.3144598 and ὲ the number of atoms per formula unit. The 

Dulong-Petit limit is a traditional measure of intrinsic anharmonicity related to interactions 

among the vibrational waves that contribute to ὅ. On the other hand, the temperature 

dependence of the isobaric heat capacity, ὅ, is determined by an extrinsic anharmonicity 

(i.e., volume dependent properties) due to the contribution of the thermal expansion and 

the Grüneisen parameter. 

Although, the 2nd-order approximation of the Grüneisen-Debye model can provide a good 

basis to assess the behaviour of a material it should be pointed out that the theory suffers 

from several deficiencies. In particular, the internal energy is derived from a harmonic 

approximation while the constants ὗ and ὦ are assumed to be temperature independent 

though ὑ , ὑᴂ  and ‎ have some temperature dependence.  

A modification of Eq. (2.5) can be applied to model the anisotropic axial expansivities in 

materials such as post-perovskites and olivines (e.g., Tripoliti et al., 2023; Lindsay-Scott 

et al., 2007). The expression is of the form 

ὢὝ  ὢ                     (2.11) 

Where ὗ  , with the subscript ὢ denoting that we are considering axial (ὥ,ὦ,ὧ) 

expansivities rather than volumetric expansivities. ὑ ὢ  is the axial compressibility 

and ὑ  its first derivative with respect to pressure, both evaluated at Ὕ = 0 K. For cubic 

crystals ὦ
  

  but for lower-symmetry crystals the expression becomes more 
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complex; for example, for the a-axis of an orthorhombic crystal ὦ ὑ  ɀ ςὑ Ⱦὑ   

  ςὑ Ⱦὑ   ρȾς (Lindsay-Scott et al., 2007). 

2.4.1.1 The Thermal Expansion of Antiferromagnetic Materials 

The contribution of magnetism to the thermal expansion has been previously modelled by 

Wood et al. (2004) using a mean-field theory approximation that provides a good 

prediction of the magnetic contribution to the dependence of the unit-cell volume on 

temperature, ὠ Ὕ, for Ὕ  Ὕ.  The mean-field theory of magnetisation was initially 

constructed by P. Weiss and P. Curie to explain the behaviour of ferromagnets. Such 

systems behave like paramagnets at high temperatures, but below certain critical 

temperature they exhibit spontaneous magnetisation, i.e., sizable macroscopic magnetic 

moment even in the absence of an external magnetic field.   

For ferromagnets it is assumed that the magnetic contribution to the unit-cell volume, 

ὠ Ὕ, is proportional to the spontaneous magnetization ὓ  (e.g., Shiga, 1981) and thus 

 ὠ Ὕ ὃὓ                   (2.12) 

Where ὃ is a constant of proportionality. To calculate, ὓ , it is necessary to solve, 

simultaneously, both sides of the following equation graphically.  

ά ÔÁÎÈ
 

                  (2.13) 

Where ά  ὓȾὓ  and ὸ  ὝȾὝ. ὓ  here is the saturation magnetization, the maximum 

magnetisation we could obtain when all magnetic moments are aligned (-  Îʈ Ƞ 

Blundell, 2001), ὓ the magnetisation and Ὕ the critical or NÅǮel temperature. The left-hand 

side of the equation is a straight line with slope proportional to temperature, Ὕ Ὕ , whilst 

the right-hand side is a Brillouin function ὄ ώ solved for a value of total angular 

momentum ὐ = 0.5, as it is known to provide the best fit to the magnetization curve of &Å 

materials and other ferromagnetic transitions elements (Dekker, 1964) 

ὄ ώ  ὧέὸὬ ώ ὧέὸὬ    
Ⱦ
ựự   ὄȾ ώ ÔÁÎÈ ώ           (2.14) 

Where in this case ώ άȾὸȢ 

The mean-field theory model, though a óprimitiveô model in its predictions, especially 

concerning the systemôs behaviour at Ὕᴼπ K and in the region around Ὕ (the so-called 

critical region), where the theory can deviate from experimentally obtained values (see, 

Wood et al., 2004). The model of Eq.(2.12) can still provide an acceptable fit, however, 
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although it cannot be used for fine-tuned quantitative data interpretation. This poor 

performance is mainly attributed to neglect of short-range interactions in the critical region 

and to simple averaging of the values (smoothing) at Ὕᴼπ which cannot describe 

properties associated with propagating excitations.  

Preliminary data analysis of the magnetic material studied in this thesis, i.e., &Å3É/, 

employing the mean-field theory of ferromagnets showed that ὠ Ὕ is closer to ὓ  than 

ὓ . Hence, it was decided to amend Eq.(2.12) to better describe the materialôs behaviour 

in the region Ὕ  Ὕ by including a constant of propostionality, ‍, to the value of the 

reduced magnetization. 

ὠ Ὕ ὃὓ                                      (2.15) 

In general, in an antiferromagnetic material the magnon contribution to the low-

temperature specific heat varies as Ὕ  (e.g., Krishnan et al., 1979). A similar contribution 

is therefore expected to the thermal expansion, but so far, there are no experimental 

studies on the magnon contribution to the thermal expansion in antiferromagnetic 

materials.   

Consequently, the total volume, ὠὝ, dependence on temperature was then calculated 

from 

ὠὝ  ὠ Ὕ   ὠ Ὕ                      (2.16) 

Where  ὠ Ὕ the nuclear volume calculated via the 2nd-order GrÕneisen-Debye 

approximation of the thermal expansion Eq. (2.5).  

2.4.2 High -Pressure and High -Pressure and Temperature Equations of 

State 

2.4.2.1 The Murnaghan EoS 

The Murnaghan EoS (Murnaghan, 1937) can be derived from the assumption that the 

incompressibility (or  bulk modulus), ὑ , varies linearly with pressure ὑ  ὑ  ὑᴂὖ . 

This results in the following relationship between ὖ and ὠ 

ὠ  ὠ ρ
ϳ

                 (2.17) 

Or else 

ὖ  ρ                 (2.18) 
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Because the Murnaghan EoS is invertible (i.e., can be written as a function of both ὖ and 

ὠ) it has become very óattractiveô for use in thermodynamics. However, it can only 

reproduce ὖὠ and ὑ  data accurately for small compressions of up to 10% (i.e., ὠὠϳ  ~ 

0.9). For greater pressures it predicts ὑᴂᴂ = 0 whereas experimental data indicate that 

most solids exhibit a small negative values for ὑᴂᴂ of the order of ρὑϳ  (e.g., Jackson 

& Nielsen, 1982). Adding another term in the expression for bulk modulus to include the 

term ὑᴂᴂ has been found to be extremely complex and impractical (Freund & Ingalls, 

1989; Angel et al., 2014). 

2.4.2.2 The Birch- Murnaghan EoS 

We know from the equation of the Helmholtz free energy, Ὂ Ὗ ὝὛ, where Ὗ, the 

internal energy and, Ὓ, the entropy, that ὖ is the volume derivative of Ὂ, and therefore 

ὖ                     (2.19) 

The Helmholtz free energy, Ὂ, is expected to increase with compression and may be 

expressed by a Taylor series in the finite Eulerian finite strain (Birch, 1947)  

Ὂ  ὥ ὥὪ ὥὪ  ὥὪ Ễ               (2.20) 

with 

Ὢ πȢυ ὠ ὠϳ Ⱦ ρ                 (2.21) 

Where, ὠ the unit-cell volume at 0 GPa and 300 K. Because the absolute value of Ὂ is 

arbitrary, the coefficient of the first term of Eq. (2.20), i.e., ὥ, is zero and since ὖ π in 

an uncompressed state, Ὢ, should also be zero, therefore leading to  

ὖ π  
ȟ ȟ

ὥ
ȟ

π                      (2.22) 

Truncating Eq. (2.20) to the Ὢ term for the first approximation we obtain 

Ὂ ḙ ὥὪ                    (2.23) 

By substituting Eq. (2.23) into Eq. (2.19), we have 

ὖ  ὥὪ  ςὥ Ὢ               (2.24) 

With the value of coefficient ὥ given by  

ὥ τȢυὑ ὠ                  (2.25) 
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From the definition of the finite strain, Eq. (2.21), the volume derivative of Eulerian finite 

strain is  

πȢυ 
Ⱦ

ρ  
Ⱦ

              (2.26) 

By combining Eq.(2.21) and Eq.(2.24) one can obtain the 2nd-order Birch-Murnaghan EoS 

ὖ  τȢυὑ ὠ  ρ  ρȢυὑ             (2.27) 

The concept of the 3rd-order Birch-Murnaghan EoS is almost identical with the only 

difference being that the Helmholtz free energy, expressed by the Eulerian finite strain, 

Eq.(2.20), is truncated up to the third term as  

Ὂ ḙ ὥὪ  ὥὪ                   (2.28) 

By substituting Eq. (2.28) into Eq. (2.29) and differentiating it with respect to volume (see, 

Katsura & Tange, 2019), we obtain 

ὖ  
‬

‬ὠ
ὥὪ  ὥὪ  ςὥὪ σὥὪ

‬Ὢ

‬ὠ
 

 ςὥ ρ ‚Ὢ Ὢ                    (2.29) 

where 

 ‚ ρȢυὑᴂ τ                 (2.30) 

Where ὑᴂ  the pressure derivative of the isothermal bulk modulus at standard pressure. 

Incorporating Eq. (2.27) and Eq. (2.28) to Eq. (2.29) we obtain the 3rd-order Birch-

Murnaghan EoS 

ὖ  τȢυὑ ὠ ρ ρȢυὑ τ  πȢυ ρ   πȢυ ρ    

 ρȢυὑ   ρ ὑ τ ρ              (2.31) 

The Birch-Murnaghan EoS is based upon the concept of Eulerian finite strain. If ὑ τ 

then the 3rd-order EoS reduces to the 2nd, but the 3rd-order Burch-Murnaghan EoS 

(BMEoS) must still be used when dealing with very high pressures where ‬ὑȾ‬ὖ varies 

significantly with pressure. These EoS also contribute to the determination of the stability 
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field of a phase by providing the P-V term as well as the deformation energy of the total 

Gibbs energy (see, Pavese et al., 2003). In the case of the Birch-Murnaghan EoS the 

deformation energy is given by:  

ὈὉ  ὠ ωςϳ Ὢ ὑ ὅὪ                (2.32) 

Where, ὄ σςϳ ὑ ὑ τ, ὅ  σςϳ ὑὑ σςϳ ὑ ὑ ςρςϳ ὑὑ ρτσφϳ ὑ 

(see Fan et al., 2015), Ὢ from Eq.(2.23) and ὑ ρὑϳ σ ὑ τ ὑ συωϳ  

(see, Angel et al., 2014). 

2.4.2.3 Thermal Equations of State 

Equations to describe the variation of unit-cell volume as a function of both ὖ and Ὕ can 

be developed, in general, by combining the thermal expansion model, ὥ Ὕ, with any 

isothermal EoS and a model of the variation of the bulk modulus, ὑȟ with temperature at 

room pressure, ‬ὑ ‬Ὕϳ . Like any pressure-volume-energy equation, the Mie-Grüneisen, 

must be supplemented by further thermodynamic models to include quantities such as 

temperature, entropy, free energy, etc. Often, this additional information is specified by a 

model of specific heat at constant volume, ὅ. The Debye model, in particular, is well 

suited for this purpose.  

Thermal pressure describes the increase in internal pressure caused by heating at 

constant volume. This is given by  

 ‌ Ὕὑ                              (2.33) 

Where ‎ the thermodynamic Grüneisen parameter. Integrating at constant ὠ and ‎ returns 

Ўὖ ὅ᷿‬Ὕ = 
Ў

                                       (2.34) 

This is the Mie-Grüneisen EoS (MGEoS). From Eq. (2.34) we obtain the thermal 

vibrational pressure 

ῳὖ  ᷿ ‌ Ὕὑ‬Ὕ ὟὝ  ὟὝ ὠȟὝ ὟὝ ὠȟὝ                  (2.35) 

ὟὝ is the internal energy that can be obtained from Eq.(2.6) with the Debye temperature 

calculated via 

—  — Ὡὼὴ                    (2.36) 

The volume dependence of the Grüneisen parameter, ‎, is normally expressed as  
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‎ ‎                              (2.37) 

Where the parameter ή is the 1st-order volume derivative of ‎ that describes its volume 

dependency. It is generally known as the second Grüneisen parameter and is expressed 

by 

ή                     (2.38) 

At high temperatures, ‌ Ὕὑ  remains almost constant, but individually these values 

(‌ and ὑ ) depend on pressure and temperature, respectively. This variation is mostly 

related to the variation of the bulk modulus, ὑ  with temperature and is given by 

                             (2.39) 

These effects are more readily expressed by the Anderson-Grüneisen parameter, ‏, 

which takes both isothermal and adiabatic forms. The Anderson-Grüneisen parameter, in 

general, allows us to express the pressure dependence of the thermal expansion.  

‏                               (2.40) 

And since 

                  (2.41) 

We have 

‏   Ÿ                             (2.42) 

Eq. (2.42) shows us how thermal expansion varies with relative volume change and 

therefore the pressure. An alternative way to express ῳὖ of Eq. (2.35) is via: 

ῳὖ  ‌ὑ Ὕ    Ὕ   ὰὲ  ς Ὕ             (2.43) 

The total pressure, ὖὠȟὝ, is then derived by the summation of the static and thermal 

vibrational terms  

ὖὠȟὝ ὖὠȟ   ῳὖ                             (2.44) 

Following this form, Eq.(2.44) is referred to as the Mie-Grüneisen-Debye EoS (MGDEoS). 

Where the first term, the static pressure, ὖὠȟ  , that is obtained from the BMEoS of 
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Eq.(2.31), and is the pressure required to compress the material from its volume, ὠ, at 

reference conditions (i.e.,   and ὖ = 0), to the volume at the same temperature,   (Angel 

et al., 2019). The second term is the thermal vibrational pressure, ῳὖȟ obtained from the 

MGEoS of either Eq.(2.35) or Eq.(2.43) and it is defined as the pressure change along an 

isochor of the material (Angel et al., 2019). 

From  one can obtain ὑ  dependence on temperature via: 

  ‌ὑὑ                           (2.45) 

ὑ  ὑ Ὕ                              (2.46) 

One can obtain the adiabatic bulk modulus, ὑ, via 

ὑ ρ ‌‎Ὕὑ                             (2.47) 

An estimate of the heat capacity, ὅ, can be made via 

ὅ  ὅ  ‌ὑὝ                            (2.48) 

Where ὅ the isochoric heat capacity estimated from the Debye model of Eq.(2.7).  

2.4.3 Fitting Equations of State   

Experimental data, like the unit-cell volume, are dependent variables meaning, in the case 

of ὠ, that they depend on the pressure and temperature conditions they were measured, 

ὠ ὪὖȟὝ. Mathematical expressions, like the ones described above, are more complex, 

describing systems with multiple independent unknown variables whose values, at certain 

ὖ-Ὕ conditions, define materialsô physical properties. Solving a model while simultaneously 

estimating the values of these parameters, e.g., ὑ , — , and ‎, requires a linear or non-

linear least-squares algorithm that can minimize the difference between the 

experimentally observed values and the predictions of the appropriate mathematical 

expression, i.e., the Equation of State. The least-squares solution of an EoS can be 

formalized as follows:  

…  ύ ὠ ὠ  

Where ὲ, the number of data points, e.g., unit-cell volume data, and ύ, the weights, e.g., 

the unit-cell volume error coming from the fit of the unit-cell parameters to the diffraction 
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data itself after the Rietveld of Le Bail refinement. The minimizer, … , not only produces 

the fit to the data but estimates the values of the unknown model parameters and provides 

a measure of the quality of the fit, Ὑ  (goodness of fit) and SSR (sum of squared-roots) 

once the least-squares process has reached convergence. Convergence of …  allows 

calculation of the variance-covariance matrix, ὧ, of the unknown fitted parameters from 

their partial derivatives. The diagonal elements of the ὧ matrix give the standard errors 

of the unknowns. The off-diagonals of the ὧ are the covariances, and they measure the 

degree to which the values of the refined variables are correlated. Normalisation of the 

covariance elements with the diagonals of ὧ, (the variance) yields to the correlation 

coefficient that varies between -1 and 1. If the value obtained is zero, then then the 

parameters are completely uncorrelated and thus, can be determined independently from 

one another. If the value obtained is non-zero, then the values are dependent. If positive, 

then a good fit can be produced by increasing them simultaneously, if negative one should 

increase while the other decreases.   

