
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

A Comparison of Large Language Models and
Genetic Programming for Program Synthesis

Dominik Sobania, Justyna Petke, Martin Briesch, and Franz Rothlauf

Abstract—Large language models have recently become known
for their ability to generate computer programs, especially
through tools such as GitHub Copilot, a domain where genetic
programming has been very successful so far. Although they
require different inputs (free-text vs. input/output examples) their
goal is the same – program synthesis. Therefore, in this work
we compare how well GitHub Copilot and genetic programming
perform on common program synthesis benchmark problems. We
study the structure and diversity of the generated programs by
using well-known software metrics. We find that GitHub Copilot
and genetic programming solve a similar number of benchmark
problems (85.2% vs. 77.8%, respectively). We find that GitHub
Copilot generated smaller and less complex programs as genetic
programming, while genetic programming is able to find new
and unique problem solving strategies. This increase in diversity
of solutions comes at a cost. When analyzing the success rates
for 100 runs per problem, GitHub Copilot outperforms genetic
programming on over 50% of the problems.

Index Terms—Program Synthesis, Genetic Programming,
Large Language Models, Codex, GitHub Copilot, Software En-
gineering.

I. INTRODUCTION

S INCE the introduction of GitHub Copilot1, a program
synthesis approach based on large language models is

available to support real-world software developers in their
daily work. GitHub Copilot, which is available as an add-
on for several common development environments, is based
on the large language model Codex [1], which has been
trained on large amounts of publicly available source code. The
system gives the programmer both suggestions for completing
existing code as well as suggestions based on natural language
descriptions entered as comments.

Another approach that is known for its performance in
automatic program synthesis is genetic programming (GP) [2],
[3]. Instead of natural language descriptions, in GP-based
program synthesis, the user’s intent is usually expressed by a
set of given input/output examples (test cases). Based on these
input/output examples, GP employs an evolutionary process to
search for programs that meet the user’s intent.

To compare the performance of large language model based
and evolutionary program synthesis, we applied in a recent
conference paper [4] GitHub Copilot on the program synthesis
benchmark problems introduced by Helmuth et al. [5], [6],
which are commonly used to evaluate GP-based program

Dominik Sobania, Martin Briesch and Franz Rothlauf are with the Jo-
hannes Gutenberg University, Mainz, Germany (dsobania@uni-mainz.de,
briesch@uni-mainz.de, rothlauf@uni-mainz.de).

Justyna Petke is with the University College London, London, United
Kingdom (j.petke@ucl.ac.uk).

1https://github.com/features/copilot

synthesis approaches, and compared the results achieved by
GitHub Copilot to those reported for GP in the literature.
We found that, despite their differences in the definition of
the user’s intent, the overall number of benchmark problems
solved by GitHub Copilot and GP is on the same level.
However, in our previous conference paper [4], we only made
a binary assessment (solved or not) for GitHub Copilot and
GP on the benchmark problems, which does not provide any
insight into the stability of the approaches. For instance, is a
problem only solved by chance or is it solved on a regular
basis? Furthermore, due to space limitations, we did not
compare the structure of the programs suggested by GitHub
Copilot and GP with common software metrics used in the
program synthesis literature [7], [8], which could open up
further research directions in program synthesis.

Therefore, we extend our previous conference paper [4] and
carry out a more comprehensive comparison of GitHub Copilot
and GP on common program synthesis benchmark problems.
In addition to that, we analyze and compare the structure
and the diversity of the generated programs using well-known
software metrics. Furthermore, we identify different strengths
and weaknesses of the two approaches and discuss potential
future research directions.

To evaluate GitHub Copilot, we use the add-on2 for the
Visual Studio Code development environment. For every
benchmark problem, we provide GitHub Copilot the function’s
signature and the textual problem description as a Python
comment and evaluate Copilot’s suggestions. Since Copilot
returns only a maximum of 10 suggestions, we repeat this
step several times. For GP, we take the results from the
literature. More precisely, from recent GP papers reporting
success rates achieved with PushGP [9] and grammar-guided
GP [10] for the problems from the first (PSB1) [5] and/or the
second program synthesis benchmark suite (PSB2) [6]. Both
GP papers present recent and comprehensive results for their
respective approaches. For comparison, we evaluate GitHub
Copilot on the same benchmark problems.

To analyze and compare the structure and the diversity of
the programs generated by GitHub Copilot and GP, we use
common software metrics, e.g., the number of source lines of
code (SLOC) and the cyclomatic complexity [11], which allow
us to draw conclusions about the programs’ source code. We
perform the structure and diversity analysis on a representative
subset of eight problems from PSB1 and PSB2. For GitHub
Copilot, we use the source code generated in our experiments.

2https://marketplace.visualstudio.com/items?itemName=GitHub.copilot

https://github.com/features/copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

For GP, we use solutions generated with a grammar-guided
GP approach provided by a recent paper [12].

We find that overall GitHub Copilot and GP can solve
a similar number of benchmark problems (85.2% vs. up to
77.8%, respectively). However, in terms of the success rates
GitHub Copilot significantly outperforms the GP approaches
on over 50% of the benchmark problems. Further, we find
that the structure of the generated programs strongly differs
based on the used approach. The programs generated with
the studied grammar-guided GP approach are on average
significantly larger and more complex than the programs
generated with GitHub Copilot. We observe also for the
programs generated by GitHub Copilot a lower variance and
diversity for the studied software metrics compared to those
obtained by the studied GP approach. However, we should
keep in mind that GitHub Copilot may have already seen
many of the program synthesis benchmark problems during its
training phase. Additionally, the training of such large models
is computationally very intensive, while GP usually requires
less compute and consumes a lower amount of energy. Which
approach should be used depends more on the task at hand.
Due to its integration into several code editors, GitHub Copilot
is well suited as support system in software development. On
the other hand, GP can be easily adapted to a wide variety of
tasks, e.g., by adjusting the grammar or the function set. In
addition, GP can discover novel programs which potentially
make use of new solution strategies.

To sum up, our contributions are: 1) A comparison of
the performance of GitHub Copilot and different GP-based
program synthesis approaches. 2) An analysis of the structure
and the diversity of the generated programs with common
software metrics. 3) The discussion of the different strengths
and weaknesses of GitHub Copilot and GP as well as the iden-
tification of future research directions in program synthesis.

Following this introduction, Sect. II presents recent work
on GP-based program synthesis as well as program synthe-
sis using large language models. Section III describes our
methodology before presenting the performance comparison
of GitHub Copilot and GP in Sect. IV. In Sect. V, we discuss
the results and identify some further research directions for
GP-based program synthesis. Section VII concludes the paper.

II. RELATED WORK

In this section, we present fundamental and recent work on
program synthesis approaches based on large language models
and GP.

A. Program Synthesis with Large Language Models

In the area of large language models, the problem of
program synthesis is often treated as a natural language pro-
cessing (NLP) task. For a given problem description in natural
language, the corresponding source code required to solve the
problem should be returned. NLP has made a lot of progress
in recent years, which, in addition to higher computing power,
can also be attributed to new deep learning architectures, like
the transformer model [13].

The success of the transformer model is based on two
key innovations: positional encoding and attention. Due to
positional encoding, transformer models can be parallelized
well, in contrast to gated recurrent unit (RNN) [14] and
long short-term memory (LSTM) [15] networks, and can also
be trained on large amounts of data. And due to attention
mechanisms, transformers can refer to the relevant context.
Figure 1 shows an overview of the elements of an encoder-
decoder transformer architecture.

Well-known models for general purposes based on the trans-
former architecture are, e.g., the BERT or the GPT language
model families. In addition to that, models specialized on
the generation of source code have recently been released,
such as CodeBERT [16], PyMT5 [17], AlphaCode [18], and
Codex [1]. These specialized models are usually (pre-)trained
on large amounts of freely available open source code. For
example the Codex model, which powers GitHub Copilot,
was first pre-trained with 159 GB of open source code and
then fine-tuned with smaller data sets, e.g., from programming
competition websites [1].

Beyond pure code generation, large language models can
also be used to improve existing software, e.g., for automatic
program repair [19] or refactoring [20].

However, the use of large language models also harbours
risks, as they are prone to hallucinatory behaviour and may
also provide incorrect answers [21], [22]. It is also challenging
that a clear separation between training and test set, as in
traditional machine learning, is difficult in practice, as it can be
assumed that large language models have already seen many
of the classic test problems during training [23].

