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Abstract

We present a 3D discrete-continuum model to simulate blood pressure in large

microvascular tissues in the absence of known capillary network architecture.

Our hybrid approach combines a 1D Poiseuille flow description for large, dis-

crete arteriolar and venular networks coupled to a continuum-based Darcy

model, point sources of flux, for transport in the capillary bed. We evaluate

our hybrid approach using a vascular network imaged from the mouse brain

medulla/pons using multi-fluorescence high-resolution episcopic microscopy

(MF-HREM). We use the fully-resolved vascular network to predict the

hydraulic conductivity of the capillary network and generate a fully-discrete

pressure solution to benchmark against. Our results demonstrate that the

discrete-continuum methodology is a computationally feasible and effective

tool for predicting blood pressure in real-world microvascular tissues when

capillary microvessels are poorly defined.
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1 | INTRODUCTION

The microcirculation is a hierarchical structure of blood vessels consisting of arterioles, capillaries and venules. These
vessels are typically classified as those with diameters < 300 μm and by several distinctive characteristics, such as mural
cell coverage1 and resistance to flow.2 Structurally, arterioles and venules form branching structures which supply and
drain an interconnected, mesh-like network of capillaries with diameters < 10 μm. In particular, the effective diffusion
distance for oxygen within tissue is limited to approximately 20–100 μm, which is influenced by the balance between
oxygen transport and consumption.3 Therefore, understanding the impact of network architecture on fluid and mass
transport in microvascular tissues is essential for a comprehensive understanding of microcirculatory function.

Advances in biomedical imaging of vascular tissues4–7 have paved the way for computational studies, which inte-
grate complete vascular architectures with biophysical models to probe the microenvironment in silico in a manner that
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is currently inaccessible in a traditional experimental setting.8 Due to the computational challenges of simulating
network-scale blood rheology and dynamics using mesh-based methods, many studies apply one-dimensional
(1D) Poiseuille flow models. In these models, the vascular network is represented as a graph (see Figure 1A). This
approach provides insight into a wide range of biological applications, such as cerebral blood flow,9–12

angiogenesis,13,14 and cancer.4,15–17 Nonetheless, with the emergence of whole-organ vascular imaging,6 the computa-
tional demands of fully-discrete 1D fluid and mass transport models are increasing due to the sheer number of blood
vessels in imaged samples >O 109ð Þð Þ. Moreover, difficulties such as boundary condition assignment arise when consid-
ering incomplete vascular networks, which are acquired using a modality with a resolution lower than the size of some
of the vessels. For example, photoacoustic imaging is an emerging modality, which can image vascular structure and
function in vivo18 typically at a resolution of 30�40 μm, and so is unable to monitor vessels or spatially-resolved flows
in individual vessels below this threshold.19 This leads to discontinuities in vascular network architecture, which
increases the number of boundary conditions that require accurate parameterisation. With these considerations in
mind, versatile mathematical models are required which are computationally tractable and can bridge the information
gap for imaging modalities that cannot resolve vessels or functional parameters down to the micron-scale.

Mathematical homogenisation provides the opportunity to circumvent the problem of solving tissue-scale fluid and
mass transport in the absence of known vascular structure (see Figure 1B). Vascular tissues are represented by a single
or coupled continua and modelled as porous media via Darcy's equation.20–27 For example, by assuming two well-
separated capillary and tissue length scales, these models enable averaged predictions of pressure and velocity fields
with reduced computational cost. However, several challenges remain in their application.28 For instance, the range of
hierarchical vascular structures may not be fully characterised by two length scales in isolation. Further, these models
assume that networks are highly interconnected and so small-scale vessel pressures are correlated which may not be
the case, depending on vascular topology. Thus, model parameters, such as the hydraulic conductivity in Darcy's equa-
tion, are difficult to estimate.

Numerous hybrid blood flow models have been formulated which embed larger individual (or discrete) vessels into
a homogenised representation of the surrounding vascular tissue.28–37 These studies apply a 1D flow model to discrete
vessels, coupled to a porous medium Darcy model (see Figure 1C). As a consequence of explicitly representing the hier-
archical structure of larger branching vessels and therefore providing a better prediction of flow distribution in these
vessels compared to an averaged description, hybrid models may provide a better prediction of blood flow heterogeneity
in the homogenised domain. Typically, hybrid models solve for blood flow numerically using semi-analytic or fully
finite mesh schemes.28,30,33,34,36,37 Whilst these methods have been successful in handling multi-scale problems, they
can be computationally intensive, especially for large domains. To mitigate the need for highly resolved meshes, alter-
native approaches have been proposed that utilise analytical approximations or Green's functions which couple discrete
vessel structures with the Darcy continuum domain (representing the capillary bed) via point sources of flux.29,35 In our

FIGURE 1 Methods for modelling blood flow in microvascular networks. In healthy tissue, microvasculature can be classified in terms

of (red) arterioles, (green) capillaries and (blue) venules. (A) Fully discrete methods can be applied when structural data of the entire blood

vessel network is acquired experimental. Here, the vascular network is represented as a graph where nodal pressures, and consequently

segment flows, are solved for using a 1D Poiseuille flow model. (B) Mathematical homogenisation can be used when discrete vessel data is

unavailable for the entire domain. Darcy's Law is used to predict tissue-scale blood flow and tissue hydraulic conductivity can be

approximated using mathematical averaging techniques, such as those which assume periodic vascular structures. (C) Hybrid models may

improve prediction of blood flow heterogeneity across the tissue where structural information of larger vessels is obtained. Here, arteriolar

and venular structures are modelled in a discrete fashion, coupled to a (left) mesh or (right) our analytic Green's function method to solve

for blood flow in a capillary continuum.
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previous work, this we developed a hybrid, Green's function model for two-dimensional (2D) networks. Here, the arteri-
olar network was represented by a vascular graph and coupled to a homogenised capillary bed. Coupling occurred via
point sources of flux, which were distributed over discs and the venular network was depicted using a single, spatially-
uniform network sink term.35 Additionally, we ensured conservation of flow between the discrete arteriolar vessel and
the venular sink term.

In this study, we develop a 3D hybrid discrete-continuum model for blood flow in microvascular networks. Blood
pressure is modelled discretely (1D Poiseuille flow) in the arteriolar and venular branching networks and coupled to a
single-phase Darcy description of blood flow in the capillary bed via spherical point sources of flux. We calculate the
3D capillary bed hydraulic conductivity tensor by local averaging of 3D synthetic, periodic micro-cell representations of
the capillary vasculature, following established homogenisation approaches. We provide a Green's function-based solu-
tion for the averaged capillary blood pressure in 3D. Compared to similar 2D approaches,29,35 our method introduces a
capillary network exchange term to address field-of-view limitations in microvascular imaging. Our model does not
restrict mass conservation solely to terminal arteriolar/venular branches, but ensures continuous blood flow representa-
tion throughout the entire network, even when imaging covers only a sub-volume of the real-world network.