2.4.3.1 Solving the Integral of the Internal Energy for the Least-Squares 

In order to run the least-square regression for the BM-MGD EoS, the integral of the internal 

energy, ὟὝ , ᷿ ‬ὼ
Ⱦ

, that in the thermal expansion (Eq. (2.5)) contains the Debye 

temperature, — , as an unknown must be evaluated. This can be done by numerical 

integration, but an alternative solution is provided by the ὑςτ analytical approximation of 

Khishchenko (2020).   

ὑ   
ὃ

—
Ὕ

 ὃ
ὃ

—
Ὕ

 
ὃ

—
Ὕ

ὃ

—
Ὕ

Ὡ ϳ  

with ὰ = 1, 2 and the coefficients ὃ , ὃ , ὃ , ὃ ȟ and ὃ  defined as  

ὃ  
“

υ
 

ὃ  
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The differences between the ὑςτ approximation and the point-by-point numerical 

integration of the ὟὝ integral are negligible (Fig. 2.14) but the use of ὑςτ significantly 

reduces computing time and allows the integral to be solved within the model. 

 
Figure 2. 14: Comparison of point-by-point numerical integration of the Grüneisen-Debye model integral of 

the internal energy, U(T), with the K24 approximation of Khishchenko (2020). Comparison was performed 

for various ɗD values and for 0<T<2000. U(T) is shown in coloured circles while the K24 in solid, coloured, 

lines.  
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Chapter 3  

 
X-ray Powder Diffraction Experiments  

In this chapter I present the results of three X-ray powder diffraction experiments carried 

out using UCLôs PANalytical XôPert Pro diffractometer equipped with environmental stages 

capable of collecting diffraction data over a wide range of temperatures, from 40 to 1473 

K (see Paragraph 2.3.1.1). Three synthetic upper mantle minerals were measured in order 

to explore their thermodynamic properties by measuring their thermal expansion.  

3.1. The Thermal Expansion of Synthetic Mg2SiO4 

The thermal expansion of synthetic -Ç3É/ forsterite was measured from 40 K to 1473 K 

by means of powder X-ray diffraction at UCLôs laboratory facilities (see Paragraph 

2.3.1.1). The sample used was supplied by CERAC Speciality Inorganics, Milwaukee, 

U.S.A.; no indication of impurities could be seen in its diffraction pattern. A total of 74 

diffraction patterns were collected in two different stages: 14 in the PheniX-FL cold-stage 

and 60 in the Anton Paar high-temperature furnace. All diffraction patterns were refined 

with the Rietveld method using the GSAS I/EXPGUI suite of programmes (Larson & Von 

Dreele, 2000; Toby, 2001). In addition to the unit-cell parameters, the background, scale 

factor, and the fractional coordinates of -Ç3É/  were refined, as were the isotropic 

displacement parameters of the atoms with those of the -Ç atoms in the octahedral sites 

and those of the / atoms constrained to remain equal. -Ç3É/  was found to be textured 

and so an empirical 2nd-order spherical harmonic preferred orientation correction was 

applied to all data. With varying temperature, small changes of the position of the sample 

in the diffractometer usually occur. Therefore, to obtain accurate unit-cell parameters, the 

specimen displacement and specimen transparency were also included in the refinement. 

In total, 32 variables were included in the refinement, which converged with average ὧὬὭ 

values equal to 1.466 and 1.481 for the low and high temperature data, respectively. An 

example of a refined diffraction pattern at Ὕ  298 K is presented in Fig. 3.1.   

Due to a small offset between the data collected in the two stages, the high-temperature 

data were scaled to match the low-T data by minimising the residuals of a ρ -order 

polynomial passing through the 240-300 K (of the low-T) and 298-353 K (high-T) data 

points and then calculating the scale factors for the offsets from the ratios of the values of 
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the polynomials at 300 K. Experimental lattice parameters and unit-cell volume, as 

obtained by the X-ray diffraction experiment, are compiled in Table. 3.1. At room 

temperature, the lattice parameters and unit-cell volume of -Ç3É/ were found to be ὥ = 

4.75470(2) B, ὦ = 10.19694(4) B, ὧ = 5.98104(2) B and ὠ = 289.982(3) B.  

 

Figure 3. 1: Diffraction pattern of Mg2SiO4 forsterite at room temperature. Black lines show the sample 

peaks, red the observed and green the calculated, converged, intensities with pink being the differences 

between observed and calculated.  
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Table 3.2: Unscaled refined lattice parameters, and unit-cell volume of Mg2SiO4 as a function of temperature. 

ɇ (Ⱦ) ὥ (B) ὦ (B ὧ (B) ὠ (B  ɇ (Ⱦ) ὥ (B) ὦ (B ὧ (B) ὠ (B  

Low Temperature Stage 393 4.75794(2) 10.20840(5) 5.98702(3) 290.795(3) 

40 4.75034(3) 10.17992(5) 5.97261(3) 288.824(3) 413 4.75866(2) 10.21095(5) 5.98838(3) 290.978(3) 

60 4.75037(2) 10.18016(5) 5.97269(3) 288.836(3) 433 4.75940(2) 10.21356(4) 5.98974(3) 291.164(3) 

80 4.75038(2) 10.18036(5) 5.97267(3) 288.842(3) 453 4.76017(2) 10.21617(5) 5.99108(3) 291.350(3) 

100 4.75053(2) 10.18095(5) 5.97299(3) 288.883(3) 473 4.76093(2) 10.21874(4) 5.99245(3) 291.537(3) 

120 4.75068(2) 10.18171(5) 5.97331(3) 288.929(3) 493 4.76166(2) 10.22136(4) 5.99384(3) 291.724(3) 

140 4.75095(2) 10.18278(5) 5.97383(3) 289.001(3) 513 4.76246(2) 10.22396(5) 5.99524(3) 291.916(3) 

160 4.75121(2) 10.18401(5) 5.97442(3) 289.081(3) 533 4.76322(2) 10.22655(5) 5.99658(3) 292.101(3) 

180 4.75159(3) 10.18553(5) 5.97519(3) 289.184(3) 553 4.76402(2) 10.22938(5) 5.99806(3) 292.303(3) 

200 4.75202(3) 10.18719(5) 5.97601(3) 289.297(3) 573 4.76481(2) 10.23194(5) 5.99944(3) 292.492(3) 

220 4.75246(2) 10.18895(5) 5.97691(3) 289.417(3) 593 4.76562(2) 10.23474(5) 6.00095(3) 292.696(3) 

240 4.75296(2) 10.19080(5) 5.97782(3) 289.544(3) 613 4.76639(2) 10.23736(5) 6.00233(3) 292.885(3) 

260 4.75346(3) 10.19275(5) 5.97885(3) 289.680(3) 633 4.76727(2) 10.24015(5) 6.00382(3) 293.092(3) 

280 4.75399(3) 10.19476(5) 5.97990(3) 289.821(3) 653 4.76808(2) 10.24289(5) 6.00525(3) 293.290(3) 

300 4.75433(3) 10.19624(5) 5.98076(3) 289.925(3) 673 4.76896(2) 10.24573(5) 6.00673(3) 293.497(3) 

High Temperature Stage 693 4.76972(2) 10.24850(5) 6.00818(3) 293.694(3) 

298 4.75471(2) 10.19695(5) 5.98105(3) 289.982(3) 713 4.77062(2) 10.25140(5) 6.00971(3) 293.908(3) 

313 4.75519(2) 10.19865(5) 5.98187(3) 290.100(3) 733 4.77146(2) 10.25425(5) 6.01121(3) 294.115(3) 

333 4.75585(2) 10.20107(5) 5.98318(3) 290.272(3) 753 4.77229(2) 10.25704(5) 6.01268(3) 294.317(3) 

353 4.75654(2) 10.20348(5) 5.98445(3) 290.444(3) 773 4.77319(2) 10.25994(5) 6.01425(3) 294.534(3) 



76 
 

 
 

373 4.75725(2) 10.20594(5) 5.98573(3) 290.620(3) 793 4.77402(2) 10.26283(5) 6.01574(3) 294.741(3) 

813 4.77492(2) 10.26577(5) 6.01730(3) 294.958(3) 1153 4.79058(3) 10.31718(5) 6.04430(3) 298.741(3) 

833 4.77581(2) 10.26872(5) 6.01884(3) 295.173(3) 1173 4.79153(3) 10.32029(5) 6.04597(3) 298.973(4) 

853 4.77668(2) 10.27160(5) 6.02035(3) 295.383(3) 1193 4.79245(3) 10.32337(5) 6.04761(3) 299.201(4) 

873 4.77757(2) 10.27451(5) 6.02191(3) 295.599(3) 1213 4.79345(3) 10.32661(5) 6.04928(3) 299.440(4) 

893 4.77844(2) 10.27745(5) 6.02341(3) 295.810(3) 1233 4.79442(3) 10.32975(5) 6.05094(3) 299.674(4) 

913 4.77935(2) 10.28038(5) 6.02496(3) 296.027(3) 1253 4.79540(3) 10.33290(5) 6.05260(3) 299.908(4) 

933 4.78026(2) 10.28344(5) 6.02657(3) 296.251(3) 1273 4.79637(3) 10.33616(5) 6.05429(3) 300.148(4) 

953 4.78117(2) 10.28643(5) 6.02819(3) 296.474(3) 1293 4.79734(3) 10.33948(5) 6.05601(3) 300.390(3) 

973 4.78209(2) 10.28943(5) 6.02976(3) 296.694(3) 1313 4.79830(3) 10.34263(5) 6.05771(3) 300.626(3) 

993 4.78299(2) 10.29243(5) 6.03134(3) 296.914(3) 1333 4.79935(3) 10.34579(5) 6.05942(3) 300.868(4) 

1013 4.78391(2) 10.29554(5) 6.03295(3) 297.140(3) 1353 4.80036(3) 10.34919(5) 6.06121(3) 301.120(3) 

1033 4.78484(2) 10.29851(5) 6.03456(3) 297.363(3) 1373 4.80133(3) 10.35236(5) 6.06292(3) 301.358(3) 

1053 4.78577(2) 10.30163(5) 6.03616(3) 297.590(3) 1393 4.80224(3) 10.35547(6) 6.06459(3) 301.589(4) 

1073 4.78671(3) 10.30471(6) 6.03781(4) 297.819(4) 1413 4.80325(3) 10.35865(6) 6.06621(3) 301.825(4) 

1093 4.78768(3) 10.30775(5) 6.03941(3) 298.046(3) 1433 4.80422(3) 10.36180(5) 6.06799(3) 302.067(4) 

1113 4.78860(3) 10.31082(5) 6.04102(3) 298.272(3) 1453 4.80518(3) 10.36505(5) 6.06965(3) 302.304(4) 

1133 4.78959(3) 10.31400(5) 6.04266(3) 298.507(3) 1473 4.80626(3) 10.36859(6) 6.07145(3) 302.565(4) 

* in subsequent analysis of the data, the values determined in the high-temperature stage were multiplied by the following factors to remove the offsets  

between the two sample stages: ὥ = 0.9999188886 , ὦ = 0.9999098470 , ὧ = 0.9999398163 , ὠ = 0.9997699773. 
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To describe the volume thermal expansion relative to a reference temperature, Ὕ, all 

diffraction data above 297 K were initially fitted to Eq. (2.2) in Fei (1995) in EoSFit7c (Angel 

et al., 2014; Gonzalez-Platas et al., 2016). The parameters of Eq. (2.2) were found as 

ὠ =290.014(14) B, ὥ = 2.72(4) x 10-5 K-1, ὥ = 1.06(5) x 10-8 K-2, and ὥ= -0.194(12) K. 

As previously described in Paragraph 2.4.1,  the Grüneisen theory provides a more 

physically useful interpretation of the thermal expansion (Wood et al., 2002; Lindsay-Scott 

et al., 2007; Pamato et al., 2016; Hunt et al., 2017). Therefore, Eq. (2.5) was fitted to the 

experimental data via weighted non-linear least-squares (see Paragraph 2.5). The 

temperature dependence of forsteriteôs unit-cell volume, over the full temperature range, 

is given in Fig. 3.2 with black circles showing the experimental unit-cell volume data, as 

obtained by the Rietveld refinement, and the solid black line the model of Eq. (2.5). The 

values of the unknown model parameters were found as ὠ= 288.83(6) B, —= 724(11) 

K, ὗ=3.31(1) x 10-17 J, and ὦ=2.3(1). Differences between the model and observed values 

are smaller than ± 0.05 B throughout and are shown in the Fig. 3.2 subplot. The quality 

of the data (e.g., scattering)  and of the fit (e.g., accuracy) is reflected in the volume 

thermal expansion curve (Fig. 3.3) calculated via Eq. (2.1). Black circles were obtained by 

point-by-point numerical differentiation of the experimental unit-cell volume data, while the 

solid black line is from differentiation of Eq. (2.5). The absolute average difference 

between observed (originating from the measured V(T)) and calculated values is found 

equal to ~0.00057 + . The results of this study are in good agreement with previous 

dilatometric (Kajiyoshi & Suzuki, 1996; Suzuki, 1975) and X-ray diffraction studies 

(Bouhifd et al., 1996; Kroll et al, 2012; Suzuki et al., 1984; Hazen, 1976) though the current 

is covering a wide temperature range while showing much less scattering. Thermal 

expansion data of Kajiyoshi & Suzuki (1996) are in perfect agreement with the those 

obtained in this study up to 1000 K, above which point those of Kajiyoshi & Suzuki (1996) 

show a sharp increase which was attributed to anharmonicity. 

The Debye temperature, — , estimated from this experiment, i.e., 724(11) K, is smaller but 

still in good agreement with values in the literature derived from acoustic (i.e., 760 K, Isaak 

& Anderson, 1989; Kumazawa & Anderson, 1969), rectangular parallelepiped resonance 

(RPR) (i.e., 762 K, Isaak et al., 1989), low-temperature calorimetry (i.e., 758 K, Robie et 

al., 1982) and X-ray diffraction and dilatometry measurements (i.e., 750 K, Bouhifd et al., 

1996; 705(37) K, Suzuki 1975; 765 K, Manghnani & Matsui,1981). An estimate of the 

incompressibility, ὑ , can be obtained directly from the coefficient ὗ, provided that the 

Grüneisen parameter, ‎, is known. The value of ‎ for forsterite is not well constrained in 
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the literature and varies from 1.07 to 1.31 (e.g., Suzuki et al, 1983; Kumazawa & 

Anderson, 1969; Sumino et al., 1977; Choudhury et al, 1989; Katsura et al., 2009;  Isaak 

& Anderson, 1989; Soga & Anderson, 1967; Gillet et al. 1991). It was therefore decided 

to use the average ‎ = 1.15. Consequently, ὑ  and ὑᴂ  were found equal to 132(3) GPa 

and 5.6(2), respectively, and although a bit large, are still in good agreement with 

experimentally derived values (121.1-134.4 GPa and 2.06-5.97;  Suzuki et al, 1983; 

Kumazawa & Anderson, 1969; Sumino et al., 1977; Choudhury et al, 1989; Katsura et al., 

2009; Isaak & Anderson, 1989; Graham & Barsch, 2011). This small inconsistency 

probably arises from the fact that the coefficients ὗ and ὦ in Eq. (2.5) are assumed to be 

temperature independent, but in reality, the Grüneisen parameter, ‎, has some 

temperature dependence (see, Voc↑adlo et al., 2002). This may lead to overestimation of 

the incompressibility and its first derivative which should therefore be interpreted with 

some caution and not always considered representative of the material, as data quality, 

sample quality and temperature range are factors that can affect the quality of the model 

and its variables.  

 

Figure 3 .2: Measured unit-cell volumes of Mg2SiO4 against temperature. Experimental data in black circles 

and the solid black line the fit of Eq. (2.5) to the data. Unit-cell volume error bars are omitted because the 

unit-cell volume errors (~10-3 Å3) are smaller than the symbols. Differences between measured and 

calculated unit-cell volumes as a function of temperature are given in the subplot. 
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Figure 3. 3: Volumetric thermal expansion coefficient of Mg2SiO4 compared to the literature (Bouhifd et al., 

1996; Suzuki, 1975; Kroll et al., 2012; Suzuki et al., 1984;  Hazen, 1976; Kajiyoshi & Suzuki, 1996; see text 

for further information on these studies). 