B. Program Synthesis with GP

In GP, program synthesis is one of the major topics since
the field’s inception. The first GP paper by Cramer [2] already
deals with code generation, and also Koza’s first book on
GP [3] describes the evolution of source code (e.g., using
LISP S-expressions). Different to large language models, in
GP usually input/output examples are used to define the user’s
intent. Based on this definition, GP searches for programs that
meet the given requirements in an evolutionary process.

An important step towards comparability of different GP
approaches was achieved with the program synthesis bench-
mark suites PSB1 and PSB2 by Helmuth et al. [5], [6].
In recent years, great progress has been made on these
benchmark problems, for example with PushGP [24], [25],
grammar-guided GP [10], [26], as well as other GP-based
program synthesis approaches [27], [28]. These approaches
differ mainly in the representation used and the way different
data types are handled.

In PushGP, the programming language Push [29], [30],
which was specially created for program synthesis with GP, is
used for representation. This programming language separates
data types by utilizing different stacks, one stack for each
supported data type and one for the program’s commands.
In recent years, advances with PushGP have been made
through the use of a novel mutation operator, uniform mutation
by addition and deletion (UMAD) [24], and new selection

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Embedding LayerInput

Output Embedding Layer

Attention Layer

Masked Attention

Layer

Feed Forward

Layer

Attention Layer
Feed Forward

Layer

Positional

Encoding

Softmax

Layer
Output

Attention Block

Positional

Encoding

Fig. 1: Transformer model (taken from [4], based on the illustration by Vaswani et al. [13]).

methods (based on lexicase selection) [9], [12], [25], [31].
However, the Push language has not seen a wider uptake in
real-world software development so far.

With grammar-guided GP approaches [32], however, also
programs in programming languages like Python can be
evolved [10], [26]. During evolution, a context-free gram-
mar is used to comply with the rules of the programming
language and to distinguish between different data types.
Recent work on program synthesis with grammar-guided GP
focuses, e.g., on the usage of domain-knowledge [7], [33],
[34], generalization to unseen data [35]–[37], and the use
of functional programming languages [38]. Furthermore, new
selection methods are being studied for grammar-guided GP
[12], [39], [40]. For further insights into the fundamentals and
an overview of additional grammar-guided GP approaches, we
refer to a survey by McKay et al. [41].

In addition to the benchmark problems from PSB1 and
PSB2, Boolean logic problems are often studied in the litera-
ture on GP-based program synthesis [42], [43]. Of particular
interest is, for example, recent work by Liskowski et al. [44]
in which they investigate how to search the latent space of an
autoencoder to find suitable programs.

A related field of research where similar methods as in GP-
based program synthesis are studied is genetic improvement
(GI) [45]. Instead of generating source code from scratch,
GI methods improve existing software, improving its either
functional or non-functional properties, e.g., to automatically
fix bugs [46] or improve runtime [47], respectively. In recent
work by Yuan et al. [27], ideas from GI even found their
way back into program synthesis and helped to outperform
even existing GP-based program synthesis approaches on some
problems from PSB1.

III. EXPERIMENTAL DESIGN

This work’s experimental method can be divided into two
parts. In the first part, we compare the performance of GitHub
Copilot and GP on common benchmark problems with respect
to the correctness of the code suggestions. In the second
part, we analyze and compare programs suggested by GitHub
Copilot and GP on a representative selection of problems using

different code metrics. Additionally, we discuss the strengths
and weaknesses of the two approaches and identify further
research directions.

A. Performance Comparison of GitHub Copilot and GP

To collect suggestions from GitHub Copilot, we use the
add-on for the Visual Studio Code development environment,
to be as close as possible to the experience of a real software
developer during the evaluation.3 For each benchmark problem
from PSB1 and PSB2, we provide GitHub Copilot the generic
function signature, including the input parameters and types,
and the textual problem description from either PSB1 or PSB2
as a Python comment. For some problems from PSB1 we
have adjusted the problem description such that results are
returned and not printed. This way, the problem descriptions
are consistent across all benchmark problems and in line with
the novel benchmark suite PSB2. Based on this input, we
expect from GitHub Copilot suggestions for the completion
of the function. The used textual problem descriptions as well
as the code generated by GitHub Copilot in our experiments
are available online.4

1 # The t e x t u a l problem as d e f i n e d i n
2 # PSB1 or PSB2 .
3 def myfunc (s t r 1 : s t r , s t r 2 : s t r) :
4 # To be c o m p l e t e d by GitHub C o p i l o t .

Fig. 2: An abstract function definition as input for GitHub
Copilot using the textual problem description from PSB1 or
PSB2 as a Python comment.

Figure 2 shows an example abstract function definition
that could be used as input for GitHub Copilot. The Python
comment in lines 1-2 gives the textual problem description,
The generic function signature is given in line 3, and beginning
from line 4 we expect from GitHub Copilot suggestions for
possible completions.

3All experiments presented in Section IV requesting GitHub Copilot were
performed in June 2023.

4https://github.com/domsob/github-copilot-generated-programs-2023/.

https://github.com/domsob/github-copilot-generated-programs-2023/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

For GP-based program synthesis we do not perform new
experiments but use the results reported in the literature for
PushGP and grammar-guided GP. For PushGP, we take the
results from a recent paper [9] that reports success rates for the
problems from PSB1 and PSB2. This paper is well suited for
comparison, as almost all benchmark problems from PSB1 and
PSB2 are covered and results for the two common selection
methods currently studied in the area of program synthesis,
namely standard lexicase [48] and down-sampled lexicase
selection [28], are reported. For grammar-guided GP, we take
the results from [10] which reports success rates for most
of the benchmark problems from PSB1. Of the benchmark
problems from PSB2, only a very small number of problems
have been examined with grammar-guided GP so far in the
literature. Therefore, for the problems from PSB2, we only
compare GitHub Copilot with the results for PushGP.

As the literature on GP-based program synthesis typically
studies 100 runs [10], [36], [49], we also analyze 100 sug-
gestions from GitHub Copilot. However, the suggestions in
the add-on for Visual Studio Code are limited to a maximum
of 10 suggestions. Consequently, we repeat the request to
GitHub Copilot until the required number of code suggestions
is collected. This gives GitHub Copilot’s code suggestions a
logical order, which allows us to evaluate whether GitHub
Copilot’s first suggestion is already a correct solution. This
reflects the use in practice, since a software developer would
also start examining the first code suggestion.

In order to check the correctness of the suggested programs,
we use 1, 000 test cases for each benchmark problem.5 For the
problems from PSB1, we use test cases based on the cases
provided by the PonyGE2 framework [50] which follow the
design principles suggested in the PSB1 paper [5]. For the
PSB2 problems, we use the Python module accompanying the
PSB2 paper [6] to collect the required test cases.6

B. Analysis of the Suggested Programs

In addition to the success rates, the structure of the gener-
ated programs is also important if the generated code should
be used in real-world software maintained by human pro-
grammers. Therefore, we compare the source code generated
by GitHub Copilot and GP using common software metrics
known from the software engineering and GP literature as a
proxy for complexity and readability [7], [8], [51].

The code metrics we use can either be calculated directly
on the source code or are based on a tree representation of the
given code snippet (a Python function). To calculate the tree-
based metrics, we first transform every generated function into
its abstract syntax tree (AST) representation using the Python
module astdump.7 The code metrics are defined as follows:

• Source lines of code (SLOC): The number of code lines
in the generated program without empty and commented
lines.

5With the exception of the problems SUM OF SQUARES and WALLIS PI,
since only a smaller number of cases is defined in the literature for these
benchmark problems.

6For the eight benchmark problems we use for structural code analysis (see
Sect. III-B), we use the same test data as in [12] for better comparability.

7https://pypi.org/project/astdump/.

• Cyclomatic complexity: The number of decision
branches introduced by a generated program [11]. We
calculate the cyclomatic complexity with the Python
module radon.8

• AST nodes: The number of tree nodes in the program’s
AST representation.

• AST depth: The number of edges from the AST’s root
node to the deepest leaf node.

Each of the above code metrics measures unique character-
istics of a given program’s structure. SLOC is the common
metric to measure the size of a program. The cyclomatic
complexity can be seen as a proxy for the number of used
control structures like loops and conditionals. Finally, the AST-
based metrics provide information about the number of used
elements (e.g., variables, function calls, etc.) and their nesting.

