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Abstract—Continuous traffic signal intersections in urban 

roads significantly increase vehicle energy consumption and the 

frequent acceleration and deceleration spur the degradation of 

electric vehicles (EVs) batteries. This paper proposes an 

integrated battery lifetime and energy efficiency driving strategy 

(IBE) based on a hierarchical framework for EVs in urban roads 

with multi-signalized intersections. In the upper layer, vehicles 

take into account global information from multiple traffic 

signals ahead in their travel direction to determine feasible 

phases time at each intersection. In the lower layer, a spatial-

domain-based model predictive control (S-MPC) framework is 

introduced to achieve optimal control of the vehicle. Simulation 

results indicate that the proposed IBE strategy avoids stopping 

at red lights and, compared to two typical constant-speed 

strategies, can achieve a maximum improvement of 26.6% in 

battery lifetime and 10.5% in energy savings. 

Index Terms—Eco-driving, Model predictive control (MPC), 

Electric vehicles (EVs), Energy efficiency, Battery lifetime. 

 

I. INTRODUCTION 

gainst the backdrop of a continually expanding vehicle 

population and the escalating strain on energy resources 

within the road traffic system, there exists an imminent need 

to seek innovative solutions for addressing the issue of vehicle 

energy consumption [1]. Among the array of available 

options, eco-driving has prominently emerged as a pivotal 

approach to combat this challenge [2]. Eco-driving not only 

facilitates the reduction of fuel and battery consumption in 

vehicles but also holds the potential to curtail emissions, 

enhance traffic efficiency, and provide a viable pathway 

toward realizing sustainable transportation systems [3-5].  

In recent years, especially in urban environments, 

advancements in vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication technologies have 

significantly accelerated the dissemination of road 

environment information to vehicles [6]. This development 

has further propelled research into eco-driving strategies. 

Currently, extensive research endeavors have been 

undertaken to explore and assess diverse facets of eco-driving 

strategies for vehicles driven on urban roads [7-9]. Li et al. 

[10] pursued the objective of minimizing energy consumption 

in an internal combustion engine vehicle (ICEVs) by 

formulating a nonlinear mixed-integer optimal control 

problem (OCP). They successfully achieved energy-efficient 

vehicle operation through the application of the Legendre 

pseudospectral method in conjunction with the knotting 

technique. Jayawardana et al. [11] proposed an eco-driving 

strategy for signalized intersections based on reinforcement 

learning methods, and its generalizability was validated in 

mixed traffic scenarios. Chen et al. [12] developed a “1+n” 

hybrid vehicle platoon control strategy, which involves 

controlling a leading connected and automated vehicle to 

enhance the overall energy efficiency of the manually driven 

following vehicles, further improving road traffic efficiency. 

However, these studies have only focused on isolated 

signalized intersection scenarios. This type of eco-driving 

strategy, which only considers upcoming traffic signals, 

overlooks potential interference from other signal timings in 

the future. As a result, it can only achieve suboptimal control 

performance in terms of vehicle energy efficiency, especially 

in scenarios involving multiple traffic signals during long-

distance driving. To this end, some scholars have also 

conducted research on eco-driving strategies in mult-

intersection scenarios [13-15]. Chalaki et al. [16] presented a 

two-layer control framework designed for signal-free multi-

intersections. In the upper layer, they planned the optimal 

arrival times for vehicles to maximize traffic flow efficiency, 

while in the lower layer, an OCP was formulated to determine 

the vehicle control actions. Arnau et al. [17] devised a driving 

strategy based on dynamic programming with a simplified 

model, which can determine the optimal speed profiles for a 

given horizon by knowing the information about the 

preceding traffic. Yang et al. [18] developed a modular and 

scalable driving system for multi-signal intersections that can 

be implemented in large-scale networks without significantly 

increasing computational complexity. Additionally, their 

research includes sensitivity analyses of variables such as 

demand levels and system market penetration, assessing their 

impact on system performance.  
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However, all of the aforementioned studies assume that the 