 

To model the dependence of the lattice parameters on temperature, Eq. (2.11) (see 

Paragraph 2.4.1; Lindsay-Scott et al, 2007; Suzuki et al., 1979) was used. The results are 

shown in Fig 3.4 with the values of the Eq. (2.11) model parameters displayed in Table 

3.2 for each individual axis. By employing Eq.  (2.11) and assuming ‎ = 1.15, axial 

incompressibilities equal to 525(9), 353(3) and 357(3) GPa for ὥ, ὦ and ὧ axes, 

respectively, are obtained. Axial incompressibilities and their first derivatives are also 

tabulated in Table 3.2; by combining them the volumetric incompressibility is found to be  

ὑ  = 135 GPa, a value that is close to the one derived directly from the unit-cell volume 

fitted to Eq. (2.5). Axial expansivities shown in Fig.3.4 follow the sequence ὥ ὥ ὥ, 

(as in Kroll et al., 2014) a result that agrees with the obtained axial incompressibilities 

ὑ ὑ ὑ   (as in Wentzcovitch & Stixrude, 1997; Kroll et al., 2014). 

 

Table 3.2: Values of the fitted parameters of Eq. (2.11) and axial incompressibilities for Mg2SiO4. 

 

 

 

 

 

Axis ὢ (B) —  (K) ὗ x10-16 (J) ὦ ὑ (GPa) ὑᴂ 

ὥ 4.75039(2) 802(6) 1.320(10) 9.9(4) 525(5) 25.30 

ὦ 10.1798(9) 624(9) 0.887(1) 7.2(3) 353(3) 17.13 

ὧ 5.97257(2) 697(4) 0.943(6)  5.5(2) 375(3) 20.15 
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Figure 3. 4: Fit of the model of Eq. (2.11) to the unit-cell lattice parameters and axial expansivities of 

Mg2SiO4. Differences between observed and calculated values shown in subplots. 

 

A more graphical representation of forsteriteôs thermal expansion is given in Fig. 3.5, 

where the thermal expansion tensor is drawn at 40 K, 289 K and 1473 K with the 

programme WinTensor (Kaminsky, 2004). The thermal expansion tensor of an 

orthorhombic crystal has three independent values, namely ‌ , ‌  and ‌  that 

correspond to the axial expansivities ‌ Ὕ, ‌ Ὕ, and ‌ Ὕ, respectively. Above room 

temperature, the thermal expansion tensor displays the common ellipsoid shape of an 

orthorhombic crystal. Expansion along  ὥ-axis remains the smallest throughout the 

temperature range.  
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Figure 3. 5: Thermal expansion tensor of Mg2SiO4 at (a) 40 K, (b) 289 K and (c) 1473 K created using the 

standalone programme WinTensor (Kaminsky ,2004). To produce these models for orthorhombic forsterite, 

only the axial expansivities at these temperatures was necessary.   

 

Fractional coordinates at all measured temperatures are given in Table S1 in the 

supplementary information and Fig. 3.6. In general, fractional coordinates vary only 

slightly with some scattering above 1000 K. Isotropic displacements parameters increase 

linearly above room temperature with the degree of scattering slightly increased above 

1200 K in ὟὍὛὕ (Fig. 3.7).  

(a) (b) 

(c) 
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Figure 3.6 : Fractional coordinates of Mg2SiO4. See Table S1 for numerical values.  
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Figure 3.7 : Isotropic displacement parameters of Mg2SiO4.  

 

Bond lengths and angles for -Ç3É/, also tabulated in Tables S2-S5 in the supplementary 

information while Fig. 3.8 shows a graphical representation of the variation of average 

polyhedral bond lengths and angular variances with temperature. Octahedral bond 

lengths are in good agreement with those of Hazen (1976) with - / bonds having a 

linear temperature dependence. The longer -ς / bonds have a higher expansion rate 

which is 1.5 times greater than that of the shorter -ρ / bonds (~ 0.00088 Å/K). On the 

other hand, 3É/ bond lengths remain fairly constant with those of Hazen (1976) being 

on average 0.01 Å smaller. The angular variance of the 3É/ tetrahedra (defined as 

В/3ą/ ρπωȢτχȾφ) remains almost constant above 300 K, whereas the -Çρ/ and 

-Çς/ angular variances (defined as В/-/ ωπȾρς) both increase roughly linearly 

with temperature. Polyhedral volumes and distortions were calculated by the programme 

IVTON2 (Baliĺ Ģuniĺ & Vickoviĺ, 1996)  and are shown in Fig. 3.9. Distortions from the 

ideal polyhedron were calculated via the relationship ὠ ɀ ὠ  Ⱦ ὠ, where ὠ the volume 

of the coordination polyhedron, and ὠ the volume of the ideal having fixed angles and an 

using an average for bond distances (taken from the centroid of the polyhedron to the 

coordinating ligands). Both octahedral sites exhibit the same temperature dependence, 

but as in all olivines, the smaller M1 site becomes more distorted than the larger -ς (e.g., 

Redfern et al., 2000; Bouhifd et al., 1996; Hazen, 1976). On the other hand, the volume 

of the more rigid 3É/  tetrahedra remains essentially constant throughout the temperature 

range.  
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Figure 3.8: Average polyhedral bond lengths, and angular variances, of the Mg2SiO4 studied here compared 

to those of Hazen (1976). 

 

Figure 3.9: Polyhedral volumes and distortion of the Mg2SiO4 studied here. M1 and M2 octahedral volumes 

increase with increasing temperature with the smaller M1 site becoming more distorted. SiO4 tetrahedral 

volumes on the other hand, remain almost constant above room temperature with tetrahedral distortions 

unchanged throughout the temperature range. 

 

Isobaric, ὅ, and isochoric, ὅ, heat capacities over the full temperature range are 

described by Eq. (2.8) & Eq. (2.7). Obtaining ὅ through Eq. (2.7), although 
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straightforward, does not take into account anharmonicity and disorder; factors which 

could raise the heat capacity beyond the classical Dulong-Petit limit,  σὲὙ (with Ὑ being 

the gas constant and ὲ the number of atoms per formula unit) (see, Hunt et al., 2021). 

Implementing Eq. (2.9) of Poirier (2000) to obtain ὅ while assuming the Grüneisen 

parameter ‎ ‎, ὑ  is athermal, i.e., ὑ  = ὑ  and knowing that ὗ   from Eq. (2.5) 

one can derive the following expression (e.g., Hunt et al., 2021; Reynard et al., 1992) : 

ὅ                  (3.1.) 

Fig. 3.10 shows that above Ὕ > 298 K, Eq. (3.1) significantly overestimates the values for 

ὅ, and therefore ὅ (Eq. (2.8)), exceeding the Dulong-Petit limit (174.604 J/K mol) at 673 

K. After examination of Figs. 3.4, 3.6 and 3.10 it becomes clear that data scattering is only 

increased above 1000 K, suggesting that anharmonic effects take place at a much higher 

temperature than 673 K. Experimental heat capacity data of Gillet et al. (1991), Dach et 

al. (2007) and Robie et al., (1978) (given in Saxena,1988) measured by calorimetry and 

of Katsura et al. (2009), estimated by using the ὅ of Anderson et al. (1995) seem better 

matched by the values of ὅ and ὅ obtained via Eq. (2.7), suggesting that Eq. (3.1) also 

leads to an overestimation of pressure (Hunt et al., 2021).   

 

Figure 3. 10: Isobaric, CP, and isochoric, CV, heat capacities of the Mg2SiO4 studied here. The Dulong-Petit 

harmonic limit of 3nR is shown at 174.604 J/K mol. 
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3.2 The Thermal Expansion of Synthetic Na(Mg0.5Si0.5)Si2O6 

The lattice parameters of synthetic .Á-ÇȢ3ÉȢ)3É/  clinopyroxene (Na-Prx) were 

measured from 40 K up to the decomposition temperature at 693 K, from diffraction 

patterns collected between 10° and 154.9° ς—. Three batches of about 0.0927 g Na-Prx 

(batches E21-041, E21-050 and E22-007; see Paragraph 2.2.2) were first measured at 

room temperature for structure refinement with the Rietveld method (Fig. 3.11), via the 

GSAS I/EXPGUI interface (Larson & Von Dreele, 1994; Toby, 2001). Crystallographic 

data are summarized in Table. 3.3; Na-Prx has  a monoclinic unit-cell with space-group 

ὖςȾὲ, similar to that of jadeite reported by Gasparik  (1988) and Angel (1988), with ὥ = 

9.4057(3) B, ὦ = 8.6469(3) B, ὧ = 5.2681(1) B, ὠ = 407.24(3) B, ‍ = 108.108(2)° and ” = 

3.287 g/cm3 with ὤ= 4.  

 

Figure 3. 11: Diffraction pattern of Na(Mg0.5Si0.5)Si2O6 measured at room temperature before the 

experiments to determine its thermal expansion.  

 

Table 3.3: Crystallographic data for Na(Mg0.5Si0.5)Si2O6  pyroxene measured at 298 K after synthesis. 

Site Atom O

c

c 

x y z 100* ὟὍὛὕ (Å3) 

M1 Mg 1 3/4 0.6628(26) 1/4 2.93(22) 

M1(1) Si 1 3/4 0.8534(22) 3/4 2.93(22) 

M2 Na 1 3/4 0.0446(24) 1/4 2.79(25) 

M2(1) Na 1 3/4 0.4537(24) 3/4 2.79(25) 

T1 Si 1 0.0420(14)

9 

0.8486(14) 0.2166(19) 2.69(15) 

T2 Si 1 0.0420(20) 0.6604(13) 0.7443(20) 2.69(15) 

O1 O 1 0.8737(19) 0.8247(20) 0.1124(36) 2.04(16) 

O1(1) O 1 0.8471(18) 0.6759(22) 0.6320(38) 2.04(16) 
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O2 O 1 0.1120(21) 0.0187(29) 0.3038(41) 2.04(16) 

O2(2) O 1 0.1149(21) 0.4966(28) 0.8070(40) 2.04(16) 

O3 O 1 0.1013(20) 0.7723(19) -0.0114(31) 2.04(16) 

O3(2) O 1 0.0986(20) 0.7536(17) 0.5347(33) 2.04(16) 

 

Overall, 34 diffraction patterns were collected in two different stages; 14 in the PheniX-FL 

cold-stage and 20 in the Anton Paar HTK1200K high-temperature furnace. Examples of 

Na-Prx diffraction patterns are shown in Fig. 3.12 at 40 K and 298 K. For the low-

temperature measurements, the sample was slurried onto a glass disk whereas for those 

at high-temperature, it was placed, using ethanol, onto a 0Ô-foil (99.999% purity, cubic 

crystal structure, Ὂάσά, :=4, and lattice constant ὥ = 3.9231 B) attached onto a !Ì/  

disk with dimensions 12 x 12 x 8 mm (see Paragraph 2.3.1). In addition to the unit-cell 

parameters, background, scale factor, profile parameters, spherical harmonic terms for 

preferred orientation, and phase factors were refined with the Rietveld method. The 

diffraction pattern from 0Ô, on the other hand, from the high-temperature data collection, 

was refined with the Le Bail method. The lattice parameters determined during the 

experiment are given in Table 3.4 with the scaling numbers between the two sample 

environments reported in the Table 3.4 sub-caption. The offset between the data collected 

in the two stages was corrected by minimising the residuals of ρ -order polynomials 

passing through the 240-300 K (of the low-T) and 298-353 K (high-T) data points and 

determining their ratios at 298 K. 
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Figure 3. 12: Diffraction patterns of Na(Mg0.5Si0.5)Si2O6 measured at 40 K and 298 K after Rietveld 

refinement. The very large Pt peaks have been removed so as to show the sample peaks in detail. 

 

Table 3.4: Unscaled lattice parameters, ɓ angle and unit-cell volume of Na-Prx as a function of temperature. 

ɇ (Ⱦ) ὥ (B) ὦ (B  ὧ (B) ɓ (ɞ) ὠ (B  

40 9.4003(3) 8.6328(3) 5.2655(2) 108.121(2) 406.10(3) 

60 9.4005(3) 8.6333(3) 5.2657(2) 108.122(2) 406.15(3) 

80 9.4002(3) 8.6338(3) 5.2654(2) 108.121(2) 406.15(3) 

100 9.4006(3) 8.6342(3) 5.2656(2) 108.122(2) 406.19(3) 

120 9.4010(3) 8.6351(3) 5.2656(2) 108.121(2) 406.25(3) 

140 9.4015(3) 8.6360(3) 5.2657(2) 108.121(2) 406.32(3) 

160 9.4020(3) 8.6372(3) 5.2660(2) 108.121(2) 406.43(3) 

180 9.4026(3) 8.6384(3) 5.2662(2) 108.121(2) 406.52(3) 

200 9.4035(3) 8.6402(3) 5.2668(2) 108.121(2) 406.69(3) 

220 9.4041(3) 8.6413(3) 5.2671(2) 108.121(2) 406.79(3) 

240 9.4048(3) 8.6429(3) 5.2673(2) 108.118(2) 406.92(3) 

260 9.4056(3) 8.6446(3) 5.2675(2) 108.118(2) 407.06(3) 

280 9.4064(2) 8.6461(2) 5.2682(1) 108.117(2) 407.22(1) 

300 9.4073(3) 8.6487(3) 5.2685(2) 108.113(2) 407.41(3) 

298 9.4011(5) 8.6434(6) 5.2653(3) 108.096(4) 406.69(2) 

313 9.4061(4) 8.6463(5) 5.2663(2) 108.115(4) 407.07(2) 

333 9.4070(4) 8.6479(4) 5.2670(2) 108.116(3) 407.23(2) 

353 9.4074(4) 8.6501(4) 5.2674(2) 108.109(3) 407.40(2) 

373 9.4089(4) 8.6515(4) 5.2683(2) 108.112(3) 407.59(2) 

393 9.4098(4) 8.6539(4) 5.2688(2) 108.109(3) 407.79(2) 

413 9.4109(3) 8.6560(4) 5.2693(2) 108.106(3) 407.98(2) 

433 9.4122(3) 8.6581(4) 5.2700(2) 108.105(3) 408.20(2) 

453 9.4135(3) 8.6600(4) 5.2708(2) 108.103(3) 408.41(1) 

473 9.4145(3) 8.6622(4) 5.2713(2) 108.103(3) 408.60(1) 
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493 9.4156(3) 8.6641(4) 5.2719(2) 108.097(3) 408.80(1) 

513 9.4168(3) 8.6663(4) 5.2728(2) 108.099(3) 409.01(1) 

533 9.4175(3) 8.6686(4) 5.2736(2) 108.099(3) 409.22(1) 

553 9.4199(3) 8.6709(4) 5.2743(2) 108.100(3) 409.48(1) 

573 9.4211(3) 8.6722(4) 5.2750(2) 108.094(3) 409.66(1) 

593 9.4220(3) 8.6750(4) 5.2754(2) 108.090(3) 409.88(1) 

613 9.4232(3) 8.6773(4) 5.2764(2) 108.091(3) 410.11(2) 

633 9.4246(3) 8.6793(4) 5.2771(2) 108.091(3) 410.32(1) 

653 9.4266(3) 8.6822(4) 5.2780(2) 108.091(3) 410.61(2) 

673 9.4277(3) 8.6844(4) 5.2785(2) 108.088(3) 410.82(2) 

* in subsequent analysis of the data, the values determined in the high-temperature stage were multiplied 

by the following factors to remove the offsets between the two sample stages:  ὥ =1.0004982 B, ὦ = 

1.0005144 B, ὧ = 1.0005026 B, ὠ = 1.0015211 B and ‍ = 1.0001036°. 

 

All Na-Prx high temperature data were initially fitted to Eq. (2.2) in EoSFit7c (Angel et al., 

2014; Gonzalez-Platas et al., 2016) at Ὕ= 298 K, which returned ὠ  = 407.429(12) B, 

ὥ= 1.72(6) x 10-5 K-1, ὥ= 1,.61(10) x 10-8 K-2, and ὥ= -0.108(11) K-3. But as stated in 

previous Paragraphs, the 2nd-order Grüneisen-Debye approximation of Eq. (2.5) provides 

a better description of the materialôs behaviour. Fitting data to Eq. (2.5), therefore (Fig. 

3.11), returns ὠ= 406.144(17) B, —= 702(2) K, ὗ = 6.28 (7) x 10-17 J, and ὦ = 4.90(9). In 

Fig. 3.13, black circles show the experimental unit-cell volume data, as determined by the 

Rietveld method, and the solid black line shows the model of Eq. (2.5). The quality of the 

fit is excellent also being reflected in the thermal expansion curve (Fig. 3.14) calculated 

via Eq. (2.1) with average differences between observed and calculated values equal to 

0.000059 + . 

 
Figure 3. 13: Na-Prx unit-cell volume with varying temperature. Black circles show the experimental unit-

cell volumes, refined, and rescaled above 300K, and the solid black curve is the model fit to these data 
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using Eq.(2.5). Sublot demonstrates the residuals between the experimental and model predicted unit-cell 

volumes. 

 
Figure 3. 14: Thermal expansion of Na-Prx. Black circles are the experimental data calculated by point-by-

point differentiation of V(T) and solid black lines from differentiation of the model of Eq. (2.1). 