Our model is intended to be used on various microvascular tissues where the structure of the branching arteriolar
and venular vessels is known, but the discrete capillary network structure is not. It is important to note that despite
multiscale derivations assuming microscale periodicity, Darcy's Law has been used to predict fluid mechanics at the
macroscale for non-periodic structures.38,39 Therefore, our model could feasibly be applied to cases where the imaging
spatial resolution is above the typical maximum threshold of capillary thickness (10 μm) such that the full arteriolar/
venular branching structures are not obtained. In this study, we utilise a fully-resolved vascular network
(1:14�1:14�1:72 μm3 resolution) from the mouse cerebral medulla/pons to develop our methodology. By classifying
the blood vessels of the discrete network into arterioles, capillaries and venules, we use the 3D structural information
to generate synthetic micro-cells which, via local averaging, we use to estimate a 3D hydraulic conductivity tensor of
the capillary bed. Next, we apply a 1D Poiseuille flow model to the fully-discrete medulla/pons network to generate a
blood pressure solution. Using the simulated predictions of capillary hydraulic conductivity and capillary boundary flux
(via the discrete flow solution) our hybrid, discrete-continuum model estimates vascular blood pressure across the capil-
lary continuum. The resulting pressure solution is then benchmarked against the fully-discrete medulla prediction and
the relative merits of each model's solution discussed. Finally, we perform sensitivity analysis of key parameters in our
hybrid model to explore the role of pivotal structural (e.g., branching order) and functional (e.g., tissue hydraulic con-
ductivity and far-field capillary pressure) parameters in influencing the discrete-continuum model predictions.

2 | METHODS

2.1 | Animal model

All animal studies were licenced under the UK Home Office regulations and the Guidance for the Operation of Animals
(Scientific Procedures) Act 1986 (Home Office, London, United Kingdom) and United Kingdom Coordinating Commit-
tee on Cancer Research Guidelines for the Welfare and Use of Animals in Cancer Research.

2.2 | Multi-fluorescence high-resolution episcopic microscopy of brain

Mouse brains were prepared as described in Walsh et al.5 Briefly, animals were administered with 200 μL Lectin
(Tomato) bound to DyeLyte-649 (Vector UK) (1 mg/mL), administered via tail vein injection and allowed to circulate
for 10 min before euthanasia. Perfusion fixation was varied out, the brain removed, and prepared through a graded
dehydration and resin embedding process.5

Multi-fluorescence high-resolution episcopic microscopy (MF-HREM) images were collected with voxel size
0:57�0:57�1:72 μm3 allowing the entirety of the vascular network to be captured. Images were deconvolved using a
diffraction kernel as specified in Walsh et al.6 The deconvolved images were downsampled to voxel sizes of
1:14�1:14�1:27 μm3 and segmented semi-manually in Amira v2020.2, using a magic wand tool.5 The segmentation
was skeletonised using the Amira autoskeletonise module (with distance-thinning mode enabled) to provide a graph
description of the vascular network. Vessels are represented by segments with a defined diameter and length, inter-
connected by nodes with defined 3D coordinates. A 3D volume of the skeleton was taken from the medulla/pons
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(located at the base of the brainstem—here on referred as the medulla) and used as the geometrical input into our
mathematical model.

In the medulla, larger arteriolar and venular blood vessels penetrate through the tissue with intermediate vessels
branching off.40 A mesh of capillaries form from the intermediate vessels, connecting the arteriolar and venular bra-
nches. We classified vessels according to their type (arteriolar, venular, capillary—see Figure 2) enabling the capillary
network to be removed, mimicking an imaging modality constrained by spatial resolution. This left the larger,
branching arteriolar and venular networks as discretely-modelled structures in our hybrid approach.

Vessel classifications are not known a priori for the medulla dataset. As such, we pragmatically classified vessels
based on vascular morphology.40 Penetrating vessels were identified via visual inspection and intermediate branching
vessels were located using a breadth-first search with a diameter threshold of 9 μm and all remaining vessels were
labelled as capillaries (see Figure 2). We found that setting a 10 μm threshold to identify larger vessels led to inaccura-
cies due to discontinuities in penetrating arteriolar and venular vessels, likely caused by tissue shrinkage during sample
dehydration for MF-HREM imaging. To maintain physiologically-realistic structure without artificially adjusting sizes,
a 9 μm threshold was chosen, successfully preserving the structure of penetrating vessels.

Sensitivity of model predictions to the diameter threshold is explored in our results and a summary of the architec-
tural information for the skeletonised vascular network, as well as vessel classifications, is provided in Table 1.

Simulating blood pressure using a 1D Poiseuille model requires boundary conditions at all the network boundaries.
However, functional information for all boundaries, especially for high-resolution data, is rare. As a result, we initially
introduce a 1D Poiseuille flow model for incomplete boundary conditions,41 which has been applied across a range of
real-world tissues4,11,17,42 and estimates unknown boundary data by matching to target mean pressure and shear stress
across the network. We apply this model to predict blood pressure across the fully-discrete medulla network to generate
our reference pressure solution, as well as predict the flow distribution in branching vessels in our hybrid model.

Next, we present our hybrid model, which predicts blood pressure in the homogenised capillary bed coupled to the
discrete arteriolar and venular branches. To predict the resistance to flow through the capillary bed, we detail a 3D
micro-cell problem to estimate hydraulic conductivity in synthetic networks.43,44 This is followed by the computational
implementation of the hybrid discrete-continuum model to predict the pressure distribution in microvascular tissue, in
the absence of a spatially-resolved capillary network. Finally, we detail our methodology behind boundary condition
and parameter assignment for our hybrid, discrete-continuum approach.

2.3 | Discrete blood flow model

Vascular networks can be represented by a graph(s) consisting of an interconnected set of nodes, N , and segments, S.
Establishing a consistent flow direction from the start node to the end node of each vessel segment and ensuring flow

FIGURE 2 Structure of the vasculature in the mouse medulla. 3D visualisations of the medulla vasculature indicating (A) blood vessel

diameters and (B) manually identified arteriolar and venular vessels. (C) Distributions of blood vessel diameters and lengths for arterioles,

capillaries and venules in our dataset. A full description of parameters are provided in Table 1.
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conservation at blood vessel junctions, the relationship between nodal pressures, pk, and the boundary fluxes, Q0i, is
given by,

X
k � N

Kikpk ¼�Q0i for i� I[B, ð1Þ

where I is the set of all interior nodes and B the set of boundary nodes with known flow conditions. If i is a boundary
node with a known boundary condition, Q0i is equal to a prescribed pressure or flow value (positive or negative depen-
dent on inflow or outflow, respectively) at node i. Note, if a pressure condition is assigned, row i of Kik is set to zero
except for start/end nodes of the associated vessel segment, which are set to one. Network conductance to flow, Kik, is
defined as

Kik ¼
X
j � S

LijMjk for i� I[B and k�N , ð2Þ

where

Lij ¼
�1, if i is the start node of segment j,

þ1, if i is the end node of segment j,

0, otherwise,

8><
>: ð3Þ

and

Mjk ¼
þπd4j = 128μjlj

� �
, if k is the start node of segment j,

�πd4j = 128μjlj
� �

, if k is the end node of segment j,

0, otherwise:

8>>><
>>>:

ð4Þ

TABLE 1 A summary of vascular network properties for the medulla network.