roads are flat considering only the effect of the traffic light, 

ignoring the impact of road gradients on vehicle energy 

efficiency. They generally assume that road gradients in urban 

areas are minimal, which is unpractical. For instance, in 

regions like Chongqing, China, and Scotland in the UK, urban 

roads exhibit significant gradients that have a profound 

impact on vehicle energy consumption. Furthermore, research 

focused on electric vehicles (EVs) as its subject has failed to 

consider the impact on battery lifespan. Batteries, being the 

most crucial components of EVs, pursuing energy efficiency 

in driving at the expense of battery longevity is inappropriate. 

Therefore, it is essential, in urban environments, to take road 

gradients and multiple traffic signals information into account 

and engage in comprehensive research on driving strategies 

for EVs aimed at improving both vehicle energy efficiency 

and battery lifetime. 

This paper addresses the eco-driving control problem 

across multiple signalized intersections. A novel integrated 

battery lifetime and energy efficiency (IBE) control strategy 

is designed for a connected electric vehicles (CEV) to find the 

optimal driving profile, where vehicle energy efficiency and 

battery lifetime are co-optimized. The IBE strategy is framed 

in two layers: a feasible phase planning layer and a real-time 

vehicle control layer. The feasible phase planning layer uses 

global infromation from traffic signals and navigation system 

(distance, slopes, etc.) to determine viable time windows for 

each intersection with the aim of minimizing travel time. This 

breaks down the intricate path-level challenge into more 

manageable sub-tasks. On the other hand, the vehicle control 

layer employs a spatial-domain model predictive control (S-

MPC) scheme. By solving the problem in the spatial domain, 

we can simultaneously optimize travel time, eliminating the 

need for an extra step typically required in the temporal 

domain. The spatial-domain approach also makes it 

straightforward to consider slopes, which can notably affect 

driving patterns but are often overlooked in existing studies 

[11-18]. Through this two-layer approach, we bypass the 

complex task of handling a mixed-integer nonlinear 

programming problem (MINLP), which often arises from 

signal phase and timing constraints [19]. As a result, the 

computational load is considerably alleviated.  

The remainder of this paper is organized as follows. The 

energy-efficient driving problem in urban environments with 

multi-signalized intersections is formulated in Section II. 

Section III presents the framework of the proposed IBE 

driving strategy. Section IV shows the simulation results and 

evaluates the performance of IBE. The paper is concluded in 

Section V. 

II. PROBLEM FORMULATION 

This section introduces the modelling framework, 

including the vehicle model, battery model, and traffic light 

model, and formulates the energy-efficent problem of the 

CEV at multiple signalized intersections. 

A. Vehicle Model 

The subject CEV, equipped with two hub motors, is 

neglected for lateral dynamics. Therefore, the longitudinal 

dynamics of the CEV in the spatial domain can be described 

as follows  

{
 

 
𝑑𝑣

𝑑𝑠
=
𝑑𝑣

𝑑𝑡
∙
𝑑𝑡

𝑑𝑠
=
𝑎(𝑠)

𝑣(𝑠)
𝑑𝑡

𝑑𝑠
=

1

𝑣(𝑠)

(1) 

with 

𝑎(𝑠) =
1

𝑚
(
2𝑇

𝑟
− 𝐹𝑟(𝑠) − 𝐹𝑣(𝑠)) (2) 

𝐹𝑟(𝑠) = 𝑚𝑔𝑓𝑐𝑜𝑠(𝜃(𝑠)) + 𝑚𝑔𝑠𝑖𝑛(𝜃(𝑠)) (3) 

𝐹𝑣(𝑠) = 0.5𝐶𝑑𝜌𝐴𝑣
2(𝑠) (4) 

where 𝑚 is the vehicle mass, 𝑠 is the vehicle position, 𝑎 and 

𝑣 are the acceleration and velocity of the vehicle, respectively. 
𝐹𝑟  is the road resistance, 𝐹𝑣(𝑠)  is the air drag, 𝑟  is the tire 

radius, 𝑇 is the motor torque, 𝑔 is the gravity constant, 𝑓, 𝜃, 

and 𝐶𝑑  are the rolling resistance factor, gradient and 

aerodynamic drag factor, respectively. 𝐴 is the frontal area, 𝜌 

is the air density. 

