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A B S T R A C T

The roll out of connected and autonomous vehicle (CAV) technologies can be beneficial for road traffic
in terms of road safety, traffic and energy efficiency. This paper addresses the platooning problem of
heterogeneous CAVs with consideration of a time-varying leader speed and multi-dimensional uncertainties
that include modeling uncertainties and local measurement disturbances. Resorting to a spatial domain
modeling approach with appropriate coordination changes and the relaxation of nonconvex constraints, the
traditional nonlinear optimal control problem formulation is convexified for improved computational efficiency
and ease of implementation. Then, a convex and tube-based distributed model predictive control algorithm
(DMPC) utilizing a predecessor-following communication topology is designed with certified theoretical
properties, which can be boiled down to DMPC parameter tuning criteria. Finally, numerical results and
comparisons against nominal and nonlinear DMPC-based methods are carried out to verify the performance
and computational efficiency of the proposed method under different driving scenarios.
1. Introduction

With the advance of robotics, control and communication tech-
nology, connected and autonomous vehicles (CAVs) are predicted to
improve road safety, transportation efficiency and energy consumption.
One of the key applications of CAV technologies is vehicle platoon
control. By exploiting inter-vehicular communication, cooperative con-
trollers make CAVs move at the same speed and a small headway
between consecutive vehicles to form a platoon. The work on ve-
hicle platoon control can be dated back to the 1980s (Kanafani &
Parsons, 1989; Shladover et al., 1991). Since then, many research or-
ganizations and automotive industries successively developed relative
projects (Karafyllis, Theodosis, & Papageorgiou, 2023; Robinson, Chan,
& Coelingh, 2010; Tsugawa, 2013).

There is rich literature dealing with platoon formation control,
including consensus control (Karafyllis et al., 2023; Lunze, 2019),
optimal control (Wang et al., 2020; Zhu, Zhao, & Zhong, 2019), data-
driven control (Guo, Guo, Liu, Cao, & Chen, 2022; Lan, Zhao, &
Tian, 2021), -infinity control (Liu, Xu, Cai, Yin, & Yan, 2023; Liu,
Yao, Wang, & Lu, 2022; Wang et al., 2023; Xu et al., 2022), sliding
mode control (Boo & Chwa, 2023; Zhou et al., 2022a) and model
predictive control (MPC) (An & Talebpour, 2023; Huang, Chu, Wu, &
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He, 2019; Ozkan & Ma, 2022; Yu et al., 2016). In particular, MPC-
based platooning schemes turn out to be one of the most preferable
control solutions for their capability of handling the control and state
constraints, which are ubiquitous in the vehicle platoons, such as
powertrain limits, collision avoidance constraints and traffic regulation
constraints. On the other hand, due to the technological advancement
in inter-vehicular communication, distributed model predictive control
(DMPC) solutions are receiving considerable research interest. They
permit each controller to be deployed locally on each vehicle so that
the computational efficiency and overall system resilience can be sig-
nificantly improved as compared to centralized approaches (Feng et al.,
2019; Gungor & Al-Qadi, 2020; Li, Bian, Li, Xu, & Wang, 2020; Wang
et al., 2021; Zheng, Li, Li, Borrelli, & Hedrick, 2016). The inter-vehicle
communication graph plays an important role in the DMPC platoon
control design. A common assumption invoked to ensure the internal
stability properties of a DMPC is the existence of a spanning tree
within the platoon communication graph. Under such an assumption,
a typical class of DMPC algorithm is proposed in Zheng et al. (2016),
which discusses the conditions ensuring asymptotic stability of vehicle
platooning with respect to several common communication topologies,
such as predecessor-following (PF), predecessor-leader following (PLF)
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Nomenclature

CAV Connected and Autonomous Vehicle
(D)MPC (Distributed) Model Predictive Control
ISS Input-to-State Stability
PF Predecessor-Following
PLF Predecessor-Leader Following
TPLF Two Predecessor-Leader Following
𝐶𝑑 , 𝐶𝑓 Air drag and rolling resistance coefficients
𝑑, 𝑤 Modeling uncertainty and measurement

noise
𝐸, 𝛥𝑡 Kinetic energy and time headway of vehicle
𝑔 Gravitational constant
𝑚 Vehicle mass
𝑟 Vehicle tire radius
𝑇 , 𝜉 Input torque and virtual input
𝜂 Vehicle drive ratio
𝜃 Road slope angle
 , 𝛿 Normalized kinetic energy and time head-

way of vehicle
 , 𝜁 Normalized input torque and virtual input
𝑥, 𝑢, 𝑦 Actual state, input and output
𝑥𝑎, 𝑢𝑎 Assumed state and input
𝑥̂, 𝑦̂ Estimated state and output
𝑥̄, 𝑢̄ Nominal state and input
𝑥∗, 𝑢∗ Optimal state and input

and K-predecessor-leader following, either directed or undirected. An
alternative DMPC algorithm is introduced in Qiang, Dai, Chen, and
Xia (2022), where a bidirectional PF communication mechanism is
utilized to enhance the feasibility as compared to unidirectional PF
during the initial phase when the target of the leader is not known to all
followers. On the other hand, to ensure that external disturbances are
not amplified when propagating along the vehicle string, string stability
has been widely investigated and usually addressed by involving extra
MPC terminal constraints (Feng et al., 2019; Seiler, Pant, & Hedrick,
2004). Moreover, in Liu, Kurt, and Ozguner (2019), the cooperative
merge-and-split control problem of a vehicle platoon is addressed by
a two-step DMPC algorithm, which guarantees collision-free properties
in addition to flexible platooning operation. The joining and leaving
of vehicles may yield a time-varying communication topology among
vehicles, and this problem is studied in Li et al. (2020) by another
DMPC algorithm. In order to optimize the fuel economy of heavy-duty
vehicle platoons, Turri, Besselink, and Johansson (2017) deals with a
two-layer control architecture, where the two layers are responsible
for vehicle speed preview based on road topography and real-time
velocity control of the platoon, respectively. The mixed platoon of CAVs
and human-driven vehicles are investigated in Gong and Du (2018),
where non-autonomous vehicles are modeled by a macroscopic car-
following model. The DMPC algorithm deployed on each CAV is shown
to be effective in maintaining platoon formation in such a nominal
case. Considering an electric vehicle platoon, Pi et al. (2022) has
proposed a DMPC-based energy-efficient control solution for optimal
energy recovery braking force distribution and therefore maximized
energy efficiency.

In practice, the platoon systems inevitably involve uncertainties
due to model mismatches and external perturbations. Existing solution
methods are usually based on -infinity control (Liu et al., 2023;

ang et al., 2023; Xu et al., 2022) and sliding model control (Boo &
hwa, 2023; Zhou et al., 2022a) methods, whereas there is still room

or developing novel robust MPC-based heterogeneous platoon control

trategies. Recently, in Luo, Nguyen, Fleming, and Zhang (2021), a

2 
tube-based DMPC algorithm has been proposed to address process
noise. It has been shown that robustness can be guaranteed in the
presence of a PLF communication graph. A similar tube-based DMPC al-
gorithm is adopted in Feng, Song, Li, Zhang, and Li (2021) to cope with
the prediction uncertainties introduced by the non-controllable human-
driven vehicles in the context of a mixed autonomy vehicle platoon.
Communication delays represent another source of system uncertainty
as data transmission inevitably introduces time delays under practical
conditions due to insufficient bandwidths, over-length platoons, radio
interference, etc. In this regard, a robust DMPC approach using min–
max optimization is designed in Zhou et al. (2022b), which is proven
to be robust against communication delays.

Although distributed control architecture is beneficial for com-
putational efficiency, existing CAVs are still struggling to deal with
nonlinear programming in real-time due to the limited onboard compu-
tational resources. Early results consider only a highly simplified linear
longitudinal dynamic system, which can substantially reduce the com-
putation time, however, the accuracy of the control solution may not be
sufficient due to the lack of consideration of vehicle heterogeneity (Li,
Li, Rajamani, & Wang, 2011; Stankovic, Stanojevic, & Siljak, 2000).
The recent work in Hu, Bhowmick, Arvin, Lanzon, and Lennox (2020)
proposed a feedback linearization method to deliberately compensate
the system nonlinearities so that linear DMPC can be used with reduced
computational effort. Nevertheless, robustness cannot be guaranteed by
the feedback linearization scheme as modeling uncertainties, such as
variable drag coefficients and slops are ignored. Current literature in
this area is still very limited and requires further study. It is therefore
of great interest to study accurate but also computationally efficient
algorithms for platooning.

The present paper expands the author’s prior work in Sun, Dai,
and Chen (2022) on the robust heterogeneous vehicle platoon control
by considering a time-varying leader speed and proposes a convex
and tubed-based DMPC platooning algorithm with superior optimiza-
tion efficiency and certified theoretical properties. The proposed dis-
tributed control scheme is based on the PF communication protocol,
which does not impose significant communication demand as com-
pared to PLF in Luo et al. (2021) and the bidirectional topology
in Qiang et al. (2022). Both process and measurement disturbances
are considered to capture more realistic uncertainties in practice. The
effectiveness of the proposed method and its advantages over the
existing approaches are demonstrated by numerical simulations and
comparisons. The contributions of the paper are summarized as follows:

• The traditional nonlinear vehicle platooning problem is refor-
mulated by a spatial domain modeling approach with respect
to vehicle kinetic energy and the time gap between adjacent
vehicles. In this context, coupled state constraints for collision
avoidance and platoon formation can be decoupled, such that
feasibility and stability guarantees can be justified in a more
handy way. Moreover, space-dependent coefficients, such as the
rolling resistance and road slopes, can be accurately modeled.

• Following the last point, a convex optimization-based control
framework is developed so that the optimal solution can be
efficiently obtained at each step. Quantitative analysis in terms of
computational efficiency is performed in the simulation section
by numerical comparison with a traditional nonlinear DMPC
approach. Moreover, the validity of the convex reformulation is
rigorously analyzed.

• In contrast to the existing works that consider only partial distur-
bances in the platoon system, both unmodeled motion dynamics,
and sensor measurement disturbances of the position and velocity
are considered and addressed in this paper by a tube-based DMPC
approach. The theoretical analysis reveals the DMPC parameter
tuning criteria by which recursive feasibility and input-to-state
stability (ISS) of the proposed algorithm can be guaranteed when

the velocity of the leader vehicle reaches a steady state.
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Fig. 1. A heterogeneous vehicle platoon with the PF communication protocol.
The remainder of this paper is organized as follows. The mod-
eling framework and the communication topology are introduced in
Section 2. In Section 3, the methodology of this distributed robust
platoon control problem is proposed. In Section 4, theoretical analysis
of recursive feasibility, Lyapunov asymptotic stability and auxiliary
variable validation are demonstrated. Simulation results are presented
in Section 5. Finally, Section 6 concludes this work.

Notation: Let R, R≥0, R>0 denote the real, the non-negative real and
the strict positive real sets of numbers, respectively. Given a vector
𝐱 ∈ R𝑛, the Euclidean norm of 𝐱 is denoted by |𝐱|. Given a time-
varying vector 𝐱(𝑡) ∈ R𝑛, 𝑡 ∈ R≥0 we will denote as ‖𝐱‖∞ the quantity
‖𝐱‖∞ = sup 𝑡≥0|𝐱(𝑡)|. Given a matrix 𝐀 ∈ R𝑛×𝑛, then ‖𝐀‖ will denote
max𝐱∈R𝑛∖0{|𝐀𝐱|∕|𝐱|}, and 𝐀[𝑖,𝑗] represent (𝑖, 𝑗)th entry of the matrix. The
Minkowski sum of sets W, V is W⊕ V = { 𝑥 + 𝑦 | 𝑥 ∈ W, 𝑦 ∈ V }; the
Minkowski difference of sets W,V is W⊖ V = { 𝑥 | 𝑥 ⊕ V ⊆W }.