Metric Value

Tissue dimensions (mm3) 3.09 � 2.33 � 0.54

Vascular density (%) 3.10

No. of penetrating vessels 32

No. of branching vessels 90,176

No. of branch points (vertices) 73,175

No. of segments 319,534

No. of nodes 302,554

No. of boundary nodes 21,983

Mean vessel diameter (μm)

Arterioles 11.11 ± 3.08

Capillaries 7.44 ± 2.49

Venules 11.08 ± 3.43

Mean vessel length (μm)

Arterioles 37.91 ± 36.31

Capillaries 32.19 ± 24.96

Venules 43.96 ± 52.20

Note: Vascular density is defined as the ratio of network volume to tissue volume.
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The variables lj, dj and μj denote the length, diameter and effective blood viscosity of segment j, respectively. In this
study, we define blood viscosity, μ d,Hdð Þ, as a function of vessel diameter and haematocrit, Hd, employing a commonly
used empirically-derived blood viscosity law.45 For simplicity, we assign a constant haematocrit value of 0.45, however,
red blood cell phase separation can be incorporated46 in future work.

When a set of boundary conditions are unknown, we formulate a constrained problem in terms of a Lagrangian
objective function41

f pk,λið Þ¼ 1
2
kp
X
k � N

wk pk�p0kð Þ2þ1
2
kτ
X
j � S

lj τj� τ0j
� �2þ X

i � I [ B

λi
X
k � N

KikpkþQ0i

 !
, ð5Þ

which seeks to minimise the deviation between target nodal pressure, p0k and segment wall shear stresses, τ0j subject to
the assignment of weighting factors kp and kτ. Here, τj is the vessel wall shear stress for vessel j, λi is a Lagrange multi-
plier and wk is a weighting factor and equal to the sum of segment lengths connected to node k.

Equation (1) and ∂f =∂pk ¼ 0 can be combined into the following linear system:

K 0

kτHþkpW KT

� �
p

λ

� �
¼ �Q0

kpWp0þkτMT τ0 �c � lð Þ
� �

, ð6Þ

where K, H, W and M denote the matrix forms of Kik, Hik , wk and Mij, respectively, noting W is a diagonal matrix with
entries wk; p, λ, Q0, p0, τ0, c and l are the vector forms of pk, λk, Q0i, p0k, τ0j, cj and lj, respectively. Here, Hik is
defined as

Hik ¼
X
j � S

c2j MjiMjklj where cj ¼
32μj
πd3j

for i,k �N : ð7Þ

The linear system in Equation (6) can be solved for unknowns pi and λi using standard numerical methods. In the
case where all boundary conditions are known, Equation (1) is solved for all nodal pressures.

2.4 | Continuum blood flow model

Our hybrid model incorporates Poiseuille's law to describe blood flow through arteriolar and venular branching struc-
tures, coupled to a volume-averaged description of blood velocity, u and pressure, p, within the capillary continuum
domain47 (see Figure 1C). The coupling occurs via points sources of flux located at the terminal branches of the discrete
vasculature and feeding into the continuum capillary domain.

In the imaging of microvascular networks, limitations in field-of-view can lead to artificial discontinuities at the spa-
tial boundary of the imaged network, which do not exist in vivo. In reality, blood flow continues from the imaged to
the unimaged regions and vice versa at these artificial boundaries. To mitigate the impact of these imaging artefacts on
our mathematical model, we introduce a capillary network exchange term, denoted as β p�pcð Þ, where p represents the
continuum pressure and pc is the far-field capillary pressure. The rate of exchange, β, is not known a priori.

The exchange term is designed to facilitate capillary blood flow at the network boundary, thereby allowing for an
interaction between the imaged capillary continuum and the adjacent, unimaged capillary network. It effectively
relaxes the mass conservation constraint that would otherwise be imposed solely on the imaged discrete branching arte-
riolar and venular structures. In our model, the capillary network exchange term is applied throughout the domain and
is essential for accurately representing the continuous flow of blood across the entire network, ensuring that the model
accounts for interactions beyond the limited imaged area. Conservation of mass in the continuum domain is therefore
defined as:

�r� K�rpð Þ¼�β p�pcð Þþ
X
j � Ns

φj xð Þδ x�xj
� �

, ð8Þ
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where K is the hydraulic conductivity of the capillary network, pc is a constant far-field pressure, β is the rate of capil-
lary fluid drainage into neighbouring capillary network, Ns is the set of sources of flux into the continuum domain, and
xj and φj are the spatial coordinates and strength of source j, respectively. Source strengths are determined iteratively
using Equation (32) using a procedure outline in the proceeding sections.

Equation (8) is subject to the condition that

p! pc as j x j!∞, ð9Þ

whereby it is assumed that the continuum pressure tends to a constant value, pc.
Hydraulic conductivity, K, is a 3�3 anisotropic tensor where we assume Kij �Kii for i, j¼ 1,2,3 for i≠ j.23,28 By set-

ting K11 ¼ κ, K22 ¼ κa2 and K33 ¼ κb2 we can introduce the linear transformation ~x,~y,~zð Þ¼ x,y=a,z=bð Þ which reduces
Equation (8) to

�κr2p¼�~β p�pcð Þþ
X
j � Ns

φj ~xð Þδ ~x� ~xj
� �

, ð10Þ

where ~β is the network boundary flow rate, β, in the scaled domain and Equation (10) is subject to p! pc as j ~x j !∞.
Whilst we observe later that the medulla/pons has a near isotropic hydraulic conductivity, which we provide this more
generalisable linear scaling to enable others to apply our hybrid model to microvascular networks which exhibit a
more anisotropic hydraulic conductivity tensor.