In addition to the structure, we measure and compare the
diversity of the programs generated by GitHub Copilot and GP
to check if always the same programs are generated in differ-
ent runs or if new solution strategies are found. Therefore,
we measure the number of unique programs generated per
benchmark problem. However, since programs can be identical
except for the use of different function and variable names, we
also measure the number of unique ASTs, which abstract from
the mentioned details.

For the evaluation (calculation of code metrics and di-
versity), we use a representative subset of eight benchmark
problems from PSB1 and PSB2 for clarity and to save compu-
tational effort. For the analysis of GitHub Copilot, we use the
solutions generated in our experiments (see Sect. III-A). For
the analysis of GP, we use solutions generated with a grammar-
guided GP approach provided by the supplementary material9

of a recent paper [12]. We do not study the structure of
programs generated with PushGP in this experiment because
most of the software metrics would not give us any meaningful
information for Push code. However, with the grammar-guided
GP from [12], the programs were generated in Python and are
therefore well suited for such an investigation.

IV. COMPARISON OF GITHUB COPILOT AND GP

In this section, we compare the code suggestions of
GitHub Copilot and different GP variants and analyze their
correctness on given test data as well as the structure and
diversity of the generated code.

A. Performance Comparison

First, we compare the performance of GitHub Copilot and
different GP variants on given test data by analyzing the
achieved success rates on the benchmark problems from PSB1
and PSB2. The success rate indicates how many of the 100
solution candidates examined per approach work correctly on
all of the used test cases. For GitHub Copilot, we also study
whether the first code suggestion works correctly on all test
cases, in order to be able to assess whether a working solution
can be found quickly in practical software development or

8https://pypi.org/project/radon/.
9https://gitlab.rlp.net/mbriesc/informed-down-sampled-lexicase-selection/.

https://pypi.org/project/astdump/
https://pypi.org/project/radon/
https://gitlab.rlp.net/mbriesc/informed-down-sampled-lexicase-selection/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

whether many solution candidates have to be examined which
can be quite time consuming for programmers.

Table I shows the success rates achieved by GitHub Copilot
as well as PushGP with standard and down-sampled lexicase
selection and grammar-guided GP (denoted as G3P) with
standard lexicase selection on the 29 benchmark problems
from PSB1. If GitHub Copilot’s first code suggestion for
a benchmark problem works correctly on all test cases, we
indicated this with a check mark (✓). A cross (✗) indicates
that the first suggestion is not correct. The reported PushGP
results are taken from [9] and grammar-guided GP results
are taken from [10]. For benchmark problems for which no
GP results are reported in the papers, we have indicated
this with a minus (-) sign. Best success rates are printed in
bold font and significant improvements in comparison to the
other approaches at the α = 0.05 level are underlined. For
statistical testing, we used a two-sided proportion z-test with
Bonferroni correction.

Table II shows the same analysis for the 25 benchmark
problems from PSB2. Again, the PushGP results are taken
from [9]. Grammar-guided GP results are not reported as only
a small number of benchmark problems from PSB2 have been
examined with grammar-guided GP so far in the literature.

Overall, we see that the number of solved benchmark prob-
lems is on the same level for GitHub Copilot and PushGP. For
PSB1, GitHub Copilot solved 26 and PushGP 25 (using down-
sampled lexicase selection) out of 29 problems. Grammar-
guided GP solved 17 benchmark problems from PSB1, a lower
number than the other two approaches. For PSB2, GitHub
Copilot solved 20 and PushGP 17 out of 25 problems.

However, if we study the success rates, we see significantly
higher values for GitHub Copilot than for the GP variants
on PSB1 as well as on PSB2. GitHub Copilot significantly
outperforms the GP approaches on 13 benchmark problems
from PSB1 and 15 benchmark problems from PSB2. For the
GP approaches we only see significant improvements for the
problems REPLACE SPACE WITH NEWLINE, X-WORD LINES
(both PSB1), and COIN SUMS (PSB2) with PushGP. For the
benchmark problems COLLATZ NUMBERS, WALLIS PI, and
WORD STATS, no results are reported for PushGP in [9] and
the success rates reported for grammar-guided GP are all 0
for these problems. However, a recent survey on GP-based
program synthesis [52] finds that also no other GP approach
has been successful on these problems so far. With GitHub
Copilot, however, at least the COLLATZ NUMBERS problem
can be solved (73 successful solutions).

For many benchmark problems, we see high success rates
for GitHub Copilot. However, the success rates achieved by
GitHub Copilot on PSB2 are on average lower compared
to the results for PSB1. Furthermore, for five benchmark
problems, GitHub Copilot did not find a single working
solution (BOUNCING BALLS, BOWLING, DICE GAME, MAS-
TERMIND, and SOLVE BOOLEAN) and for some other prob-
lems we observe very low success rates (e.g., CUT VECTOR,
LUHN, and SNOW DAY). We expect that this is due to a
low precision of the textual problem description for these
benchmark problems. We will discuss this further in Sect. V.

If we look at the first code suggestions given by GitHub

Copilot, we see that the first suggestion is not always correct
for every benchmark problem that can be solved by GitHub
Copilot in principle. For some problems, a programmer has to
search through further suggestions to find a working solution.
However, if we consider the problems from PSB1 and PSB2
combined, we see that for more than 50% of the problems
solvable by GitHub Copilot, the first suggestion already works
correctly on all test cases.

In summary, GitHub Copilot solves about the same number
of benchmark problems as a recent PushGP approach (lower
values observed for grammar-guided GP) while GitHub Copi-
lot achieves significantly higher success rates than the studied
GP variants on many problems. However, when comparing the
results, we should keep in mind that although the inference
time for large language models is usually relatively short,
the computational effort required to train state-of-the-art large
language models is much greater than the time required to
execute a GP run.

B. Analysis of the Structure and the Diversity

Second, we analyze the structure and diversity of the source
code synthesized with GitHub Copilot as well as with GP.
Since source code should be of low complexity, easy to read,
and maintain, we measure the structure of the generated source
code with common software metrics. In order to study whether
always the same source code is generated or whether novel
solutions are found, we also analyze the number of unique
code suggestions given by GitHub Copilot and GP.

Figures 3-6 show box-plots of common software metrics
for the source code generated by GitHub Copilot and GP
for a representative selection of eight benchmark problems
from PSB1 and PSB2. For the GitHub Copilot results we
measured the software metrics on the code generated in our
experiments. For the GP results, we measured the metrics
on code taken from the associated repository from a recent
paper [12] using a grammar-guided GP approach. Specifically,
the plots show comparisons for SLOC (Fig. 3), cyclomatic
complexity (Fig. 4), AST nodes (Fig. 5), and AST depth
(Fig. 6).

For most of the studied benchmark problems, we see that
the code generated by the grammar-guided GP approach is
larger (larger values for SLOC and AST nodes), more complex
(higher values for the cyclomatic complexity), and more nested
(large values for the AST depth). For example for the FIZZ
BUZZ problem, we observe for the grammar-guided GP a
median SLOC value of around 30 while GitHub Copilot only
generated solutions with a median value of around 9.

Furthermore, the variance of the software metrics is larger
for the solutions generated by the grammar-guided GP com-
pared to the ones generated by GitHub Copilot for almost all
studied benchmark problems. An exception is the SCRABBLE
SCORE problem, where we observe larger variances and a
significantly higher median value of the cyclomatic complexity
for the GitHub Copilot solutions compared to the solutions
generated by the grammar-guided GP. However, this is not
surprising if we take a closer look at the generated solutions.
Figure 7 shows a code example generated with GitHub Copilot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I: Success rates achieved by GitHub Copilot, PushGP, and grammar-guided GP on the benchmark problems from
PSB1. For GitHub Copilot, we also report whether the first given suggestion passes all the test cases (denoted with ✓) or
not (✗). The PushGP results are taken from a recent paper [9] comparing standard and down-sampled lexicase selection. The
grammar-guided GP (denoted as G3P) results for standard lexicase selection are taken from [10]. Best success rates are printed
in bold font. Significant improvements (α = 0.05) in comparison to the other approaches are underlined.