 

There are no previous reports of the Debye temperature, —ȟ for 

.Á-ÇȢ3ÉȢ)3É/ pyroxene in the literature, but it maybe useful to compare the —  of this 

study, with that of jadeite since they have similar unit-cell dimensions and crystal structure. 

A low-temperature neutron diffraction study of Knight & Price (2008) for jadeite reports —  

= 539 K which is low as compared to the elastic Debye temperature, calculated from 

Poirier (2000), i.e., 774 K. Therefore, the value of —  obtained here, i.e., 702(2) K, seems 

sensible as compared to that for similar materials derived using this approach.  

To obtain a value for the Grüneisen parameter, ‎, the P-V-T data of Dymshits et al. (2015), 

ranging from 300-1700K and 0 to 18 GPa, were extracted from their published figure (see 

Fig. 2 in Dymshits et al., 2015) and fitted to the Mie-Grüneisen-Debye EoS Eq. (2.44) (Fig. 

3.15). Re-compiling these data returned ‎ = 0.69(1) when ή is fixed to 1 and using the —  

of 702(2) K from the thermal expansion experiment described above.  
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Figure 3. 15: Na-Prx data of Dymshits et al. (2015) re-fitted to the 2nd order Mie-Grüneisen-Debye EoS with 

a thermal pressure correction Eq. (2.44) while using the ɗD from this thesis and only assuming q = 1. 

 

Since there is limited data for Na-Prx at high P-T conditions, the reliability of the derived 

Grüneisen parameter value is unclear. However, the Grüneisen parameter of other mantle 

pyroxenes generally appears to have a smaller value (e.g., 0.85-0.91 for Ostrovsky, 1979; 

Yang & Ghose, 1994; Dietrich & Arndt 1982; Knight & Price, 2008) than other mantle 

phases which typically range from 1 to 2 (e.g., Poirier, 2000). Assuming this calculated 

value of ‎ is correct, combining it with the ὦ and ὗ parameters retrieved via Eq. (2.5), ὑ  

and ὑᴂ  are found 106(1) GPa and 10.8(2), respectively; with ὑ  close to values reported 

by Dymshits et al. (2015), i.e., 103(2) GPa.  

To calculate the temperature dependence of Na-Prx lattice parameters, Eq. (2.11) was 

used. The results are given in Fig. 3.16 along with the axial expansivities that follow the 

sequence ὥ> ὥ  ὥ. The values of the unknown parameters of Eq. (2.11), for all unit-

cell axes, are tabulated in Table 3.5.  
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Figure 3. 16: Lattice parameters of Na-Prx over the full temperature range with differences between model 

and data (a) Ŭ-axis in black (b) b-axis in grey and (c) c-axis in blue circles. Solid black lines are the model 

of Eq. (2.11) fitted to the data. Axial expansivities and differences between model and data are given in the 

right column. Experimental data are again shown in circles while the solid black lines come from 

differentiation of Eq. (2.11). 

 
Table 3.5:  Values of the fitted model parameters of Eq. (2.11) of Na-Prx. 

axis ὢ (B) —  (K) ὗ x 10-17 (J) ὦ 

ὥ 9.400 (9) 846(17) 2.2705(19)  -1.825(6) 

ὦ 8.633(4) 711(13) 1.1742(24) 1.403(5) 

ὧ 5.2652(3) 707(16) 2.29061(35) 58.910(7) 

 

The ‍ angle of the .Á-ÇȢ3ÉȢ)3É/  decreases with increasing temperature following a 

sigmoidal trend, which is consistent with other sodic omphacites that do not have Al in the 

M1 octahedral sites (e.g., Ureyite & Acmite) but different from to jadeite (see, Knight & 
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Price, 2008). To model the behaviour of the angle ‍ of .Á-ÇȢ3ÉȢ)3É/  over the full 

temperature range the following expression was utilized. 

‍   ‍
Ⱦ

               (3.2) 

Where ‍, the degree of the angle at 0 K and ὃ and ὄ refinable constants. Using a non-

linear square fitting, the values of ‍,  ὃ and ὄ were found equal to 108.122(2)º, 0.0339(3) 

and 485.428(4) respectively. As seen in Fig. 3.17 this approximation does not provide a 

good fit, especially above below 240 K where ‍ remains almost constant. Additional 

inspections of the X-ray diffraction data files (.exp), and of the lattice parameters, showed 

that this behaviour of the ‍ angle is not found in any other structural properties and 

parameters of Na-Prx. Finally, it was found that linear regression (Fig. 3.17 orange lines) 

can better model the evolution of ‍ below 220 K as well as at higher temperature up until 

decomposition. 

 

Figure 3. 17: Angle, ɓ, of the Na-Prx studied here over the full temperature range. Black circles show the 

experimental data, while the solid black line the model of Eq. (3.2). In orange the linear regression model 

fitted to the Na-prx data. 

A more graphical representation of the thermal expansion of Na-Prx is shown in Fig. 3.18, 

with the ὥ Ὕ tensor at 298 K with additional cross Paragraphs for all crystallographic 

axes. The thermal expansion tensor for a monoclinic crystal, like that of Na-Prx, has four 

independent variables. To obtain these variables the Lagrangian thermal expansion 

tensor coefficients, with b as the unique crystallographic axis, were calculated via the 

following expressions (see, Knight & Price, 2008; Knight, 2010). 
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ὥ Ὕ  ίὭὲ‍ ὥὧέί‍               (3.3) 

ὥ Ὕ                   (3.4) 

ὥ Ὕ                   (3.5) 

ὥ Ὕ  ὥ Ὕ              (3.6) 

ὥ Ὕ  ὥ Ὕ π                 (3.7) 

Where ὥ, ὦ, ὧ and ‍ the refined lattice parameters and interaxial angle, and ὥ, ὦ, ὧ and 

‍ the lattice parameters and interaxial angle values at a reference temperature, in this 

case 0 K, coming from the fit of Eq. (2.5) to the data. Values of ὥ Ὕ, ὥ Ὕ, ὥ Ὕ and 

ὥ Ὕ thermal expansion tensor coefficients, are given in Fig. 3.19.  

 

 

 

 

(a) 
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Figure 3.18: Thermal expansion tensor of Na-prx at (a) 40 K (b) 298 K with additional cross-sections for all 

three crystallographic directions and (c) at 673 K all calculated by the programme WinTensor (Kaminsky, 

2014). To produce these models, the Lagrangian thermal expansion coefficients given in Fig.3.19 are 

required. 

 

 

Figure 3.19: Lagrangian thermal expansion tensor coefficients of Na-Prx calculated via Eq. (3.3) - Eq. (3.7). 

 

(c) 

(b) 



96 
 

 
 

The isobaric and isochoric heat capacities, ὅ and ὅ, were calculated for Na-Prx via the 

harmonic and anharmonic approximations of Eq. (2.7) and Eq. (3.1), respectively. 

Similarly to -Ç3É/, the anharmonic model of Eq. (3.1) produces larger values for ὅ and 

therefore ὅ (Eq. (2.8)), but at this stage it is not possible to determine whether those 

values are an over-estimation, due to lack of experimental heat capacity data for 

.Á-ÇȢ3ÉȢ)3É/ . 

 

Figure 3.20: Isobaric and isochoric heat capacities, CP, and CV, calculated for Na-Prx via the harmonic and 

anharmonic approximations of Eq. (2.7) and Eq. (3.1). 
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3.3 Thermal Expansion of Synthetic Na2MgSi 5O12 garnet  

Two batches of about 0.0221 g of .Á-Ç3É/  majorite garnet (Na-Mj) stoichiometry 

(E21-017 and E21-019; see Paragraph 2.2.2) were mixed and diffraction patterns were 

measured from, 40 K up to Na-Mjôs decomposition temperature at 793 K, between 10Á 

and 134° 2ɗ. The sample was first measured at room temperature for structure refinement 

(Fig. 3.21). Rietveld refinement, conducted via the suite of programmes GSAS I/EXPGUI 

(Larson & Von Dreele, 1994; Toby, 2001), showed that Na-Mj structure could be refined 

in both cubic, ὍὥσὨ, and tetragonal, ὍτȾὥὧὨ, space-group settings (Bindi et al., 2011). 

Refining the data in ὍτȾὥὧὨ required a disordered distribution of the .Á and -Ç cations in 

the 8-fold, dodecahedral, -ςρ and -ςς (8b and 16e) sites (i.e., .ÁȢ-ÇȢ ). 

However, after inspection of the powder diffraction patterns, the presence or absence of 

peaks that should be systematically absent in space-group ὍὥσὨ, i.e., Ὤ Ὧ ὰ = τὲ, could 

not be confirmed due to the weak peak intensity and noisy background. It was, therefore, 

not possible to conclusively determine the space-group of .Á-Ç3É/  via this method. 

Considering the differences in the refined unit-cell volume between the two structures, 

and the lower ὧὬὭ of the cubic refinement, .Á-Ç3É/  was refined, over the full 

temperature range, in the cubic ὍὥσὨ space-group, with ὥ = 11.411 (1) B, ὠ = 1485.91 (4) 

B and ” = 3.589 g/cm3 at room temperature, with ὤ = 8. Crystallographic data for both 

cubic and tetragonal (see, Bindi et al., 2011) structures are given in Tables 3.6 and 3.7. 

 

Figure 3. 21: Diffraction patterns of Na-Mj measured at room temperature before the experiments to 
determine its thermal expansion.  
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Table 3.6: Crystallographic data for tetragonal Na2MgSi5O12 at 298 K after synthesis. 

Site Atom x y z 100*ὟὍὛὕ 

M1 Na(2/3) 0 1/4 1/8 3.01(15)          

0.25         

0.125        

0.6667     

UISO   

0.18(5)     

 Mg(1/3) 0 1/4 1/8 3.01(15)           

M2 Mg(1/3) 0.1236(3)   

0.1236(2)    

0.0          0.25         

0.3333     

UISO   

0.0336(20)  

0 1/4   

0.1236(2)    

0.0          

0.25         

0.3333     

UISO   

0.0336(20)  

3.08(15)           

 Na(2/3) 0.1236(3)   

0.1236(2)    

0.0          0.25         

0.3333     

UISO   

0.0336(20)  

0 1/4   

0.1236(2)    

0.0          

0.25         

0.3333     

Uiso   

0.0336(20)  

3.08(15)           

Y Si 0 0 0 2.11(15)     

Uiso   

0.0261(14)  

T1 Si 0 1/4    3/8 3.15(18)           

T2 SI 0.3746(9) 0 1/4    3.15(18)           

O1 O 0.0413(14) 0.1469(13) -0.0344(13) 2.69(13) 

O2 O -0.0346(13) 0.0419(13) 0.1470(10) 2.69(13) 

O3 O 0.1490(13) -0.0332(12) 0.0442(12) 2.69(13) 

 

Table 3.7: Crystallographic data for cubic Na2MgSi5O12 at 298 K after synthesis. 

Site Atom x y z 100*ὟὍὛὕ 

M Na(2/3) 0 1/4 1/8 4.77(16)          

0.25         

0.125        

0.6667     

Uiso   

0.18(5)     

 Mg(1/3) 0 1/4 1/8 4.77(16)           

Y Si 0 0 0  3.26(12)     

1.0        

Uiso   

0.0261(14)  

T1 Si 0 1/4    3/8 3.30(15)           

O O 0.0351(1) 0.0414(2) 0.6463(1) 2.65(13)           

 

Overall, 40 diffraction patterns were collected in two different stages; 14 in the PheniX-FL 

cold-stage and 26 in the Anton Paar HTK1200K high-temperature furnace. Examples of 

Na-Mj diffraction patterns are shown in Fig. 3.22 at 40 K and 298 K. For the low-

temperature measurements, the sample was slurried with ethanol onto a #Õ disk (see 

Paragraph 2.3.1 for details) after which it was recovered for the high-temperature 

experiment and placed, using ethanol, onto the 0Ô!Ì/  substrate (see Paragraph 

2.3.1). All Na-Mj experimental data are summarized in Table 3.8 where in addition to the 

unit-cell parameters the background, scale factor, profile parameters, spherical harmonic 

terms for preferred orientation, displacement parameters and phase factors were refined 

with the Rietveld method. Displacements parameters were constrained to be equal for the 

M, T and O sites for the tetragonal phase, and for the M in the cubic. As in the Na-Prx 

experiment above, the diffraction pattern of the 0Ô, from the high-temperature data 

collection, was refined with the Le Bail method. The offset between the data collected in 

the two stages, was corrected by minimising the residuals of ρ -order polynomials 

passing through the 240-300 K (of the low-T) and 298-353 K (high-T) data points and 

determining their ratios at 298 K. 



99 
 

 
 

 

Figure 3. 19: Refined X-ray diffraction patterns of Na-Mj at 40 K and 298 K. The very strong ἍἽ and 

ἜἼ diffraction peaks have been removed so as to show the sample peak intensity in detail.  

 

Table 3.8: Unscaled lattice parameters and unit-cell volume of Na2MgSi5O12 as a function of temperature. 

ɇ (Ⱦ) ὥ (B) ὠ (B  ɇ (Ⱦ) ὥ (B) ὠ (B  

40 11.4036(7) 1482.96(6) 413 11.4310(6) 1493.67(5) 

60 11.4036(7) 1482.97(5) 433 11.4329(7) 1494.43(5) 

80 11.4039(7) 1483.09(5) 453 11.4343(7) 1494.97(6) 

100 11.4044(7) 1483.20(5) 473 11.4357(8) 1495.51(6) 

120 11.4052(7) 1483.57(5) 493 11.4376(8) 1496.27(6) 

140 11.4061(7) 1483.95(5) 513 11.4389(13) 1496.79(8) 

160 11.4068(7) 1484.21(5) 533 11.4404(10) 1497.37(8) 

180 11.4080(7) 1484.67(5) 553 11.4421(10) 1498.02(8) 

200 11.4091(7) 1485.09(5) 573 11.4437(10) 1498.65(8) 

220 11.4101(7) 1485.50(5) 593 11.4454(10) 1499.32(8) 

240 11.4113(7) 1485.96(5) 613 11.4474(10) 1500.13(8) 

260 11.4125(7) 1486.42(5) 633 11.4494(10) 1500.90(8) 

280 11.4139(7) 1486.98(5) 653 11.4514(10) 1501.70(8) 

300 11.4155(7) 1487.61(5) 673 11.4529(10) 1502.29(8) 

298 11.4224(6) 1490.32(4) 693 11.4548(10) 1503.04(8) 

313 11.4234(6) 1490.72(5) 713 11.4566(10) 1503.72(6) 

333 11.4246(6) 1491.17(4) 733 11.4580(11) 1504.29(7) 

353 11.4261(6) 1491.77(4) 753 11.4598(11) 1504.99(8) 
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373 11.4279(6) 1492.46(5) 773 11.4616(12) 1505.70(7) 

393 11.4294(6) 1493.07(4) 793 11.4636(13) 1506.49(6) 

* in subsequent analysis of the data, the values determined in the high-temperature stage were multiplied 

by the following factors to remove the offsets between the two sample stages:  ὥ = 0.999353, and ὠ = 

0.99806 . 

 

Fig. 3.23 shows the variation of .Á-Ç3É/  unit-cell volume over the entire temperature 

range covered in this experiment, with the residuals between observed and modelled 

values in the subplot. All Na-Mj high temperature data were initially fitted to Eq. (2.2), with 

a  reference temperature Ὕ  = 289 K, in EoSFit7c (Angel et al., 2014; Gonzalez-Platas et 

al., 2016). The fitted values were found as ὠ = 1490.25(5) B, ὥ= 1.63(7) x 10-5 K-1, ὥ= 

1.04(13) x 10-8 K-2, and ὥ= 0.00003 (0) K-3. Conversely, fitting the 2nd-order Grüneisen-

Debye approximation of Eq. (2.5) to the experimental data (Fig. 3.21) via a weighted non-

linear least-squares algorithm, returned ὠ= 1483.04(4) B, —= 533(10) K, ὗ=1.63 (3) x 

10-17 J, and ὦ = 8.7(4). 

 
Figure 3. 23: Na-Mj unit-cell volume with varying temperature. Black circles show the observed unit-cell 

volumes from the experimental data and rescaled above room temperature as described in the text; the 

solid black curve is the model of Eq. (2.5) fitted to the data. Sublot demonstrates the residuals between 

experimentally refined and model predicted unit-cell volumes. 

 

The quality of the fitted model is also reflected in the thermal expansion curve (Fig.3.24) 

calculated via Eq. (2.1) with differences between observed and calculated cell volumes 
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equal to -0.00000046 K-1. The thermal expansion tensor of cubic Na-Mj as modelled by 

the programme WinTensor is also given in Fig. (3.24). 