2. Problem statement

As shown in Fig. 1, this paper considers a vehicle platoon of 𝑁 + 1
heterogeneous CAVs. Without loss of generality, the leading CAV is
indexed by 0 and the followers are indexed by 𝑖 ∈  with  =
{1, 2,… , 𝑁}. Vehicle-to-vehicle (V2V) communication is enabled in the
platoon and follows a unidirectional PF information flow topology by
which each vehicle only receives information from the one immediately
ahead. This communication protocol is commonly used in vehicle
platooning due to its relatively lower data exchange demand compared
to other topologies.

Next, we will first briefly review the nominal time-domain modeling
framework of the platooning problem, and then a convex reformulation
of the problem in the space domain will be introduced.

2.1. The nominal modeling framework in the time domain

The longitudinal dynamics of each following vehicle are described
as:

̇ 𝑖(𝑡) = 𝑣𝑖(𝑡), (1a)

𝑣̇𝑖(𝑡) =
1
𝑚𝑖

(

𝜂𝑖
𝑟𝑖
𝑇𝑖(𝑡) − 𝐶𝑑,𝑖𝑣2𝑖 (𝑡) − 𝑚𝑖𝑔𝐶𝑠,𝑖(𝑡)

)

, 𝑖 ∈  (1b)

where 𝑠𝑖(𝑡) is the position of vehicle 𝑖, 𝑣𝑖(𝑡) is the velocity, vehicle
mass is denoted by 𝑚𝑖, 𝑔 is the gravity constant, 𝜂𝑖 is the final drive
ratio, 𝑟𝑖 is the tire radius, 𝐶𝑑,𝑖 is the aerodynamic drag coefficient, and
𝑇𝑖(𝑡) is the driving/braking torque, acting as the control input of the
follower. Moreover, 𝐶𝑠,𝑖(𝑡) is the synthetic coefficient of the tire friction
and gradient forces

𝐶𝑠,𝑖(𝑡) = 𝐶𝑓𝑖 cos 𝜃𝑖(𝑡) + sin 𝜃𝑖(𝑡), 𝑖 ∈  (2)

with 𝐶𝑓𝑖 the rolling resistance coefficient and 𝜃𝑖(𝑡) the road slope angle.
The common objective of platoon control in the noise-free scenario

requires all following vehicles to move at the same speed as the leading
vehicle while following the constant time-headway policy between
adjacent vehicles (Karafyllis et al., 2023; Lunze, 2019):

lim
𝑡→∞

‖𝑣𝑖(𝑡) − 𝑣0(𝑡)‖ = 0, (3a)

lim
𝑡→∞

‖𝑠𝑖(𝑡) − 𝑠𝑖−1(𝑡) − ℎ(𝑡)‖ = 0, ∀𝑖 ∈  (3b)
3 
where 𝑣0(𝑡) ∈ [𝑣min, 𝑣max] is the target speed of the leading vehicle,
ℎ(𝑡) is the desired spacing, proportional to speed 𝑣0(𝑡). To complete
the framework, the following constraints are also required for safety
purposes and for the fulfillment of control limits

𝑣min ≤ 𝑣𝑖(𝑡) ≤ 𝑣max, (4a)

ℎmin ≤ 𝑠𝑖(𝑡) − 𝑠𝑖−1(𝑡) ≤ ℎmax, (4b)

𝑇𝑖,min ≤ 𝑇𝑖(𝑡) ≤ 𝑇𝑖,max, ∀𝑖 ∈  (4c)

in which {𝑣min, 𝑣max}, {ℎmin, ℎmax} (proportional to 𝑣min and 𝑣max, re-
spectively) and {𝑇𝑖,min, 𝑇𝑖,max} represent minimum and maximum limits
for the driving speed, headway distance, and individual torque, respec-
tively. As it can be noticed, the speed and headway distance limits are
subject to driving conditions (e.g., highway, rural, etc.), thus identical
for all vehicles.

2.2. A convex modeling approach

Instead of the commonly used time-domain modeling approach with
respect to the position and velocity of individual vehicles, as given in
(1)–(4), this paper proposes to use a novel space domain modeling ap-
proach with state transformation to reformulate the platooning system,
which (1) permits the control problem to be formulated as a convex
optimization problem for rapid solution search, and (2) facilitates the
design of the DMPC algorithm, as will be elaborated later.

Consider 𝑠 the independent variable of traveled space (waypoint on
the line of travel). The transformation from time to space domain is
accomplished by replacing the independent variable 𝑡 with 𝑠 via
𝑑
𝑑𝑠

= 1
𝑣
𝑑
𝑑𝑡
.

Let 𝐸𝑖(𝑠) = 1
2𝑚𝑖𝑣

2
𝑖 (𝑠) and 𝛥𝑡𝑖(𝑠) = 𝑡𝑖(𝑠) − 𝑡𝑖−1(𝑠), ∀𝑖 ∈  denote the

kinetic energy of vehicle 𝑖 and its time headway with respect to the
preceding (𝑖 − 1)-th vehicle, respectively. In view of (1), the dynamics
of both variables in the space domain are governed by the following
differential equations:
𝑑
𝑑𝑠
𝛥𝑡𝑖(𝑠) =

1
√

2𝐸𝑖(𝑠)∕𝑚𝑖
− 1

√

2𝐸𝑖−1(𝑠)∕𝑚𝑖−1
, (5a)

𝑑
𝑑𝑠
𝐸𝑖(𝑠) =

𝜂𝑖
𝑟𝑖
𝑇𝑖(𝑠) − 2

𝐶𝑑,𝑖
𝑚𝑖

𝐸𝑖(𝑠) − 𝑚𝑖𝑔𝐶𝑠,𝑖(𝑠). (5b)

where 𝐸𝑖(𝑠) > 0,∀𝑠 to avoid the singularity and it can be enforced by
(7a) with 𝑣min ≥ 0. As a consequence, the nominal objectives (3) and
the constraints (4) can be replaced by:

lim
𝑠→∞

‖𝐸𝑖(𝑠) −
1
2
𝑚𝑖𝑣

2
0(𝑠)‖ = 0 (6a)

lim
𝑠→∞

‖𝛥𝑡𝑖(𝑠) − 𝛥0‖ = 0, ∀𝑖 ∈  (6b)

and

𝐸𝑖,min ≤ 𝐸𝑖(𝑠) ≤ 𝐸𝑖,max, (7a)

𝛥𝑡min ≤ 𝛥𝑡𝑖(𝑠) ≤ 𝛥𝑡max, (7b)

𝑇𝑖,min ≤ 𝑇𝑖(𝑠) ≤ 𝑇𝑖,max, ∀𝑖 ∈  (7c)

where 𝐸𝑖,min = 1
2𝑚𝑖𝑣

2
min and 𝐸𝑖,max = 1

2𝑚𝑖𝑣
2
max, 𝛥0 is the desired time

headway between consecutive vehicles. Note that 𝑣 in the space
min



H. Sun et al.

𝜉

w
t

w

t
a

X

w

w

𝑓

T
v
r
p
p
t
c
c
c
i
d
i
n
c

t
v
e

𝛿
v

X

𝑥

w

European Journal of Control 79 (2024) 101023 
domain formulation can only be set to a non-zero constant to prevent
singularity issues in (5a).1 Being 𝐸𝑖(𝑠) > 0, (6a) is equivalent to (3a).
The time headway target (6b) and the constraint (7b) are surrogates
of the headway distance objective and constraint given in (3b) and
(4b) with 𝛥𝑡min and 𝛥𝑡max the minimum and maximum time headway,
respectively. By substituting the coupled state constraints (4b) with
the state constraint (7b), the uncertainties involved in the information
received from the preceding vehicle can be immediately taken into
consideration as the modeling error in (5a).

Now, we have all ingredients to formulate the distributed control
problem for CAV 𝑖 in the space domain.

OCP 1.

min
𝑇𝑖

𝐽𝑖(𝛥𝑡𝑖, 𝐸𝑖, 𝑇𝑖) (8a)

𝐬.𝐭. ∶ (5), (7) (8b)

where the cost function 𝐽𝑖(𝛥𝑡𝑖, 𝐸𝑖, 𝑇𝑖) related to the quadratic control
objectives (6), will be designed later in Section 3.2. It is noteworthy that
OCP 1 is a non-convex programming problem because of the nonlinear
dynamics in (5a). In order to improve the computational efficiency, a
convex reformulation of (5a) is utilized:
𝑑
𝑑𝑠
𝛥𝑡𝑖(𝑠) = 𝜉𝑖(𝑠) −

1
𝑣𝑖−1(𝑠)

(9a)

𝑖(𝑠) ≥
1

√

2𝐸𝑖(𝑠)∕𝑚𝑖
, 𝑖 ∈  (9b)

here 𝜉𝑖(𝑠) is a fictitious control input used in place of the nonlinear
erm 1

√

2𝐸𝑖(𝑠)∕𝑚𝑖
that depends on the local state 𝐸𝑖(𝑠). As such, the

nonlinear differential constraint (5a) can be relaxed to a combination
of linear differential equations and a convex constraint in an optimal
control problem. Consequently, OCP 1 can be convexified, leading to

OCP 2.

min
𝑇𝑖 ,𝜉𝑖

𝐽𝑖(𝛥𝑡𝑖, 𝐸𝑖, 𝑇𝑖) (10a)

𝐬.𝐭. ∶ (5b), (7), (9) (10b)

It is worth noting that the validity of the solution of OCP 2 relies
on the tightness of (9b), which is addressed later by Proposition 1 in
Section 4.

3. Tube-based distributed model predictive control

The main algorithm is introduced in this section. In the first place,
the reformatted system equations are introduced. Based on that, the
tube-based MPC algorithm is inherited from the theoretical framework
proposed in Mayne, Raković, Findeisen, and Allgöwer (2006), then the
local MPC problem is formulated for each following vehicle under a
distributed control mechanism.

3.1. Tube-based MPC

For the sake of introducing the MPC-based algorithm and taking into
account system uncertainties, such as modeling error and measurement
noise, in a unified framework, the system differential Eqs. (5b) and (9a)
are discretized and rewritten in a normalized form as follows:
𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝛾𝑖(𝑘) + 𝑑𝑖(𝑘)

𝑦𝑖(𝑘) = 𝐶𝑥𝑖(𝑘) +𝑤𝑖(𝑘), 𝑖 ∈ 
(11)

1 In the low driving speed scenario (e.g. urban driving), 𝑣min can be set to
a sufficiently small positive constant to avoid sacrificing the generality of the
formulation.
 t

4 
𝐴𝑖=

[

1 0
0 1 − 2𝐶𝑑,𝑖

𝑚𝑖
𝛥𝑠

]

, 𝐵𝑖=

[

𝛥𝑠 0
0 𝜂𝑖

𝑟𝑖
𝛥𝑠

]

, 𝐶=
[

1 0
0 1

]

,

𝛾𝑖(𝑘) =
⎡

⎢

⎢

⎣

−𝑓𝑖
(

̂𝑖−1(𝑘)
)

𝛥𝑠

−𝑚𝑖𝑔𝐶𝑠,𝑖(𝑘)
𝐸max

𝛥𝑠

⎤

⎥

⎥

⎦

here 𝑘 = 0, 1,… , 𝑘̄, 𝛥𝑠 ∈ R>0 denotes the sampling distance interval
and 𝑘̄𝛥𝑠 is the total length of the mission. The normalized state vector
of 𝛥𝑡𝑖 and 𝐸𝑖 is defined as 𝑥𝑖(𝑘) ≜ [𝛿𝑖(𝑘) 𝑖(𝑘)]⊤ ∈ X𝑖 with 𝛿𝑖(𝑘) ≜
𝛥𝑡𝑖(𝑘)
𝛥𝑡max

, 𝑖(𝑘) ≜
𝐸𝑖(𝑘)
𝐸max

and 𝐸max ≜ 1
2 𝑚̄𝑣

2
max, in which 𝑚̄ ≥ max𝑖∈ 𝑚𝑖. Note

hat 𝑚̄ can be conservatively designed without the global information
bout all vehicles’ mass. Then, it holds that

𝑖 ≜
{

𝑥𝑖 ∣
𝛥𝑡min
𝛥𝑡max

≤ 𝛿𝑖(𝑘) ≤ 1,
𝐸𝑖,min

𝐸max
≤ 𝑖(𝑘) ≤ 1

}

.