Benchmark Problem
Large Language Model PushGP [9] G3P [10]

GitHub Copilot
(First)

GitHub Copilot Standard Lexicase Down-Sampled
Lexicase

Standard Lexicase

CHECKSUM ✓ 89 1 18 0

COLLATZ NUMBERS ✓ 73 - - 0

COMPARE STRING LENGTHS ✓ 70 32 51 0

COUNT ODDS ✓ 98 8 11 3

DIGITS ✗ 0 19 28 0

DOUBLE LETTERS ✓ 88 19 50 0

EVEN SQUARES ✗ 11 0 2 0

FOR LOOP INDEX ✓ 72 2 5 6

GRADE ✓ 84 0 2 31

LAST INDEX OF ZERO ✓ 61 62 65 44

MEDIAN ✓ 79 55 69 59

MIRROR IMAGE ✓ 70 100 99 25

NEGATIVE TO ZERO ✓ 99 80 82 13

NUMBER IO ✓ 93 98 99 83

PIG LATIN ✓ 54 0 0 3

REPLACE SPACE WITH NEWLINE ✓ 87 87 100 16

SCRABBLE SCORE ✗ 35 13 31 1

SMALL OR LARGE ✗ 51 7 22 9

SMALLEST ✓ 66 100 98 73

STRING DIFFERENCES ✗ 9 0 1 -

STRING LENGTHS BACKWARDS ✗ 60 94 95 18

SUM OF SQUARES ✓ 90 21 25 5

SUPER ANAGRAMS ✗ 55 4 4 0

SYLLABLES ✓ 96 38 64 39

VECTOR AVERAGE ✓ 92 88 97 0

VECTORS SUMMED ✓ 87 11 21 21

WALLIS PI ✗ 0 - - 0

WORD STATS ✗ 0 - - 0

X-WORD LINES ✗ 1 61 91 0

ΣΣΣ (Solved) 19 26 22 25 17

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE II: Success rates achieved by GitHub Copilot and PushGP on the benchmark problems from PSB2. We also report for
GitHub Copilot whether the first given suggestion passes all the test cases (denoted with ✓) or not (✗). The PushGP results are
taken from a recent paper [9] comparing standard and down-sampled lexicase selection for program synthesis. Best success
rates are printed in bold font. Significant improvements (α = 0.05) in comparison to the other approaches are underlined.

Benchmark Problem
Large Language Model PushGP [9]

GitHub Copilot (First) GitHub Copilot Standard Lexicase Down-Sampled Lexicase

BASEMENT ✓ 95 1 2

BOUNCING BALLS ✗ 0 0 3

BOWLING ✗ 0 0 0

CAMEL CASE ✓ 31 1 4

COIN SUMS ✗ 12 2 39

CUT VECTOR ✗ 1 0 0

DICE GAME ✗ 0 0 1

FIND PAIR ✗ 41 4 20

FIZZ BUZZ ✓ 89 25 74

FUEL COST ✓ 97 50 67

GCD ✓ 80 8 20

INDICES OF SUBSTRING ✓ 82 0 4

LEADERS ✓ 67 0 0

LUHN ✗ 6 0 0

MASTERMIND ✗ 0 0 0

MIDDLE CHARACTER ✗ 98 57 79

PAIRED DIGITS ✗ 88 8 17

SHOPPING LIST ✓ 75 0 0

SNOW DAY ✗ 10 4 7

SOLVE BOOLEAN ✗ 0 5 5

SPIN WORDS ✓ 96 0 0

SQUARE DIGITS ✗ 55 0 2

SUBSTITUTION CIPHER ✓ 78 61 86

TWITTER ✓ 89 31 52

VECTOR DISTANCE ✓ 79 0 0

ΣΣΣ (Solved) 12 20 13 17

and Fig. 8 an example generated with the grammar-guided
GP for the SCRABBLE SCORE problem. We see that GitHub
Copilot’s solution (Fig. 7) contains many conditionals and
logical operators which notably increase the cyclomatic com-
plexity. The solution of the grammar-guided GP makes use of
domain knowledge and higher-order functions (like map())
which is common in GP-based program synthesis [33], [53].
In the given example, domain knowledge is introduced via
the variable scrabblescore, which contains the Scrabble
scores for each letter, which simplifies the problem for the
grammar-guided GP. It is also noticeable that GitHub Copilot’s
code is much better structured than the code generated by the

grammar-guided GP, which is hard to read and bloated. How-
ever, it can be assumed that GitHub Copilot has knowledge
about the Scrabble scores of individual letters due to the pre-
training of its underlying model. This knowledge seems to be
only expressed differently in the generated code and is less
noticeable in comparison to the GP-generated code as no pre-
defined variables are used. We will discuss this in more detail
in Sect. V.

For the analysis of the diversity of the generated code,
Table III shows the success rates as well as the number
of unique solutions based on the source code and on the
AST (which abstracts in our implementation from details like

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

COUNT ODDS:

Copilot GP

5

10

15

20

25

30

35

40

SL
O

C
GRADE:

Copilot GP
0
6

12
18
24
30
36
42
48
54

SL
O

C

SCRABBLE SCORE:

Copilot GP
0

8

16

24

32

40

48

56

SL
O

C

SMALL OR LARGE:

Copilot GP
0
5

10
15
20
25
30
35
40
45

SL
O

C

FIND PAIR:

Copilot GP

4
8

12
16
20
24
28
32
36

SL
O

C

FIZZ BUZZ:

Copilot GP
0
6

12
18
24
30
36
42
48

SL
O

C

FUEL COST:

Copilot GP

4
8

12
16
20
24
28
32
36

SL
O

C

GCD:

Copilot GP

4
8

12
16
20
24
28
32
36

SL
O

C

Fig. 3: Box-plots of SLOC for GitHub Copilot and GP for all considered benchmark problems.

COUNT ODDS:

Copilot GP

2

4

6

8

10

12

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

GRADE:

Copilot GP

2

4

6

8

10

12

14

16

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

SCRABBLE SCORE:

Copilot GP
0

4

8

12

16

20

24

28

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

SMALL OR LARGE:

Copilot GP

2

4

6

8

10

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

FIND PAIR:

Copilot GP

2
4
6
8

10
12
14
16
18

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

FIZZ BUZZ:

Copilot GP

2

4

6

8

10

12

14

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

FUEL COST:

Copilot GP

2

4

6

8

10

12

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

GCD:

Copilot GP
1
2
3
4
5
6
7
8
9

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Fig. 4: Box-plots of the cyclomatic complexity for GitHub Copilot and GP for all considered benchmark problems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

COUNT ODDS:

Copilot GP
0

100

200

300

400

500

600

700

800

AS
T

N
od

es
GRADE:

Copilot GP
0

100

200

300

400

500

600

700

800

AS
T

N
od

es

SCRABBLE SCORE:

Copilot GP
0

100
200
300
400
500
600
700
800

AS
T

N
od

es

SMALL OR LARGE:

Copilot GP
0

100

200

300

400

500

600

700

800

AS
T

N
od

es

FIND PAIR:

Copilot GP
0

80
160
240
320
400
480
560
640

AS
T

N
od

es

FIZZ BUZZ:

Copilot GP
0

100
200
300
400
500
600
700
800

AS
T

N
od

es

FUEL COST:

Copilot GP
0

100
200
300
400
500
600
700
800

AS
T

N
od

es

GCD:

Copilot GP
0

80
160
240
320
400
480
560
640
720

AS
T

N
od

es

Fig. 5: Box-plots of the number of AST nodes for GitHub Copilot and GP for all considered benchmark problems.