The solution to Equation (10) is given by

p ~xð Þ¼ pcþ
Z
V

X
j � Ns

G ~x,~xj
� �

φj ~xj
� �

dV , ð11Þ

where V the volume of the tissue and G ~x,~xj
� �

is a Green's function which can be found by solving the adjoint problem:

�κr2GþβG¼ δ ~x� ~x�ð Þ,
G! 0 as j ~x j!∞,

ð12Þ

here, ~x� is a specific coordinate position.
Seeking a 3D, analytical representation of Equation (12), we approximate G ~x,~x�ð Þ by distributing the delta function

uniformly over a sphere of finite radius, r0. Considering a single source with local axisymmetric fluid flux, an axisym-
metric spherical coordinate system is used whereby r¼ 0 corresponds to the source centre. Consequently, we seek the
Green's function solution, G rð Þ, for the system

� κ

r2
d
dr

r2
dG
dr

� 	
þ~βG¼

3=4πr30, for r ≤ r0

0, for r> r0

(
,

G! 0 as r!∞,

ð13Þ

where r¼ j ~x� ~x� j and the factor 3=4πr30 ensures unity when integrating δ ~x� ~x�ð Þ over the source volume. By ensuring
continuity of G rð Þ and G0 rð Þ at the interface r¼ r0, and that G is finite in the limit r! 0, we arrive at the solution

G rð Þ¼ C1i0 λrð Þþ3=4πr30~β, for r ≤ r0
C2k0 λrð Þ, for r> r0

(
, ð14Þ

where i0 and k0 are the zeroth-order modified spherical Bessel functions of the first and second kinds, respectively,
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λ¼
ffiffiffi
~β

κ

s
, ð15Þ

C1 ¼� 3

4πr30~β
� k1 λr0ð Þ
i1 λr0ð Þk0 λr0ð Þþ i0 λr0ð Þk1 λr0ð Þ , ð16Þ

and

C2 ¼ 3

4πr30~β
� i1 λr0ð Þ
i1 λr0ð Þk0 λr0ð Þþ i0 λr0ð Þk1 λr0ð Þ : ð17Þ

Figure 3 displays the behaviour of Equation (14) for increasing values of the source radius, r0, and model parameter
λ (see Appendix C for details on the limiting behaviour of G as r0 ! 0). Increasing r0 decreases the amplitude of G yet
broadens the function over r. In comparison, increasing λ both elevates the amplitude and value of G across r.

We note that if blood pressure is modelled in an isolated tissue volume where flow is conserved between the
branching structures, β¼ 0 and so Equation (13) reduces to the model of Sweeney et al.17 for vascular and interstitial
fluid transport. See Appendix B for further details.

2.5 | Hydraulic conductivity of capillary tissue

Hydraulic conductivity is a tissue-specific parameter in our model, which captures the resistance to flow in the capillary
continuum domain. We calculate hydraulic conductivity by solving a micro-cell problem defined on 3D synthetic and
periodic sub-units, which are generated by sampling key features (such as diameters, lengths and connectivity) of the
medulla capillary network. We average the micro-cell flow velocities, Equations (18) to (28), on our synthetic, periodic
architecture to calculate hydraulic conductivity tensors which describe how micro-scale flow properties are transmitted
to the macro-scale of the medulla. First we provide a generalised description of solving the micro-cell problem in 3D,
then our synthetic micro-cell generation method.

By assuming well-separated microscopic and macroscopic tissue length-scales, asymptotic homogenisation theory
can be used to derive a system, which averages microscopic capillary-scale flow to describe macroscopic tissue-scale
fluid transport.47 An analytical solution to the multi-scale, micro-cell problem can be found by assuming non-leaky ves-
sels, no-slip and no-flux at the capillary walls, which provides an expression for cell flux qi

j μm5 s kg�1� �43:
qi
j ¼� πd4j

128μj

ΔPi
j

lj
�ei �ej

 !
ej, for i¼ 1,2,3: ð18Þ

Here, dj, lj and μj are the diameter (μm), length (μm) and blood viscosity (kg/μms, calculated empirically45) for capillary
j, respectively, ΔPi

j is micro-cell pressure gradient along the vessel length (μm), ej is the unit vector aligned with the
capillary centreline and ei is aligned with a tissue-scale principal direction. The principal axes can be defined based on
tissue-scale features, for example, for the medulla/pons network the z-axis could be aligned with penetrating arteriolar/
venular vessels. Micro-cell network architecture can then be generated with respect to these assigned axes.

Equation (18) is composed of a linear superposition of contributions proportional to the tissue-scale pressure gradi-
ent in each principal direction, ei. For vessel segments that are not aligned with the principal axes, we update ej by
decomposing the vessel segment's orientation into its constituent vector components along the principal axes. The com-
ponent weights of ej are then adjusted so the forcing term ei �ej is correctly applied to the unaligned vessel.

The following details how a periodic boundary value problem is formed in terms of capillary-scale variations in
flow, qi, and pressure, Pi, over periodic micro-cells, enable the weightings of these contributions to be solved. Similar
approaches have been used to calculate hydraulic conductivity for rat myocardium,48 human cerebral cortex23 and rat
mesentery.35
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Equation (18) can be rewritten in terms of micro-cell pressure at node k,

qi
j ¼� πd4j

128μj

X
k � N

AjkP
i
k�ei �ej

 !
ej, ð19Þ

TABLE 2 A summary of the parameter descriptions for the 3D discrete-continuum model and corresponding values for the medulla.

Description Medulla

Structure-based parameters

Ns,b No. of arteriolar/venular boundary sources 219

Ns,b No. of capillary side branch sources 271

r0 (μm) Source radii 18.0 ± 16.1

κ (mm3 s/kg) Conductivity scalar of capillary bed 9.54 � 10�4

Flow-based parameters

pc (mmHg) Far-field capillary pressure 40.7

pbase (mmHg) Base pressures of discrete trees 20.2/59.8

Optimisation-based parameters

~β (μms/kg) Rate of capillary network exchange 7.22 � 10�7

λ (1/cm)
ffiffiffiffiffiffiffiffi
β=κ

p
0.0087

Note: Structural and flow-based parameters are assigned to calculate capillary continuum pressure. Optimisation-based parameters are fine-tuned to ensure
flow conservation.

G
G G G

GGG

G G

FIGURE 3 Behaviour of the Green's function, G, with respect to source radius, r0, and parameter λ. The Green's function,

Equation (14), is plotted for increasing values of r0 (bottom to top) and λ (left to right) where each increase corresponds to a doubling of the

prior value. (B, E, H) Displays λ value used for medulla/pons baseline simulation (see Table 2).
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where Pi
k is the micro-cell pressure at node k, N is the set of all nodes and

Ajk ¼
þ1=lj if k is the start node of segment j,

�1=lj if k is the end node of segment j,

0 otherwise:

8><
>: ð20Þ

To solve for micro-cell flux and consequently micro-cell hydraulic conductivity, conservation of micro-cell flux, peri-
odic Dirichlet boundary conditions for pressure and flux, and volume average of cell pressures equal to zero are
enforced across the micro-cell.