The energy consumption of the entire propulsion system 

can be expressed as 

𝑃𝑚 = 2𝑇𝜔𝜂𝑚
−𝑠𝑔𝑛(𝑇) (5) 

where 𝜔  is the motor speed, 𝜂𝑚  is the motor working 

efficiency, as depicted in Fig. 1, which is accessible by a 

lookup table. 

 
Fig. 1. Efficiency map the hub motor. 

B. Battery Model 

The electrical energy for CEV is provided by a LiFePO4 

battery pack, and in this paper, an equivalent circuit model 

[20] represents it as follows 

𝑃𝑏 = 𝑃𝑚 + 𝑃𝑎𝑢𝑥 = 𝑈𝑜𝑐𝐼𝑏 − 𝐼𝑏
2𝑅𝑏 (6) 

where 𝑃𝑎𝑢𝑥  is the auxiliary power. 𝑈𝑜𝑐  is the open-circuit 

voltage of the battery, 𝐼𝑏 is the battery current, 𝑅𝑏  is the 

internal resistance of the battery related to its state of charge 

(SOC). Likewise, in reference to the SOC dynamics the time 

domain [21], which can be written in the spatial domain as 

𝑑

𝑑𝑠
SOC = −

𝐼𝑏
𝑄𝑏

= −
𝑈𝑜𝑐 −√𝑈𝑜𝑐

2 − 4𝑅𝑏𝑃𝑏
2𝑄𝑏𝑅𝑏𝑣(𝑠)

(7) 

where 𝑄𝑏  is the nominal capacity of the battery. 
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The maximization of battery life is one of the optimization 

objectives of this study. Therefore, a battery state of health 

(SOH) model is used to describe the battery lifetime 

degradation [22], which is presented as 

𝑑

𝑑𝑠
SOH = −

|𝐼𝑏|

2𝑄𝑏𝑁𝑐
= −

|𝑈𝑜𝑐 − √𝑈𝑜𝑐
2 − 4𝑅𝑏𝑃𝑏|

4𝑄𝑏𝑅𝑏𝑁𝑐𝑣(𝑠)
(8) 

where 𝑁𝑐 is the number of battery charge/discharge cycles. 

C. Traffic Light Model 

Vehicles traveling long distances in the urban environment 

are inevitably affected by traffic lights. For the sake of 

problem simplification, we assume that the timing of traffic 

lights is fixed. For a given signal light 𝑖, its signal cycle can 

be given as  

𝑇𝑐
𝑖 = 𝑇𝑟

𝑖 + 𝑇𝑔
𝑖 (9) 

where 𝑇𝑟
𝑖  and 𝑇𝑔

𝑖   are the 𝑖 th red phase and green phase 

duration, respectively. It should be noted that yellow phase 

are counted as red light phase for safety reasons. 

Fig. 2 illustrates two possible scenarios for the phase of 

signal light 𝑖. Here, we define the end time of the green phase 

as the starting moment of a single signal cycle. Assuming an 

initial time 𝑡0 = 0, the cumulative number of cycles of signal 

𝑖 at time 𝑡 can be calculated as 

𝐶𝑖 = 𝑚𝑜𝑑 ((𝑡 − 𝑇0
𝑖), 𝑇𝑐

𝑖) + 1 (10) 

with  

𝑇0
𝑖 = {

𝑇𝑙
𝑖 + 𝑇𝑔

𝑖

𝑇𝑙
𝑖

  𝑖𝑓 𝐻𝑖 = 0

  𝑖𝑓 𝐻𝑖 = 1
(11) 

where 𝑚𝑜𝑑(∙)  is the modulo operator. 𝑇0
𝑖   the initial signal 

cycle length related to its initial phase 𝐻𝑖  , 𝐻𝑖 = 0  indicates 

that the initial phase is red, 𝐻𝑖 = 1  means that the initial 

phase is green. 𝑇𝑙
𝑖 is the initial phase length. 