 

Figure 3. 24: Thermal expansion of Na-Mj. Black circles are the experimental data calculated by point-by-

point differentiation of V(T) and solid black lines from differentiation of the model of Eq. (2.1). The thermal 

expansion tension (WinTensor, Kaminsky 2014) is also given as a sphere.  

 

Determination of the incompressibility and its first derivative, from these data was 

challenging due to the lack of literature measurements of the Grüneisen parameter. 

Dymshits et al (2014) found ‎ = 1.35 by fitting their data to Eq. (2.44) while keeping ὠ = 

1475.9 B, —  = 890 K, ὑ  = 184 GPa and ὑᴂ  = 3.8 fixed. Re-fitting (Fig. 3.25) the data 

of Dymshits et al (2014) to the 2nd-order Mie-Grüneisen-Debye EoS Eq. (2.44), while using 

the —  value found in the present experiment and assuming ή = 1, returned ‎ = 1.60(6). 

Calculating the incompressibility with this new value of ‎ gave ὑ  =176(4) GPa which in 

excellent agreement with previous experimental and computational studies (i.e., 

Mookherjee, 2014; Pacalo et al., 1992; Hazen et al., 1994).  
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Figure 3. 25: Na-Mj data of Dymshits et al. (2014) re-fitted to the 2nd order Mie-Grüneisen-Debye EoS with 

a thermal pressure correction Eq. (2.44) while using the ɗD derived from this experiment and only assuming 

q = 1. 

 

Unlike pyrope and pure -Ç3É/ majorite, the increased silicon content in the .Á-Ç3É/  

structure, can significantly strengthen the network, especially considering that 3É-/ bonds 

in tetrahedral (4-fold) and octahedral sites (6-fold) are in general more rigid and shorter 

than -Ç-/ bonds in the octahedral sites (6-fold). As a result, .Á-Ç3É/  should exhibit 

larger bulk and shear moduli (e.g., Pacalo et al., 1992; Mookherjee, 2014) than other 

garnets. This value of ὑ  =176(4) GPa is indeed larger than that of other garnets and 

converting it to ὑ  via Eq.(4.27) the value of 177(3) GPa if found. Comparing this ὑ  to  

the garnet data previously shown in Fig. 1.15 it is concluded that Na-Mj may indeed show 

the largest incompressibility of all cubic and tetragonal garnets (Fig. 3.26). In their study 

Hazen et al. (1994) reported a zero-pressure bulk modulus of 191.5(2.5), but their Na-Mj 

single-crystal had a (.ÁȢ-ÇȢ )( -ÇȢ3ÉȢ )3É/  stoichiometry, and was measured 

at pressures below 5 GPa, producing a poor and incomplete compression curve. 

Therefore, it was decided not to take into consideration this value of Hazen et al. (1994). 

Calculating ὑᴂ , via the ὦ parameter of Eq.(2.5), returned 18.5, which shows the limitation 

of the Grüneisen-Debye model, as previously described in Paragraph 2.4.1.  
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Figure 3.26: Comparison of .Á-Ç3É/  adiabatic bult modulus, ὑ , with other tetragonal and cubic 

garnets already shown in Fig.1.15.  

 Finally, estimation of the heat capacities, ὅ and ὅ, via the harmonic and anharmonic 

models of Eq.(2.7) and Eq.(3.1) shows the same features mentioned for Na-Prx and 

forsterite, with the anharmonic model predicting a larger heat capacities exceeding the 

Dulong-Petit limit at 400 K (Fig. 3.27). Similarly to Na-Prx, it is not possible to determine 

the accuracy of this approximation since there are not any Na-Mj heat capacity data. 

 

Figure 3.27: Isobaric and isochoric heat capacities, CP, and CV, calculated for Na-Mj via the harmonic and 

anharmonic approximations of Eq.(2.7) and Eq.(3.1). 
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3.4 Summary  

As mentioned in Chapter 1, to create accurate mineralogical models for the upper mantle 

and MTZ and to better understand the velocity profiles at those depths it is necessary to 

correctly determine the structural properties of the Earthôs upper mantle constituent 

mineral phases. Measurements of materialsô thermal expansion is crucial to understand 

materialsô properties at low and high temperatures, but also necessary to further model 

mantle convection, heat capacity, and interpret seismic data.  In this chapter I presented 

the results of three thermal expansion experiments for pure synthetic Mg2SiO4 olivine, 

synthetic Na-pyroxene with composition Na(Mg0.5Si0.5)Si2O6 and synthetic Na2MgSi5O12-

majorite garnet. Though previously measured by other authors the thermal expansion of 

end-member forsterite analysed in Paragraph 3.1 is the most detailed yet, with much less 

scattering covering the most comprehensive temperature range from 40 K to 1473 K thus 

yielding much more accurate thermodynamic parameters (e.g., —  and ὠ), while at the 

same time showing the effect of the anharmonicity and providing a detailed description of 

the materialôs geometry (also given in Paragraph 4.1.4 compared to its isostructural end-

member fayalite). Forsteriteôs thermodynamic parameters calculated from my experiment 

are then used tin Chapter 6 to correct the information provided by published mineralogical 

databases (e.g., Stixrude & Lithgow-Bertelloni, 2005;2011;2022). The thermal expansion 

of Na-pyroxene and Na-majorite garnet are presented here for the first time. Both samples 

decomposed at relatively low temperatures with Na evaporating from the structures. 

Nonetheless, these remain the only thermal expansion data in the literature, and they can 

be used to apply constraints in mineralogical databases (also see Chapter 6). The data 

are sufficient to produce a sensible Debye temperature, — , and an estimate of the 

incompressibility, assuming the value of ‎ is accurate. Na phases are important 

components of the earthôs upper mantle. As explained in Chapter 1, the continuous 

discovery of diamonds with substantial Na content might suggest the existence of a Na-

reservoir and therefore confirming the theory of Gasparik (1989). The content of Na in the 

Earthôs mantle yet remains unknown and thereôs little information about materials with 

sodium in their crystal structure. My experiments on these two phases shows the 

importance and need of accurate measurements and structure determination particularly 

in the case of Na-majorite whose structure is still disputed.   
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Chapter 4  

 
Neutron Powder Diffraction Experiments  
This chapter aims to present a comprehensive overview of the outcomes of a thermal 

expansion experiment conducted using the High Resolution Powder Diffractometer 

(HRPD) (Ibberson, 2009; Ibberson et al., 1992) at the STFC ISIS spallation neutron 

source, Rutherford Appleton Laboratory, UK in June 2021. The operational capabilities of 

HRPD (explained in Paragraph 2.3.1.2) were crucial in collecting the most detailed dataset 

for synthetic fayalite, &Å3É/ yet, and in examining its crystallographic and magnetic 

properties. This study, now published in the Mineralogical Magazine (see Tripoliti et al., 

2023), is the first to measure the effect of magnetism on the volume thermal expansion 

and to provide a model of the magnetostriction in &Å3É/. 

4.1 Thermal Expansion and Magnetostriction of Synthetic 

Fe2SiO4 

Polycrystalline &Å3É/ was synthesised using a new 7# #/7 solid-state oxygen 

buffering reaction within a ceramic crucible system (Dobson, 2021; see Paragraph 2.2.1 

for details) and was measured at the High-Resolution Powder Diffractometer (HRPD) at 

the STFC ISIS spallation neutron source between 10 K and 1453 K, i.e. close to fayaliteôs 

melting point at 1478 K, in two different stages. The sample was studied, firstly, between 

10 and 340 K, in a "slab-canò in the Closed-Cycle-Refrigerator (CCR) cold-stage, and then 

between 373 K to 1453 K, in a cylindrical  4É-:Ò--Ï alloy (ñTZMò) sample can in the high-

temperature furnace (Tripoliti et al., 2023; see Paragraph 2.3.1.2). The experiment was 

interrupted by a failure of the furnace elements at ~1270 K, as a result of which the sample 

cooled rapidly back to room temperature. After the elements were replaced, the sample 

was reheated, with data collected at 1073 K and 1173 K so as to provide an overlap with 

the first high-temperature dataset, with subsequent diffraction patterns obtained in 20 K 

intervals from 1273 K up to 1453 K, close to the melting point of &Å3É/ which is reported 

to be at 1478 K. In the second high-temperature series, data were collected for 10 ɛAh at 

each temperature, except at 1353 K and 1453 K where the counting times were extended 

to 200 ɛ Ah and 167 ɛAh respectively (Tripoliti et al., 2023). A total of 119 time-of-flight 

neutron diffraction data were collected in HRPDôs standard 100 ms wide time-of-flight 

window in the range 30 - 130 ms (Ὠ-spacings = 0.65 - 2.6 B), normalised to the incident 
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spectrum and corrected for detector efficiency by reference to a 6ȡ.Â standard, and then 

exported in a format suitable for analysis with GSAS I/EXPGUI (Larson & Von Dreele, 

1994; Toby, 2001) using the Mantid library of diffraction algorithms (Mantid, 2013; Arnold 

et al., 2014). Example of diffraction patterns refined with the Rietveld method are shown 

in Fig. 4.1. 

The majority of the diffraction patterns collected were óshortô acquisitions of ~10 minutes 

duration (8 ɛAh of proton beam current) intended solely for the refinement of unit-cell 

parameters, but several longer measurements for ~100 minutes (80 ɛAh) were made at 

40 K and 10 K on cooling and at 300 K on warming; these provided diffraction data of 

excellent statistical quality suitable for us to carry out high-precision structure refinements. 
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Figure 4. 1: Example of neutron powder diffraction patterns of Fe2SiO4 collected at different temperatures. 

Observations (crosses) calculated (green line) and differences (lower pink trace). The black tick marks in 

each of the plots show the positions of the Bragg reflections from the nuclear Fe2SiO4 crystal structure. For 

the refinement at 10 K, the red tick marks show the positions of the Bragg reflections from the Fe2SiO4 

magnetic structure; the contribution from magnetic scattering to the diffraction pattern is judged negligible 

below 0.986 Å. For the 1453 K refinement, the red tick marks show the positions of the Bragg reflections 

from the TZM sample can. 
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4.1.1 Magnetic Structure Refinement  

The magnetic and nuclear structures were refined as separate phases with the Rietveld 

method using the GSAS I suite of programmes. Consideration of previous studies of the 

magnetic structure of &Å3É/ (e.g., Müller et al., 1982) indicated that the space group 

remains ὖὦὲά in all phases and the magnetic and nuclear unit-cells were constrained to 

be the same throughout. Following MÕller et al. (1982), for the canted antiferromagnetic 

(AFM2) region (T < 23 K), all three components of the magnetic moment on the &Åρ site 

were allowed to vary while for the collinear (AFM1) region, 25 Ò Ὕ Ò 65 K, these moments 

were constrained to remain parallel and anti-parallel to the c-axis; the moments on the 

&Åς site were constrained to remain parallel/anti-parallel to the ὧ-axis at all temperatures 

below 65 K. At and below 65 K, in the AFM1 phase, 59 variables were included in the 

refinement (one scale factor, six profile parameters, eight background coefficients, three 

cell parameters, two magnetic moments, eleven fractional coordinates, twenty-eight 

displacement parameters); below the second AFM transition at 23 K, the number of 

refined magnetic moments increases to four. For all data collected with the sample in the 

CCR, the instrumental parameters DIFC and DIFA, which define the primary neutron flight 

path and the contribution to the path from wavelength-dependent absorption from the 

sample, were fixed at 48216.25 and ī0.38, respectively, these being derived from an 

instrument calibration carried out using a NIST silicon standard, SRM640e. Above 65 K 

no peaks from  magnetic scattering were present (see Fig. 4.3)  and therefore only the 

nuclear phase was refined, including 57 variables. Bragg reflections from the TZM sample 

can were present in the data collected with the sample in the furnace. This TZM alloy has 

a composition of ~99.4 % -Ï, alloyed with 0.5 % 4É, 0.08 % :Ò and 0.02 % #Ƞ it was, 

therefore, included in the refinement on the basis that it had the body-centred cubic 

structure of -Ï, with the intensities calculated via the Le Bail method as it was highly 

textured. The lattice parameters of &Å3É/ and those of the -Ï sample can, the fractional 

coordinates, atomic displacement parameters, scale factors, phase fractions, background 

and profile parameters were refined with DIFC and DIFA (adjusted to take account of the 

different sample geometry), fixed at 48216.25 and ī0.52, respectively. Due to a small 

offset between the two stages, as well as between the two sets of high-temperature 

measurements, all high-temperature cell parameter values were scaled to match the low-

temperature results. This was done by fitting first-order polynomials to the data from 300 

- 340 K (CCR) and 297 - 433 K (furnace) and 960 ï 1000 K (first high-temperature run) 

and 900 - 1020 K (second  high-temperature run) and then calculating the scale factors 
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for the offsets (see Table 4.2) from the ratios of the values of the polynomials at 300 K 

and 980 K. Refined fractional coordinates, anisotropic atomic displacement parameters 

(and their isotropic equivalents) and magnetic moments of the ten data sets with longer 

collection times, from the CCR and the TZM, are shown in Table 4.1 (also in Tripoliti et 

al., 2023). The use of anisotropic displacement parameters with powder data is sometimes 

questionable. However, they can be justified in this case as there are neutron data 

extending to 0.65 Å and as the resulting equivalent isotropic displacements (Table 4.1) 

are such that the values for the same types of atoms are always very similar. In the high-

temperature data, when the scattering at short Ὠ-spacings is reduced in intensity, the 

values are probably less reliable, with one component of the displacement ellipsoid of a 

few atoms for some data sets (e.g., Ὗ  for 3É and /ρ at 1453 K) occasionally taking values 

that are too small, without, however, showing a systematic trend (Fig. 4.2). 
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Table 4.1: Fe2SiO4 fractional coordinates, anisotropic atomic displacements, and magnetic moments at 10 temperature points.  

Closed-Cycle Refrigerator 

Temperature 10 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.29(2) 0.37(2) 0.36(2) 0.02(2) ī0.07(2) ī0.04(1) 0.0034 

Fe2 0.98619(4) 0.28012(4) 1/4 0.30(2) 0.29(2) 0.31(2) 0.01(2) 0 0 0.0030 

Si 0.4313(2) 0.0972(1) 1/4 0.36(6) 0.43(5) 0.36(5) 0.08(4) 0 0 0.0038 

O1 0.7684(2) 0.0919(1) 1/4 0.44(4) 0.57(4) 0.49(3) 0.01(3) 0 0 0.0046 

O2 0.2089(2) 0.4528(1) 1/4 0.30(4) 0.42(4) 0.55(3) ī0.09(3) 0 0 0.0042 

O3 0.2882(1) 0.1658(1) 0.4643(1) 0.46(3) 0.60(3) 0.46(3) ī0.06(2) 0.07(2) ī0.06(2) 0.0051 

Site Mx (ɛB) My (ɛB) Mz (ɛB) |M| (ɛB)       

M1 2.46(4) 1.37(7) 3.39(3) 4.41(5)       

M2 0 0 4.53(3) 4.53(3)       

Chi2 2.235          

wRp 0.041          

Temperature 40 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.22(3) 0.33(4) 0.40(3) 0.08(3) ī0.06(3) ī0.08(3) 0.0031 

Fe2 0.9859(1) 0.2798(1) 1/4 0.25(4) 0.29(4) 0.30(3) 0.04(3) 0.00 0.00 0.0027 

Si 0.4307 (3) 0.0972(2) 1/4 0.59(10) 0.30(8) 0.36(7) 0.03(6) 0.00 0.00 0.0041 

O1 0.7687(3) 0.0920(1) 1/4 0.18(7) 0.56(6) 0.57(5) 0.01(5) 0.00 0.00 0.0043 

O2 0.2088(3) 0.4529(1) 1/4 0.35(6) 0.37(6) 0.44(5) ī0.08(5) 0.00 0.00 0.0038 

O3 0.2889(2) 0.1658(1) 0.4642(2) 0.43(4) 0.53(4) 0.43(4) ī0.02(4) 0.07(3) ī0.08(4) 0.0046 

Site Mx (ɛB) My (ɛB) Mz (ɛB) |M| (ɛB)       

M1 0 0   2.38(5)   2.38(5)       
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M2 0 0 4.28(4) 4.28(4) 
 

4.28(4)  
 

      

Chi2 6.015          

wRp 0.045          

Temperature 100 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.51(2) 0.69(3) 0.63(2) 0.01(3) ī0.03(2) ī0.11(2) 0.0038 

