
RESEARCH ARTICLE
www.lpr-journal.org

Complex Refraction Metasurfaces for Locally Enhanced
Propagation Through Opaque Media

Sinuhé Perea-Puente and Francisco J. Rodríguez-Fortuño*

Metasurfaces with linear phase gradients can redirect light beams. Controlling
both phase and amplitude of a metasurface is proposed to extend Snell’s law
to the realm of complex angles, enabling a non-decaying transmission through
opaque media with complex refractive indices. This leads to the discovery of
non-diffracting and non-decaying solutions to the wave equation in opaque
media, in the form of generalized cosine and Bessel-beams with a complex
argument. While these solutions present nonphysical exponentially growing
side tails, this is addressed via a windowing process, removing the side tails
of the field profile while preserving significant transmission enhancement
through an opaque slab on a small localized region. Such refined beam
profiles may be synthesized by passive metasurfaces with phase and
amplitude control at the opaque material’s interface. The findings, derived
from rigorous solutions of the wave equation, promise new insights and
enhanced control of light propagation in opaque media.

1. Introduction

Propagation through a medium that would normally block, ab-
sorb, interfere or distort the passage of incident electromagnetic
waves is a sought-after phenomenon, with the intriguing promise
of enabling “seeing through walls”. Recent research works have
reported such phenomena in different contexts by using several
alternative methods, such as propagation through scattering me-
dia using speckle correlations,[1] scattering-invariant modes,[2]

propagation through lossy materials by complex wave-vector
engineering,[3–5] propagation through layered Bragg media
within forbidden bands using spatial shaping,[6] non-Hermitian
exceptional points,[7] or exploiting parity-time-symmetry in
evanescent waves,[8] among others.
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Metasurfaces are two-dimensional
(2D) engineered structures[9–13] whose
meta-atoms may control, locally, the
amplitude, and phase of the transmitted
or reflected fields. Linear phase gradient
metasurfaces are equivalent to adding a
real transverse wave-vector component
to a transmitted beam, enabling beam
redirection and generalizing Snell’s
Law.[14–16] We raise the possibility of
achieving a complex-valued additive
transverse wave-vector to enable greater
control. A complex wave-vector (with si-
multaneous non-zero real and imaginary
parts) corresponds to a linear phase gra-
dient simultaneous with an exponentially
decaying amplitude profile. This further
generalizes Snell’s law to complex an-
gles, enabling surprising possibilities.
Metasurfaces with simultaneous control

of amplitude and phase of a wave are generally known as “holo-
graphic” metasurfaces[17] and are attainable in the optical do-
main with designs ranging from metallic unit cells[18] to all-
dielectric meta-atoms.[19] A fine control of both amplitude and
phase has also been experimentally achieved in radiofrequencies
and microwaves.[20]

A particularly tough challenge is to achieve transmission of
monochromatic light through an opaque medium modeled by a
uniform isotropic complex refractive index n =

√
𝜀𝜇 = n′ + in′′

with a non-vanishing imaginary part. Inside such a medium, the
momentum eigenmode solutions to the wave-equation, whose
spatial dependence is given by an exponential eik⋅r, exist under
the condition that the wave-vector k must be complex, owing
to the Helmholtz equation ∇2E(r) + (nk0)

2E(r) = 0, which under
the exponential ansatz leads to the dispersion relation k ⋅ k =
k2x + k2y + k2z = (nk0)

2 (see Supporting Information). This implies
that k = k′ + ik′′ has simultaneously non-zero real and imagi-
nary vector parts, so the spatial dependence of the wave explic-
itly becomes eik′⋅r ⋅ e−k′′⋅r associated with an unavoidable expo-
nential decay following the direction of the imaginary term k′′,
corresponding to an inhomogeneous wave. Conventionally, this
attenuation profile happens in the direction of penetration in-
side the material, causing exponential attenuation through the
medium. However, this must not always be the case. Maxwell’s
equations allow freedom regarding the direction in which waves
may be attenuated. Indeed, in refs. [3, 4] it was found theoreti-
cally and recently confirmed experimentally,[5] that propagation
inside an opaque medium exhibits deeply penetrating waves, by
tuning the imaginary wave-vector component k′′ to be orientated
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parallel to the incident interface, obtaining only a purely real
component of k ⋅ û in the direction û that penetrates the opaque
material. This was proposed by illuminating the opaque media
from lossless free space with inhomogeneous waves, such as
those coming from a leaky waveguide, at carefully engineered
angles.[3,4] In this work, we propose achieving the desired wave-
vectors usingmetasurfaces, greatly inspired by its diffraction fea-
tures, but extending the concept of phase gradients into a phase-
and-amplitude profile which effectively translates into complex
wave-vector contributions.We also expand the family of solutions
that propagate difractionlessly inside an opaquemedium, beyond
a single inhomogeneous wave, to include the cosine and Bessel
beams family.
Let’s explore from first principles the limitations and con-