COUNT ODDS:

Copilot GP
6

8

10

12

14

16

18

20

AS
T

D
ep

th

GRADE:

Copilot GP

6
8

10
12
14
16
18
20

AS
T

D
ep

th

SCRABBLE SCORE:

Copilot GP

6
9

12
15
18
21
24
27
30

AS
T

D
ep

th

SMALL OR LARGE:

Copilot GP

6
8

10
12
14
16
18
20

AS
T

D
ep

th

FIND PAIR:

Copilot GP
5
6
7
8
9

10
11
12
13
14

AS
T

D
ep

th

FIZZ BUZZ:

Copilot GP

6

8

10

12

14

16

18

20

AS
T

D
ep

th

FUEL COST:

Copilot GP

6

8

10

12

14

16

18

AS
T

D
ep

th

GCD:

Copilot GP
5
6
7
8
9

10
11
12
13
14

AS
T

D
ep

th

Fig. 6: Box-plots of the AST depth for GitHub Copilot and GP for all considered benchmark problems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

1 def myfunc (s t r 1 : s t r) :
2 s t r 1 = s t r 1 . uppe r ()
3 sum = 0
4 f o r i in s t r 1 :
5 i f i == ’A’ or i == ’E ’ or i == ’ I ’ or i == ’L ’ or i == ’N’ or i == ’O’ \
6 or i == ’R’ or i == ’S ’ or i == ’T ’ or i == ’U’ :
7 sum += 1
8 e l i f i == ’D’ or i == ’G’ :
9 sum += 2

10 e l i f i == ’B’ or i == ’C’ or i == ’M’ or i == ’P ’ :
11 sum += 3
12 e l i f i == ’F ’ or i == ’H’ or i == ’V’ or i == ’W’ or i == ’Y’ :
13 sum += 4
14 e l i f i == ’K’ :
15 sum += 5
16 e l i f i == ’ J ’ or i == ’X’ :
17 sum += 8
18 e l i f i == ’Q’ or i == ’Z ’ :
19 sum += 10
20 e l s e :
21 sum += 0
22 re turn sum

Fig. 7: A code example given by GitHub Copilot for the SCRABBLE SCORE problem that passes all test cases. We added a
line break for better display.

1 def t e m p f u n c t i o n (i n 0) :
2 i 0 = i n t () ; i 1 = i n t () ; i 2 = i n t ()
3 b0 = bool () ; b1 = bool () ; b2 = bool ()
4 s0 = s t r () ; s1 = s t r () ; s2 = s t r ()
5 l i 0 = [] ; l i 1 = [] ; l i 2 = []
6 r e s 0 = i n t ()
7 i 1 −= min (mod (i1 , (r e s 0 − d i v I n t (g e t I n d e x I n t L i s t (l i 0 , max (i2 , i 2)) , abs ((i 2
8 * i 0))))) , max ((abs (abs (max (i1 , i 0))) − (d i v I n t (g e t I n d e x I n t L i s t (l i 0 ,
9 r e s 0) , max (r e s0 , i 1)) − (d i v I n t (i2 , r e s 0) * min (i0 , r e s 0)))) ,

10 l e n (l i s t (map (lambda x : mod (x , max (i0 , i 0)) , l i s t (map (lambda x :
11 d i v I n t (x , r e s 0) , l i 1)))))))
12 f o r i 1 in l i s t (map (lambda x : saveOrd (x) , (g e t C h a r F r o m S t r i n g (saveChr (saveOrd (s1)) ,
13 i 2) . s t r i p (s0 . s t r i p (i n 0) . s t r i p () . uppe r ()) . r s t r i p () + (s2 + i n 0) . l ower () . r s t r i p ()
14 . s t r i p () . l s t r i p ()) . s t r i p (g e t C h a r F r o m S t r i n g (s1 , sum (l i s t (map (lambda x :
15 (x + i 1) , l i s t (map (lambda x : l e n (x) , s2)))) [: d i v I n t ((r e s 0 * r e s 0) ,
16 sum (s c r a b b l e s c o r e))]))) . r s t r i p (g e t C h a r F r o m S t r i n g (saveChr (r e s 0)
17 . r s t r i p () . c a p i t a l i z e () , max (max (g e t I n d e x I n t L i s t (s c r a b b l e s c o r e ,
18 i 2) , sum (l i 2)) , g e t I n d e x I n t L i s t (l i 0 , g e t I n d e x I n t L i s t (l i 2 ,
19 i 1)))) . s t r i p () . l ower () . r s t r i p ()))) :
20 i f abs (max (max (sum (l i 1) , (i 1 * i 2)) , min (abs (i 1) , g e t I n d e x I n t L i s t (l i 0 ,
21 i 0)))) not in s c r a b b l e s c o r e [(r e s 0 * i n t (8 . 0)) :] :
22 l i 1 . i n s e r t (max (i0 , r e s 0) , + i 0)
23 r e s 0 += max (l e n (g e t C h a r F r o m S t r i n g (s0 , i 0) . s t r i p (s0)) , max (g e t I n d e x I n t L i s t (
24 s c r a b b l e s c o r e , i 1) , min (l e n (s c r a b b l e s c o r e) , l e n (s1))))
25 re turn r e s 0

Fig. 8: A code example given by a grammar-guided GP approach for the SCRABBLE SCORE problem that passes all test cases.
Example taken from the code repository of [12]. We added several line breaks for better display.

variable and function names) achieved by GitHub Copilot and
the studied grammar-guided GP approach (denoted as G3P
in the table) for the studied benchmark problems from PSB1
and PSB2. As before, the results of the grammar-guided GP
approach are based on the solutions taken from the associated
code repository of a recent paper [12].

We see that the grammar-guided GP approach generated
many more unique solutions compared to GitHub Copilot

for all benchmark problems. For example for the GRADE,
FIZZ BUZZ, and FUEL COST problems, every GP-generated
solution is unique on the AST-level, while GitHub Copilot
generated only 15, 13, and again 15 unique solutions on the
AST-level, respectively.

In summary, we see that GitHub Copilot generates smaller
and less complex solutions while the grammar-guided GP
approach produces more diverse and unique solutions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE III: Success rates as well as the number of unique solutions based on the source code and on the AST for GitHub
Copilot and the studied grammar-guided GP approach (denoted as G3P) for all considered benchmark problems from PSB1
and PSB2. The results of the grammar-guided GP approach are taken from a recent paper [12] and its associated repository.

Benchmark Problem
GitHub Copilot G3P (with standard lexicase selection) [12]

Successes Unique (Source) Unique (AST) Successes Unique (Source) Unique (AST)

COUNT ODDS 98 36 16 65 95 95

GRADE 84 24 15 36 100 100

SCRABBLE SCORE 35 83 46 6 91 90

SMALL OR LARGE 51 26 16 41 98 98

FIND PAIR 41 73 47 0 99 97

FIZZ BUZZ 89 31 13 62 100 100

FUEL COST 97 58 15 33 100 100

GCD 80 89 53 0 87 87

V. DISCUSSION AND FUTURE DIRECTIONS

During our work with GitHub Copilot and GP, we had many
insights that could be relevant for future program synthesis
research. Some of the examples we will discuss below are
already mentioned in the previous conference paper [4], but
are also mentioned in this paper to give a comprehensive view.
However, many discussed examples have been added for this
extended version.

One of the most obvious differences between GitHub Copi-
lot and GP is the definition of the user’s intent. GitHub
Copilot is based on a textual problem description for the
generation of programs, while GP, on the other hand, needs
input/output examples as problem description. In practical
software development, however, a textual description of the
problem is usually more useful, since, e.g., for program
synthesis with GP, a large number of input/output examples is
necessary (up to 200 cases are used for training in the literature
[5]). The manual generation of these input/output examples
can be very time-consuming depending on the problem’s
complexity. However, if large data sets are available, e.g., from
scientific experiments from nature, then GP is well suited to
generate explainable solutions. But if we look at the code
example in Fig. 8, then the efforts that exist in the area of
symbolic regression to achieve interpretability [54], [55] must
be extended to program synthesis as well. Future approaches
could use, e.g., post-simplification as it is already implemented
in PushGP [56] or domain knowledge incorporating human
written source code during the search process (e.g., in the
fitness function or during selection) [7]. However, the latter
is challenging, as the results of Schweim et al. [34] show.
Although it is possible to generate smaller and less com-
plex source code by incorporating software metrics during
search, this often comes at the price of the correctness of the
solutions found. Thus, if GP should be applied in practical
software development, future approaches should improve the
interpretability of the generated source code and reduce the
number of the input/output examples that are required for

training (e.g., as in [37]). Furthermore, tools and frameworks
are needed that can be used not only by researchers but are
also accessible for practitioners (like for GitHub Copilot).