Similarly, the normalized input is denoted by 𝑢𝑖 ≜ [𝜁𝑖(𝑘) 𝑖(𝑘)]⊤ ∈ U𝑖,
here 𝜁𝑖(𝑘) ≜

𝜉𝑖(𝑘)
𝛥𝑡max

, 𝑖(𝑘) ≜
𝑇𝑖(𝑘)
𝐸max

and U𝑖 ≜ {𝑢𝑖 ∣
𝑇𝑖,min
𝐸max

≤ 𝑖(𝑘) ≤
𝑇𝑖,max
𝐸max

}.
After the normalization, X𝑖×U𝑖 involving (9b) becomes 𝜁𝑖(𝑘) ≥ 𝑓𝑖(𝑖(𝑘)),

here the function 𝑓𝑖(⋅) ∶ R>0 → R>0 is defined as:

𝑖(𝑖) ≜ 1∕(𝛥𝑡max
√

2𝐸max𝑖∕𝑚𝑖). (12)

he normalized measurement 𝑦𝑖 of 𝛿𝑖 and 𝑖 obtained by the 𝑖th
ehicle’s onboard sensors (e.g., front radar and speedometer). 𝛾𝑖(𝑘)[1,1]
epresents external information of the preceding vehicle 𝑖 − 1. In
articular, ̂𝑖−1(𝑘) is an estimate of 𝑖−1(𝑘) obtained and shared by the
receding vehicle 𝑖−1 at step 𝑘−1, which will be defined later on in Sec-
ion 3.2. On the other hand, 𝛾𝑖(𝑘)[2,1] embodies the impact of the drag
aused by road slope. Owing to the space domain model, space varying
oefficient 𝐶𝑠,𝑖(𝑘) can be easily incorporated to capture different road
onditions, therefore enabling a less conservative disturbance bound
n the robust control framework compared to the traditional time-
omain scheme. Next, the system uncertainties are defined, 𝑑𝑖(𝑘) ∈ D𝑖
s the normalized modeling uncertainty and 𝑤𝑖(𝑘) ∈ W𝑖 represents the
ormalized measurement noise. Herein, D𝑖 and W𝑖 are two compact
onvex sets defined by D𝑖 = {𝑑𝑖(𝑘)∈R2 ∣‖𝑑𝑖(𝑘)‖∞ ≤𝑑𝑖 ∈R>0} and W𝑖 =
{𝑤𝑖(𝑘) ∈R2 ∣ ‖𝑤𝑖(𝑘)‖∞ ≤𝑤𝑖 ∈R>0}. As it can be noticed, 𝑑𝑖(𝑘) accounts
for the mismatch between the estimate 𝑓𝑖

(

̂𝑖−1(𝑘)
)

𝛥𝑠 and 𝑓𝑖
(

𝑖−1(𝑘)
)

𝛥𝑠
hat is constructed by the accurate information from the preceding
ehicle (the only source of the disturbance appears in the dynamic
quation of 𝛿𝑖) as well as the unmodeled nonlinearities (e.g. headway-

dependent air drag coefficients), while sensor measurement noises of
the time headway and velocities are taken into account by 𝑤𝑖. Consider
0 ≜ 𝛥0∕𝛥𝑡max the target gap and 𝑚𝑖,00(𝑘) the target kinetic energy of
ehicle 𝑖 with 𝑚𝑖,𝑗 ≜ 𝑚𝑖∕𝑚𝑗 , 𝑗 ≠ 𝑖. The control objective in the presence

of uncertainties is defined by

lim
𝑘→∞

‖𝑥𝑖(𝑘) − 𝑥∗𝑖,𝑑𝑒𝑠‖ = 𝜎𝑖 (13)

where 𝑥∗𝑖,𝑑𝑒𝑠 ≜ [𝛿0 𝑚𝑖,00]⊤, and 𝜎𝑖 is an invariant set with respect
to the system uncertainties. Note that 𝑥∗𝑖,𝑑𝑒𝑠 is the target state of the
platoon, involving the globally known target gap 𝛿0 and the velocity
of the leading vehicle, which is initially unknown to the 𝑖th vehicle.
Detailed discussion of this will be linked to the MPC design and the
theoretical analysis given in Section 4.1.

The following assumption will be used throughout the paper.

Assumption 3.1. 𝑓𝑖(⋅), ∀𝑖 ∈  in the system Eq. (11) is Lipschitz in
𝑖 with a constant 𝜅𝑖.

Next, we define the nominal unperturbed system of (11), which will
be instrumental for the tube-MPC design, introduced later on in this
Section

̄ 𝑖(𝑘 + 1) = 𝐴𝑖𝑥̄𝑖(𝑘)+𝐵𝑖𝑢̄𝑖(𝑘) + 𝛾𝑖(𝑘) (14a)

𝑦̄𝑖(𝑘) = 𝐶𝑥̄𝑖(𝑘) (14b)

here 𝑥̄𝑖(𝑘) ≜ [𝛿𝑖(𝑘) ̄𝑖(𝑘)]⊤ is the nominal state, 𝑢̄𝑖(𝑘) ≜ [𝜁𝑖(𝑘) ̄𝑖(𝑘)]⊤ is

he nominal control input and 𝑦̄𝑖(𝑘) is the nominal output.
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By applying the Luenberger observer, the state of the actual system
(11) can be estimated by:

̂ 𝑖(𝑘 + 1) = 𝐴𝑖𝑥̂𝑖(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝛾𝑖(𝑘) + 𝐿𝑖(𝑦𝑖(𝑘) − 𝑦̂𝑖(𝑘))

𝑦̂𝑖(𝑘) = 𝐶𝑥̂𝑖(𝑘) (15)

where 𝐿𝑖 is the observer gain, designed individually for each vehicle,
such that 𝐴𝑖 − 𝐿𝑖𝐶 is stable. Considering the state estimation error
𝑥̃𝑖 = 𝑥𝑖 − 𝑥̂𝑖, its dynamics are governed by:

𝑥̃𝑖(𝑘 + 1) = (𝐴𝑖 − 𝐿𝑖𝐶)𝑥̃𝑖(𝑘) + (𝑑𝑖(𝑘) − 𝐿𝑖𝑤𝑖(𝑘)) (16)

In addition, the term 𝑑𝑖(𝑘) − 𝐿𝑖𝑤𝑖(𝑘) is bounded by a set 𝛺̃𝑖, expressed
as

𝛺̃𝑖 ≜ D𝑖 ⊕ (−𝐿𝑖W𝑖) (17)

Furthermore, the robust invariant set S̃𝑖 of 𝑥̃ with respect to the process
and measurement disturbances can be obtained by

S̃𝑖 = ⊕∞
𝑘=0(𝐴𝑖 − 𝐿𝑖𝐶)

𝑘𝛺̃𝑖 . (18)

Consider 𝑒𝑖(𝑘) = 𝑥̂𝑖(𝑘) − 𝑥̄𝑖(𝑘) the mismatch between the observer
state and the nominal system. Then the control law is constructed by

𝑢𝑖(𝑘) = 𝑢̄𝑖(𝑘) +𝐾𝑖𝑒𝑖(𝑘) (19)

where 𝑢̄𝑖(𝑘) is determined by solving a nominal MPC problem subject
to (14) and tightened state and input constraints, defined later on in
(21), and 𝐾𝑖 is the prespecified feedback control gain, which stabilizes
𝐴𝑖 + 𝐵𝑖𝐾𝑖. By applying (19) to (15), we obtain

̂ 𝑖(𝑘 + 1) = 𝐴𝑥̂𝑖(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝐵𝑖𝐾𝑖𝑒𝑖(𝑘) + 𝛾𝑖(𝑘) + 𝐿𝑖𝐶𝑥̃𝑖(𝑘) + 𝐿𝑖𝑤𝑖(𝑘)

In virtue of the nominal system (14), the dynamics of the tracking error
𝑒𝑖(𝑘) is given by

𝑒𝑖(𝑘 + 1) = (𝐴𝑖 + 𝐵𝑖𝐾𝑖)𝑒𝑖(𝑘) + (𝐿𝑖𝐶𝑥̃𝑖(𝑘) + 𝐿𝑖𝑤𝑖(𝑘))

where the uncertainties term 𝐿𝑖𝐶𝑥̃𝑖(𝑘) + 𝐿𝑖𝑤𝑖(𝑘) is confined by

𝛺𝑖 ≜ 𝐿𝑖𝐶S̃𝑖 ⊕𝐿𝑖W𝑖.

Similar to (18), the robust invariant set S̃𝑖 of 𝑒𝑖 follows

S𝑖 = ⊕∞
𝑘=0(𝐴𝑖 + 𝐵𝑖𝐾𝑖)

𝑘𝛺𝑖 (20)

According to Mayne et al. (2006), Vilaivannaporn, Boonsith, Porn-
puttapitak, and Bumroongsri (2021), to ensure the satisfaction of the
original state and control constraints, 𝑥𝑖(𝑘) ∈ X𝑖 and 𝑢𝑖(𝑘) ∈ U𝑖, in the
presence of the perturbations, tightened state and input constraints

𝑥𝑖 ∈ X𝑖 ⊖ (S̃𝑖 ⊕ S𝑖), 𝑢𝑖 ∈ U𝑖 ⊖𝐾𝑖S𝑖. (21)

re enforced in place of the originals when solving the MPC problem
see (26) that will be introduced later in Section 3.2) In the following,
or the sake of the brevity, we let

̄
𝑖 ≜ X𝑖 ⊖ (S̃𝑖 ⊕ S𝑖), Ū𝑖 ≜ U𝑖 ⊖𝐾𝑖S𝑖 (22)

.2. Distributed platoon control framework

Consider𝑁𝑝 the prediction horizon for each local MPC. To introduce
he DMPC framework, let us define 𝑥∗𝑖 (𝑗|𝑘) ≜ [𝛿∗𝑖 (𝑗|𝑘) 

∗
𝑖 (𝑗|𝑘)]

⊤ and
𝑢∗𝑖 (𝑗|𝑘) ≜ [𝜁∗𝑖 (𝑗|𝑘) 

∗
𝑖 (𝑗|𝑘)]

⊤ the optimal state and input trajectory,
respectively. The optimal trajectories are obtained by iteratively solving
each local MPC problem (see 𝑖(𝑘) defined in (26)). In addition, define
𝑥𝑎𝑖 (𝑗|𝑘) ≜ [𝛿𝑎𝑖 (𝑗|𝑘) 

𝑎
𝑖 (𝑗|𝑘)]