straints imposed byMaxwell’s equations of electromagnetism in-
side an opaque material, in a general case. Without loss of gen-
erality, we choose our axes such that the axis z is oriented in
the direction in which we want to penetrate the material (for in-
stance, normal to the surface of a slab of opaque material that we
want to “see” through). Can we find waves that deeply propagate
into an opaque material, with no exponential attenuation in the
desired z-direction? The spatial dependence of the wave in that
direction is given by kz. We know from the dispersion relation
k ⋅ k = k2x + k2y + k2z = (nk0)

2 that

kz =
[
(nk0)

2 − k2x − k2y
]1∕2

=
[
(nk0)

2 − k2t
]1∕2

(1)

where kt is often called the transverse wavenumber.[21] The above
equation is often expressed in terms of the transmitted angle
𝜃, via kt = nk0 sin 𝜃 and kz = nk0 cos 𝜃. In a lossy or opaque
material, nk0 = (n′ + in′′)k0 corresponds to a complex number,
which in general suggests that kz = nk0 cos 𝜃, being proportional
to a complex n, must have an imaginary component too. A
complex kz with non-zero imaginary part gives rise to the at-
tenuation profile characteristic of the Beer-Lambert law in an
opaque material. However, this is not necessarily the case. The
transverse components kx and ky (and hence kt and 𝜃) may
also be complex numbers, corresponding to complex refrac-
tion angles. Complex refraction angles are a known mathemat-
ical concept that allows modeling amplitude decay in addition
to phase advance,[22,23] but with no easy geometrical interpre-
tation. The product of two complex numbers can be real un-
der certain conditions, hence the complex-valued angle 𝜃 can be
fine-tuned such that cos 𝜃 perfectly counterbalances the imagi-
nary part of nk0 to achieve a purely real product kz = nk0 cos 𝜃,
and hence a non-attenuating transmission in the z-direction.
Following Equation (1), this corresponds to finding a complex
(kt)

2 to cancel out the imaginary part of (nk0)
2. This was pre-

cisely the active approach exploited in refs. [3, 4]. Here, we
propose achieving the required complex kt by using a passive
metasurface.
Metasurfaces are an established method to engineer the trans-

verse wave-vector of an impinging wave by means of phase gra-
dients. For this purpose, consider a metasurface on an interface
z = 0; if this metasurface introduces a spatially varying trans-
mission phase gradient Φ that has a linear dependence in some
direction on the xy plane, Φ(x, y) = Δkxx + Δkyy, then the effec-
tive transmission coefficient is t(x, y) ∝ eiΦ = eiΔkxx+iΔkyy, such that

any incident wave Einc(z = 0) ∝ eikxx+ikyy will acquire an additional
phase upon transmission according to the following expression:

Et(z = 0) = t(x, y)Einc(z = 0) ∝ t(x, y)eikxx+ikyy ∝ ei(kx+Δkx )x+i(ky+Δky)y

(2)

which is mathematically equivalent to a change in the incident
transverse wave-vector (kx, ky) → (kx + Δkx, ky + Δky), i.e. kt →
kt + Δkt. This method was used as a generalization of Snell’s law
of refraction ref. [14] and gave rise to many applications of meta-
surfaces for flat lensing and beam steering.[15,16]