 
Fig. 2. The cycle clock time of the traffic light 𝑖. 

Thus, the initial time of the phase of the 𝑖th signal light in 

a given cycle can be obtained as follows 

𝑡𝑟
𝐶𝑖 =

{
 
 

 
 {

inf

𝑇𝑙
𝑖 + 𝑇𝑟

𝑖(𝐶𝑖 − 2) + 𝑇𝑔
𝑖(𝐶𝑖 − 2)  

𝐶𝑖 = 1, 𝐻𝑖 = 1

𝐶𝑖 > 1, 𝐻𝑖 = 1

{
0

𝑇𝑙
𝑖 + 𝑇𝑟

𝑖(𝐶𝑖 − 2) + 𝑇𝑔
𝑖(𝐶𝑖 − 1)  

𝐶𝑖 = 1, 𝐻𝑖 = 0

𝐶𝑖 > 1, 𝐻𝑖 = 0

(12) 

𝑡𝑔
𝐶𝑖 =

{
 
 

 
 {

0

𝑇𝑙
𝑖 + 𝑇𝑟

𝑖(𝐶𝑖 − 1) + 𝑇𝑔
𝑖(𝐶𝑖 − 2)  

𝐶𝑖 = 1, 𝐻𝑖 = 1

𝐶𝑖 > 1, 𝐻𝑖 = 1

{
0

𝑇𝑙
𝑖 + 𝑇𝑟

𝑖(𝐶𝑖 − 1) + 𝑇𝑔
𝑖(𝐶𝑖 − 1)  

𝐶𝑖 = 1, 𝐻𝑖 = 0

𝐶𝑖 > 1, 𝐻𝑖 = 0

(13) 

D. Optimal Control Problem 

The scenario investigated in this paper involves a CEV 

traveling on a long urban road with multiple multi-signalized 

intersections and road slops, as depicted in Fig. 3. The 

objective of this study is to develop a real-time EVs driving 

strategy aimed at improving vehicle energy efficiency and 

extending battery lifetime. Therefore, the control problem can 

be formulated as an (OCP) in the spatial domain 

min∫ (𝛼1
𝑑

𝑑𝑠
SOC + 𝛼2

𝑑

𝑑𝑠
SOH)

𝑠𝑓

𝑠0

𝑑𝑠 (14) 

subject to (1) - (8), and 

𝑣(0) = 𝑣0, 𝑡(0) = 𝑠0 (15) 

{
𝑣(𝑠) = 0 if 𝑠 = 𝑝𝑖  and 𝑡(𝑝𝑖) ∈ [𝑡𝑟

𝐶𝑖 ,  𝑡𝑟
𝐶𝑖 + 𝑇𝑟

𝑖]

𝑣(𝑠) ≠ 0 if 𝑠 = 𝑝𝑖  and 𝑡(𝑝𝑖) ∈ [𝑡𝑔
𝐶𝑖 ,  𝑡𝑔

𝐶𝑖 + 𝑇𝑔
𝑖]

(16) 

𝑣𝑚𝑖𝑛(𝑠) ≤ 𝑣(𝑠) ≤ 𝑣𝑚𝑎𝑥(𝑠) (17) 

𝑇𝑚𝑖𝑛(𝑠) ≤ 𝑇(𝑠) ≤ 𝑇𝑚𝑎𝑥(𝑠) (18) 

𝑎𝑚𝑖𝑛(𝑠) ≤ 𝑎(𝑠) ≤ 𝑎𝑚𝑎𝑥(𝑠) (19) 
where 𝑠0 and 𝑠𝑓 are the the start and end points, respectively. 