⊤ and 𝑢𝑎𝑖 (𝑗|𝑘) ≜ [𝜁𝑎𝑖 (𝑗|𝑘) 
𝑎
𝑖 (𝑗|𝑘)]

⊤ respec-
tively the assumed state and control trajectory, which are shared with
the neighboring vehicle by the PF communication. Finally, consider
𝑥𝑖,𝑑𝑒𝑠(𝑗|𝑘) ≜ [𝛿0 𝑖,𝑑𝑒𝑠(𝑗|𝑘)]⊤ the desired state trajectory. Specifically,
𝑖,𝑑𝑒𝑠(𝑗|𝑘) is set to as 𝑖,𝑑𝑒𝑠(𝑗|𝑘) = 𝑚𝑖,𝑖−1𝑎𝑖−1(𝑗|𝑘). The 𝑘th step assumed
trajectories (𝑥𝑎𝑖 (∶ |𝑘), 𝑢𝑎𝑖 (∶ |𝑘)) are constructed by using the (𝑘−1)th step
optimal solution as follows:
𝑎 ∗
𝑢𝑖 (𝑗|𝑘) = 𝑢𝑖 (𝑗 + 1|𝑘 − 1), ∀𝑗 ∈ {0, 1,… , 𝑁𝑝 − 2} (23) ∈

5 
which yields

𝑥𝑎𝑖 (𝑗|𝑘) = 𝑥∗𝑖 (𝑗 + 1|𝑘 − 1), ∀𝑗 ∈ {0, 1,… , 𝑁𝑝 − 1} (24)

Moreover, 𝑢𝑎𝑖 (𝑁𝑝 − 1|𝑘) is designed to render
𝑎
𝑖 (𝑁𝑝|𝑘) = 𝐴𝑖𝑥

𝑎
𝑖 (𝑁𝑝 − 1|𝑘) + 𝐵𝑖𝑢

𝑎
𝑖 (𝑁𝑝 − 1|𝑘)

+ 𝛾𝑖(𝑁𝑝 − 1|𝑘) = 𝑥𝑖,𝑑𝑒𝑠(𝑁𝑝|𝑘). (25)

he existence of such a feasible 𝑢𝑎𝑖 (𝑁𝑝 − 1|𝑘) is characterized by As-
umption 4.2 given in Section 4.1.

Considering the control objectives defined in (13), we formulate the
ocal MPC problem 𝑖(𝑘) for each vehicle 𝑖 ∈  , at step 𝑘, as

𝑖(𝑘) ∶

min
𝑢̄𝑖

𝐽𝑖(𝑥̄𝑖(∶ |𝑘), 𝑢̄𝑖(∶ |𝑘), 𝑥𝑎𝑖 (∶ |𝑘), 𝑥𝑖,𝑑𝑒𝑠(∶ |𝑘))

=
𝑁𝑝−1
∑

𝑗=0
𝑙𝑖(𝑥̄𝑖(𝑗|𝑘), 𝑢̄𝑖(𝑗|𝑘), 𝑥𝑎𝑖 (𝑗|𝑘), 𝑥𝑖,𝑑𝑒𝑠(𝑗|𝑘)) +

𝑁𝑝−2
∑

𝑗=0
𝜓𝑖|𝜁𝑖(𝑗|𝑘) − 𝑓𝑖(̄𝑖(𝑗|𝑘))|

(26a)
𝐬.𝐭. for 𝑗 = 0, 1, 2,… , 𝑁𝑝 − 1

𝑥̄𝑖(𝑗 + 1|𝑘) = 𝐴𝑖𝑥̄𝑖(𝑗|𝑘) + 𝐵𝑖𝑢̄𝑖(𝑗|𝑘) + 𝛾𝑖(𝑗|𝑘) (26b)

𝑥̄𝑖(𝑗|𝑘) ∈ X̆𝑖(𝑘) (26c)

𝑢̄𝑖(𝑗|𝑘) ∈ Ū𝑖 (26d)

(𝑥̄𝑖(𝑗|𝑘), 𝑢̄𝑖(𝑗|𝑘)) ∈ X̆𝑖(𝑘) × Ū𝑖 (26e)

𝑥̄𝑖(0|𝑘) = 𝑦𝑖(𝑘) (26f)

𝑥̄𝑖(𝑁𝑝|𝑘) ∈ X𝑓,𝑖 (26g)

here (26a) is the cost function that will be specified later in (31).
26b) represents the nominal system introduced in (14), where the
stimate ̂𝑖−1(𝑗|𝑘) in 𝛾𝑖(𝑗|𝑘) is defined by

𝑖̂−1(𝑗|𝑘) =

{

𝑎𝑖−1(𝑁𝑝|𝑘), if 𝑥𝑎𝑖−1(𝑁𝑝|𝑘)=𝑥𝑎𝑖−1(𝑁𝑝|𝑘 − 1),

𝑎𝑖−1(𝑗|𝑘), if 𝑥𝑎𝑖−1(𝑁𝑝|𝑘)≠𝑥𝑎𝑖−1(𝑁𝑝|𝑘 − 1),

∀𝑗 ∈ {0, 1,… , 𝑁𝑝} . (27)

s it can be noticed, ̂𝑖−1(𝑗|𝑘) is frozen at 𝑎𝑖−1(𝑁𝑝|𝑘) if the terminal step
f the preceding vehicle’s assumed trajectory (i.e., desired trajectory
wing to (25)) remains the same for two consecutive steps, which
sually happens when the leader vehicle reaches a steady state speed.
onversely, if 𝑥𝑎𝑖−1(𝑁𝑝|𝑘)≠𝑥𝑎𝑖−1(𝑁𝑝|𝑘−1) (which implies 𝑖−1th vehicle’s
esired speed is time-varying), time-varying estimate ̂𝑖−1(𝑗|𝑘) is em-
loyed to enable the 𝑖th vehicle to keep up with the preceding vehicle.
he state and input constraints are taken into account by (26c), (26d)
nd (26e). Specifically, X̆𝑖(𝑘) in (26c) is defined by X̆𝑖(𝑘) = X̄𝑖 ⊖H𝑖(𝑘),
here H𝑖(𝑘) is a set to further shrink the feasible set of the state to

ope with the disturbances introduced at the initialization phase. It is
esigned as

𝑖(𝑘) = (𝑘̄ − 𝑘)H̄𝑖 (28)

here H̄𝑖 ≜ {(𝜀1, 𝜀2) ∈ R2 ∣ 𝜀1 ≤ 𝑤̄𝑖 + 𝑑𝑖, 𝜀2 ≤ 𝜖} with 𝜖 ≜ (𝑤̄𝑖 + 𝑑𝑖) +
𝑝𝜅𝑖(𝑤̄𝑖 + 𝑑𝑖)𝛥𝑠. The feasible set of the control input, Ū𝑖, in (26d) is

iven in (22). In view of (9b), the coupled constraint (26e) represents

̆
𝑖(𝑘) × Ū𝑖 ≜ {(̄ , 𝜁𝑖) ∣ 𝜁𝑖(𝑗|𝑘) ≥ 𝑓𝑖(̄𝑖(𝑗|𝑘))} (29)

he initial and terminal constraints of the MPC are specified by (26f)
nd (26g), respectively. In particular, the terminal set X𝑓,𝑖 is defined as

𝑓,𝑖≜{𝑥̄𝑖(𝑁𝑝|𝑘) ∣ |̄𝑖(𝑁𝑝|𝑘) − 𝑚𝑖,𝑖−1𝑎𝑖−1(𝑁𝑝|𝑘)| ≤ 𝑤̄𝑖 + 𝑑𝑖,

|𝛿𝑖(𝑁𝑝|𝑘) − 𝛿0| ≤ 𝜖} (30)

hich ensures the state trajectory enters a terminal set and 𝑥𝑖,𝑑𝑒𝑠(𝑁𝑝|𝑘)
̄
X𝑓,𝑖 ⊆ X𝑖 ⊖ H𝑖. The design of H𝑖(𝑘) and X𝑓,𝑖 will be elaborated
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in Section 4.1. Finally, the stage cost function 𝑙𝑖(𝑥̄𝑖(𝑗|𝑘), 𝑢̄𝑖(𝑗|𝑘), 𝑥𝑎𝑖 (𝑗|𝑘),
𝑖,𝑑𝑒𝑠(𝑗|𝑘)) is defined by

𝑖 ≜ 𝜙𝑖,1|𝛿𝑖(𝑗|𝑘) − 𝛿𝑎𝑖 (𝑗|𝑘)| + 𝜙𝑖,2|̄𝑖(𝑗|𝑘)−
𝑎
𝑖 (𝑗|𝑘)|

+𝜆𝑖,1|𝛿𝑖(𝑗|𝑘)−𝛿0|+𝜆𝑖,2|̄𝑖(𝑗|𝑘)𝑖−𝑚𝑖,𝑖−1𝑎𝑖−1(𝑗|𝑘)|
(31)

here 𝜙𝑖,1, 𝜙𝑖,2 ∈ R>0 penalize the differences between the optimal and
ssumed states and 𝜆𝑖,1, 𝜆𝑖,2 ∈ R>0 are utilized to penalize the deviation
f the optimal states from their desired trajectories. In addition, 𝜓𝑖 ∈

R>0 in (26a) is used to ensure the tightness of the inequality condition
in (29), thus the validity of the control solution, as will be discussed in
Proposition 1.

Overall, the proposed convex and tube-based DMPC algorithm is
summarized in Algorithm 1.
Algorithm 1 The local convex and tube-based DMPC algorithm for
ehicle 𝑖 ∈ 
Offline:
(a) Find the observer and control gains 𝐿𝑖 and 𝐾𝑖;
(b) Determine the tightened constraints (26c) and (26d),

which are introduced in Section 3.1;
(c) Select suitable weighting parameters 𝜙𝑖,𝑗 , 𝜆𝑖,𝑗 , 𝜓𝑖, 𝑗 = 1, 2

and the prediction horizon 𝑁𝑝 for the 𝑖 in line with (37)
and (44);

(e) Find an initial feasible assumed trajectory 𝑥𝑎𝑖 (∶ |0).

Online:
1: while 0 ≤ 𝑘 < 𝑘̄ do
2: Measure the current state 𝑦𝑖(𝑘);
3: Obtain the state estimate 𝑥̂𝑖(𝑘) by (15);
4: Set the initial condition (26f) of the MPC problem

𝑖(𝑘) based on the measured values;
5: Receive 𝑥𝑎𝑖−1(∶ |𝑘) and 𝑢𝑎𝑖−1(∶ |𝑘) from the preceding

vehicle 𝑖 − 1;
6: if 𝑥𝑎𝑖−1(𝑁𝑝|𝑘) = 𝑥𝑎𝑖−1(𝑁𝑝|𝑘 − 1) then
7: Solve 𝑖(𝑘) with ̂𝑖−1(∶ |𝑘) = 𝑎𝑖−1(𝑁𝑝|𝑘)
8: else if 𝑥𝑎𝑖−1(𝑁𝑝|𝑘) ≠ 𝑥𝑎𝑖−1(𝑁𝑝|𝑘 − 1) then
9: Solve 𝑖(𝑘) with ̂𝑖−1(∶ |𝑘) = 𝑎𝑖−1(∶ |𝑘)

10: end if
11: Obtain 𝑢∗𝑖 (∶ |𝑘) and 𝑥∗𝑖 (∶ |𝑘);
12: Construct 𝑥𝑎𝑖 (∶ |𝑘) and 𝑢𝑎𝑖 (∶ |𝑘) by (23)–(25) and

send the assumed trajectories to vehicle 𝑖 + 1;
13: Apply the control action 𝑢𝑖(𝑘) = 𝑢∗𝑖 (0|𝑘) +𝐾𝑖𝑒𝑖(𝑘)

with 𝑒𝑖(𝑘) = 𝑥̂𝑖(𝑘) − 𝑥∗𝑖 (0|𝑘) to the actual system
(11);

14: 𝑘 ← 𝑘 + 1;
15: end while

Remark 1. From (27), the construction of ̂𝑖−1 influences 𝑑𝑖 (via
2̄ [1,1](𝑘)) and therefore the design of the tube-based MPC. In particular,
𝑖̄ [1,1](𝑘) denotes the maximum discrepancy between 𝑓𝑖

(

𝑖−1(𝑘)
)

𝛥𝑠 and
𝑖
(

̂𝑖−1(𝑘)
)

𝛥𝑠, which is ( 1
𝑣min

− 1
𝑣max

) 𝛥𝑠
𝛥𝑡max

. For instance, considering the
parameter choices given in Case study 1 of the Simulation Section (see
Table 1 and Table 2), the resulting upper bound of |𝑑𝑖 [1,1](𝑘)| after
ormalization is 0.033.