Fe2 0.9861(2) 0.2800(1) 1/4 0.55(3) 0.53(3) 0.56(2) 0.03(2) 0.00 0.00 0.0032 

Si 0.4315(2) 0.0971(1) 1/4 0.74(7) 0.60(6) 0.63(6) 0.12(5) 0.00 0.00 0.0042 

O1 0.7680(2) 0.0919(1) 1/4 0.52(5) 0.82(4) 0.80(4) ī0.07(4) 0.00 0.00 0.0047 

O2 0.2089(2) 0.4529(1) 1/4 0.58(5) 0.57(4) 0.82(4) ī0.17(4) 0.00 0.00 0.0043 

O3 0.2884(1) 0.1657(1) 0.4643(1) 0.72(3) 0.83(3) 0.66(3) ī0.06(3) 0.08(3) ī0.11(3) 0.0051 

Chi2 3.209          

wRp 0.033          

Temperature 300 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.92(3) 1.33(4) 1.11(3) ī0.06(4) ī0.16(3) ī0.28(3) 0.0112 

Fe2 0.9869(2) 0.2798(1) 1/4 1.06(4) 1.03(4) 1.04(3) 0.01(3) 0.00 0.00 0.0104 

Si 0.4315(3) 0.0970(2) 1/4 1.52(10) 0.78(8) 1.01(7) 0.18(6) 0.00 0.00 0.0110 

O1 0.7675(2) 0.0922(1) 1/4 0.89(7) 1.41(5) 1.25(6) ī0.03(5) 0.00 0.00 0.0118 

O2 0.2101(3) 0.4533(1) 1/4 1.14(6) 0.88(5) 1.30(5) ī0.04(5) 0.00 0.00 0.0110 

O3 0.2881(2) 0.1657(1) 0.4644(1) 1.12(4) 1.39(4) 1.28(4) ī0.12(4) 0.21(3)  ī0.11(4) 0.0126 

Chi2 4.307          

wRp 0.038          

TZM Furnace 

Temperature 373 K 
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Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.72(5) 1.06(6) 0.89(5) 0.18(6) ī0.07(5) ī0.23(4) 0.0089 

Fe2 0.9854(3) 0.2808(1) 1/4 0.85(6) 0.70(6) 0.79(5) 0.09(4) 0.00 0.00 0.0078 

Si 0.4306(4) 0.0975(2) 1/4 0.83(3) 0.76(2) 0.46(1

0) 

0.11(9) 0.00 0.00 0.0068 

O1 0.7694(3) 0.0926(2) 1/4 0.13(9) 1.18(8) 1.07(9) ī0.21(8) 0.00 0.00 0.0079 

O2 0.2090(4) 0.4531(2) 1/4 0.57(9) 0.80(9) 1.35(9) 0.11(8) 0.00 0.00 0.0090 

O3 0.2891(3) 0.1659(1) 0.4644(2) 0.78(6) 1.37(7) 0.88(6) 0.02(5) 0.22(5) ī0.52(5) 0.0100 

Chi2 2.512 

wRp 0.034 

Temperature 573 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.97(4) 1.62(5) 1.22(5) 0.15(5) ī0.12(5) ī0.27(4) 0.0105 

Fe2 0.9867(3) 0.2804(1) 1/4 1.30(5) 0.93(5) 1.09(5) 0.16(4) 0.00 0.00 0.0092 

Si 0.4305(4) 0.0977(2) 1/4 0.51(2) 0.85(10) 0.90(9) 0.05(7) 0.00 0.00 0.0063 

O1 0.7679(3) 0.0933(2) 1/4 0.38(9) 1.54(8) 1.40(8) ī0.09(7) 0.00 0.00 0.0112 

O2 0.2096(3) 0.4534(2) 1/4 0.96(8) 1.08(8) 1.74(8) 0.04(7) 0.00 0.00 0.0110 

O3 0.2895(2) 0.1655(1) 0.4630(2) 1.06(5) 1.69(6) 1.30(6) 0.05(5) 0.14(5) ī0.59(5) 0.0113 

Chi2 3.274 

wRp 0.027  

Temperature 873 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 1.57(5) 2.64(7) 1.75(5) ī0.01(6) ī0.24(6) ī0.55(5) 0.0200 

Fe2 0.9870(3) 0.2814(1) 1/4 1.88(6) 1.59(6) 1.85(5) 0.04(5) 0.00 0.00 0.0174 

Si 0.4299(4) 0.0975(2) 1/4 0.90(3) 1.36(3) 1.48(1

0) 

0.27(9) 0.00 0.00 0.0115 

O1 0.7666(3) 0.0936(2) 1/4 0.59(10) 2.33(10) 2.33(9) ī0.28(8) 0.00 0.00 0.0165 
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O2 0.2096(4) 0.4542(2) 1/4 1.28(9) 1.31(9) 2.71(1

0) 

0.12(8) 0.00 0.00 0.0170 

O3 0.2903(3) 0.1651(1) 0.4629(2) 1.49(6) 2.82(8) 1.84(7) 0.08(6) 0.11(6) ī0.76(6) 0.0201 

Chi2 3.264 

wRp 0.027 

Temperature 1173 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 2.08(6) 3.94(9) 2.61(7) ī0.02(8) ī0.34(7) ī0.96(6) 0.0287 

Fe2 0.9877(4) 0.2817(1) 1/4 2.89(7) 2.07(7) 2.45(7) 0.01(6) 0.00 0.00 0.0247 

Si 0.4307(5) 0.0977(2) 1/4 1.44(6) 1.60(5) 1.79(3) 0.10(1) 0.00 0.00 0.0160 

O1 0.7650(4) 0.0944(2) 1/4 1.01(2) 3.30(2) 2.86(2) ī0.10(10) 0.00 0.00 0.0238 

O2 0.2108(4) 0.4546(2) 1/4 2.00(2) 1.84(2) 3.47(2) 0.23(9) 0.00 0.00 0.0243 

O3 0.2916(3) 0.1652(2) 0.4609(2) 2.17(8) 3.78(10) 2.52(9) ī0.02(7) 0.16(7) ī1.10(7) 0.0282 

Chi2 1.145 

wRp 0.043 

Temperature 1353 K 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 2.29(1) 4.49(6) 2.67(2) ī0.14(4) ī0.78(9) ī1.04(10) 0.0323 

Fe2 0.9874(6) 0.2826(2) 1/4 2.77(2) 2.19(2) 2.72(2) 0.16(10) 0.00 0.00 0.0265 

Si 0.4318(8) 0.0978(4) 1/4 1.14(7) 2.12(6) 1.84(2) -0.33(8) 0.00 0.00 0.0161 

O1 0.7633(6) 0.0938(3) 1/4 1.00(1) 3.36(8) 0.21(1

0) 

2.98(7) 0.21(8) ī0.15(7) 0.0256 

O2 0.2103(7) 0.4553(3) 1/4 1.42(7) 1.82(20) 3.81(?) 0.21(?) 0.37(5) 0.00 0.0261 

O3 0.2924(6) 0.1649(3) 0.4607(4) 2.63(2) 3.97(8) 2.50(5) 0.47(3) 0.11(1) ī1.24(2) 0.0305 

Chi2 1.152 

wRp  0.043 

Temperature 1453 K 
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Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 2.53(6) 4.31(10) 2.34(5) 0.07(9) ī0.62(7) ī1.13(6) 0.0305 

Fe2 0.9876(4) 0.2828(1)  1/4 3.28(8) 2.30(8) 3.48(6) 0.07(7) 0.00 0.00 0.0301 

Si 0.4321(4) 0.0976(3)  1/4 0.09(5) 2.13(6) 3.08(5) ī0.08(1) 0.00 0.00 0.0176 

O1 0.7654(4) 0.0945(2)  1/4 0.56(2) 3.53(3) 3.44(3) ī0.38(10) 0.00 0.00 0.0250 

O2 0.2107(4) 0.4562(2)  1/4 2.16(3) 1.56(2) 4.31(4) ī0.06(10) 0.00 0.00 0.0267 

O3 0.2955(3) 0.1654(2) 0.4578(3) 2.47(7) 4.54(2) 2.61(9) 0.72(8) ī0.10(7) ī0.95(6) 0.0320 

Chi2 5.629          

wRp 0.023          

Temperature 573 K (Recovered) 

Atom x y  z 100U11 

(Å2) 

100U22 

(Å2) 

100U33 

(Å2) 

100U12 

(Å2) 

100U13 

(Å2) 

100U23 

(Å2) 

UISO 

(Å2)* Fe1 0 0 0 0.46(4) 1.11(5) 0.72(4) 0.07(5) ī0.08(4) ī0.27(3) 0.0305 

Fe2 0.9865(2) 

986553 

0.2807(1)  1/4 0.76(5) 0.36(4) 0.44(9) 0.11(4) 0.00 0.00 0.0301 

Si 0.4301(4) 0.0980(3)  1/4 0.01(13) 0.37(10) 3.08(5) 0.03(7) 0.00 0.00 0.0176 

O1 0.7683(3) 0.0940(1)  1/4 0.12(8) 0.98(7) 1.04(7) -0.08(6) 0.00 0.00 0.0250 

O2 0.2098(3) 0.4540(1)  1/4 0.36(8) 0.50(7) 1.41(8) 0.04(6) 0.00 0.00 0.0267 

O3 0.2896(2) 0.1652(1) 0.4625(2) 0.56(5) 1.21(6) 0.76(5) 0.01(5) 0.02(4) -0.59(4) 0.0320 

Chi2 3.161          

wRp 0.032          

*Equivalent isotropic displacement parameters calculated from the anisotropic values. 
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Figure  4. 2: Anisotropic displacement ellipsoids from the refinements at 10 K, 40 K, 100 K, 300 K, 373 K, 573 K, 873 K, 1173 K, 1353 K and 1453 K. 

10 K 100 K 300 K 

573 K 

373 K 40 K 

873 K 1173 K 1353 K 1453 K 
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 ɇhe space-group of the paramagnetic, canted, and collinear AFM phases of &Å3É/ 

remains ὖὦὲά, some reflections that are systematically absent when only the nuclear 

scattering is considered become visible in the collinear AFM and canted AFM phases. To 

determine the temperature of the transition between the paramagnetic and AFM1 phases, 

the behaviour of the 052 reflection was considered, as this peak, with intensity coming 

solely from the magnetic scattering, occurs at a Ὠ-spacing (~1.72 Å), where it is well 

separated from other peaks in the diffraction pattern (Fig. 4.3). The values of ȿὊ ȿ for 

052, obtained from the GSAS refinements, are shown as a function of temperature in Fig. 

4.3, with those for T Ó 50 K fitted by non-linear least squares to the expression. 

ȿὊ ȿ ὃ                       (4.1) 

where ὃ is a scale factor, Ὕ is the transition temperature and ‍ is a critical exponent. 

Although the data are rather sparse, it can be seen that an excellent fit is obtained, with 

Ὕ  = 65.4(1) K and ‍ = 0.31(3). The calculated Ὕ is in good agreement with previous 

measurements, which lie in the range 64.9 - 65.3 K (e.g., Lottermoser et al., 1986; MÕller 

et al., 1982; Suzuki et al., 1981; Santoro & Newnham, 1966; Aronson et al., 2007). 

Determination of the transition temperature between the AFM1 and AFM2 

antiferromagnetic phases from the diffraction patterns is more problematic as no additional 

reflections appear in the AFM2 phase. This transition is visible in the behaviour of the ὥ 

and ὧ axes, and in the refined values of the magnetic moments on the &Å atoms (see 

below), but the temperature of this transition cannot be reliably fixed in the way beyond 

saying that it occurs at 20 Ò Ὕ Ò 25 K; in the analysis of the lattice parameters,  the value 

of 23 K quoted by previous authors (e.g. Müller et al., 1982) has, therefore, been adopted 
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Figure 4. 3: (a) Stacked diffraction patterns from 10 K (bottom-most) to 70 K (top-most) showing the 

magnetic reflection at 1.72 B (hkl = 052) and (b) |Fobs|2 for the 052 reflection as a function of temperature 

fitted to Eq.(3.7) (solid black line) giving a transition temperature TN = 65.4(1) K. 

 

4.1.2  The Thermal Expansion of Fayalite  

The evolution of the unit-cell volume of &Å3É/ over the full temperature range is plotted 

in Fig. 4.4 and listed in Table 4.2. The results of this study (i.e., Tripoliti et al., 2023) are 

in good agreement with those of earlier high-temperature X-ray diffraction and dilatometry 

studies (Hazen, 1977; Suzuki et al., 1981; Kroll et al., 2012). The detailed low-temperature 

behaviour of the unit-cell lattice parameters and volume have not, until now, been 

reported. Data between 297 K and 1453 K, were initially fitted to Eq. (2.2) in EoSFit7c 

(Angel et al., 2014), which returned ὠ = 307.73(1) B, ὥ = 3.02(6) x 10ī5 Kī1, ὥ = 0.86(5) 

x 10ī8 Kī2, and ὥ= ī0.97(8) K.  As previously mentioned, by using Gr¿neisen 

approximations to the zero-pressure equation of state (Wallace, 1998), it is possible to 

obtain a far more physically meaningful analysis of the temperature dependence of the 

unit-cell volume. This approach, in which the effects of the thermal expansion are 

considered to be equivalent to the elastic strain induced by the thermal pressure, also 

allows estimates of the Debye temperature and Grüneisen parameters. Specifically, the 

2nd-order approximation of Eq. (2.5) is more appropriate for covering a wide temperature 

range (e.g., Voļadlo et al., 2002; Wood et al., 2002; Lindsay-Scott et al., 2007; Hunt et 

al., 2017; Tripoliti et al., 2023). However, in the case of &Å3É/, the behaviour of the unit-

cell volume and lattice parameters is more complex because of the magnetostriction 

resulting from the two magnetic transitions. Consequently, as already explained in 

Paragraph 2.4.1.1, to include the magnetic contribution to the volume expansion, ὠ Ὕ, 

Eq. (2.15) (see Wood et al., 2004) was implemented to analyse ὠὝ over the full 



118 
 

 
 

temperature range, from 10 K to 1453 K (see Tripoliti et al., 2023). However , &Å3É/  is 

a more complex material than a simple antiferromagnet, having two magnetic transitions 

and two independent sets of magnetic moments, one for each AFM phase. In addition, 

there is evidence, from e.g., the intensity of the 052 reflection, that the behaviour close to 

Ὕ for the paramagnetic to collinear AFM transition is not mean-field like. Tripoliti et al. 

(2023) found that a model based on a modified mean-field magnetisation curve is 

adequate to allow for an accurate description of the behaviour of the unit-cell volume of 

&Å3É/ at low temperature and thereby separate the effects of thermal vibration and 

magnetic ordering on the unit-cell volume. In this study (as in Tripoliti et al., 2023) 

therefore, it is assumed that the magnetostrictive contribution to ὠὝ results from an 

effective spontaneous magnetisation, ὓ , that may be described by the following equation 

ὠ Ὕ ὃ ὓ Ὕ  ὃ ὓ Ὕ                     (4.2) 

where ὃ  and ὃ  are constants of proportionality, Ὕ  and Ὕ  the transition 

temperatures and ‍ is an exponent (assumed to be the same for both phase transitions, 

with the factor of 2 introduced so as to ensure that a value of ‍ = ½ corresponds to mean-

field behaviour). To obtain ὓ Ὕ in a mean-field approximation (e.g., Blundell, 2001) it is 

necessary to solve the following equation 

ά ὄ  ÔÁÎÈ                  (4.3) 

where ά is the reduced spontaneous magnetisation (i.e., ὓ ὝȾὓ π ὑ ) and ὸ  ὝȾὝ. 

The right side of this equation is the Brillouin function ὄ ώ calculated here for ὐ  ϵ, as 

this is known to provide a good fit to the magnetisation curves of materials containing Fe 

and other ferromagnetic transition elements (e.g., Dekker, 1964). The theoretical 

justification for this approach to quantifying the spontaneous magnetostriction is, perhaps, 

somewhat scant, but Eq. (4.2) does result in a curve with the correct asymptotic behaviour 

as Ὕ approaches 0 K and which is also capable of describing the behaviour at 

temperatures close to Ὕ. In Fig. 4.4, the solid black line shows the result obtained from 

fitting the data to Eq. (2.16) by a weighted non-linear least-squares algorithm while the 

black circles show the experimental unit-cell volumes as found by the Rietveld refinement. 

The values of the six fitted model parameters were found to be; ὠ = 306.280(9) B, —  = 

498(9) K, ὗ = 4.0(1) x 10ī17 J, ὦ = 5.90(1), ὃ  = ī0.183(1) B, ὃ  = ī0.009(3) B and ‍ 

= 0.315(3). It can be seen that the model of Eq. (2.16) provides a good description of the 

behaviour of the unit-cell volume over the full temperature range of the experiment, and 
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that the effect of the 23 K transition on the unit-cell volume is in fact very small. The quality 

of this model fit is also mirrored in the volumetric thermal expansion curve in Fig. 4.5, with 

the full line obtained by differentiation of equation Eq. (2.16) while the experimental data 

points show the results from simple numerical differentiation by differences, point-by-point, 

of the ὠὝ data. 