𝛼1  and 𝛼2  are weighting factors. 𝑝𝑖  is the ith signal light 

position. The subscripts max and min denote the maximum 

and minimum values of the corresponding variables, 

respectively. Eq. (15) is the initial state value of the system, 

Eq. (16) shows the effect of signal phase timing on vehicle 

motion state. Eq. (17) is the speed limit of the road. Eq. (18) 

is the physical constraint on the motor torque, and Eq. (19) is 

the acceleration constraint for driving comfort 

It should be noted that the above OCP represents a typical 

MINLP due to the interference (16) caused by traffic signals 

[19]. Such a MINLP problem poses a significant challenge in 

computation, particularly in the receding horizon setting. To 

address this challenge, we propose a hierarchical framework 

that strikes a balance between optimality and computational 

efficiency. 

III. IBE DRIVING STRATEGY DESIGN  

This section presents the overall framework of the 

proposed IBE driving strategy. 

A. Feasible Phase Planning  

In Fig. 3, the starting point of CEV is assumed to be 𝑠0 =
0. In addition, the location of the road signal can be easily 

obtained based on the V2I technique, which is noted as 

[𝑝1, 𝑝2, ⋯ , 𝑝𝑁𝑙]. The distance between two consecutive signal 

light can be expressed as 

𝐿𝑖 = {
𝑝1

𝑝𝑖 − 𝑝𝑖−1
𝑖 = 1
𝑖 > 1

(20) 

The feasible phase planning at the upper level aims to make 

CEV to safely pass through the intersection without stopping 

in the green phase. Firstly, based on the established traffic 

light model, the green phase time range for the signal light 𝑖 
can be presented as 

𝐺𝑖 =∑ [𝑡𝑔
𝐶𝑖 ,  𝑡𝑔

𝐶𝑖 + 𝑇𝑔
𝑖]

𝑛

𝑐=1
(21) 
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For the consideration of driving safety and traffic 

efficiency, the speed range of CEV is supposed to satisfy (17). 

The maximum speed is the road speed limit, and the minimum 

speed is set as a constant value based on the current average 

traffic speed of the given road. The average vehicle speed can 

be determined by prediction from historical traffic data or 

real-time accessed by platforms such as Google Maps. Thus, 

the CEV can traverse the intersection in a range of time that 

is 

Λ𝑖 =∑ [𝑡𝑔𝑚𝑖𝑛,
𝑘𝑖  𝑡𝑔𝑚𝑎𝑥

𝑘𝑖 ]
𝑁𝑖

𝑘=1
= 𝐺𝑖⋂ 𝐷𝑖 (22) 

with 

𝐷𝑖 = [
𝐿𝑖

𝑣𝑚𝑎𝑥
,
𝐿𝑖

𝑣𝑚𝑖𝑛
] (23) 

where 𝑁𝑖 is the number of feasible green phases for the ith 

signal light. 𝑡𝑔𝑚𝑖𝑛
𝑘𝑖  and 𝑡𝑔𝑚𝑎𝑥

𝑘𝑖  are the minimum and maximum 

time when the CEV passes the ith traffic light in the kth 

feasible green phases. 𝐷𝑖  is the time interval to reach the 

intersection.  
Currently, it is only the feasible travel time for the first 

intersection before CEV that has been planned. Next, we will 

consider feasible phase planning for multiple intersections. 