. Theoretical analysis

In this section, recursive feasibility and Lyapunov stability of Algo-
ithm 1 are discussed and rigorously proved under the case that the
eading vehicle is driven at a constant speed 𝑣0(𝑘) = 𝑣̄0,∀𝑘 ≥ 𝑘1.

.1. Recursive feasibility and legitimacy of the solution

Once the leading vehicle reaches the steady state velocity 𝑣̄0, the
ssumed trajectory of the leading vehicle will also be constant, that
s 𝑎(∶ |𝑘) = 𝑚  , ∀𝑘 ≥ 𝑘 . According to the first line of (27), the
0 𝑖,0 0 1 c
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Table 1
Heterogeneous vehicle parameters.

Vehicle
Index

𝑚𝑖
[kg]

𝐶𝑑,𝑖
[N s2 m−2]

𝑟𝑖
[m]

𝑇𝑖,min
[N m]

𝑇𝑖,max
[N m]

0 1035.7 0.35 0.30 −350 350
1 1178.7 0.37 0.33 −410 410
2 1257.6 0.37 0.33 −450 450
3 1349.1 0.39 0.35 −480 480
4 1434.0 0.41 0.38 −510 510

Table 2
Rest of the parameters.

Description Symbols Values

Tire rolling resistance coefficient 𝐶𝑓𝑖 0.01
Final drive ratio 𝜂𝑖 3
Gravity constant g 9.8N/kg
Predictive Horizon Length 𝑁𝑝 20
Sampling distance interval 𝛥𝑠 2 m
Desired time headway 𝛿0 1 s
Minimum time headway 𝛥𝑡min 0.5 s
Maximum time headway 𝛥𝑡max 1.5 s

steady state speed of the leading vehicle can be passed on to the 𝑖th
follower in 𝑖 steps subject to PF communication topology. Recall the
definition of the desired state trajectory employed in each local MPC
at the beginning of Section 3.2, it holds that

𝑥𝑖,𝑑𝑒𝑠(𝑗|𝑘) = [𝛿0 𝑚𝑖,00]⊤, ∀𝑘 ≥ 𝑘1 + 𝑖, 𝑖 ∈  (32)

ote that the dependence of 𝑥∗𝑖,𝑑𝑒𝑠(𝑘) on 𝑘 is dropped for clarity since
∗
𝑖,𝑑𝑒𝑠(𝑘) is constant for all 𝑘 ≥ 𝑘1+𝑁 . Following assumptions are needed
o proceed with the analysis.

ssumption 4.1. All local MPC problems 𝑖(𝑘),∀𝑖 ∈  are feasible
or 𝑘 ≤ 𝑘1 +𝑁 .

ssumption 4.2. The condition X𝑓,𝑖 ⊆ 𝛯𝑖 holds for all 𝑘 ≥ 𝑘1 + 𝑁
ith 𝛯𝑖 the one-step predecessor state set, which can be steered to
𝑖,𝑑𝑒𝑠(𝑁𝑝|𝑘) by a feasible control action 𝑢𝑎𝑖 (𝑁𝑝 − 1|𝑘) under (26b):

𝑖 ≜ {𝑥̄(𝑁𝑝 − 1|𝑘) ∣ ∃𝑢̄𝑖(𝑁𝑝 − 1|𝑘) fulfills (26d)
and (26e) ∶ 𝑥̄(𝑁𝑝|𝑘) = 𝑥𝑖,𝑑𝑒𝑠(𝑁𝑝|𝑘)}.

As it can be noticed, the initial feasible assumption in Assump-
ion 4.1 is commonly used in the DMPC framework with unidirectional
opologies (Dunbar & Caveney, 2012; Zheng et al., 2016). This can be
ddressed by a centralized optimization method or by a trial-and-error
pproach (Farina & Scattolini, 2012) in the distributed fashion, which
as been extensively discussed in the literature. Furthermore, Assump-
ion 4.2 characterizes the size of Ū𝑖 (in terms of the disturbance 𝑑𝑖, 𝑤̄𝑖)
equired to ensures that there exists a feasible 𝑢𝑎𝑖 (𝑁𝑝 −1|𝑘) so that (25)
an be achieved. Since 𝑑𝑖 is a  function with respect to the radius of
he admissible velocity set 𝑖−1 of 𝑣𝑖−1 (see Remark 1), Assumption 4.2
an be validated for a given platoon system by gradually tightening the
dmissible velocity set 𝑖 (𝑣𝑖 ∈ 𝑖,∀𝑖 ∈ {0} ∪  ) as 𝑖 → 0. In other
ords, ensuring that 𝑖−1 ⊂ 𝑖,∀𝑖 ∈  leads to gradually enlarged
dmissible control (torque) sets as 𝑖→ 𝑁 .

heorem 4.1. Under Assumptions 3.1, 4.1 and 4.2, Algorithm 1 is
ecursively feasible for all followers.

roof. Suppose at any step 𝑘 > 𝑘1+𝑁 , there is a solution (𝑥∗𝑖 (∶ |𝑘), 𝑢∗𝑖 (∶
𝑘)) for 𝑖(𝑘) satisfying all constraints (26b)–(26g). In the following, to
eal with the coupled state-control constraint (26e), the two control
𝑢̄𝑖(∶ |𝑘+ 1) = [𝜁𝑖(∶ |𝑘+ 1) ̄𝑖(∶ |𝑘+ 1)]⊤ and two state 𝑥̄𝑖(∶ |𝑘+ 1) = [𝛿𝑖(∶
𝑘 + 1) ̄𝑖(∶ |𝑘 + 1)]⊤ sequences will be analyzed separately. Consider a

̄ 𝑎
andidate torque sequence constructed by 𝑖(∶ |𝑘+1) = 𝑖 (∶ |𝑘+1) for
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𝑖(𝑘+ 1). It is immediate to show that  𝑎
𝑖 (0 ∶ 𝑁𝑝 − 2|𝑘+ 1) satisfies the

onstraint (26d), and according to Assumption 4.2,  𝑎
𝑖 (𝑁𝑝 −1|𝑘+1) is

also feasible. Due to the impact of the disturbances 𝑤𝑖(𝑘+1) and 𝑑𝑖(𝑘+1)
ntroduced when ̄𝑖(0|𝑘+1) is initialized (see (26f)), the predicted state
rajectory ̄𝑖(∶ |𝑘 + 1) produced by  𝑎

𝑖 (∶ |𝑘 + 1) is different from the
ssumed state trajectory 𝑎𝑖 (∶ |𝑘 + 1). Let

1(∶ |𝑘 + 1) ≜ ̄𝑖(∶ |𝑘 + 1) − 𝑎𝑖 (∶ |𝑘 + 1).

It is clear that

𝜀1(𝑗 + 1|𝑘 + 1) = 𝑎𝑖,2𝜀1(𝑗|𝑘 + 1), ∀𝑗 ∈ {0, 1,… , 𝑁𝑝 − 1}

with 𝑎𝑖,2 = 𝐴𝑖 [2,2], which in turn implies

𝜀1(𝑗 + 1|𝑘 + 1) = 𝑎𝑗+1𝑖,2 𝜀1(0|𝑘 + 1), 𝑗 ∈ {0, 1,… , 𝑁𝑝 − 1}

with 𝜀1(0|𝑘+ 1) = 𝑎𝑖,2𝑤𝑖(𝑘+ 1) + 𝑑𝑖(𝑘+ 1). Due to the fact that |𝑎𝑖,2| < 1,
we have

|𝜀1(𝑗|𝑘 + 1)| ≤ |𝜀1(0|𝑘 + 1)| = |𝑎𝑖,2𝑤𝑖(𝑘 + 1) + 𝑑𝑖(𝑘 + 1)|

≤ 𝑤̄𝑖 + 𝑑𝑖, ∀𝑗 ∈ {0, 1,… , 𝑁𝑝}. (33)

Now, we construct

𝜁𝑖(𝑗|𝑘 + 1) = 𝑓𝑖(̄𝑖(𝑗|𝑘 + 1)), ∀𝑗 ∈ {0, 1,… , 𝑁𝑝 − 2}

that follows the equality of (29) to ensure the legitimacy of the candi-
date solution. Thanks to Assumption 3.1, we have

|𝜁𝑖(𝑗|𝑘 + 1) − 𝜁𝑎𝑖 (𝑗|𝑘 + 1)| = |𝑓𝑖(̄𝑖(𝑗|𝑘 + 1)) − 𝑓𝑖(𝑎𝑖 (𝑗|𝑘 + 1))|

≤ 𝜅𝑖|̄𝑖(𝑗|𝑘 + 1) − 𝑎𝑖 (𝑗|𝑘 + 1))| ≤ 𝜅𝑖(𝑤̄𝑖 + 𝑑𝑖).

Therefore, the equality condition in (29) holds for 𝜁𝑖(0 ∶ 𝑁𝑝 − 2|𝑘 + 1),
while the feasibility of 𝜁𝑎𝑖 (𝑁𝑝 − 1|𝑘 + 1) in terms of (26e) (without
ensuring the tightness of (29)) is guaranteed by Assumption 4.2. Let

𝜀2(∶ |𝑘 + 1) ≜ 𝛿𝑖(∶ |𝑘 + 1) − 𝛿𝑎𝑖 (∶ |𝑘 + 1).

Then, by following the same steps carried out for 𝜀1(∶ |𝑘+ 1), it can be
shown that for all 𝑗 ∈ {0, 1,… , 𝑁𝑝 − 1}, it holds that

𝜀2(𝑗 + 1|𝑘 + 1) = 𝑎𝑖,1𝜀2(𝑗|𝑘 + 1) + (𝜁𝑖(𝑗|𝑘 + 1) − 𝜁𝑎𝑖 (𝑗|𝑘 + 1))𝛥𝑠.