Conservation of cell flux at nodes m� I, where I is the set of interior nodes yields

X
j � S

Bmj
πd4j
128μj

X
k � N

AjkP
i
k�ei �ej

 !
ej ¼ 0 for m� I, ð21Þ

where S is the set of all segments and Bmj is defined as

Bmj ¼
�1 if m is the start node of segment j,

þ1 if m is the end node of segment j,

0 otherwise:

8><
>: ð22Þ

Separating boundary nodes into two sets, Bin and Bout, where a node in Bin is paired with the node in Bout at the
opposite side of the micro-cell, we impose periodic pressure boundary conditions via

X
k � N

DmkP
i
k ¼ 0 for m�Bin, ð23Þ

where

Dmk ¼
þ1 if k is the mth node in Bin,

�1 if k is the mth node in Bout,

0 otherwise:

8><
>: ð24Þ

Similarly, for periodicity of flux, vessel flux leaving the mth node of Bout is equal to the flux entering the mth node
of Bin,

X
j � S

Emj
πd4j
128μj

X
k � N

AjkP
i
k�ei �ej

 !
ej ¼ 0 for m�Bin, ð25Þ

where

Emj ¼
þ1 if segment j is connected to the mth node in Bin,

�1 if segment j is connected to the mth node in Bout,

0 otherwise:

8><
>: ð26Þ

Finally, to ensure a unique solution, the volume average micro-cell pressure is defined to be zero:

10 of 21 SWEENEY ET AL.
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1
jΩ j

π
8

X
j � S

ljd
2
j

X
k � N

FjkP
i
k

 !
¼ 0, ð27Þ

where

Fjk ¼
1 if k is the start or end node of segment j,

0 otherwise:

�
ð28Þ

Equations (21), (23), (25) and (27) form three linear system of equations which can be solved for micro-cell nodal
pressures Pi

k and consequently cell flux, Equation (19). The hydraulic conductivity matrix K¼ K1jK2jK3� 

mm3s=kgð Þ

is then calculated via,

Ki ¼ 1
jΩ j

X
j � S

qi
jlj, ð29Þ

where Ω is the volume of the micro-cell and components Ki
1j, Ki

2j and Ki
3j for j¼ 1,2,3 represent the volume-averaged

flow in the e1, e2 and e3 directions, respectively, due to forcing in the ei-direction.

2.6 | Computational implementation of the discrete-continuum model

Here we outline the numerical implementation to predict the hydraulic conductivity of the capillary bed and capillary
continuum pressure using our discrete-continuum model. A summary of the hybrid model, Equations (6)–(17), is pres-
ented in Figure 4. In summary, boundary conditions are assigned to the bases and terminal nodes of the discrete
branching structures. Each source to the continuum domain is iterated over by assigning a defined flow boundary con-
dition and then pressures solved to enable the pressure-flow relationship across the discrete vasculature, via Mnet, to be
characterised. In the capillary continuum component of our hybrid model, hydraulic conductivity of the domain is esti-
mated via vascular homogenisation on a synthetically generated micro-cell, representative of the tissue-specific capil-
lary architecture. Model parameters are assigned, ideally based on experimental or known literature values, and a
Newton method is employed to solve for the capillary network exchange rate, β, which is minimised against a known
net tissue flow. Once converged, capillary continuum pressures can be estimated using solved source fluxes.

2.7 | Generating 3D synthetic micro-cells

Key structural characteristics that influence perfusion in microvascular networks are vessel diameter and length, con-
nectivity and vascular density (the network volume fraction with respect to tissue volume). Here, we define our meth-
odology to generate 3D synthetic micro-cells, which are representative of capillary vasculature by capturing these key
attributes. For the medulla, we extract structural parameters of capillary networks directly from the fully-resolved net-
work. In doing so, we approximate hydraulic conductivity for the medulla capillary bed which these sub-units repre-
sent. In the context of microvascular networks with largely unknown capillary networks, it is crucial to possess prior
knowledge that allows users to create representative micro-cells. This prior knowledge can include known mean capil-
lary diameters and lengths, along with experimental estimates of hydraulic conductivity. Having access to such infor-
mation enables more informed predictions of hydraulic conductivity.

1. A 3D cuboidal grid lattice with dimensions 1�1�1 μm3. We arbitrarily chose a lattice with 10�10 boundary nodes
on each face of the lattice and 10�10�10 internal nodes, each of which interconnected by vessel segments (see
Figure 1 and Appendix A).

SWEENEY ET AL. 11 of 21
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2. To ensure physiological connectivity across the vessel lattice, and consequently physiological tissue perfusion, ves-
sels were randomly removed until all nodes have a maximum of three vessel connections. Boundary vessels were
exempt from removal to ensure boundary periodicity is maintained.

3. Vessels aligned with each axis were uniformly stretched in each dimension by factors randomly sampled from a log-
normal distribution with mean and standard deviation for capillary lengths obtained from the medulla network.
Similarly, diameters were individually sampled from known mean and standard deviation values.

4. Medulla vascular density was calculated to be 3.1%, and so if micro-cell vascular density is outside the interval
3:0�0:5%, step (3) is repeated.

Micro-cell hydraulic conductivity for a defined geometry is calculated using Equation (29). Given micro-cell net-
work generation is stochastic, steps (3) and (4) were repeated for a total of 103 iterations, and average tensor compo-
nents calculated.

We note that applying our micro-cell method to estimate hydraulic conductivity necessitates a prior understanding
of the capillary structure. However, in practise, this information might not always be accessible. Under these circum-
stances, experimental approaches like dynamic contrast-enhanced MRI or photoacoustic imaging can be employed as
effective alternatives. These methods enable the approximation of hydraulic conductivity through in vivo measure-
ments of tissue perfusion and Darcy's Law.

2.8 | Coupling discrete and continuum blood pressure

To calculate the continuum pressure field, we assume that the pressures at the inlet/outlet of the discrete arteriolar and
venular trees, pbase, and the far-field capillary pressure, pc are known. The vector pbase is of length Ns where source i is
assigned the base pressure of its respective vascular tree. From Equation (11), the source pressure, psi , of source i at loca-
tion ~xi is given by

psi ¼ pcþ
X
j � Ns

Mcap
ij qsj for i�Ns, ð30Þ

where

Mcap
ij ¼G rij

� �
and rij ¼j ~xi� ~xj j , ð31Þ

and qsi is the flow rate of source i.