Based on the passing time of the 𝑖th signal, the time interval 

for the CEV to reach the (𝑖+1)th signal can be calculated as 

follows 

𝐷𝑖+1 =∑ [𝑡𝑔𝑚𝑖𝑛
𝑘𝑖 +

𝐿𝑖+1

𝑣𝑚𝑎𝑥
,  𝑡𝑔𝑚𝑎𝑥

𝑘𝑖 +
𝐿𝑖+1

𝑣𝑚𝑖𝑛
]

𝑁𝑖

𝑘=1
(24) 

Hence, the feasible time slots of the (𝑖 + 1)th signal light 

can be given as 

Λ𝑖+1 =∑ [𝑡𝑔𝑚𝑖𝑛,
𝑘𝑖+1  𝑡𝑔𝑚𝑎𝑥

𝑘𝑖+1 ]
𝑁𝑖+1

𝑘=1
= 𝐺𝑖+1⋂ 𝐷𝑖+1 (25) 

where  𝑁𝑖+1  is the number of feasible green phases for the 

(𝑖+1)th signal light. 

In the same way, the feasible time for all traffic lights on 

the journey can be summarized as 

Λ = [Λ1, Λ2, ⋯ , Λ𝑛] (26) 
To minimize travel time and improve overall traffic 

efficiency, we choose the first feasible time slot as the target 

time interval for the vehicle to cross the traffic light, leading 

to 

Λ̃ = {[𝑡𝑚𝑖𝑛
1 , 𝑡𝑚𝑎𝑥

1 ], [𝑡𝑚𝑖𝑛
2 , 𝑡𝑚𝑎𝑥

2 ],⋯ , [𝑡𝑚𝑖𝑛
𝑛 , 𝑡𝑚𝑎𝑥

𝑛 ]} (27) 

As a consequence, the whole OCP problem is decoupled 

into a sub-problem of single-signal intersection optimization. 

B. Real-time Driving Control  

This subsection describes the MPC control strategy based 

on the spatial domain. For each signal light, the terminal time 

range has been determined at the upper level as [𝑡𝑚𝑖𝑛
𝑖 , 𝑡𝑚𝑎𝑥

𝑖 ], 

and this means that the feasible speed range 

is [𝑣𝑓,𝑚𝑖𝑛
𝑖 , 𝑣𝑓,𝑚𝑎𝑥

𝑖 ] = [
𝐿𝑖

𝑡𝑚𝑎𝑥
𝑖 ,

𝐿𝑖

𝑡𝑚𝑖𝑛
𝑖 ]. To ensure traffic efficiency, 

we assum the desired velocity is the maximum feasible speed, 

i.e., 𝑣𝑑
𝑖 = 𝑣𝑓,𝑚𝑎𝑥

𝑖 . In each subproblem, the cost function for 

each rolling distance horizon in the S-MPC is formulated as 

follows 

𝛼1𝐽1
𝑖 + 𝛼2𝐽2

𝑖 + 𝛼3𝐽3
𝑖 = 𝛼1(SOC(𝑗|𝜀) − SOC(𝑗 + 𝑁|𝜀)) 

           +𝛼2(SOH(𝑗|𝜀) − SOH(𝑗 + 𝑁|𝜀))

+ 𝛼3(𝑣(𝑗 + 𝑁|𝜀) − 𝑣𝑑
𝑖 )
2
 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,2,⋯𝑁 (28) 
where 𝑗  is the discrete index, 𝑁  is the prediction horizon. 

(𝑗|𝜀)  is the 𝑗-step-ahead prediction value at position 𝜀 . In 

particular, there is no time constraint after the CEV drives 

away from the last signal light. To ensure traffic efficiency, 

we set the ideal speed between this last traffic light and the 

end of the journey to the average speed of the road. 