A huge drawback of large language models is that we do
not always exactly know which data was used to train them.
Thus, it is possible that solutions for the benchmark problems
used for evaluation have already been seen by the model
during training. One way to circumvent this issue is to use
novel benchmark problems that were published online after the
training of the analyzed large language model. For example,
Tian et al. [23] studied a large language model’s program
synthesis performance on two benchmark sets collected from
LeetCode10: One contained problems published on LeetCode
before the large language model was trained (2016-2020) and
the other contained problems uploaded to the platform after
the large language model was trained (2022). The results show
a notably lower correctness on the new, probably previously
unseen, problems. Therefore, selection of new benchmark
problems is a possible approach, but with each new generation
of large language models, new benchmark problems must
be collected. In addition, there are always fewer benchmark
problems available from the time after the training of a
new generation of large language models than from the time
before. Another approach could be the automatic generation
of new benchmark problems. However, this may come at the
price of comparability with human-written code, as randomly
generated source code may have different properties. Thus,
there is still a need for research on novel approaches to
evaluate large language models for general purposes as well
as for program synthesis.

Even though it is a challenge for evaluation that large
language models are trained on large amounts of publicly
available resources, it is important for their performance that
they have been trained on a sufficient amount of high-quality
data. However, for many domains, only a limited amount of
training data is available. For example, the results of Robinson

10https://leetcode.com/.

https://leetcode.com/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

et al. [57] in the field of machine translation show that the stud-
ied GPT model performs significantly worse for low-resource
languages. When it comes to the use of large language models
in software development, the question arises how well new
programming languages or even domain-specific languages
can be supported? GP-based approaches, however, can be eas-
ily adapted to new requirements. Domain specific languages,
e.g., used for synthesis of quantum computer programs [58],
could be supported via a grammar or a function/terminal set.

1 # Given a v e c t o r o f f l o a t s , c a l c u l a t e
2 # t h e average o f t h o s e f l o a t s , round t h e
3 # r e s u l t t o 7 d e c i m a l p l a c e s , m u l t i p l y
4 # t h e r e s u l t w i t h 5 and r e t u r n True i f
5 # t h e r e s u l t i s g r e a t e r than 10 , o t h e r w i s e
6 # r e t u r n F a l s e .
7 def myfunc (l i s t 1 : l i s t) :
8 avg = sum (l i s t 1) / l e n (l i s t 1)
9 r e s u l t = round (avg , 7) * 5

10 i f r e s u l t > 1 0 :
11 re turn True
12 e l s e :
13 re turn F a l s e

Fig. 9: A code example given by GitHub Copilot for the
VECTOR AVERAGE problem with a changed and extended
textual problem description.

Nevertheless, during our work with GitHub Copilot, we had
the experience that it works well as a programming support
system for Python and that it can also generate programs for
non-standard problems, as long as the given problem descrip-
tion explicitly defines the required steps. For demonstration,
Fig. 9 shows GitHub Copilot’s code suggestion for an extended
version of the VECTOR AVERAGE problem. Although we
cannot be sure that the large language model behind GitHub
Copilot has not already seen this or similar programs, it is at
least no longer one of the classic benchmark problems whose
solutions can often be found on GitHub and other platforms.
We changed not only the rounding precision but also notably
expanded the problem description and changed the return type.
Despite all the changes in the description, we get a correct
code suggestion from GitHub Copilot. However, there are
cases where GitHub Copilot could not find a solution, even
without changing the textual problem description. An example
of this is the DIGITS problem, which could only be solved by
PushGP but not by GitHub Copilot (see Table I).

Large language models and GP could complement each
other very well in the area of program synthesis. As for
some of the solutions generated by GitHub Copilot during our
experiments, we noticed that the source code contains mean-
ingful comments. Figure 10 shows an example for comments
generated by GitHub Copilot for the CHECKSUM problem.
Large language models could be used to explain GP-generated
code or to insert meaningful comments and variable names.
Recent work already shows that large language models can be
utilized to explain source code [59].

As previously mentioned, we have noticed that the success
rates achieved by GitHub Copilot on the problems from
PSB2 (see Table II) are lower than those for PSB1 (Table I).

1 # Given a s t r i n g , c o n v e r t each c h a r a c t e r
2 # i n t h e s t r i n g i n t o i t s i n t e g e r ASCII
3 # va lue , sum them , t a k e t h e sum modulo
4 # 64 , add t h e i n t e g e r v a l u e o f t h e space
5 # c h a r a c t e r , and t h e n c o n v e r t t h a t
6 # i n t e g e r back i n t o i t s c o r r e s p o n d i n g
7 # c h a r a c t e r (t h e checksum c h a r a c t e r) .
8 def myfunc (s t r 1 : s t r) :
9 # Conver t each c h a r a c t e r i n t h e s t r i n g

10 # i n t o i t s i n t e g e r ASCII v a l u e
11 # sum them
12 sum = 0
13 f o r i in s t r 1 :
14 sum += ord (i)
15 # t a k e t h e sum modulo 64
16 sum %= 64
17 # add t h e i n t e g e r v a l u e o f t h e space
18 # c h a r a c t e r
19 sum += ord (’ ’)
20 # c o n v e r t t h a t i n t e g e r back i n t o i t s
21 # c o r r e s p o n d i n g c h a r a c t e r
22 # (t h e checksum c h a r a c t e r) .
23 re turn chr (sum)

Fig. 10: A code example given by GitHub Copilot for the
CHECKSUM problem with meaningful comments. We added
several line breaks for better display.

We believe that this is often related to imprecise textual
problem descriptions. In order to test whether a more detailed

1 # Given a s t r i n g where "T" means True ,
2 # "F" means False , " | " i s t h e OR o p e r a t o r ,
3 # and "&" i s t h e AND o p e r a t o r . Re t u r n
4 # t h e e v a l u a t i o n o f t h e g i v e n s t r i n g
5 # (s t r 1) as Boolean v a l u e . The g i v e n
6 # s t r i n g c o n t a i n s no s p a c e s .
7 def myfunc (s t r 1 : s t r) :
8 re turn e v a l (
9 s t r 1 . r e p l a c e (" T " , " True ")

10 . r e p l a c e (" F " , " F a l s e ")
11 . r e p l a c e (" | " , " o r ")
12 . r e p l a c e ("&" , " and ")
13)

Fig. 11: A code example given by GitHub Copilot for the
SOLVE BOOLEAN problem. We added several line breaks for
better display.

problem description is helpful for finding a correct solution,
we expanded the description of the SOLVE BOOLEAN problem
(e.g., added a description for the symbols used in the input
string) where GitHub Copilot is not able to find a correct
solution with the original description (see Table II). Figure 11
shows a correct code suggestion given by GitHub Copilot as
well as the extended problem description (lines 1–6). Thus,
the description of the problem seems to have a large influence
on the solution quality. Therefore, it is not surprising that there
is recent work on prompt engineering [60], [61] that attempts
to further improve the quality of the output of large language
models by systematically changing the input prompts.

Before using code suggestions generated by GitHub Copilot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

or other large language models in the source code of produc-
tive software, further properties of the code should be checked
in addition to correctness. During our experiments, we noticed
that the evaluation of GitHub Copilot’s code suggestions for
the GCD problem on the test data takes significantly more
time than for many other benchmark problems. Therefore,
we measured the run-time more precisely. Figure 12 shows
a histogram of the run-time in seconds for GitHub Copilot’s
code suggestions for the GCD problem passing all the test
cases. We see that most of the generated programs take more

0 5 10 15 20 25 30 35 40
Time in Sec.

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Fig. 12: A histogram of the run-time in seconds for all
suggestions given by GitHub Copilot for the GCD problem
solving all test cases correctly.

than 10 seconds to process all the test inputs. Some programs
even take more then 30 seconds and only one solution takes
less than 5 seconds. Thus, almost all suggested programs have
poor run-time and should not be used in practice. However,
it can get even worse, as code generated by large language
models may have security issues [1], [62]. An example of this
can be seen in Fig. 11. The eval() function is used in the
suggested source code without checking the given input, which
means that malicious code could be executed. This could be
easily prevented in GP-based program synthesis by simply
not including the eval() function in the used grammar.
However, large language models rely on the data they are
trained on and human-generated code is often error prone and
not well optimized. Therefore, in future research, methods like
genetic improvement (GI) [45] could be used for improving,
e.g., the run-time or other non-functional properties of code
generated by large language models.

Lastly, the training of large language models is compu-
tationally very intensive and consumes a lot of energy [63]
while GP-based approaches can already be executed on more
easily available hardware. However, the inference time of an
already trained large language model is usually much faster
than its training time. With GP, however, the evolution has to
be repeated whenever a new program is required, which can
take several hours or even days for a single program with
current frameworks [6]. For symbolic regression, there are
frameworks that can be accelerated with modern GPUs [64].