FIGURE 4 The discrete-continuum pipeline to solved for capillary bed pressure. (Top row) The discrete network matrix, Mnet, is

populated by solving for discrete nodal pressures. (Bottom row) Capillary continuum source pressures found by solving the linear system,

Equation (34), (indicated by the dashed arrow). Conserving mass via optimisation of the capillary network exchange rate, β, ensures fluid

flux by neighbouring capillary network is accurately calculated when validating against experimental, or in our case computational,

methods.
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The discrete blood flow model is used to calculate the pressures at nodes of the partial discrete networks as a func-
tion of the unknown flow conditions at the interface between the discrete and continuum domains:

psi ¼ pbasei �
X
j � Ns

Mnet
ij qsj for i�Ns, ð32Þ

where the matrix Mnet characterises the pressure-flow relationship across the discrete networks.
The set of source nodes includes capillary side branches of the vascular trees. Following,35 in order for all source

points to be terminal branches of their respective discrete network, dummy segments of 1 μm length and diameter
equal to the minimum diameter of its corresponding vascular tree were added. Then we perform a sequence of i�Ns

discrete flow calculations to populate Mnet
ij using Equations (1)–(4). In each case, the following boundary conditions are

applied: (1) if a node is a boundary node for the fully-discrete network (i.e., at the tissue boundary) a no flow boundary
condition is applied; (2) the flow at source node j when i¼ j is set to �1 nL/min, where the positive/negative sign indi-
cates whether the source belongs to an arteriole of venule, respectively, and zero for i≠ j, so that Equation (30) gives

Mnet
ij ¼ pbasej �psj

��� ���: ð33Þ

Combining the pressure solutions for Equations (30) and (32) yields

X
j � Ns

Mnet
ij þMcap

ij

� �
qsj ¼ pbasei �pc, ð34Þ

which can be solved for source strengths, qs.

2.9 | Boundary conditions and parameter values

No flow or pressure information paired with the medulla dataset was obtained to parameterise either the fully-discrete
or our hybrid model. Consequently, pressure boundary conditions at the bases of the arteriolar and venular trees were
set using simulated cortex pressure-diameter curves from the literature.9,10 Vessel haematocrit was uniformly set to a
value of 0.45. Based on previous studies, target blood pressure, p0, and vessel wall shear stress, τ0 were uniformly set to
41.3mmHg and 5 dyn=cm2, respectively. Target blood pressure was calculate as the mean pressure between assigned
arteriolar and venular boundary pressures, whereas target vessel was shear stress was assigned based on a prior study41

as this data is not available from the medulla/pons. In comparison to boundary condition assignment, it has previously
been shown that the model is not sensitive to assignment of these target values.11 Following the Fry et al.41 flow optimi-
sation scheme, kp was set to a value of 0.1 and a final kτ value of 7:21�1012 was found.

Parameter descriptions for the discrete-continuum model alongside values for the medulla network are provided in
Table 2. In applying our hybrid model we found that to predict a physiological blood pressure distribution in the capil-
lary continuum, the source radii need to be set relatively large compared to those in Shipley et al.35 As can be observed
in the following analysis, the capillary pressure field tends to the far-field capillary pressure, pc, as the radii decrease.
Consequently, we set source radii to the half-distance to the nearest neighbouring source so all sources act indepen-
dently when solving for continuum pressure.

Base pressures, pbase, were assigned using the simulated cortex pressure-diameter curves9,10 and non-source, termi-
nal boundaries were given no flow conditions. The far-field capillary pressure, pc, was assigned pragmatically using
mean capillary blood pressure from the fully discrete network pressure solution and fixed at a value of 40.2mmHg.
However, in applications of the model, this can be assigned using an experimentally measure pressure value for the tis-
sue of interest. Sensitivity analysis to test the influence of r0 and pc on model predictions are also performed by increas-
ing and decreasing thresholds.

With a predicted value for κ, a root-finding algorithm was used to compute β, and hence λ, by minimising the differ-
ence between the sum of source fluxes from the fully-discrete and hybrid pressure solutions (see Appendix D for further
details). The fully-discrete pressure solution was used pragmatically as no experimental flow information was available
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for our medulla/pons network. Experimental methods which measure perfusion, such as arterial spin-labelling MRI,
could be used calculate β.

Once source fluxes in the hybrid model are computed, pressure contour plots can be generated by computing
Equation (32) at grid points in the untransformed x,y,zð Þ domain. To enable comparison between the fully-discrete flow
solution, we use the hybrid solution to predict nodal pressures at the spatial location of all nodes in the fully-discrete
network.

All simulations were performed on a Macbook Pro with a 2.6 GHz 6-Core Intel Core i7 CPU and 16GB of RAM.
Run-times for the our hybrid model and the flow estimation approach of Reference 41 was < 1 min and < 10 min,
respectively. Each model required less than 2GB of RAM.

3 | RESULTS

3.1 | Estimating hydraulic conductivity of the medulla capillary bed

A total of 103 synthetic vascular micro-cells, characteristic of capillary networks in the medulla, were generated. For
each periodic sub-unit, blood pressure was simulated (see Figure 5A–C) and hydraulic conductivity calculated using
Equation (29). Our computed averaged hydraulic conductivity tensor is given by

K¼
9:54 0:03 0:02

0:03 9:48 0:06

0:01 0:06 9:44

0
B@

1
CA�10�4mm3s=kg: ð35Þ

The diagonal components of the tensor are larger than the off-diagonal components thereby satisfying our assump-
tion which enabled us to linearly transform the capillary continuum in Equation (10). By introducing the linear scalings
a¼ 0:997 and b¼ 0:995 where y¼ a~y and z¼ b~z, we reduce hydraulic conductivity to a scalar κ¼ 9:54�10�4 mm3s=kg
in the transformed coordinate system. We note that the scalings a≈ b≈ 1 is expected due to the stochastic method used
to generate our synthetic micro-cells. These results is consistent with previous estimates of hydraulic conductivity for
the myocardium48 and cortex.23

3.2 | Discrete, complete network predictions

Arteriolar, venular and capillary pressures were predicted to be 44:63�5:04, 31:37�5:34 and 40:70�3:03 mmHg,
respectively (mean � standard deviation—see Figure 5D–F). To our knowledge, no experimental or computational pre-
dictions of microcirculatory blood pressure in the mouse medulla are available; however, our simulations are consistent
with prior studies of the cortex.9–12 Additionally, minimum and maximum capillary pressures are within tolerances
expected based on arteriolar and venular boundary condition assignment (see Table 3).

3.3 | Hybrid modelling of blood pressure in the medulla

Continuum predictions of capillary blood pressure in the medulla were simulated using the parameters given by
Table 2. With a hydraulic conductivity of κ¼ 9:54�10�4 mm3s=kg, the Green's parameter λ was optimised to a value of
0.0087 cm�1 with a rate of capillary network exchange of β¼ 7:22�10�7 μm s kg�1, indicating very low levels of vessel
flux across the tissue boundaries. The observed low levels of vessel flux across the capillary network boundaries in our
simulations is physiologically reasonable on the basis that capillary blood flow and pressure is tightly controlled within
the brain due to blood flow regulatory mechanisms and the spatially location of penetrating arterioles and venules, and
blood flow regulatory mechanisms. These vessels play a significant role in directing blood supply to specific regions,
ensuring efficient distribution throughout the brain, which may minimise blood flow across the artificial capillary net-
work boundaries.
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The hybrid model calculated blood pressure at sources of 44:4�3:41 and 33:8�3:03 mmHg, for arterioles and
venules, respectively, which are consistent with values calculated from the discrete model (see Table 2). Further, the
hybrid and discrete model blood pressure predictions were strongly correlated for both arteriolar (Spearman correla-
tion: r¼ 0:950 with P<0:0001) and venular (Spearman correlation: r¼ 0:891 with P<0:0001) sources, with pressures
weighted towards the far-field capillary pressure, pc ¼ 40:7 mmHg. Compared to the fully-discrete predictions, the pres-
sure difference at arteriolar sources increased particularly for those with pressure smaller than pc (see Figure 6A). In
comparison, venular source pressures exhibited increasingly larger errors for nodes with decreasingly lower pressures
computed in the discrete model (see Figure 6B).