As is well known, conventional refraction at a smooth bound-
ary between two materials ultimately stems from the conserva-
tion of the transverse wave-vector in the interface. By kx and ky
being conserved between the incident and transmitted waves, we
can derive from Equation (1) that kz must be genuinely different
in each medium, according to their different refractive index n,
giving rise to the angles of incidence and refraction of the wave,
summarized in Snell-Descartes’ law, Figure 1a. While this for-
mula is typically used in the context of transparent materials with
both real refractive indexes simultaneously, the conservation of
the transverse momentum argument always applies. If n is com-
plex in the second medium, kx and ky being the transverse com-
ponents in this interface are still conserved, and hence will be real
because the incident wave comes from a transparent medium,
and so then kz will be complex, resulting in an attenuation into
the second medium, as shown in Figure 1b. The use of a meta-
surface breaks the requirement of conservation of transversemo-
mentum, by breaking the translational symmetry of the interface.
Indeed, a metasurface with a linear phase gradient permits effec-
tive additive changes to the transmitted transverse wave-vector
as described above, (kx, ky) → (kx + Δkx, ky + Δky), achieving the
corresponding change in angle, generalising Snell’s law,[14] cor-
responding to Figure 1c.
Here, we propose to further generalize the change in trans-

verse wave-vector in the transmitted wave, not limiting our-
selves to changing the angle of transmission, but instead includ-
ing complex values into Δkt such that (kx, ky) → (kx + Δkx, ky +
Δky) = (kx + Δk′x + iΔk′′x , ky + Δk′y + iΔk′′y ). In order to achieve
this, one only needs the transmission coefficient to be t ∝
eiΔkxx+iΔkyy = ei(Δk

′
xx+Δk

′
yy)e−(Δk

′′
x x+Δk

′′
y y), which represents a simulta-

neous phase arg(t) and amplitude |t| control. By doing this, kx
and ky can be simultaneously engineered by the metasurface at
will, to attain any complex value. This is mathematically equiva-
lent to complex-valued angles of refraction, thus representing a
complex refraction metasurface. Specifically, the complex kx and
ky may be engineered in such way to obtain a real-valued kz, even
inside a lossy or opaque material, and therefore achieving deep
perfect penetration inside the material. Note that the engineer-
ing of the transverse wave-vector can be achieved for any angle
of incidence, including normal incidence of a plane wave on the
interface, as shown in Figure 1d.
In fact, Figure 1d demonstrates how, by adding an exponen-

tial amplitude dependence to the field profile along the x axis, kz
can be made purely real, resulting in transmission with no atten-
uation along the z-axis. Of course, attenuation is still present on
this opaquematerial, but it is happening along the x− rather than
the z-direction into which we want to penetrate. In essence, the
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Figure 1. Descartes-Snell law in transparent and opaque materials. Electric field (real part of TE electric field component) at a smooth interface transi-
tioning from free space to a transparent (a,c) or an opaque (b,d) material. The two scenarios considered involve the absence (a,b) and presence (c,d)
of a metasurface designed to modify the transmitted wave-vector. In the transparent case (a,c), the effective refractive index of the transmitted material
is n = 1.4, while in the opaque scenario (b,d), the material has a complex refractive index of n = 1.4 + 0.15i. In (a), an obliquely incident wave refracts
upon entering a transparent material, demonstrating Snell’s law and conservation of transverse momentum. Next, in (b) an obliquely incident wave
refracts and experiences attenuation upon entering an opaque material. The imaginary component of the wave-vector points along z due to conserva-
tion of transverse momentum kx ∈ ℝ.Now in (c) a normally incident wave refracts into a transparent material, at the same angle as in (a), thanks to
the interaction with a designer phase gradient metasurface with transmission coefficient t ∝ eiΔkx x that induces a synthetic transverse wave-vector Δkx .
In (d) a normally incident wave interacts with a phase-and-amplitude metasurface with transmission coefficient t ∝ ei(Δk

′
x+iΔk

′′
x )x = eiΔk

′
x xe−Δk

′′
x x which

synthesises a complex transverse wave-vector Δk′x + iΔk′′x (with real and imaginary components, associated to the phase and amplitude of the meta-
surface, respectively). The metasurface in (d) is designed such that the resulting wave-vector is real along the penetrating z direction, kz ∈ ℝ, achieving
invariant propagation inside the opaque material. Incident wave-vector (black arrow), real (blue), and imaginary (yellow) components of the transmitted
wavenumber are shown as vectors. Colour scale (arbitrary units) is shared for all plots.

use of the “complex-value” metasurface allows us to manually se-
lect the direction in which the evanescent decay of the amplitude
will occur.