Thus, the OCP is described in each MPC update as follows 

 
Fig.3. The problem description and proposed IBE driving strategy framework. 
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min
𝑢
𝛼1𝐽1

𝑖 + 𝛼2𝐽2
𝑖 + 𝛼3𝐽3

𝑖 (29) 

subject to (18)-(19) and  

𝑣(𝑗 + 1|𝜀) = 𝑣(𝑗|𝜀) +
𝑎(𝑗|𝜀)∆𝑠

𝑣(𝑗|𝜀)
(30) 

𝑡(𝑗 + 1|𝜀) = 𝑡(𝑗|𝜀) +
∆𝑠

𝑣(𝑗|𝜀)
(31) 

𝑎(𝑗|𝜀) =
2𝑇(𝑗|𝜀)

𝑚𝑟
−
𝐶𝑑𝜌𝐴𝑣

2(𝑗|𝜀)

2𝑚
 

                           −𝑔𝑠𝑖𝑛(𝜃(𝑗|𝜀)) − 𝑔𝑓𝑐𝑜𝑠(𝜃(𝑗|𝜀)) (32) 

𝑣𝑓,𝑚𝑖𝑛
𝑖 (𝑗|𝑠) ≤ 𝑣(𝑗|𝑠) ≤ 𝑣𝑓,𝑚𝑎𝑥

𝑖 (𝑗|𝑠) (33) 

where the state variable 𝑥 = [𝑣, 𝑡], and the control input is 

𝑢 = 𝑇. ∆s is the sample distance. Eq. (30) and (31) are state 

equations. It should be seen that the vehicle is assumed to 

travel at a constant speed within each substage, which is due 

to the fact that s is small enough that the variations in speed 

are not significant. Eq. (33) is the velocity constraints of the 

vehicle. 

IV. SIMULATION AND DISCUSSION 

To validate the performance of the proposed driving 

strategy, a series of simulations are performed. All 

simulations are conducted on a personal computer with Intel® 

Core™ i7-10875H CPU @ 2.3 GHz and 16 GB RAM. 

A. Simulation Setup 

In the simulation, an urban road in Newcastle upon Tyne, 

England, with varying slopes is chosen as a simulated 

environment, as shown in Fig. 4. The road extends for 

approximately 9 km, encompassing a total of 6 traffic signal 

installations, while adhering to a maximum speed limit of 80 

km/h. It is noteworthy to mention that the data regarding road 

gradients and average traffic speeds are obtained through 

Google Maps. The experiments are conducted at 

approximately 14:00 local time, during which the real-time 

average vehicle speed on the road is 50 km/h. To realize the 

trade-off between traffic efficiency and energy savings, the 

minimum speed is assumed to be 20 km/h. In the S-MPC, the 

relevant parameters are set: ∆𝑠 = 5 m, 𝑄 = 50 m, N = 10, 

𝑎𝑚𝑎𝑥  = 2 m/s2, 𝑎𝑚𝑖𝑛 = -2 m/s2, and the vehicle initial velocity 

𝑣0 = 50 km/h. In addition, the main parameters of the CEV 

are listed in Table I, and the light signal positions and the 

signal phasing and timing are shown in Table II. 

 

Fig. 4. The experimental route in Newcastle upon Tyne, England. 

TABLE I  

SUBJECTIVE VEHICLE PARAMETERS 

Component Parameter Symbol  Value 

Vehicle 

Mass 𝑚 2000 kg 

Accessory power 𝑃𝑎𝑢𝑥 400 W 

Tire radius 𝑟 0.36 m 

Frontal area A 2.5 m2 

Air drag coefficient 𝐶𝑑 0.28 

Rolling resistance coefficient 𝑓 0.018 

Air density 𝜌 
1.206 

kg/m3 

Gravity factor g 9.81 m/s2 

Motor 
Maximum Torque  𝑇𝑚𝑎𝑥 1225 Nm  

Minimum Torque 𝑇𝑚𝑖𝑛 -1200 Nm 

Battery 

Nominal capacity  𝑄𝑏 125 Ah 

Internal resistance 𝑅𝑏 0.32 Ω 

Lifetime cycle 𝑁𝑐 2500 

Open-circuit voltage 𝑈𝑜𝑐 360 V 

To quantify the performance of the proposed IBE driving 

strategy, a common CS strategy is used as a benchmark. 