Once source pressures were computed, blood pressure was estimated across the entire capillary continua (see
Figure 6C) which allowed our hybrid model estimates of blood pressure to be mapped onto the fully-discrete network
(see Figure 6D,E). This enabled a comparison between blood pressures at all nodal locations of the fully-discrete net-
work between the hybrid and discrete models. Capillary nodal pressures were found to be significantly different
between the two models (Wilcoxon test: p< :0001) this could be due to the heavy weighting towards the far-field capil-
lary pressure in the hybrid model (see Figure 6F). However, the relative error of segment pressure across the complete
vascular network was 3:58�3:32% between the hybrid and discrete models. The relative flow segment error across the
complete network was 177:3�408:2%, which is likely due to the hybrid model providing an averaged, macro-scale pre-
diction of capillary pressure and flow. This is compounded by the use of radially symmetric sources, which do not cap-
ture the nuances of capillary tortuosity. Thus, errors at the micro-, vessel-scale are expected to be large.

FIGURE 5 Micro-cell and discrete flow solutions. (A, B, C) Exemplar simulated micro-cell pressures for each principal direction

i¼ 1,2,3 for x, y and z, respectively, used to estimated capillary hydraulic conductivity. Blood flow is simulated through the medulla using

the fully-discrete model with predicted distributions of blood (D) pressure, (E) flow and (F) absolute velocity shown. Distributions in (E) and

(F) are shown in a log scale.

TABLE 3 Predicted pressures (mean ± standard deviation) for the discrete and hybrid models applied to the medulla network.

Simulated pressures (mmHg) Discrete Hybrid

Arteriolar pressure 44.63 ± 5.04 -

Venular pressure 31.37 ± 5.34 -

Capillary pressure 40.70 ± 3.03 40.09 ± 2.035

Min/max capillary pressure 20.88 / 56.47 19.32 / 55.65

Arteriolar source pressure - 44.40 ± 3.41

Venular source pressure - 33.80 ± 3.03
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3.4 | Blood pressure sensitivity to hybrid model parameters

Sensitivity analyses of hybrid model predictions were performed to assess the impact of key parameters. We focus on
source pressures as an indicative metric. Unless stated otherwise, statistical significance p< :05ð Þ compared with the
baseline hybrid solution is calculated using a Kruskal–Wallis test.

Initially, we evaluated the sensitivity of the simulated source pressures to an arbitrary �10% fluctuation in the mag-
nitude of the hydraulic conductivity, κ. This specific range was selected in alignment with the findings of El-Bouri and
Payne,23 where hydraulic conductivity in the cortex was estimated using an alternative homogenisation technique. In
their study, a variability of �10% was observed across different micro-cell sizes. Considering the tightly regulated
nature of blood flow in the brain, this variability range was considered suitable for application to the medulla/pons.

No significant difference was found for either arteriolar or venular sources when modifying κ, which indicates that
the model is not susceptible to subtle changes in hydraulic conductivity (see Figure 7A). However, we noted that during
testing, order of magnitude differences can significantly impact the simulated pressure distribution in the capillary bed
which can result in a homogeneous or unphysiological pressure distributions.

Next, we perturb the far-field capillary pressure, pc, by �10% (see Figure 6G). Increasing pc resulted in a significant
decrease in venular pressures whereas no significant change was observed for arteriolar sources (see Figure 7B). In
comparison, decreasing pc widened the range of arteriolar source pressures, whereas venular sources exhibited a signifi-
cant increase in simulated pressures. This is a consequence of optimising the capillary network exchange rate, β, to sat-
isfy a known tissue flux, subject to the pressure range dictated by the pressures at the bases of the arteriolar and

FIGURE 6 Hybrid blood pressure predictions in the mouse medulla. Discrete versus hybrid blood pressure predictions at (A) arteriolar

and (B) venular point source locations with boundary conditions for each group and model shown in white. Distributions of hybrid source

pressures for each vessel type are also illustrated. (C) Discrete-continuum model predictions of blood pressure in a 2D slice through the

medulla. Here, arterioles, venules and capillaries are shown in red, blue and green, respectively. (D) A 2D intensity projection of the fully-

resolved medulla network with continuum blood pressure predictions mapped onto the discrete vessels. (E) Associated absolute blood flow

predictions. (F) Frequency distributions of blood pressures in the discrete and hybrid models at nodal locations in the fully-discrete medulla

network. 2D intensity projections of the continuum blood pressure predictions mapped onto the fully-resolved medulla for (G) far-field

capillary pressure, pc, and (H) source radii, r0, sensitivity analyses.
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venular trees. In both cases, β-optimisation terminated outside of defined tolerances, with flow errors of 328.1 nL/min
and �377:9 nL/min for þ10% and �10% changes, respectively. This indicates that this parameter needs to be carefully
parameterised in order to the reduce the relative conservation of mass error compared to the fully-discrete pressure
solution.

For the baseline hybrid pressure (pre-sensitivity analysis) solution, each source radius was set equal to the half-
distance to its closest neighbour. We found that decreasing these radii resulted in an unintuitive response to β. For
example, distances of 25% and 10% relative to the closest neighbour, resulted in β values of 1:20�10�7 μm s kg�1 and
0:98�103 mm s kg�1. For the latter case arteriolar and venular source pressures exhibited a significant shift towards
pc ¼ 40:7 mmHg (see Figure 6H). This may indicate that radii passed a critical threshold whereby the capillary network
exchange rate needed to compensate for the lack of flow transfer between arterioles and venules, due to large decreases
in the pressure gradient between neighbouring sources (see Figure 7C). In comparison, for radii set to the quarter-
distance, arteriolar source pressures shifted towards the far-field pressure. However, a response of similar magnitude
was not observed for the venules, which may indicate that arterioles are be more susceptible to this parameter due to
larger pressure gradients on the arteriolar side of the vascular hierarchy.