To improve the training times, frameworks like this are also
necessary for GP-based program synthesis. Another interesting
research direction for the acceleration of GP could be the
incorporation of pre-trained models in the search process as
studied by Reiter et al. [65].

VI. LIMITATIONS

We used GitHub Copilot via the Visual Studio Code ex-
tension to measure the experience of a software developer.
However, GitHub Copilot and the large language model behind
it works like a black box for researchers and the performance
may change in the future due to further adjustments by
the developers. Nevertheless, an analysis of its quality is
important, as it can be assumed that GitHub Copilot and
similar tools will influence many software developers.

Additionally, an internal threat to validity comes from not
knowing whether the large language model underlying GitHub
Copilot has not already been trained on problems from the
PSB1 and PSB2 datasets. This threat concerns all work that
compare with large language models [23]. However, these are
the benchmarks against which program synthesis approaches
have been compared thus far and are regarded as standard.
Given we do not know what large language models have been
trained on, selection of a new benchmark set would be a
challenging task that goes beyond the scope of this paper.

VII. CONCLUSION

In this work, we carried out an in-depth comparison of
GitHub Copilot and GP extending our previous conference
paper [4]. Through our work with GitHub Copilot and by
comparing the programs generated by Copilot and GP in
terms of performance and structure, we were able to identify
different strengths and weaknesses of each method as well as
potential future research directions for the GP community in
the area of program synthesis.

In our analysis of the performance on common program
synthesis benchmark problems, we find that GitHub Copilot
and GP can solve about the same number of benchmark
problems. Specifically, on PSB1, GitHub Copilot is able
to solve 89.7% of the benchmark problems, while PushGP
solves 86.2% of the problems. With 58.6%, grammar-guided
GP solves a notably lower number of benchmark problems
from PSB1. On PSB2, GitHub Copilot solves 80% of the
benchmark problems and PushGP solves 68% of the prob-
lems. However, when studying the success rates, we see that
GitHub Copilot significantly outperforms the GP approaches
on over 50% of the problems from PSB1 and PSB2. Although,
when comparing the results, we must keep in mind that the
large language model underlying GitHub Copilot may have
already seen many of the benchmark problems tested during
training. In addition, training large language models is very
computationally intensive, whereas GP can be run on more
easily available hardware.

Further, we find in our analysis of the structure and the
diversity of the generated code, that for over 85% of the
benchmark problems, the tested grammar-guided GP generates
programs that are significantly larger with up to more than

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

three times more SLOC compared to the programs generated
with GitHub Copilot. Additionally, we find that the grammar-
guided GP approach generates more unique programs than
GitHub Copilot (on average 95.9% vs. 27.6% unique solutions
on the AST level, respectively) which indicates that GP is able
to find novel solution strategies while GitHub Copilot suggests
solutions that are shorter and less complex.

Overall, from a programmer’s perspective, GitHub Copilot
is currently better suited for daily work in software develop-
ment. This is mainly because GitHub Copilot offers tools that
can be integrated directly into the code editors used by the
programmers, the generated code is usually easy to read and
less bloated, and the given suggestions are often correct for
common tasks. However, which method should ultimately be
used – GitHub Copilot or GP – depends on the considered
problem. For example, to generate a program that connects
the observed data points of a scientific experiment, GP is
certainly more suitable because the data points can simply be
passed as input/output examples. GP can also be used when
generating programs in domain-specific languages, as the used
representation can be easily adapted via grammars or the
function set. Furthermore, GP can find novel and innovative
solutions through its evolutionary nature.

Nevertheless, for the GP community, several future research
directions can be derived from our comparison of GitHub
Copilot and GP. Therefore, we recommend researchers to
focus more on increasing the readability and interpretability of
the generated programs while preserving GP’s unique ability to
find diverse, novel, and innovative solutions. Furthermore, the
community should focus more on providing fast and accessible
tools and frameworks to make it easier for researchers as
well as software developers to use GP-based approaches. In
addition, large language models and GP could be combined.
For example, large language models could be used to doc-
ument solutions generated by GP, or GP could be used to
automatically increase the performance of programs generated
by large language models.

ACKNOWLEDGMENTS & COPYRIGHT

This work was partially supported by UKRI EPSRC grant
no. EP/P023991/1. For the purpose of open access, the author
has applied a Creative Commons Attribution (CC BY) licence
to any Author Accepted Manuscript version arising.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[2] N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” in proceedings of an International Conference on
Genetic Algorithms and the Applications, 1985, pp. 183–187.

[3] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[4] D. Sobania, M. Briesch, and F. Rothlauf, “Choose your programming
copilot: a comparison of the program synthesis performance of github
copilot and genetic programming,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2022, pp. 1019–1027.

[5] T. Helmuth and L. Spector, “General program synthesis benchmark
suite,” in Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, 2015, pp. 1039–1046.

[6] T. Helmuth and P. Kelly, “Psb2: the second program synthesis bench-
mark suite,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference, 2021, pp. 785–794.

[7] D. Sobania and F. Rothlauf, “Teaching gp to program like a human
software developer: using perplexity pressure to guide program synthesis
approaches,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference, 2019, pp. 1065–1074.

[8] ——, “Challenges of program synthesis with grammatical evolution,”
in European Conference on Genetic Programming (Part of EvoStar).
Springer, 2020, pp. 211–227.

[9] T. Helmuth and L. Spector, “Problem-solving benefits of down-sampled
lexicase selection,” Artificial life, vol. 27, no. 3–4, pp. 183–203, 2021.

[10] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Extending
program synthesis grammars for grammar-guided genetic programming,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 2018, pp. 197–208.

[11] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[12] R. Boldi, M. Briesch, D. Sobania, A. Lalejini, T. Helmuth, F. Rothlauf,
C. Ofria, and L. Spector, “Informed down-sampled lexicase selection:
Identifying productive training cases for efficient problem solving,”
arXiv preprint arXiv:2301.01488, 2023.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[14] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1724–1734.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings, 2020,
pp. 1536–1547.

[17] C. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundaresan,
“Pymt5: Multi-mode translation of natural language and python code
with transformers,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 9052–
9065.

[18] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy,
C. de Masson d’Autume, I. Babuschkin, X. Chen, P.-S. Huang,
J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz,
E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and
O. Vinyals, “Competition-level code generation with alphacode,”
Science, vol. 378, no. 6624, pp. 1092–1097, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.abq1158

[19] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of chatgpt,” in 2023 IEEE/ACM
International Workshop on Automated Program Repair (APR). IEEE,
2023, pp. 23–30.

[20] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “Chatgpt
prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design,” arXiv preprint arXiv:2303.07839,
2023.

[21] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[22] A. Borji, “A categorical archive of chatgpt failures,” arXiv preprint
arXiv:2302.03494, 2023.

[23] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F.
Bissyandé, “Is chatgpt the ultimate programming assistant–how far is
it?” arXiv preprint arXiv:2304.11938, 2023.

[24] T. Helmuth, N. F. McPhee, and L. Spector, “Program synthesis using
uniform mutation by addition and deletion,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2018, pp. 1127–
1134.

[25] T. Helmuth and L. Spector, “Explaining and exploiting the advantages of
down-sampled lexicase selection,” in Artificial Life Conference Proceed-
ings 32. MIT Press One Rogers Street, Cambridge, MA 02142-1209,
USA journals-info . . . , 2020, pp. 341–349.

[26] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “A grammar
design pattern for arbitrary program synthesis problems in genetic

https://www.science.org/doi/abs/10.1126/science.abq1158

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

programming,” in European Conference on Genetic Programming.
Springer, 2017, pp. 262–277.

[27] Y. Yuan and W. Banzhaf, “Iterative genetic improvement: Scaling
stochastic program synthesis,” Artificial Intelligence, vol. 322, p.
103962, 2023.

[28] J. G. Hernandez, A. Lalejini, E. Dolson, and C. Ofria, “Random sub-
sampling improves performance in lexicase selection,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
2019, pp. 2028–2031.

[29] L. Spector and A. Robinson, “Genetic programming and autoconstruc-
tive evolution with the Push programming language,” Genetic Program-
ming and Evolvable Machines, vol. 3, no. 1, pp. 7–40, 2002.