2. Analytical Derivation

Emphasis on the complex nature of the wave equation will be the
starting point of this derivation; by looking at Equation (1) we can
explicitly find the value that kt needs to attain in order to achieve
a purely real kz even when n = n′ + in′′ is a complex quantity.
For this to happen, two conditions must be simultaneously ful-
filled by the argument of the square root in Equation (1): first, we
need that Im(k2z) = 0, and second Re(k2z) > 0. These two hyper-
bolic conditions guarantee a real kz. It is straightforward to show
that the first rectangular condition leads to k′tk

′′
t = n′n′′, while the

second inequality is equivalent to k′2t − k′′2t < k20(n
′2 − n′′2). Now,

the conic solutions for kt are not unique; there is a full range
of values of optimized complex koptt solutions fulfilling these two
conditions simultaneously. The geometrical characterization of
these two conditions on the complex kt plane is available in the
Supporting Information. The family of solutions can be written
as an explicit expression with a free real parameter f correspond-
ing to a single degree of freedom such that:

koptt = k0

(
n′f + i n

′′

f

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

n sin(𝜃opt)

for any 0 < ||f || < 1 (3)

where 𝜃opt = sin−1(koptt ∕nk0) represents the complex angle of re-
fraction. Under this finely tuned condition, substituting Equa-
tion (3) into Equation (1), the value of kz reduces to a purely real
value analytically given by kz =

k0|f |
√
(1 − f 2)(n′′2 + n′2f 2), achiev-

ing no exponential decay along z, as initially desired. This of
course comes at the cost of having a fully complex kt that requires

exponential decay (and increase) of the amplitude in the trans-
verse plane. A metasurface with complex (Δkx,Δky) can be used
to generate the required kt for any incident wave.
An obvious question that arises when looking at this technique

is where does the energy come from, to achieve constant field am-
plitude along z, given that the material may be actively absorbing
energy. The answer is to be found by looking at the Poynting vec-
tor (black arrows in Figure 2a). The energy lost in absorption is
replaced by the energy coming from the edges where the field
profile blows up in amplitude. This is in accordance with Poynt-
ing’s theorem: any absorption at a point is exactly accounted via a
net influx of power into that point. This is analytically proven in
the Supporting Information. At first sight, therefore, it seems that
this technique should be impossible to implement in practice,
because an exponentially growing diverging amplitude would
need to be attained by the metasurface as x → ∞, suggesting
that an active metasurface with ever-increasing gain would be re-
quired. This problem will later be alleviated using passive meta-
surfaces in which the required transmission profile is windowed
in space, such that the transmission coefficient remains always
lower than unity. This windowing process locally and partially
preserves the non-decaying effect. Before delving into the win-
dowed case, let’s first try to understand the ideal “active” case, in
which the metasurface exhibits an idealized exponentially grow-
ing transmission.
Let’s begin with a 2D problem, where ky = 0, and where a

transverse electric polarization is assumed E(r) = Ey(r) ‚y. In this
case, after interaction with the metasurface, we want to achieve
a transverse wavenumber kx = kincx + Δkx = koptt that matches the
optimal condition of Equation (3), such that kz is a purely real
value inside the opaque material. This can clearly be achieved if
a normally incident plane wave in free space (kincx = 0) of ampli-
tude Einc interacts with a metasurface whose transmission coef-
ficient equals t = eik

opt
t x (which will involve both phase and am-

plitude changes in accordance to the real and imaginary parts of
koptt ). This metasurface will result in a transmitted field profile
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Figure 2. Idealized field profiles and non-decaying profile. Electric field evolution inside an opaque material when designed electric field boundary

conditions are placed at z = 0 (i.e., metasurface) for different incident profiles. a) A complex-kx plane wave Ey(x) = eik
opt
t x , b) a complex-argument cosine

beam Ey(x) = cos(koptt x), and c) a complex-argument Bessel beam Ey(𝜌) = J0(k
opt
t 𝜌) (see exact derivation in Supporting Information). The three are