 
Figure 4. 4: Measured unit-cell volumes of Fe2SiO4 against temperature. Experimental data are shown in 

filled circles and the model of Eq. (2.16) as a solid black line. Unit-cell volume error bars are omitted because 

they are smaller than the symbols; the smaller inner panel shows the fit of Eq. (2.16) below 90 K in more 

detail. The lower panel shows the differences between measured and calculated unit-cell volumes as a 

function of temperature when employing the model of Eq. (2.16). 
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Figure 4. 5: Volumetric thermal expansion coefficient of Fe2SiO4 as a function of temperature. Black circles 

were obtained by point-by-point numerical differentiation of the experimental unit-cell volume data reported 

in Table 4.2 and Fig. 4.4. The solid black line represents the fitted model as calculated by differentiation of 

Eq. (2.16). Orange and purple symbols refer to experimental data from previous studies (orange, Kroll et 

al., 2012; purple, Suzuki et al., 1981). 

 

For Ὕ — , the volume thermal expansion has slightly higher values compared to those 

in the literature, with the value of ὥ Ὕ) of Suzuki et al. (1981) at 1000 K being 9.3% 

smaller than ours, while those of Kroll et al. (2012), when calculated on a point-by-point 

basis, are scattered. Kroll et al. (2012) measured the thermal expansion by single-crystal 

X-ray diffraction and Suzuki et al. (1981) used dilatometry. Data collected during  the 

present study (Tripoliti et al., 2023) are more accurate than those of Kroll et al. (2012) due 

to the use of neutron diffraction data collected at very high Bragg angle on a time-of-flight 

diffractometer with an extremely long flight path. The differences between the results of 

this study (i.e., Tripoliti et al., 2023) and those of Suzuki et al. (1981) may be due to 

differences in the stoichiometry of the samples, although it should be remembered that 

dilatometry and diffraction examine fundamentally different properties of the material 

(Simmons & Balluffi, 1962).   

The Debye temperature of &Å3É/ obtained from the fit to Eq. (2.16), 498(9) K, is in very 

good agreement with that reported by Anderson & Suzuki (1983), 510 K, or Anderson & 

Isaak, (1996), 511 K, but somewhat lower than that of Suzuki et al. (1981), 565 K. The 
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value of ὠ, 306.280(9) B, corresponds to the volume that the unit-cell in the 

paramagnetic phase of &Å3É/, with disordered local magnetic moments, would occupy 

if such a phase persisted to limiting low temperature. An estimate of the incompressibility, 

ὑ , can be obtained directly from the coefficient ὗ, provided that the Grüneisen parameter 

is known. If the value of ‎ ρȢπωχυ found by Suzuki et al. (1981) is applied, ὑ  is found 

equal to 143(4) GPa which is a little larger than published values for ὑ , obtained directly 

from high-pressure studies, which lie between 128 and 136 GPa (e.g., Zhang, 1998; 

Speziale et al., 2004; Béjina et al., 2019; Graham et al., 1988; Zhang et al., 2017). The 

first derivative of the incompressibility with respect to pressure, can also be estimated from 

the coefficient ὦ. The resulting value, ὑ  = 12.8(2), is, however, higher than those 

published from high-pressure studies, which range between 4.1 and 5.3 (e.g., Graham et 

al., 1988; BÅǲjina et al., 2019, 2021; Speziale et al., 2004; Zhang, 1998). This is an 

indication of the limitations of the model of Eq. (2.5) that are reflected in the fitted 

parameters. In the ὠ Ὕ term of Eq. (2.16) the coefficients ὗ and ὦ are assumed to be 

temperature independent, whereas, in reality, the Grüneisen parameter, the 

incompressibility and its first derivative with respect to pressure all have some temperature 

dependence (e.g., Voc↑adlo et al., 2002). A modification of Eq. (2.16) can be used to model 

the anisotropic axial expansivities in &Å3É/. 

ὢὝ  ὢ Ὕ ὢ Ὕ                 (4.4) 

For the structural term, ὢ Ὕ, Eq. (2.11) was used. For an orthorhombic crystal, the 

expression for the parameter ὦ becomes more complex than it is for the case of 

volumetric expansion. Taking as an exemplar the ὥ-axis of &Å3É/ we have ὗ  ὑ ὠȾ‎ 

and ὦ ὑ  ɀ ςὑ Ⱦὑ     ςὑ Ⱦὑ   ρȾς(e.g., Lindsay-Scott et al., 2007). The 

axial incompressibilities are related to the elastic compliances, ί, such that for example, 

ὑ ρȾί ί ί . Similar equations can be derived for the ὦ and ὧ axes. The 

magnetic, ὢ Ὕ, term of Eq. (4.4) was assumed to take the same form as was used in 

Eq. (2.15). Therefore Eq. (4.4) can be used to fit the data for ὥὝ, ὦὝ, and ὧὝ. The 

results are plotted in Fig. 4.6 while Table 4.3 lists the values of all fitted parameters.  

For an orthorhombic crystal, the bulk incompressibility, ὑ , and the axial 

incompressibilities are related by ὑ  = ρȾρȾὑ ρȾὑ ρȾὑ . Assuming that a value 

of ‎ = 1.097 (Suzuki et al., 1981) applies in all cases,  the resulting  axial 

incompressibilities are 408(17), 519(18) and 293(7) GPa for the ὥȟ ὦ, and ὧ axes, 

respectively. Combining the axial incompressibilities gives a value of 128(12) GPa for ὑ , 
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which is in excellent agreement with values reported in the literature (128ï136 GPa ï see 

above), but 6.3% smaller than that obtained by fitting the ὠὝ data.  

 

Figure 4. 6: (Left column) Lattice parameters of Fe2SiO4 as a function of temperature. Symbols denote the 

experimental data, as obtained from the Rietveld refinement, and the solid black lines the fit of the model of 

Eq. (4.4) to the data. Error bars are smaller than the symbols. (Right column) Axial expansivities as a 

function of temperature (circles), compared to those of Suzuki et al., (1981; red squares). The solid black 

line represents the fitted model as calculated by differentiation of Eq. (2.10); the points were obtained by 

point-by-point numerical differentiation of the experimental data. The lower panels show the differences 

between the observed and calculated values. 

 

Inspection of Fig. 4.6 reveals that although Eq. (4.4) adequately represents the behaviour 

of the ὥ and ὧ axes, the same is not true for the ὦ-axis. The misfits between the model 

and the observed data for ὦὝ are much greater than for either ὥὝ or ὧὝ and some of 
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the fitted parameters for ὦὝ are not physically sensible; in particular, the value of the 

Debye temperature, 14(1) K, is extremely low, reflecting the fact that Eq. (4.4) is not able 

to account satisfactorily for the observed trend. This failure is, perhaps, more clearly seen 

by examination of the thermal expansion coefficient for the ὦ-axis, which does not show 

the expected fall-off below room temperature, instead remaining almost constant until the 

transition to the AFM1 phase is reached (Fig. 4.6). The expansion coefficient for the ὦ-

axis seen  here corresponds very closely to that observed above room temperature by 

Suzuki et al. (1981) using single-crystal dilatometry, but  the new data from HRPD reveal 

that its unusual behaviour continues to much lower temperatures. 

A further deficiency of the model defined by Eq. (4.4), as applied to the individual cell 

parameters of fayalite, is revealed by comparison of the derived axial incompressibilities 

with those measured directly, at room temperature and high pressure, by X-ray diffraction 

by Zhang (1998) and Zhang et al. (2017). Zhang (1998) reported axial incompressibilities 

of 741, 304 and 568 GPa for the ὥ, ὦ and ὧ axes respectively; Zhang et al. (2017) adopted 

a value of 135 GPa for the volumetric incompressibility and obtained axial values of 

682(67), 281(24) and 479(24) GPa. Although the values for the volumetric 

incompressibility (143(4) K from the fit to ὠὝ and 128(12) GPa from fitting the axes) 

agree well with those listed in Table 2 of Zhang et al. (2017), the agreement for the 

individual axes is not good, even to the extent of being unable to correctly determine the 

relative order of incompressibility. Both Zhang (1998) and Zhang et al. (2017) have ὑ  > 

ὑ > ὑ  whereas from Eq. (4.4) the sequence is ὑ  > ὑ  > ὑ . However, bearing in 

mind the unusual form of the thermal expansion of the ὦ-axis, this result is, perhaps, not 

surprising (see Tripoliti et al., 2023).  
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Table 4.2: Fe2SiO4 lattice parameters and unit-cell volumes measured in this study. The listed values are unscaled and the numbers in parenthesis are one standard 

error of the least significant digit.  

T (K) ὥ (Å) ὦ (Å) ὧ (Å) ὠ (Å3) T (K) ὥ (Å) ὦ (Å) ὧ (Å) ὠ (Å3) 

Closed-Cycle Refrigerator  TZM furnace 

10 4.81638(1) 10.44704(1) 6.08316(1) 306.086(1) 453 4.82534(2) 10.49135(5) 6.09972(3) 308.794(2) 

15 4.81638(2) 10.44709(4) 6.08318(2) 306.088(1) 473 4.82614(2) 10.49337(5) 6.10130(3) 308.985(2) 

20 4.81640(2) 10.44725(4) 6.08316(2) 306.093(1) 493 4.82702(2) 10.49530(5) 6.10293(3) 309.181(2) 

25 4.81644(2) 10.44743(4) 6.08300(2) 306.095(1) 513 4.82775(2) 10.49697(5) 6.10444(3) 309.353(2) 

30 4.81648(2) 10.44784(4) 6.08287(2) 306.101(2) 533 4.82859(2) 10.49879(5) 6.10584(3) 309.532(2) 

35 4.81649(2) 10.44827(4) 6.08276(2) 306.109(2) 553 4.82971(2) 10.50112(5) 6.10777(3) 309.770(2) 

40 4.81654(2) 10.44887(2) 6.08256(1) 306.120(1) 573 4.83058(1) 10.50321(3) 6.10951(2) 309.976(1) 

45 4.81655(2) 10.44923(4) 6.08247(2) 306.126(2) 593 4.83151(2) 10.50515(4) 6.11112(3) 310.174(2) 

50 4.81659(2) 10.45006(4) 6.08230(2) 306.145(2) 613 4.83250(2) 10.50721(4) 6.11284(3) 310.386(2) 

55 4.81660(2) 10.45094(4) 6.08220(2) 306.166(2) 633 4.83347(2) 10.50914(4) 6.11459(3) 310.594(2) 

60 4.81663(2) 10.45208(4) 6.08205(2) 306.194(2) 653 4.83450(2) 10.51124(4) 6.11629(3) 310.809(2) 

65 4.81666(2) 10.45370(4) 6.08191(3) 306.236(2) 673 4.83547(2) 10.51301(4) 6.11797(3) 311.009(2) 

70 4.81670(2) 10.45518(4) 6.08170(2) 306.274(2) 693 4.83651(2) 10.51515(4) 6.11978(3) 311.231(2) 

75 4.81673(2) 10.45603(4) 6.08181(2) 306.303(2) 713 4.83755(2) 10.51739(4) 6.12147(3) 311.451(2) 

80 4.81676(2) 10.45649(4) 6.08190(2) 306.324(2) 733 4.83864(2) 10.51937(4) 6.12322(3) 311.669(2) 

85 4.81675(2) 10.45709(4) 6.08191(2) 306.341(2) 753 4.83970(2) 10.52159(4) 6.12528(3) 311.899(2) 

90 4.81680(2) 10.45748(4) 6.08192(3) 306.356(2) 773 4.84070(2) 10.52340(4) 6.12664(3) 312.095(2) 

95 4.81685(2) 10.45791(4) 6.08202(3) 306.379(2) 793 4.84170(2) 10.52557(5) 6.12834(3) 312.313(2) 

100 4.81686(1) 10.45838(2) 6.08214(1) 306.397(1) 813 4.84206(2) 10.52776(5) 6.13010(3) 312.536(2) 

110 4.81702(2) 10.45930(4) 6.08231(3) 306.443(2) 833 4.84389(2) 10.53000(5) 6.13191(3) 312.765(2) 

120 4.81708(2) 10.46027(4) 6.08255(3) 306.487(2) 853 4.84495(2) 10.53224(6) 6.13354(4) 312.983(2) 
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130 4.81720(2) 10.46125(4) 6.08284(2) 306.538(2) 873 4.84600(1) 10.53433(3) 6.13530(2) 313.211(1) 

140 4.81736(2) 10.46217(4) 6.08315(2) 306.591(2) 893 4.84710(2) 10.53654(5) 6.13704(3) 313.432(2) 

150 4.81747(2) 10.46313(4) 6.08346(3) 306.642(2) 913 4.84820(2) 10.53888(4) 6.13884(3) 313.663(2) 

160 4.81770(2) 10.46415(4) 6.08378(3) 306.702(2) 933 4.84934(2) 10.54111(4) 6.14054(3) 313.889(2) 

170 4.81791(2) 10.46512(4) 6.08417(3) 306.763(2) 953 4.85044(2) 10.54355(5) 6.14231(3) 314.123(2) 

180 4.81804(2) 10.46618(4) 6.08456(3) 306.823(2) 973 4.85156(2) 10.54594(5) 6.14407(3) 314.357(2) 

190 4.81830(2) 10.46728(4) 6.08493(3) 306.890(2) 993 4.85272(2) 10.54851(5) 6.14579(3) 314.597(2) 

200 4.81851(2) 10.46824(4) 6.08540(3) 306.955(2) 1013 4.85382(2) 10.55107(5) 6.14765(3) 314.840(2) 

210 4.81876(2) 10.46938(4) 6.08590(3) 307.030(2) 1033 4.85490(2) 10.55355(5) 6.14945(3) 315.079(2) 

220 4.81896(2) 10.47044(4) 6.08637(3) 307.098(2) 1053 4.85608(2) 10.55598(5) 6.15124(3) 315.317(2) 

230 4.81916(2) 10.47145(4) 6.08691(3) 307.168(2) 1073 4.85723(2) 10.55847(5) 6.15300(3) 315.556(2) 

240 4.81946(2) 10.47250(4) 6.08746(3) 307.245(2) 1093 4.85833(2) 10.56107(5) 6.15470(3) 315.793(2) 

250 4.81969(2) 10.47360(4) 6.08791(3) 307.315(2) 1113 4.85944(2) 10.56359(5) 6.15649(3) 316.032(2) 

260 4.81996(2) 10.47469(4) 6.08856(3) 307.397(2) 1133 4.86056(2) 10.56612(5) 6.15830(3) 316.273(2) 

270 4.82028(2) 10.47566(4) 6.08910(3) 307.473(2) 1153 4.86174(2) 10.56885(5) 6.16009(3) 316.524(2) 

280 4.82056(2) 10.47683(4) 6.08967(3) 307.554(2) 1173 4.86288(2) 10.57153(3) 6.16194(2) 316.773(1) 

290 4.82087(2) 10.47776(4) 6.09036(3) 307.636(2) 1193 4.86401(2) 10.57424(5) 6.16372(3) 317.020(2) 

300 4.82113(1) 10.47890(2) 6.09092(1) 307.714(1) 1233 4.86635(2) 10.57985(5) 6.16750(3) 317.535(2) 

310 4.82144(2) 10.47997(4) 6.09154(3) 307.796(2) 1253 4.86761(2) 10.58297(5) 6.16946(3) 317.812(2) 

320 4.82175(2) 10.48097(4) 6.09213(3) 307.875(2) 1273 4.86910(2) 10.47885(5) 6.17170(3) 318.131(2) 

330 4.82206(2) 10.48199(4) 6.09283(3) 307.961(2) 1293 4.87082(2) 10.48498(5) 6.09264(2) 318.500(2) 

340 4.82240(4) 10.48305(9) 6.09356(6) 308.051(4) 1353 4.87444(1) 10.58785(2) 6.16350(1) 319.296(1) 

297 4.82023(2) 10.47688(4) 6.08971(3) 307.536(2) 1373 4.87569(2) 10.59065(5) 6.17250(2) 319.569(2) 

373 4.82260(2) 10.48435(3) 6.09448(2) 308.148(1) 1393 4.87691(2) 10.59377(5) 6.17425(2) 319.847(2) 

393 4.82326(3) 10.48609(5) 6.09572(3) 308.304(2) 1413 4.87810(2) 10.59651(5) 6.17618(2) 320.125(2) 
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413 4.82397(3) 10.48792(5) 6.09713(3) 308.474(2) 1433 4.87940(2) 10.59957(5) 6.17798(2) 320.401(2) 

433 4.82462(2) 10.48967(5) 6.09845(3) 308.635(2) 1453 4.88080(1) 10.60266(3) 6.17988(1) 320.708(1) 

CCR data are those from the Rietveld refinements. In subsequent analysis the following multiplicative scale factors were used to correct for the offsets:  

(i) between the CCR and the high-temperature furnace for ὥ-, ὦ-, ὧ- axes and unit-cell volume, respectively: 1.000199, 1.000139, 1.000198 and 1.000536 

(ii) between the two high-temperature measurements for -, ὦ-, ὧ- axes and unit-cell volume, respectively: 0.99984, 0.999856, 0.99982 and 0.999526. 
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Table 4.3. Fe2SiO4 fitted parameters of Eq. (4.2) and Eq. (4.4) to unit-cell axes and volume data. 