As 𝑎𝑖,1 = 𝐴𝑖 [1,1] = 1, it holds that

|𝜀2(𝑗 + 1|𝑘 + 1)| ≤ 𝑎𝑗+1𝑖,1 (𝑤̄𝑖 + 𝑑𝑖) +
𝑗
∑

𝑖=0
𝑎𝑖𝑖,1𝜅𝑖(𝑤̄𝑖 + 𝑑𝑖)𝛥𝑠

= (𝑤̄𝑖 + 𝑑𝑖) + (𝑗 + 1)𝜅𝑖(𝑤̄𝑖 + 𝑑𝑖)𝛥𝑠
≤ (𝑤̄𝑖 + 𝑑𝑖) +𝑁𝑝𝜅𝑖(𝑤̄𝑖 + 𝑑𝑖)𝛥𝑠

(34)

In view of (33) and (34), provided that the 𝑘th step solution is inside
the feasible region X̄𝑖 ⊖ H𝑖(𝑘), 𝑥̄𝑖(∶ |𝑘 + 1) must be bounded by the
enlarged set X̄𝑖 ⊖ H𝑖(𝑘 + 1) with H𝑖(𝑘) defined in (28), as required
by (26c). Moreover, considering (25), the terminal constraint (26g) of
𝑥̄𝑖(𝑁𝑝|𝑘+1) is also fulfilled. Therefore, the (𝑘+1) step solution (driven
by  𝑎

𝑖 (∶ |𝑘 + 1)) is feasible.
The analysis can be applied to all steps 𝑘 > 𝑘1 + 𝑁 . Hence, it can

be concluded by induction that if Assumption 4.1 holds, the proposed
algorithm is recursively feasible, and it applies to any vehicle 𝑖 ∈  .

Remark 2. The enlarged set H𝑖 (see (28)) parameterized by 𝑘̄ may be
too conservative in practice. To reduce the conservativeness, one may
set H𝑖(𝑘) = (𝑧−𝑘)H̄𝑖 with 𝑧 = 𝑘+1, 𝑘+2… , 𝑘̄−1 and reset the algorithm
when the set X̄𝑖 ⊖H𝑖(𝑘) cannot be enlarged any more when H𝑖(𝑘) = ∅.
The reset can be performed with reinitialized H𝑖(𝑘) = (𝑧 − 𝑘)H̄𝑖, 𝑧 > 𝑘
from the vehicle where the infeasibility occurs towards the 𝑁th vehicle
in a sequential manner.

Theorem 4.1 demonstrates the existence of a feasible and legitimate
solution, except for the last step, where the tightness of (29) cannot be
guaranteed. However, this does not affect the validity of the closed-

loop control solution unless a valid MPC solution (with a guaranteed
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equality condition of (29)) cannot be found for consecutive 𝑁𝑝 steps. In
such a case, a sequential reset of the DMPC algorithm will be invoked
as with Remark 2. Next, we show that the optimal solution of the finite-
horizon optimization problem 𝑖(𝑘) tends to find the equality condition
of (29).

Given the (𝑘 − 1)th step optimal solution (𝑥∗𝑖 (∶ |𝑘 − 1), 𝑢∗𝑖 (∶ |𝑘 − 1))
of 𝑖(𝑘 − 1) and the measurement 𝑦𝑖(𝑘) (which determines the initial
condition of 𝑖(𝑘)), first consider a feasible solutions of 𝑖(𝑘), denoted
by (𝛿𝑐𝑖 (∶ |𝑘), 𝑐𝑖 (∶ |𝑘), 𝜁 𝑐𝑖 (∶ |𝑘),  𝑐

𝑖 (∶ |𝑘)) by which the equality condition
𝜁 𝑐𝑖 (𝑗|𝑘)=𝑓𝑖(

𝑐
𝑖 (𝑗|𝑘)), ∀𝑗 ∈ {0, 1,… , 𝑁𝑝−1} in (29) holds. Then under the

same (𝑥∗𝑖 (∶ |𝑘 − 1), 𝑢∗𝑖 (∶ |𝑘 − 1)) and 𝑦𝑖(𝑘), it is possible to construct an
alternative solution

(

𝛿𝑖(∶ |𝑘), ̆𝑖(∶ |𝑘), 𝜁𝑖(∶ |𝑘), ̆𝑖(∶ |𝑘)
)

with 𝛿𝑖(0|𝑘) =
𝛿𝑐𝑖 (0|𝑘), ̆𝑖(∶ |𝑘) =  𝑐

𝑖 (∶ |𝑘) and ̆𝑖(∶ |𝑘) = 𝑐𝑖 (∶ |𝑘) whereas the tightness
of (29) does not hold

𝜁𝑖(𝑗|𝑘) = 𝑓𝑖(̆𝑖(𝑗|𝑘)) + 𝛥𝜁𝑖(𝑗|𝑘), 𝛥𝜁𝑖(𝑗|𝑘) ∈ R>0

which implies

𝛥𝜁𝑖(𝑗|𝑘) = 𝜁𝑖(𝑗|𝑘) − 𝜁 𝑐𝑖 (𝑗|𝑘), ∀𝑗 ∈ {0, 1,… , 𝑁𝑝 − 2}. (35)

In view of (11) and (35), the dynamics of 𝛿𝑖 in both scenarios follow

𝛿𝑐𝑖 (𝑗 + 1|𝑘)=𝛿𝑐𝑖 (𝑗|𝑘) +
(

𝜁 𝑐𝑖 (𝑗|𝑘) − 𝑓𝑖
(

̂𝑖−1
))

𝛥𝑠 (36a)

𝛿𝑖(𝑗 + 1|𝑘) = 𝛿𝑖(𝑗|𝑘)+
(

𝜁 𝑐𝑖 (𝑗|𝑘) + 𝛥𝜁𝑖(𝑗|𝑘) − 𝑓𝑖
(

̂𝑖−1
))

𝛥𝑠 (36b)

The main result is characterized by the following proposition.

Proposition 1. Given the two feasible solutions (𝛿𝑐𝑖 (∶ |𝑘), 𝑐𝑖 (∶ |𝑘), 𝜁 𝑐𝑖 (∶
|𝑘),  𝑐

𝑖 (∶ |𝑘)) and
(

𝛿𝑖(∶ |𝑘), ̆𝑖(∶ |𝑘), 𝜁𝑖(∶ |𝑘), ̆𝑖(∶ |𝑘)
)

defined above, if the
weights of the DMPC objective function (31) are chosen such that

𝜓𝑖 ≥ (𝑁𝑝 − 1)𝛥𝑠(𝜙𝑖,1 + 𝜆𝑖,1) (37)

the optimal solution of 𝑖(𝑘), ∀𝑘 ∈ {0, 1,… , 𝑘̄} always finds (𝛿𝑐𝑖 (∶ |𝑘), 𝑐𝑖 (∶
|𝑘), 𝜁 𝑐𝑖 (∶ |𝑘),  𝑐

𝑖 (∶ |𝑘)) with guaranteed equality condition of (29).

Proof. Let 𝐽 𝑐𝑖 (𝑘) and 𝐽𝑖(𝑘) denote the cost in both solution cases. Their
difference follows

𝐽 𝑐𝑖 (𝑘) − 𝐽𝑖(𝑘)

=
𝑁𝑝−1
∑

𝑗=0
𝑙𝑖
(

𝑥𝑐𝑖 (𝑗|𝑘), 𝑢
𝑐
𝑖 (𝑗|𝑘), 𝑥

𝑎
𝑖 (𝑗|𝑘), 𝑥𝑖,𝑑𝑒𝑠(𝑗|𝑘)

)

+
𝑁𝑝−2
∑

𝑗=0
𝜓𝑖|𝜁

𝑐
𝑖 (𝑗|𝑘) − 𝑓𝑖(

𝑐
𝑖 (𝑗|𝑘))|

−
(

𝑁𝑝−1
∑

𝑗=0
𝑙𝑖
(

𝑥̆𝑖(𝑗|𝑘), 𝑢̆𝑖(𝑗|𝑘), 𝑥𝑎𝑖 (𝑗|𝑘), 𝑥𝑖,𝑑𝑒𝑠(𝑗|𝑘)
)

+
𝑁𝑝−2
∑

𝑗=0
𝜓𝑖|𝜁𝑖(𝑗|𝑘) − 𝑓𝑖(̆𝑖(𝑗|𝑘))|

)

(38)

After some rearrangements, we obtain

𝐽 𝑐𝑖 (𝑘) − 𝐽𝑖(𝑘)=
𝑁𝑝−1
∑

𝑗=0

(

𝜙𝑖,1
(

|𝛿𝑐𝑖 (𝑗|𝑘) − 𝛿
𝑎
𝑖 (𝑗|𝑘)| − |𝛿𝑖(𝑗|𝑘)

− 𝛿𝑎𝑖 (𝑗|𝑘)|
)

+𝜆𝑖,1
(

|𝛿𝑐𝑖 (𝑗|𝑘)−𝛿0|−|𝛿𝑖(𝑗|𝑘)−𝛿0|
)

)

−
𝑁𝑝−2
∑

𝑗=0
𝜓𝑖𝛥𝜁𝑖(𝑗|𝑘)

(39)

where the assumed and desired trajectories are identical in both sce-
narios as they are predefined based on the (𝑘 − 1)th step solution.
By the triangle inequality and the identity 𝛿𝑖(0|𝑘) = 𝛿𝑐𝑖 (0|𝑘), it holds
that

𝐽 𝑐𝑖 (𝑘)−𝐽𝑖(𝑘) ≤
𝑁𝑝−1
∑

𝑗=1

(

𝜙𝑖,1
(

|𝛿𝑖(𝑗|𝑘) − 𝛿𝑐𝑖 (𝑗|𝑘)|
)

+ 𝜆𝑖,1
(

|𝛿𝑖(𝑗|𝑘) − 𝛿𝑐𝑖 (𝑗|𝑘)|
)

)

−
𝑁𝑝−2
∑

𝜓𝑖𝛥𝜁𝑖(𝑗|𝑘)

(40)
𝑗=0
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By subtracting (36a) from (36b), we obtain

𝛿𝑖(𝑗 + 1|𝑘) − 𝛿𝑐𝑖 (𝑗 + 1|𝑘) =
(

𝛿𝑖(𝑗|𝑘) − 𝛿𝑐𝑖 (𝑗|𝑘)
)

+ 𝛥𝜁𝑖(𝑗|𝑘)𝛥𝑠 (41)

which, by induction, leads to

𝛿𝑖(𝑗 + 1|𝑘) − 𝛿𝑐𝑖 (𝑗 + 1|𝑘) =
𝑗
∑

𝑛=0
𝛥𝜁𝑖(𝑛|𝑘)𝛥𝑠. (42)

Substituting (42) into (40), it yields

𝐽 𝑐𝑖 (𝑘)−𝐽𝑖(𝑘)

≤
𝑁𝑝−1
∑

𝑗=1

(

𝜙𝑖,1
𝑗−1
∑

𝑛=0
𝛥𝜁𝑖(𝑛|𝑘)𝛥𝑠 + 𝜆𝑖,1

𝑗−1
∑

𝑛=0
𝛥𝜁𝑖(𝑛|𝑘)𝛥𝑠

)

− 𝜓𝑖

𝑁𝑝−2
∑

𝑗=0
𝛥𝜁𝑖(𝑗|𝑘)

= 𝛥𝑠(𝜙𝑖,1 + 𝜆𝑖,1)
𝑁𝑝−1
∑

𝑗=1

𝑗−1
∑

𝑛=0
𝛥𝜁𝑖(𝑛|𝑘) − 𝜓𝑖

𝑁𝑝−2
∑

𝑗=0
𝛥𝜁𝑖(𝑗|𝑘)

≤(𝑁𝑝 − 1)𝛥𝑠(𝜙𝑖,1 + 𝜆𝑖,1)
𝑁𝑝−2
∑

𝑗=0
𝛥𝜁𝑖(𝑗|𝑘)− 𝜓𝑖

𝑁𝑝−2
∑

𝑗=0
𝛥𝜁𝑖(𝑗|𝑘)

(43)

Given the condition (37), (43) further implies that 𝐽 𝑐𝑖 (𝑘) − 𝐽𝑖(𝑘) ≤ 0,
thus ending the proof.