examples of propagation-invariant and difractionless beams through an opaque material with refractive index n = 3.8823 + 0.01564i, corresponding
to silicon at HeNe laser wavelength 𝜆 = 633nm.[24] The structured electric field at z = 0 (which in principle could be synthesized with a metasurface)
follows the equations given in the main text with complex transverse wave-vectors, and with fixed parameter f = 0.11. In boxes, the initial structured
profiles Einc(z = 0) real part (continuous line) and amplitude (dashed line) are shown. In (d) the field propagation profile along the z axis is shown,
observing a constant amplitude (dashed line) and non-decaying harmonic oscillation (real part, continuous line) in the center of the transmitted beam,
compared to the decaying profile of the case without metasurface (black) when Einc(z = 0) = 1 is a normally incident plane wave with no structuring.
The real part of the time-averaged Poynting vector is also shown in (a) as black arrows. Colour scale (in a. u.) is shared for all plots.

at z = 0 equal to E(x, z = 0) = Einct = Eince
ikoptt x ‚y. This field pro-

file induced at the interface z = 0 will now propagate inside the
opaquematerial in accordance to Equation (1). When propagated
along z using the transfer function eikzz, with now a purely real
kz (as corresponds to koptt by construction), this will result in a
transmitted field E(x, z) = Eince

i(koptt x+kzz) ‚y. This is an inhomoge-
neous plane wave whose amplitude |E(r)| does not decay with
z. This idealized case is illustrated in Figure 2a, where for illus-
tration purposes we chose an opaque silicon material at a HeNe
laser wavelength. The figure also displays the real Poynting vec-
tor as black arrows, showing that the energy indeed comes from
the regions of high amplitude at the bottom, in order to sustain
the constant amplitude that is achieved along z for every line of
constant x.
Interestingly, a single exponential solution (inhomogeneous

plane wave) as shown in Figure 2a is not the only possibility
that could exhibit this property. In fact, there are many valid val-
ues of koptt that achieve a real value of kz, as described by the
free parameter f in Equation (3), and thanks to linearity of the

solutions, any combination of valid exponentials with different
f values will still be a penetrating solution with no attenuation
along z. More simply, however, we can consider by symmetry
the combination of two solutions as in Figure 2a but with op-
posite signs in kx = ±koptt . Both solutions will have the same real
kz and hence the following field distribution is obtained: E(x, z) =
Einc[e

i(koptt x+kzz) + ei(−k
opt
t x+kzz)] ‚y = 2Einc cos(k

opt
t x)eikzz ‚y. This field, in-

variant in z and thus penetrating, simply requires establishing a
cosine-like field profile at z = 0. In transparent media this is the
well-known 2D non-diffracting cosine beam.[25–27] In the case of
opaque materials, however, we have the intriguing property that
koptt , and hence the argument of the cosine function, is a complex
number. We call this a complex-argument cosine beam. This can
be achieved with the metasurface by tuning both the amplitude
and phase of the transmission coefficient following t ∝ cos(koptt x).
Not surprisingly, like the individual exponential solutions, the co-
sine profile cos(koptt x) blows up in amplitudewhen x → ±∞. Con-
sidering this idealized case, the cosine beam indeed propagates
arbitrarily deep into the opaque material as shown in Figure 2b.
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This time, energy is coming from both top and bottom, to allow
for the non-decaying propagation along z in the center. Other rel-
ative amplitudes of the two exponentials could be considered, giv-
ing rise to sine beams or any other arbitrary function by careful
Fourier decomposition.
Finally, we consider three-dimensional (3D) solutions. We can

produce a linear superposition of complex exponentials whose
transverse wave-vector kx x̂ + kyŷ points in every possible direc-
tion on the xy-plane, while still maintaining the same trans-
verse wave-number koptt = (k2x + k2y )

1∕2 by taking kx = koptt cos(𝛼)

and ky = koptt sin(𝛼), with 𝛼 ∈ [0, 2𝜋). This forms a 3D Bessel
beam, but with the peculiarity that kt is complex, and hence the
Bessel functions that describe the field distribution have com-
plex valued arguments in the family Jm(kt𝜌), where 𝜌 =