Axis X0 (B/ B3) —  (K) ὗ (J) ὦ ὃ  (B ὃ  (B ‍  

ὥ 4.817(4)  952(3)  1.14(5) 

x 10ī16  

12.26(6) ī0.000501(3)  ī0.000102(2)  0.271(6) 

ὦ 10.451(5)  14(1)  1.45(3) 

x 10ī16  

22.28(1) ī0.0058(60)  0.00080(2)  0.251(3) 

ὧ 6.082(5)  791(2)  8.19(12) 

x 10ī17  

3.52(1) 0.001112(5)  0.00013(8)  2.606(1) 

ὠ 306.280(9)  498(9) 4.0(1) x 

10ī17 

5.90(1) ī0.183(1) ī0.009(3) 0.315(3) 

 

4.1.3  Magnetic Structures and spontaneous magnetostriction  

Neutron diffraction data of this study are consistent with previous results for fayalite (e.g., 

Santoro et al., 1966; Müller et al., 1982; Lottermoser et al., 1986) showing that below the 

antiferromagnetic phase transitions at 65.4 K (to the AFM1 structure) and ~23 K (to AFM2) 

the magnetic cell remains equal to the crystallographic (chemical) cell and the space 

group remains ὖὦὲά. The magnetic moments of the &Åς ions are antiferromagnetically 

coupled and constrained by symmetry (since the &Åς sites are on mirror planes) to lie 

parallel/antiparallel to the ὧ-axis in both the AFM1 and AFM2 structures (Fig. 4,7). For the 

&Åρ sites, which lie on centres of symmetry, there is no symmetry constraint on the spin 

orientation, but the four &Åρ sites in the unit-cell are related by symmetry such that there 

is no net magnetic moment. Previous neutron diffraction studies on powder samples 

(Santoro et al., 1966) and with single crystals (Müller et al., 1982; Lottermoser et al., 1996) 

have shown that in the AFM1 phase the moments of the &Åρ and &Åς sites are collinear, 

but in the AFM2 phase the moments on the &Åρ sites are canted. Santoro et al. 1966; see 

also Lottermoser et al. (1986), described two possible models for the spin canting on the 

&Åρ site, only one of which (that originally proposed by Cox et al., 1965) would seem to be 

consistent with space group ὖὦὲά. Given that the symmetry is unchanged on passing 

from the AFM1 to the AFM2 phase, there has been some discussion, on the basis of 

results from single-crystal neutron diffraction (Lottermoser et al., 1986; Fuess et al., 1988), 

as to whether there was a distinct transition between the two phases or whether there 

was, instead, just a gradual change of the canting angle accompanied by a decrease of 

the magnetic moments. However, an analysis of &Å3É/ magnetization and its anisotropy 

by Ehrenberg and Fuess (1993) indicated a change in spin canting direction on the 

&Åρ sites below ~20 K which is consistent with Mössbauer experiments on temperature-

dependent hyperfine fields (e.g., Hafner et al., 1990; Lottermoser et al., 1986, 1996).  

The refinements of the AFM2 magnetic structure were based on the model proposed by 

Cox et al. (1965), and later confirmed by MÕller et al. (1982) and (Lottermoser et al., 1996). 
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When refining the AFM1 structure, the moments of the &Åρ ions were constrained to lie 

along the ὧ axis. As discussed by Cococcioni, et al. (2003 ï see their Fig. 2), there are, 

however, two possible configurations for the relative orientation of the moments on the 

&Åρ and &Åς sites. It was found that the arrangement shown in Fig. 4.7 gave the best fit to 

the data; this arrangement also corresponds to the ground state of the system, as 

determined by quantum-mechanical modelling (Cococcioni et al., 2003), with the 

magnetization of the Fe2 ion being in the same direction to that of its closest &Åρ ion, an 

arrangement suggesting antiferromagnetic ordering that occurs between corner-sharing 

octahedra.  

 

Figure  4. 7: Model of the spin configuration in Fe2SiO4 at: (a)  10 K in the canted and (b) at 40 K in the 

collinear antiferromagnetic regions. Fe1 ions (M1 sites) are shown in gold; Fe2 (M2) ions are shown in 

green. 

 

The refined values for the total moments on the &Åρ and &Åς ions and for their direction 

cosines are listed in Table 4.4. At 10 K, total moments on the &Åρ and &Åς ions (4.16(4) 

and 4.20(3) m , respectively) and for the direction cosines of the &Åρ moment with respect 

to the ὥ, ὦ and ὧ axes (0.56(4), 0.31(7), 0.76(3)) are in very good agreement with the 

single-crystal results of Lottermoser et al., (1986), who found values of 4.41(5) and 4.4(1) 

m , 0.57(2), 0.31(2) and 0.77(1). With increasing temperature, a gradual decline, more 

pronounced in the AFM2 phase, in the &Åρ magnetic moments is seen, which are 

considerably reduced as compared both to the spin only value of ‘ = 4 ɛB and to those of 

the &Åς site (Fig. 4.8). The behaviour of the moment on the &Åς site is different, remaining 

fairly constant until about 50 K and then falling steeply. Once again, these results are in 

agreement with the trends observed by Müller et al. (1982) and Lottermoser et al. (1986).  
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Figure 4. 8: (a) Magnetic and (b) squared magnetic moments for the Fe1 (M1) and Fe2 (M2) sites as a 

function of temperature. Moments on the &Åρ site are considerably reduced as compared with &Åς and the 

spin-only value of 4 ɛB (see Table 4.4 for numerical values). 

 

Table 4.4. Fe2SiO4 magnetic moments and direction cosines. 

T (Ⱦ) &Åρ (‘) ὧέίὥ ὧέί‍ ὧέί‎ &Åς (‘) ὧέί‎ 

10 4.16(04) 0.56(04) 0.31(07) 0.76(03) 4.20(03) 1 

15 3.94(09) 0.55(09) 0.29(04) 0.78(07) 4.16(07) 1 

20 3.49(09) 0.52(10) 0.19(06) 0.83(07) 4.10(06) 1 

25 2.93(06) 0 0 1 4.54(06) 1 

30 2.69(07) 0 0 1 4.43(06) 1 

35 2.43(07) 0 0 1 4.45(06) 1 

40 2.37(05) 0 0 1 4.27(05) 1 

45 2.25(08) 0 0 1 4.24(08) 1 

50 2.15(09) 0 0 1 3.98(09) 1 

55 1.87(10) 0 0 1 3.76(09) 1 

60 1.56(13) 0 0 1 3.25(12) 1 

65 0.90(20) 0 0 1 2.28(18) 1 

 

These results suggest that the &Åρ and &Åς sites make separable and complementary 

contributions to the evolution of the lattice parameters of the AFM1 and AFM2 phases with 

temperature. Changes in magnetic ordering in a crystal are, in general, accompanied by 

a magnetostrictive deformation. A method to obtain the spontaneous volume 

magnetostriction, ‫ , is to find the volume difference between the state in which the 

material is antiferromagnetically ordered, and a hypothetical state in which it is 

paramagnetically disordered (e.g., Kusz et al., 2000) .  
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‫                    (4.5) 

where ὠ  and ὠ  are the antiferromagnetic (observed) and hypothetical paramagnetic 

values of the unit-cell volume below Ὕ, respectively. Similarly, the linear spontaneous 

magnetostriction can be calculated as 

‗                    (4.6) 

With X referring to the lattice parameters ὥ, ὦ, and ὧ.  

Clearly, the derived values of the spontaneous magnetostriction will be strongly 

dependent on the procedure used to extrapolate the cell parameters of the paramagnetic 

phase to temperatures below Ὕ. However, a further constraint on correctness is provided 

by the requirement that, for small strains,  

‫  ‗ ‗ ‗                  (4.7) 

Initially, the strains were determined by fitting 1st-order Grüneisen approximations to the 

zero-pressure equation of state (e.g. Voļadlo et al., 2000, equivalent to setting the 

parameter ὦ in Eq. (2.5) to zero) to ὥ, ὦ, ὧ and ὠ in the range χπ +  Ὕ  ςππ + and then 

using these to extrapolate the paramagnetic behaviour into the AFM temperature range, 

but it was then found that that the sum of the resulting axial magnetostrictive strains was 

not equal the volumetric strain, as is required by Eq. (4.7). The reason for this is that the 

ὦ-axis varies essentially linearly for 65 K Ò Ὕ Ò 200 K and so it cannot be reliably 

extrapolated in this way; the correlation coefficient between ὦ and —  in the non-linear 

least-squares algorithm was found to be 99.9%, and thus the temperature at which the 

thermal expansivity of the ὦ-axis begins to reduce, and hence its value at 0 K cannot be 

determined. It was decided, therefore, that the most robust method for extrapolation of the 

cell parameters of the paramagnetic phase was to fit  ὥ, ὧ and ὠ  in the range 70 K Ò Ὕ Ò 

200 K, as described above, and then to determine ὦ  from ὠ Ⱦὥ ὧ . For Ὕ Ò 65 

K, Eq. (4.2) was fitted to the differences between the measured and the extrapolated unit-

cell parameters while the volumetric and linear magnetostrictive strains were calculated 

from Eqs. (4.5) & (4.6) and were normalized to their calculated values at 0 K. The results 

of this process are shown in Fig. 4.9, for the lattice parameters, with the volumetric and 

linear spontaneous magnetostrictive strains given in Fig. 4.10a and the normalised 

magnetostrictive strains in Fig. 4.10b. The fitted values of the parameters are given in 

Table 4.5 while Fig. 4.11 shows the self-consistency of ‫  and ‗ + ‗ + ‗. It can be seen 
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from Fig. 4.10a that the strain ‗ is much smaller than ‗ and ‗, for which the strains 

have opposite signs, and that the transition at 23 K has a minimal effect on the length of 

the b axis. In this latter respect, the behaviour of &Å3É/ at the 23 K transition is similar 

to that shown at the antiferromagnetic phase transition by #Ï3É/ (Sazonov et al., 2009); 

however, in #Ï3É/, ‗ and ‗ are of opposite sign. Comparison of the normalised values 

of the spontaneous magnetostriction (Fig. 4.10b) with the refined values of the magnetic 

moments on the &Åρ and &Åς sites, Fig. 4.8, suggests that ‗ and ‗ show a temperature 

dependence that is similar to that of &Åρ moments while ‗ follows a trend more similar to 

that of the &Åς sites.  

 

Figure 4. 9: Lattice parameters of Fe2SiO4 below 200 K. Extrapolation of the paramagnetic behaviour of 

Fe2SiO4 below TN using the 1st-order Grüneisen-Debye approximation of the thermal expansion (Eq. (2.5), 

with the parameter b = 0) is shown in dotted black lines and fitted magnetostrictive components (Eq.  (4.2)) 

in solid black lines. 
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Figure 4. 10: (a) Linear and volumetric spontaneous magnetostriction of Fe2SiO4. Experimental values 

(shown as symbols) were obtained from Eq. (4.5) and Eq. (4.6); the lines show the calculated values from 

Eq. (2.5) & Eq. (4.2) and Eq. (4.4) and Eq. (2.11). (b) Normalized values of spontaneous magnetostriction, 

with symbols as for (a), with the ὥ- and ὧ- axes showing similar temperature dependence to that of Fe1 (M1) 

moments while b and V follow temperature dependences more like that of the moments on the Fe2 (M2) 

sites. 

 

 

Figure 4. 11: Volumetric magnetostrictive strain calculated: (i) directly from the unit-cell volume (grey circles) 

and (ii) indirectly from the sum of the axial strains (black circles). The close agreement between the two 

methods shows the self-consistency of the methodology (for details see main text). 

 

 

 

 

(a) 

 

 

 

(b) 
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Table 4.5. Fitted values of the model parameters used to fit the unit-cell axes and volume of Fe2SiO4.  

 Paramagnetic Phase Antiferromagnetic Phase 

 ὢ (B) —  (K) ὗ (J) ὃ  (B ὃ  (B ‍  

ὥ 4.816(3) 621(6) 1.62(5) x 10ī16 ī0.0001(2) ī0.00018(8) 1.59(7) 

ὦ 10.456*   0.0007(1) ī0.0026(1) 0.22(3) 

ὧ 6.081(7) 631(9) 9.78(1) x 10ī16 0.0003(2) 0.00129(5) 1.11(5) 

ὠ 306.210(2) 329(16) 4.97(3) x 10ī17 ī0.0057(1) ī0.0840(2) 0.39(1) 

* The value for ὦ was calculated from ὠȾὥὧ . 

 

4.1.4  Structure anomalies in Fayalite; Comparison with Forsterite  

A common simplifying assumption is that above room temperature, the behaviour of 

forsteriteôs lattice parameters is representative of all olivines. Incorporation of &Å cations 

into olivineôs octahedral sites, though, is found to cause structural anomalies (e.g., 

Henderson et al., 1996; Redfern et al., 2000; Artioli et al., 1995) potentially leading to 

atypical axial expansivities (e.g., Suzuki et al., 1981). As found by Tripoliti et al. (2023), 

&Å3É/ shows very little change in the thermal expansion coefficient along ὦ above the 

transition temperature at Ὕ = 65.4 K. As pointed out by Robie et al. (1982), Aronson et 

al. (2007) and Dachs et al., (2007) this originates from the presence of short-range 

magnetic order that has been previously observed up to 130 K (~2Ὕ) and may exist at 

temperatures as high as 500 K (Kolesov & Geiger, 2004). The calculated magnitudes of 

the volume, ‫ , and ὦ-axis, ‗, magnetostrictive strains have small non-zero values at 

and above Ὕ (Tripoliti et al., 2023), therefore magnetic entropy may indeed explain this 

behaviour of ὦ-axis within the paramagnetic state. Suzuki et al. (1981) suggested that it is 

unlikely magnetism controls the expansion of the unit-cell axes of fayalite at higher 

temperatures especially close to the melting point. Comparing the forsterite data shown 

in Paragraph 3.1, with the fayalite data obtained from this neutron diffraction experiment 

(Paragraph 4.1) it is found that expansion of ὦ may be affected by magnetism up to 400 

K, above which point it is becoming rather normal up to 1000 K. Strong anharmonic effects 

become progressively more noticeable in the thermal expansion above 1200 K (Fig. 4.12).  
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Figure 4. 12: (a) Expansion of b-axis of both olivine end-members. Colours indicated different regions, i.e., 

antiferromagnetic (AFM), magnetic entropy, normal expansion and anharmonic. (b) Unit-cell axes of both 

end-members.  

 

To locate the origin of fayaliteôs ὦ-axis anisotropy, the two end-members were further 

compared in order to trace the presence of geometric anomalies in the structure of 

&Å3É/. Earlier studies on the Fe end-member, however, have failed to detect any (e.g., 

Smyth, 1975; Suzuki et al., 1981; Suwa, 1964). A neutron powder diffraction study of #Ï-

olivine by Rinaldi et al. (2005), indicated deformation mechanisms of the M1 and M2 

octahedra due to changes, as small as ~0.5%, in octahedral angles that are sufficient to 

give rise to high anisotropy in axial expansivities. Rinaldi et al. (2005), Sazonov et al. 

(2010) and  Gartvich & Galkin (2019) showed a linear expansion of ὦ-axis throughout the 

temperature range without signs of magnetism effects (Fig.4.13). The #Ï3É/ study of 

Rinaldi et al. (2005) showed linear expansion for all unit-cell axes, however, the more 

comprehensive data of Sazonov et al. (2010), on the same olivine composition, indicated 

anomalous low-temperature expansion for ὥ- and ὧ-axes (in the space group setting 

ὖὦὲά).  

 

Figure 4. 13: b-axis of various olivines with different transitions metals.   

 

(a)     (b)     






















































































































































