Remark 3. Note that Proposition 1 does not ensure a legitimate
solution to be found. The proposed algorithm may still find a solution
where the equality condition of (29) is not satisfied within a finite
horizon due to the non-strict convexity. In such a case, a legitimate
solution (except the last step) can be constructed as a posteriori by
following the analysis given in Theorem 4.1. For all the practical
scenarios of interest in the present work it has been found that the
present formulation yields a tight solution.

4.2. Robustness analysis

Based on Theorem 4.1, this subsection will focus on the Lyapunov
stability of the proposed DMPC scheme.

Theorem 4.2. Under Assumptions 3.1, 4.1 and 4.2, given the Algorithm
1 for 𝑖(𝑘), if the weighting parameters are designed such that

𝜙𝑖,2 ≥ 𝜆𝑖+1,2𝑚𝑖+1,𝑖, (44)

he tracking error 𝑥𝑖(𝑘) − 𝑥∗𝑖,𝑑𝑒𝑠 of the perturbed system (11) is ISS with
espect to the disturbances 𝑑𝑖(𝑘) and 𝑤𝑖(𝑘).

Proof. Without considering the uncertainties 𝑑𝑖(𝑘) and 𝑤𝑖(𝑘), the
terminal constraint (26g) of 𝑖(𝑘) turns out to 𝑥̄𝑖(𝑁𝑝|𝑘) = 𝑥𝑖,𝑑𝑒𝑠(𝑁𝑝|𝑘),

hich ensures 𝑥∗𝑖 (𝑁𝑝|𝑘) = 𝑥∗𝑖,𝑑𝑒𝑠, ∀𝑘 ≥ 𝑘1 +𝑁, 𝑖 ∈  . Given 𝑢𝑎𝑖 (∶ |𝑘 + 1)
and 𝑥𝑎𝑖 (∶ |𝑘 + 1) constructed by (23)–(25), it is straightforward to
show they are feasible for 𝑖(𝑘 + 1). In particular, (25) is achieved by
mploying

𝑎
𝑖 (𝑁𝑝−1|𝑘 + 1)=

𝑟𝑖
𝜂𝑖

(2𝐶𝑑,𝑖
𝑚𝑖

(𝑎𝑖 (𝑁𝑝−1|𝑘 + 1) + 𝑚𝑖𝑔𝐶𝑠,𝑖

)

𝑎
𝑖 (𝑁𝑝−1|𝑘 + 1)=𝑓𝑖(𝑎𝑖 (𝑁𝑝−1|𝑘 + 1))

hich yields 𝑥𝑎𝑖 (𝑁𝑝|𝑘 + 1) = 𝑥𝑎𝑖 (𝑁𝑝 − 1|𝑘 + 1) = 𝑥∗𝑖 (𝑁𝑝|𝑘) = 𝑥∗𝑖,𝑑𝑒𝑠.
rom Theorem 4.1 and Remark 3, 𝜁𝑎𝑖 (𝑗|𝑘 + 1) = 𝑓𝑖(𝑎𝑖 (𝑗|𝑘 + 1)) holds

for all 𝑗 ∈ {0, 1,… , 𝑁𝑝 − 2}. By substituting the optimal solution (𝑥∗𝑖 (∶
|𝑘 + 1), 𝑢∗𝑖 (∶ |𝑘 + 1)), the corresponding cost function 𝐽 ∗

𝑖 (𝑘 + 1) can be
rewritten as

𝐽 ∗
𝑖 (𝑘 + 1) =

𝑁𝑝−1
∑

𝑗=0

(

𝜙𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘 + 1) − 𝛿𝑎𝑖 (𝑗|𝑘 + 1)|

+𝜙𝑖,2|∗
𝑖 (𝑗|𝑘 + 1)−𝑎𝑖 (𝑗|𝑘 + 1)|+𝜆𝑖,1|𝛿∗𝑖 (𝑗|𝑘 + 1)−𝛿0|

+𝜆 |∗(𝑗|𝑘 + 1)−𝑚 𝑎 (𝑗|𝑘 + 1)|
)

𝑖,2 𝑖 𝑖,𝑖−1 𝑖−1

8 
≤
𝑁𝑝−1
∑

𝑗=0

(

𝜙𝑖,1|𝛿
𝑎
𝑖 (𝑗|𝑘 + 1) − 𝛿𝑎𝑖 (𝑗|𝑘 + 1)|

+𝜙𝑖,2|𝑎𝑖 (𝑗|𝑘 + 1)−𝑎𝑖 (𝑗|𝑘 + 1)|+𝜆𝑖,1|𝛿𝑎𝑖 (𝑗|𝑘 + 1) − 𝛿0|

+𝜆𝑖,2|𝑎𝑖 (𝑗|𝑘 + 1)−𝑚𝑖,𝑖−1𝑎𝑖−1(𝑗|𝑘 + 1)|
)

(45)

which can be reduced to

𝐽 ∗
𝑖 (𝑘 + 1) ≤

𝑁𝑝−1
∑

𝑗=0

(

𝜆𝑖,1|𝛿
𝑎
𝑖 (𝑗|𝑘 + 1) − 𝛿0|

+ 𝜆𝑖,2|𝑎𝑖 (𝑗|𝑘 + 1) − 𝑚𝑖,𝑖−1𝑎𝑖−1(𝑗|𝑘 + 1)|
)

(46)

For the sake of further analysis, let us rewrite (46) as

𝐽 ∗
𝑖 (𝑘 + 1) ≤

𝑁𝑝
∑

𝑗=1

(

𝜆𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘) − 𝛿0| + 𝜆𝑖,2|

∗
𝑖 (𝑗|𝑘) − 𝑚𝑖,𝑖−1

∗
𝑖−1(𝑗|𝑘)|

)

=
𝑁𝑝−1
∑

𝑗=1

(

𝜆𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘) − 𝛿0| + 𝜆𝑖,2|

∗
𝑖 (𝑗|𝑘) − 𝑚𝑖,𝑖−1

∗
𝑖−1(𝑗|𝑘)|

)

(47)

Subtracting 𝐽 ∗
𝑖 (𝑘) from 𝐽 ∗

𝑖 (𝑘 + 1),

∗
𝑖 (𝑘 + 1) − 𝐽 ∗

𝑖 (𝑘) ≤

−
(

𝜙𝑖,1|𝛿
∗
𝑖 (0|𝑘) − 𝛿

𝑎
𝑖 (0|𝑘)| + 𝜙𝑖,2|

∗
𝑖 (0|𝑘) − 𝑎𝑖 (0|𝑘)|

+ 𝜆𝑖,1|𝛿
∗
𝑖 (0|𝑘) − 𝛿0| + 𝜆𝑖,2|

∗
𝑖 (0|𝑘) − 𝑚𝑖,𝑖−1

𝑎
𝑖−1(0|𝑘)|

)

+
𝑁𝑝−1
∑

𝑗=1

(

𝜆𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘)−𝛿0|+𝜆𝑖,2|

∗
𝑖 (𝑗|𝑘)−𝑚𝑖,𝑖−1

∗
𝑖−1(𝑗|𝑘)|

)

−
𝑁𝑝−1
∑

𝑗=1

(

𝜙𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘)−𝛿

𝑎
𝑖 (𝑗|𝑘)| + 𝜙𝑖,2|

∗
𝑖 (𝑗|𝑘) − 𝑎𝑖 (𝑗|𝑘)|

+ 𝜆𝑖,1|𝛿∗𝑖 (𝑗|𝑘)−𝛿0|+𝜆𝑖,2|
∗
𝑖 (𝑗|𝑘)−𝑚𝑖,𝑖−1

𝑎
𝑖−1(𝑗|𝑘)|

)

(48)

By applying the triangle inequality, (48) can be reduced to

𝐽 ∗
𝑖 (𝑘 + 1) − 𝐽 ∗

𝑖 (𝑘) ≤

−
(

𝜙𝑖,1|𝛿
∗
𝑖 (0|𝑘) − 𝛿

𝑎
𝑖 (0|𝑘)| + 𝜙𝑖,2|

∗
𝑖 (0|𝑘) − 𝑎𝑖 (0|𝑘)|

+ 𝜆𝑖,1|𝛿
∗
𝑖 (0|𝑘) − 𝛿0| + 𝜆𝑖,2|

∗
𝑖 (0|𝑘) − 𝑚𝑖,𝑖−1

𝑎
𝑖−1(0|𝑘)|

)

−
𝑁𝑝−1
∑

𝑗=1

(

𝜙𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘)−𝛿

𝑎
𝑖 (𝑗|𝑘)| + 𝜙𝑖,2|

∗
𝑖 (𝑗|𝑘) − 𝑎𝑖 (𝑗|𝑘)|

− 𝜆𝑖,2𝑚𝑖,𝑖−1|∗
𝑖−1(𝑗|𝑘) − 𝑎𝑖−1(𝑗|𝑘)|

)

(49)

et us consider the sum of all local cost functions 𝐽 ∗
𝑖 (𝑘), ∀𝑖 ∈  as a

candidate Lyapunov function: 𝐽 ∗
𝛴 (𝑘) =

∑𝑁
𝑖=1 𝐽

∗
𝑖 (𝑘) In view of (49), it can

be shown that

𝐽 ∗
𝛴 (𝑘 + 1) − 𝐽 ∗

𝛴 (𝑘) =
𝑁
∑

𝑖=1

(

𝐽 ∗
𝑖 (𝑘 + 1) − 𝐽 ∗

𝑖 (𝑘)
)

≤−
𝑁
∑

𝑖=1

(

𝜙𝑖,1|𝛿
∗
𝑖 (0|𝑘)−𝛿

𝑎
𝑖 (0|𝑘)|+𝜙𝑖,2|

∗
𝑖 (0|𝑘)−

𝑎
𝑖 (0|𝑘)|

+ 𝜆𝑖,1|𝛿
∗
𝑖 (0|𝑘) − 𝛿0| + 𝜆𝑖,2|

∗
𝑖 (0|𝑘) − 𝑚𝑖,𝑖−1

𝑎
𝑖−1(0|𝑘)|

)

−
𝑁
∑

𝑖=1

𝑁𝑝−1
∑

𝑗=1

(

𝜙𝑖,1|𝛿
∗
𝑖 (𝑗|𝑘)−𝛿

𝑎
𝑖 (𝑗|𝑘)|+𝜙𝑖,2|

∗
𝑖 (𝑗|𝑘)−

𝑎
𝑖 (𝑗|𝑘)|

− 𝜆 𝑚 |∗ (𝑗|𝑘)−𝑎 (𝑗|𝑘)|
)

(50)
𝑖,2 𝑖,𝑖−1 𝑖−1 𝑖−1
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Due to the fact that 𝜆1,2𝑚1,0|∗
0 (𝑗|𝑘)−

𝑎
0 (𝑗|𝑘)| = 0, we have

𝐽 ∗
𝛴 (𝑘 + 1) − 𝐽 ∗

𝛴 (𝑘)

≤−
𝑁
∑

𝑖=1

(

𝜙𝑖,1|𝛿
∗
𝑖 (0|𝑘)−𝛿

𝑎
𝑖 (0|𝑘)|+𝜙𝑖,2|

∗
𝑖 (0|𝑘)−

𝑎
𝑖 (0|𝑘)|

+ 𝜆𝑖,1|𝛿
∗
𝑖 (0|𝑘) − 𝛿0| + 𝜆𝑖,2|

∗
𝑖 (0|𝑘) − 𝑚𝑖,𝑖−1

𝑎
𝑖−1(0|𝑘)|

)