√
x2 + y2

is the cylindrical radial coordinate and Jm is the Bessel func-
tion of first kind and order m. There is freedom on m and on
the polarizations of the different plane wave components in 3D,
which adds much variety and complexity to the mathematics
of the solution, described in detail in the Supporting Informa-
tion; as a simplest example, the electric field corresponding to
a y-polarized Bessel beam is given by E(r) = Einc[kzJ0(k

opt
t 𝜌) ‚y −

ikoptt J1(k
opt
t 𝜌) sin(𝜙) ‚z]eikzz, a full solution to Maxwell’s equations,

and its y-component is depicted in Figure 2c. This is indeed the
generalization, to opaque materials, of the well known diffrac-
tionless Bessel beams defined in transparent materials. In our
case, the argument of the Bessel functions (kt𝜌) forming the
beam is complex, so the amplitude of the beam grows with 𝜌,
but the beam is still invariant with z, despite the material be-
ing opaque.
As we have mentioned before, the obvious caveat of the phe-

nomenon presented here is that an infinite exponential increase
in the amplitude of the transmission along the direction paral-
lel to the interface is needed, thus requiring an infinite energy to
maintain the propagated beam in a physical realization. To avoid
this unphysical scenario, we next study the effect of spatially win-
dowing the initial excitation, with a hope of still achieving non-
decaying transmission far from the edges, thanks to the locality
of Maxwell equations. This is discussed in the following section.

3. Finite Case: Bullseye Metasurface

Let us avoid the infinitely growing tails of the complex-argument
cosine and Bessel beams by windowing the initial field profile at
z = 0 using the following expression:

Ewindowed(x, z = 0) = Einc
w(x)Eideal(x, z = 0)

max(||w(x)Eideal)||) (4)

where Eideal(x, z = 0) corresponds to any of the exponentially
growing profiles shown in the previous section (Figure 2), w(x)
is a mathematical window function, which is vanishing for any|x| > L∕2, such as a rectangular step window, and we normal-
ize the entire field profile by max(|w(x)Eideal|) such that at no
point is the amplitude of Ewindowed(x, z = 0) greater than Einc. This
will correspond to a passivemetasurface transmission coefficient|t| < 1, avoiding the need for active amplification. It is reasonable
to expect that the results of the windowed case should asymp-
totically approach the idealized perfect penetration as the win-
dow grows L → ∞ and therefore it is interesting to consider how

Figure 3. Bullseye metasurface: windowed field profiles. Electric field
propagation inside an opaque material when designed boundary condi-
tions (metasurface) are optimized and specified at z = 0 corresponding to
the windowed versions (window length L = 1.602 and L = 1.308𝜆 on each
case) of a) a complex-argument cosine beam, and b) a complex-argument
Bessel beam. The lossy material corresponds again to silicon at HeNe
wavelengths. The internal degree of freedom, set to f = 0.091 (a) and
f = 0.117 (b), are optimized to obtain the maximum intensity enhance-
ment inside the opaque material compared to an exponential attenuation
(no metasurface). The insets shows the field profile for the central posi-
tion along the z axis as the field propagates inside the opaque material, for
the structured windowed cosine beam, i.e. with metasurface (red), and for
a non-structured normally incident plane wave, i.e., without metasurface
(blue). We find a non-trivial increase in the amplitude of electric field for a
wide range of penetration distances that can be effectively tuned for further
applications. Maximum intensity enhancement (Iwith metasurface∕Iwithout) is
highlighted with a black dot in both scenarios, and corresponds to 1.65
(a) and 1.76 (b). Numerical simulations were performed using Matlab.

well will the penetration rate work for realistic window sizes. Of
course, this windowed profile is no longer a perfect inhomoge-
neous wave, so we can no longer use simple analytical solutions,
and we cannot expect the field inside the opaque material to be
translationally invariant along the z-direction. However, because
Maxwell’s equations are local, one can expect that, locally, the
windowed version will be similar to the ideal version Ewindowed ≃
(max(|w(x)Eideal|))−1Eideal as w(x) ≈ 1 at least in a neighborhood
around (x, z) = 0, i.e., near the central axis of the beam, far from
the window edges, corresponding to the bullseye proposal. Like
a bull’s-eye window in the hull of a ship, this metasurface opens
up a small region of transmission on an opaque slab.
To study this, we numerically propagate the windowed pro-

file through the opaque medium using a Fourier propagator ap-
proach by performing the following steps: we numerically com-
pute the Fourier transform of the field at the plane z = 0, followed
by an eikzz transfer propagator function across the z planes, and
finally an inverse Fourier transform on each z plane. The result-
ing fields are shown in Figure 3, where the intensity profile im-
posed at z = 0 is obtained by windowing the ideal cases of co-
sine and Bessel beam that were previously shown in Figure 2b,c.