The final parameter we investigated was the minimum diameter threshold, which was used to define the minimal
cut-off of discrete vascular tree branches. Increasing the threshold from 9 to 10 μm resulted in a non-significant change
in arteriolar source pressures. However, venular source pressures exhibited a significant widening in distribution (see
Figure 7D). By comparison setting the threshold to 8 μm resulted in significant shifts in both the arteriolar p< :05ð Þ
and venular p< :0001ð Þ pressures. In the case of arterioles, minimum source pressure was approximately equal to pc
which may be expected, as lowering the threshold increases correlation with the fully-discrete solution by allowing the
hybrid model to incorporate more architectural heterogeneity. This would enable the discrete arteriolar networks to
contain a greater portion of the pressure gradient. Comparatively, the change in venular distributions may be a product
of a decrease in proximity to arteriolar sources as a result of a greater number of discrete branching orders. This may
allow for lower venular source pressures at some locations.

4 | DISCUSSION

The simultaneous measurement of blood pressure, flow and vascular structure in vivo is practically infeasible through-
out whole tissues down to the microvascular resolution. This therefore motivates the development of mathematical
models that can take vascular structures derived from biomedical images as inputs, predict fluid transport, and provide
biological insights that are otherwise inaccessible. Several micron-scale imaging modalities exist which can extract com-
plete vascular networks; however, the increasing size of these networks presents computational challenges for standard
blood flow models. Moreover, some imaging modalities fail to retrieve the full detail of networks, particularly at the
capillary scale, which limits applicability to standard discrete mathematical models.

Motivated by these limitations, we developed a hybrid discrete-continuum model to simulate blood pressure across
incomplete 3D microvascular networks, extending upon prior 2D hybrid models.29,35 Our multiscale method models 1D
Poiseuille flow through discrete branching arteriolar and venular structures, coupled to a single-phase Darcy model to
estimate blood pressure through a continuum capillary bed. These discrete and continuum domains are connected via
point sources of flux using an analytic Green's function approach. Our model has two key tissue-specific parameters to
effectively predict tissue blood pressure. Firstly, hydraulic conductivity in Darcy's equation is approximated by local
averaging of the capillary bed, by solving capillary flow through 3D, periodic and synthetically generated mico-cells.21,29

Secondly, conservation of mass between discrete branching structures is not imposed which allows for capillary flux at
the tissue boundary. This rate of capillary flux is optimised against a known value of flow between the arteriolar and
venular branches.

We apply our hybrid methodology to a complete vascular network from a mouse medulla, imaged using MF-HREM.
Initially we simulated a baseline blood pressure solution with a standard 1D Poiseuille model across the fully-discrete
medulla vasculature. Next, we retrospectively classified blood vessels in terms of arterioles, capillaries and venules
which enabled us: (1) to quantify capillary structure in order to create medulla-specific micro-cells and predict the
hydraulic conductivity of the medulla; (2) to provide discrete arteriolar and venular branching vessels for input into
the hybrid model; and (3) an approximation of the capillary network exchange rate at the tissue boundaries. Using
these data and parameter estimations, we simulated blood pressure across the capillary bed and mapped the continuum
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FIGURE 7 Sensitivity analysis to the hybrid model parameters. Source pressures solved using the hybrid model are plotted against

nodal pressures at equivalent locations solved using the discrete model, with inset hybrid source pressure distributions. (A) Sensitivity to

hydraulic conductivity scalar, κ, for a 10% (left) increase or (decrease) in magnitude. (B) Sensitivity to the far-field pressure, pc for a 10%

(left) increase or (decrease) in magnitude. (C) Sensitivity to the source radii r0 where each radius is set to (left) 10% or (right) 25% of the

maximum distance to its nearest neighbour. (D) Sensitivity to the branching generation diameter threshold. Discrete branching vessels with

a minimum diameter of (left) 8 and 10 μm are tested. Arterioles are shown in red and venules in blue.
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solution back onto the discrete capillary network to directly compare the hybrid model versus the fully-discrete blood
pressure solution.

Our baseline hybrid capillary solution emulated pressure distributions observed in its fully-discrete counterpart.
This demonstrates the effectiveness of the hybrid model to estimate physiological blood pressure distribution in the cap-
illary bed in the absence of complete architectural data. Next we sought to understand how sensitive the model is to
variance in a range of model parameters. In the first instance we targeted our estimation of medulla hydraulic conduc-
tivity. No experimental or computational value exists for the medulla in the literature, however, our initial approxima-
tion matched the order of magnitude for values found for other tissues.23,48 Artificially modifying hydraulic
conductivity by �10% did not result in significant differences in capillary pressure. Nevertheless, tests of our model
indicate order of magnitude differences can result in unphysiological blood pressure predictions.

Next, we altered the far-field capillary pressure and found that this is a key parameter when optimising for capillary
network exchange, as incorrect assignment can significantly reduce the accuracy of flow conservation between arteri-
oles and venules. In contrast, reducing the size of source radii still enabled capillary network exchange optimisation to
converge; however, it caused local pressure gradients at each source to decrease. This results in a uniform pressure gra-
dient across the capillary bed. Finally, we investigated the impact of retaining more structural arteriolar and venular
architecture on the discrete-side of our model. By representing more vessels in a discrete fashion our hybrid model was
better able to capture capillary pressure heterogeneity.

Here, we used the fully-discrete pressure solution as a gold standard to compare our hybrid model simulations
against, despite it being an approximation. Nonetheless, our comparisons with the fully-discrete model provided
insights into some limitations of the hybrid approach. The continuum representation of the capillary bed tended to
smooth distributions towards the far-field capillary pressure. As a result, the hybrid model predicts lower levels of het-
erogeneity in pressure compared to the discrete model. This naturally presents several avenues to improve the model-
ling methodology. First, the pressure field around each point source of flux into the continuum could be
compartmentalised into several regions to better capture the pressure gradients in these regions.28 Second, constant
values for the far-field capillary pressure and tissue hydraulic conductivity are an oversimplification, and so improved
boundary conditions or spatially heterogeneous hydraulic conductivity could better approximate capillary pressure vari-
ability. Thirdly, capillary network exchange is parameterised by a flow balance calculated from the fully-discrete pres-
sure solution. This is not practical in the experimental sense and so requires parameterisation via other means, such as
perfusion MRI. Finally, red blood cell phase separation couple be incorporated into our hybrid model to provide a more
realise prediction of haemodynamic features of the microcirculation. For the discrete component this is relatively
straightforward; however, a continuum description would be more challenging due to the current mathematical formu-
lation which prescribe periodic micro-cell boundary conditions.

5 | CONCLUSION

In summary, hybrid discrete-continuum models continue to present a promising approach to approximating the func-
tionality of the microcirculation when limited structural information is available. Such models could prove complemen-
tary to in vivo experimentation, which currently cannot observe tissue structure and transport across entire vascular
networks, in particular for the smallest vessels.
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