[30] L. Spector, J. Klein, and M. Keijzer, “The push3 execution stack and
the evolution of control,” in Proceedings of the 7th annual conference
on Genetic and evolutionary computation, 2005, pp. 1689–1696.

[31] T. Helmuth and A. Abdelhady, “Benchmarking parent selection for
program synthesis by genetic programming,” in Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion, 2020,
pp. 237–238.

[32] P. A. Whigham et al., “Grammatically-based genetic programming,” in
Proceedings of the workshop on genetic programming: from theory to
real-world applications, vol. 16, no. 3, 1995, pp. 33–41.

[33] E. Hemberg, J. Kelly, and U.-M. O’Reilly, “On domain knowledge and
novelty to improve program synthesis performance with grammatical
evolution,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2019, pp. 1039–1046.

[34] D. Schweim, E. Hemberg, D. Sobania, and U.-M. O’Reilly, “Exploiting
knowledge from code to guide program search,” in European Conference
on Genetic Programming (Part of EvoStar). Springer, 2022, pp. 262–
277.

[35] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Towards un-
derstanding and refining the general program synthesis benchmark suite
with genetic programming,” in 2018 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2018, pp. 1–6.

[36] D. Sobania and F. Rothlauf, “A generalizability measure for program
synthesis with genetic programming,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2021, pp. 822–829.

[37] D. Sobania, M. Briesch, P. Röchner, and F. Rothlauf, “MTGP: Com-
bining metamorphic testing and genetic programming,” in European
Conference on Genetic Programming (Part of EvoStar). Springer, 2023,
pp. 324–338.

[38] F. Garrow, M. A. Lones, and R. Stewart, “Why functional program
synthesis matters (in the realm of genetic programming),” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
2022, pp. 1844–1853.

[39] D. Schweim, D. Sobania, and F. Rothlauf, “Effects of the training set
size: A comparison of standard and down-sampled lexicase selection in
program synthesis,” in 2022 IEEE Congress on Evolutionary Computa-
tion (CEC). IEEE, 2022, pp. 1–8.

[40] D. Sobania and F. Rothlauf, “Program synthesis with genetic program-
ming: the influence of batch sizes,” in European Conference on Genetic
Programming (Part of EvoStar). Springer, 2022, pp. 118–129.

[41] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill,
“Grammar-based genetic programming: a survey,” Genetic Programming
and Evolvable Machines, vol. 11, pp. 365–396, 2010.

[42] K. Krawiec, Behavioral program synthesis with genetic programming.
Springer, 2016, vol. 618.

[43] T. P. Pawlak and K. Krawiec, “Competent geometric semantic genetic
programming for symbolic regression and boolean function synthesis,”
Evolutionary computation, vol. 26, no. 2, pp. 177–212, 2018.

[44] P. Liskowski, K. Krawiec, N. E. Toklu, and J. Swan, “Program syn-
thesis as latent continuous optimization: Evolutionary search in neural
embeddings,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, 2020, pp. 359–367.

[45] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: a comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, 2017.

[46] Z. Bian, A. Blot, and J. Petke, “Refining fitness functions for search-
based program repair,” in 2021 IEEE/ACM International Workshop on
Automated Program Repair (APR). IEEE, 2021, pp. 1–8.

[47] A. Blot and J. Petke, “Comparing genetic programming approaches for
non-functional genetic improvement: Case study: Improvement of min-
isat’s running time,” in European Conference on Genetic Programming
(Part of EvoStar). Springer, 2020, pp. 68–83.

[48] L. Spector, “Assessment of problem modality by differential perfor-
mance of lexicase selection in genetic programming: a preliminary

report,” in Proceedings of the 14th annual conference companion on
Genetic and evolutionary computation, 2012, pp. 401–408.

[49] T. Helmuth and P. Kelly, “Applying genetic programming to psb2: the
next generation program synthesis benchmark suite,” Genetic Program-
ming and Evolvable Machines, vol. 23, no. 3, pp. 375–404, 2022.

[50] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg,
and M. O’Neill, “Ponyge2: Grammatical evolution in python,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2017, pp. 1194–1201.

[51] S. Rizwan, M. S. Ali Sobuj, and M. R. Akhond, “A survey on
software test case minimization,” in Proceedings of the 2022 Fourteenth
International Conference on Contemporary Computing, 2022, pp. 679–
684.

[52] D. Sobania, D. Schweim, and F. Rothlauf, “A comprehensive survey on
program synthesis with evolutionary algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 27, no. 1, pp. 82–97, 2022.

[53] M. C. Fernandes, F. O. De França, and E. Francesquini, “Hotgp - higher-
order typed genetic programming,” in Proceedings of the Genetic and
Evolutionary Computation Conference, ser. GECCO ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1091–1099.
[Online]. Available: https://doi.org/10.1145/3583131.3590464

[54] M. Virgolin, A. De Lorenzo, E. Medvet, and F. Randone, “Learn-
ing a formula of interpretability to learn interpretable formulas,” in
Parallel Problem Solving from Nature–PPSN XVI: 16th International
Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020,
Proceedings, Part II 16. Springer, 2020, pp. 79–93.

[55] W. G. La Cava, P. C. Lee, I. Ajmal, X. Ding, P. Solanki, J. B. Cohen,
J. H. Moore, and D. S. Herman, “A flexible symbolic regression method
for constructing interpretable clinical prediction models,” NPJ Digital
Medicine, vol. 6, no. 1, p. 107, 2023.

[56] T. Helmuth, N. F. McPhee, E. Pantridge, and L. Spector, “Improving
generalization of evolved programs through automatic simplification,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2017, pp. 937–944.

[57] N. Robinson, P. Ogayo, D. R. Mortensen, and G. Neubig, “ChatGPT
MT: Competitive for high- (but not low-) resource languages,”
in Proceedings of the Eighth Conference on Machine Translation,
P. Koehn, B. Haddow, T. Kocmi, and C. Monz, Eds. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 392–418.
[Online]. Available: https://aclanthology.org/2023.wmt-1.40

[58] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Quantum
computing applications of genetic programming,” Advances in genetic
programming, vol. 3, pp. 135–160, 1999.

[59] D. Sobania, A. Geiger, J. Callan, A. Brownlee, C. Hanna, R. Moussa,
M. Z. López, J. Petke, and F. Sarro, “Evaluating explanations for
software patches generated by large language models,” in International
Symposium on Search Based Software Engineering. Springer, 2023,
pp. 147–152.

[60] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” International Journal of Computer Vision, vol. 130,
no. 9, pp. 2337–2348, 2022.

[61] T. Martins, J. M. Cunha, J. Correia, and P. Machado, “Towards the
evolution of prompts with metaprompter,” in International Conference
on Computational Intelligence in Music, Sound, Art and Design (Part
of EvoStar). Springer, 2023, pp. 180–195.

[62] M. O. F. Rokon, R. Islam, A. Darki, E. E. Papalexakis, and M. Faloutsos,
“Sourcefinder: Finding malware source-code from publicly available
repositories in github,” in 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020). San Sebastian:
USENIX Association, Oct. 2020, pp. 149–163. [Online]. Available:
https://www.usenix.org/conference/raid2020/presentation/omar

[63] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the carbon
footprint of bloom, a 176b parameter language model,” arXiv preprint
arXiv:2211.02001, 2022.

[64] F. Baeta, J. Correia, T. Martins, and P. Machado, “Tensorgp-genetic
programming engine in tensorflow.” in EvoApplications. Springer, 2021,
pp. 763–778.

[65] J. Reiter, D. Schweim, and D. Wittenberg, “Pretraining reduces runtime
in denoising autoencoder genetic programming by an order of magni-
tude,” in Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, 2023, pp. 2382–2385.

https://doi.org/10.1145/3583131.3590464
https://aclanthology.org/2023.wmt-1.40
https://www.usenix.org/conference/raid2020/presentation/omar

	Introduction
	Related Work
	Program Synthesis with Large Language Models
	Program Synthesis with GP

	Experimental Design
	Performance Comparison of GitHub Copilot and GP
	Analysis of the Suggested Programs

	Comparison of GitHub Copilot and GP
	Performance Comparison
	Analysis of the Structure and the Diversity

	Discussion and Future Directions
	Limitations
	Conclusion
	References