Laser Photonics Rev. 2024, 18, 2300867 2300867 (5 of 7) © 2024 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
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The calculations, which we performed in Matlab, are verified via
a Comsol Multiphysics full-wave simulation in the Supporting
Information. The window size L was optimized in each case for
higher amplitudes along x = 0, looking for a trade-off between L
being too-small (and thus no opportunity of resembling the orig-
inal ideal case) or being too-wide (and thus having to normalize
the entire profile by a number that is too big, to keep the expo-
nentially growing tails under control). Remarkably, and with no
intentionality on our part, the resulting profile shows a focus-
ing behavior, resulting in enhanced field amplitude penetrating
in the z-direction along the line x = 0, but with low penetration
depth elsewhere. This focusing behavior matches well with the
fact that the Poynting vector is flowing from the high amplitude
edges of the field profile toward the lower amplitude center, at a
certain angle, as seen in the ideal cases earlier. Interestingly, it is
possible to directionally control this focusing-like behavior of the
beam inside the material thanks to the internal degree of free-
dom f , inherited from Equation (3). Note also that changing the
size of the window can also lead to a fine tuning of the profile
shape inside the material. If this windowed profile can be set up
by a metasurface fabricated at the interface of the opaque mate-
rial, we may achieve, locally, an enhanced transmission through
the material (in our examples from Figure 3 we show up to 76%
improved intensity of the field at some points inside the mate-
rial, with optimization of the internal degree of freedom f and
the window size L) for feasible technological applications.

4. Discussion and Future Outlook

A transmitted wave propagating through an opaquematerial was
analytically proven to result from a complex refraction metasur-
face. This corresponds to a metasurface that generalizes Snell’s
law to complex angles, by using simultaneous phase and am-
plitude control. The concept of complex-refraction metasurfaces
applies to any wavelength and to any wave-field described by
Helmholtz’s equation, such as acoustic waves. The main phys-
ical explanation is that one can swap the direction of decay
from a longitudinal to a transverse direction. This suggests novel
methods for transmission through opaque media, moving away
from active sources and continuous engineering beam shap-
ing, to a more sustainable approach based on a passive struc-
ture metasurface. To solve the nonphysical requirements of in-
finite energy tails, a solution is presented by windowing the
ideal case, corresponding to our proposal of a bullseye metasur-
face. Having proposed the concept of complex refraction bulls-
eye metasurfaces, further work could look at interesting appli-
cations like an in situ wall-mounted metasurface for increased
wireless signal transmission through domestic walls or, thanks
to the electromagnetic-acoustic formalism analogy, increased
sound transmission through “acoustically opaque” (dampening)
materials. Note that the phenomenon works for any complex re-
fractive index, whether it is associated to losses, or to lossless but
still opaque materials, such as a plasma with a negative but real
electric permittivity resulting in purely imaginary refractive index
(see Supporting Information). Speculative proposals can there-
fore be pictured in the context of improved transmission across
metals. Medical applications could include the analysis and treat-
ment of malignant cells subcutaneously without damaging the
external layer of skin in the human body, without (over)heating

of the interface boundaries, with a proper combination of bulls-
eye metasurface profiles. All the previous technological applica-
tions are subordinate to a successful experimental realisation of
the required holographicmetasurfaces controlling phase and am-
plitude simultaneously, of which optical and radiofrequency de-
signs exist.[13,17] Further work for complex refraction metasur-
faces is not limited to achieving a zero imaginary part in kz, but
even a negative imaginary part corresponding to exponential in-
crease inside the material, at the cost of even stronger transverse
amplitude variation.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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