−
𝑁
∑

𝑖=1

𝑁𝑝−1
∑

𝑗=1
𝜙𝑖,1|𝛿

∗
𝑖 (𝑗|𝑘)−𝛿

𝑎
𝑖 (𝑗|𝑘)|−

𝑁𝑝
∑

𝑗=1
𝜙𝑁,2|∗

𝑁 (𝑗|𝑘)−𝑎𝑁 (𝑗|𝑘)|

−
𝑁−1
∑

𝑖=1

𝑁𝑝−1
∑

𝑗=1
(𝜙𝑖,2 − 𝜆𝑖,2𝑚𝑖,𝑖−1)|∗

𝑖 (𝑗|𝑘)−
𝑎
𝑖 (𝑗|𝑘)|

(51)

According to (44), 𝐽 ∗
𝛴 (𝑘 + 1) − 𝐽 ∗

𝛴 (𝑘) ≤ 0, which further implies
the asymptotic convergence of tracking error of each vehicle 𝑥̄𝑖(𝑘) −
𝑥𝑖,𝑑𝑒𝑠(𝑘),∀𝑖 ∈  . As the leader information is accessible to Vehicle 1,
that is 𝑥1,𝑑𝑒𝑠 = [𝛿0 𝑚1,00(𝑘)]⊤, it further implies that

̄ 𝑖(𝑘) − 𝑥∗𝑖,𝑑𝑒𝑠 → 0, 𝑘→ ∞, ∀𝑖 ∈  .

s 𝑥𝑖(𝑘) − 𝑥̄𝑖(𝑘) = 𝑥̃𝑖(𝑘) + 𝑒𝑖(𝑘) and 𝑥̃𝑖(𝑘) and 𝑒𝑖(𝑘) are ISS (see (16)–
(20)), it is immediate to show that the tracking error 𝑥𝑖(𝑘) − 𝑥∗𝑖,𝑑𝑒𝑠 in
the presence of disturbances and measurement noise is also ISS and it
will converge to a robust invariable set S̃𝑖 ⊕ S𝑖.

emark 4. The proposed method is based on unidirectional PF topol-
gy, which demands less communication compared to other topologies,
uch as PLF, two predecessor-leader following (TPLF) topologies and
ther bidirectional counterparts. The proposed control solution can
e extended to cope with those graphs (Zheng et al., 2016; Zheng,
i, Wang, Cao, & Li, 2016). If the leader information is immediately
vailable to all followers (e.g., PLF and TPLF), it is usually more
traightforward to design a DMPC algorithm by replacing the desired
tate of the preceding vehicle 𝑚𝑖,𝑖−1𝑎𝑖−1(𝑗|𝑘) in the local MPC problem

(26) with the state 𝑚𝑖,00 of the leading vehicle.

. Numerical examples

Two case studies are carried out in this section. In the first case
tudy, a numerical example will first be investigated to show the
ffectiveness of the proposed algorithm, and then the significance of
ube-based DMPC in dealing with system uncertainties by comparing
t with the nominal DMPC algorithm. Finally, the proposed method
s benchmarked against an existing nominal DMPC-based platooning
ethod (Zheng et al., 2016) in terms of computational efficiency.
ase study 2 focuses on a more realistic scenario, where the leader

s requested to follow an experimental speed profile. The proposed
ethod demonstrates its ability to maintain platoon formation in this

cenario, highlighting its applicability to more practical time-varying
elocity scenarios.

In both examples, we consider a vehicle platoon that contains one
eading vehicle and four following vehicles. Each individual vehicle
xchanges information with its neighbors through a PF communication
opology. In Table 1, the parameters of platoon vehicles are given,
hich reflect the heterogeneity entailed in vehicle mass 𝑚𝑖, air drag

oefficient 𝐶𝑑,𝑖, wheel radius 𝑟𝑖 and the driving/braking torque limits
𝑖,min, 𝑇𝑖,max. Other common parameters of the vehicle and the DMPC
lgorithm are included in Table 2. It is noted that a constant tire rolling
esistance coefficient, 𝐶𝑓𝑖 , is employed as a simple example. This tube-
ased DMPC problem is solved by Yalmip (Löfberg, 2004) with the
onvex solver MOSEK (ApS, 2019) in the Matlab environment. The
pecifications of the PC are Intel Core i5 2.3 GHz CPU with 8 GB of
AM.

.1. Case study 1

Consider the velocity trajectory of the leading vehicle, as shown in
ig. 2. Assuming the speed limits are set to 𝑣 = 20 m∕s and 𝑣 =
min max

9 
Table 3
Vehicle initial conditions in Case study 1.

Vehicle
Index

Initial time
𝑡𝑖(0) [s]

Initial Time
Headway 𝛥𝑡𝑖(0) [s]

Initial speed
𝑣𝑖(0) [m/s]

0 0 – 23
1 1.1 1.1 23
2 2 0.9 22
3 3.1 1.1 23
4 4 0.9 24

40 m∕s. In addition, the process and measurement disturbances added
to the dynamic equations of all followers are subject to |𝑑𝑖| ≤ 0.035
nd |𝑤𝑖| ≤ 0.02, ∀𝑖 ∈  . Then, the uncertainty bounds 𝑑𝑖 = 0.035 and
̄ 𝑖 = 0.02,∀𝑖 ∈  are exploited for the design of the tube-based DMPC.
inally, the platoon is initialized by the conditions given in Table 3.

The results are shown in Figs. 2–4, which verify the effectiveness of
he proposed control solution. More specifically, the velocity profiles
nd the resulting tracking error signals are shown in Fig. 2, demon-
trated in the time domain for illustrative purposes. Since our control
bjective (13) is to maintain a constant time headway in the spatial
omain, the resulting plots differ from other time domain control
ethods (Qiang et al., 2022; Zheng et al., 2016) after spatial domain

o time domain transformation. The simulation shows that the control
ignals of all follower vehicles exhibit similar behavior, and therefore
or clarity of the figure, only the input torque and the tube of Vehicle 1
re presented in Figs. 3. The chattering behavior primarily results from
he uncertainties and may be attenuated by including the dynamics of
he torque in the vehicle system model (11). Finally, it can be observed
rom Fig. 4 that the time headway tracking errors are robustly bounded
round the desired values (with no validation against the safety limits)
n the presence of the uncertainties.

Then, the proposed tube-based DMPC algorithm is compared with
he nominal DMPC in the form of (26) but without the tightening of
he feasibility sets (26c) (26d) and the terminal constraint (26g). From
ig. 5, it can be observed that under the same simulation condition
hown in Figs. 2 to 4, the time headway trajectory of Vehicle 4 violates
he state constraint at the position 𝑠 = 342 m, which may cause rear-
nd collisions in practice. It is noteworthy that the tightening of the
easibility entailed in the tube-based MPC inevitably introduces con-
ervativeness, and may eventually become infeasible when the bound
f uncertainty increases. In this context, we also take Vehicle 4 as an
xample to study the maximum uncertainty that can be tolerant. It is
ound that the proposed algorithm can tolerate normalized uncertain-
ies up to 𝑑𝑖 = 0.07 or 𝑤̄𝑖 = 0.07, which corresponds to a velocity
ncertainty of ±2.8 m∕s and a distance headway uncertainty of ±8.4 m

after converting to time domain.
Further simulation is performed to show the computational effi-

ciency of the proposed convex and robust DMPC as compared to Zheng
et al. (2016), which proposes a non-convex DMPC algorithm. In order
to conduct a fair comparison, we set identical parameters from Table 1
and Table 2. Additionally, the same cost function and weighting coeffi-
cients utilized in Zheng et al. (2016) are employed. The computational
efficiency of the proposed method is evaluated in Fig. 6 by comparing
to a traditional nonlinear DMPC-based method (Zheng et al., 2016) that
is solved by IPOPT. As it can be seen, the individual DMPC average
running time of each step is 8.5 × 10−3 s. Considering the distance step
size and 𝑣max = 40 m∕s, the minimum time duration over a distance
step 𝛥𝑠 is 0.05 s, which is greater than the computation time and
therefore reflects the real-time applicability of the proposed algorithm.
In contrast, when the non-convex DMPC algorithm is implemented, the
average time consumption of all vehicles is above 0.4 s, considerably
more time-consuming compared to the proposed method (approxi-
mately 50 times slower on average). The results show the merit of the
convex modeling framework.



H. Sun et al.

Fig. 2. Top: The velocity performance of all vehicles. Bottom: The velocity tracking performance of all followers.

Fig. 3. The input torque of Vehicle 1 in the platoon.

European Journal of Control 79 (2024) 101023 

10 



H. Sun et al.

Fig. 4. The time headway profiles of all followers.

Fig. 5. The time headway of Vehicle 4 obtained by a nominal MPC.

Fig. 6. Left: Computation time of the proposed convex and robust DMPC algorithm. Right: Computation time of the nonlinear DMPC algorithm in Zheng et al. (2016).
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Fig. 7. A 18.5 km rural route in the UK.

Fig. 8. Top: The velocity performance of all vehicles during rural driving cycles. Bottom: The velocity tracking performance of all followers during the experimental driving profile.
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Fig. 9. The input torque of Vehicle 1 during the experimental driving profile.
Fig. 10. The time headway profiles during the experimental driving profile.
5.2. Case study 2

In this subsection, we further examine the performance of the
proposed method under the condition of continuously changing leader
speed, which is taken from an experimental speed profile collected on
a rural route in the UK (18.5 km in total, see Fig. 7). The road slope
angle 𝜃 (𝑠) is collected from Google Maps. The initial conditions of all
𝑖

13 
vehicles are set uniformly as 𝛥𝑡𝑖(0) = 1 s and 𝑣𝑖(0) = 0.91 m∕s for all
𝑖 ∈  .

The velocity tracking performance is illustrated in Fig. 8. The pro-
posed algorithm exhibits highly accurate tracking performance with a
maximum error of ±4.7 m∕s throughout the mission. As an example,
the torque of Vehicle 1 is plotted in Fig. 9. Similar to Case Study 1,
the profile remains noisy despite the respect of the control constraints.
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Furthermore, the time headway tracking performance of followers is
shown in Fig. 10. Despite the increased complexity of the realistic
driving cycle compared to the reference speed profile in Case Study
1, all followers can still maintain their time headway within the safe
region with minimal tracking error attributed to system uncertainties.

6. Conclusion

This paper deals with robust vehicle platooning control of hetero-
geneous CAVs by a convex and tube-based DMPC algorithm, which
is able to cope with measurement and modeling uncertainties under
PF communication topology. The overall problem is formulated in the
space domain rather than using the conventional time domain models,
and in this context, the resulting receding horizon optimal control
problems can be suitably relaxed as a convex problem, which enables a
rapid optimal solution search, which is the key to practical implemen-
tation. The relaxation is proved to be valid and non-conservative. The
proposed framework also enables coupled state constraints for collision
avoidance to be taken into consideration for safety guarantees. Both
the recursive feasibility and Lyapunov stability are addressed at the
steady state velocity of the leader vehicle. Simulation results verify
the effectiveness and robustness of the proposed algorithm, particularly
in the presence of an experimental and continuously changing leader
speed. Also, by comparing with a benchmark solution in the literature,
the proposed algorithm is found to outperform with up to a 50 times
improvement in computational efficiency.

Future research efforts will be devoted to the investigation of in-
cluding more realistic torque dynamics and energy consumption models
for smooth and energy-efficient control, and different communication
graphs so that the theoretical guarantees can be justified for all steps.
Moreover, we will extend the control framework to incorporate com-
munication delays and platoon reconfiguration as well as interactions
with human-driven vehicles.
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