Therefore, for a fair comparison, we improve the CS strategy 

by only allowing the vehicle to drive at a constant speed 

between two substages to ensure that the vehicle passes 

through the traffic lights. The speed variations between sub-

stages are ignored. The speeds of the CS strategy are set to the 

maximum and minimum of the feasible speeds, and the two 

strategies are denoted as CS-U and CS-L, respectively. 

TABLE II 

ROAD AND SIGNAL LIGHT PARAMETERS 

Number Position Red phase time 
Green phase 

time 

Start 0 m -- -- 

1 1200 m 35 30 

2 2200 m 65 40 
3 3700 m 62 45 

4 5100 m 55 37 

5 6400 m 65 40 
6 8000 m 67 55 

End 9000 m -- -- 

B. Results 

Fig. 5 displays the vehicle speed trajectories for three 

driving strategies. It can be observed that the speed of IBE 

remains within the specified speed range and fluctuates 

continuously with changes in road slope. Specifically, in the 

0-1000 m range of Fig. 5, we can see that the vehicle speed 

reaches a minimum when it arrives at the top of the slope. 

This manner greatly improves the vehicle energy efficiency 

by utilizing the gravitational potential energy to increase the 

kinetic energy. 

Table III presents a performance comparison among three 

driving strategies. It is evident that IBE demonstrates a 

notable improvement in both battery lifetime and vehicle 

energy efficiency compared to the other two strategies. In 

comparison to CS-U, IBE achieves a remarkable 10.5% 

energy savings and a 26.6% energy saving. Relative to CS-L, 

while the energy efficiency of IBE increases by only 3.4%, 

the battery lifetime can still be extended by 21.2%, and 

driving time significantly reduced. 
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Fig. 5. Vehicle velocity trajectories for different driving strategies with 

corresponding road slope. 

 
(a) Position trajectories. 

 
(b) Torque trajectories. 

 
(c) SOC trajectories and SOH trajectories 

Fig. 6. The performance of the IBE driving strategy. 

Fig. 6 further illustrates the vehicle position, torque, SOC 

variations, and battery lifetime degradation trajectory under 

the IBE driving strategy. It can be observed that, despite 

traffic signal disruptions along the road, IBE ensures that the 

vehicle passes through traffic lights in the green phases, 

preventing energy dissipation due to vehicle stops. It is worth 

noting that the proposed strategy may occasionally require the 

vehicle to apply rapid acceleration, which appears to be 

energy inefficient (see, for example, at 6500 m). This is due 

to the design of the upper-level controller in the present paper, 

aiming to have the vehicle pass each traffic lights during the 

earliest possible green phase to improve traffic flow. A more 

balanced scheme that considers both traffic and vehicle 

efficiency is envisaged to be done in future work. 

TABLE III 

PERFORMANCE COMPARISON OF DIFFERENT DRIVING STRATEGIES 

Performance IBE (%) CS-U (%) CS-L (%) 

SOC change 2.8 3.094 (↑ 10.5%) 2.895 (↑ 3.4%) 

SOH change  0.0278 0.0352 (↑ 26.6%) 0.0337 (↑ 21.2%) 

Note: The values inside the parentheses are the performance improvement of 

the IBE relative to other strategies. 

V. CONCLUSION 

This paper introduces a layered IBE  driving strategy aimed 

at enhancing the battery lifetime and energy efficiency of EVs 

in urban environments. Compared to the two typical CS 

strategies, the IBE strategy achieves energy savings of 3.4% 

and 10.5% and battery lifespan improvements of 21.2% and 

26.6%, respectively. In additon, the IBE strategy ensures non-

stop passage of vehicles at traffic signal intersections, thereby 

improving traffic efficiency. In the future, we will conduct 

real-world experiments to validate the feasibility of the 

strategy. 
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