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Abstract  

Behaviour is driven by external incentives (e.g., money, social feedback) and 

internal incentives (e.g., emotions). We monitor the stock market for profitable 

investments, we share posts online to receive positive feedback, and we 

accumulate evidence for the success of a medical procedure to ease pre-

surgery anxiety. This thesis explores how incentives alter evidence 

accumulation and sharing behaviour. 

 

People accumulate evidence to form beliefs which elicit positive emotions, even 

if these beliefs are incorrect. This bias is adaptive, as the benefits for well-being 

typically outweigh the harm of inaccuracy. Chapter 2 examines if evidence 

accumulation becomes less biased in threatening environments, where severe 

harm is probable. Combining a social-threat manipulation with a sequential 

sampling task and Drift-Diffusion Modelling (DDM), I find that under threat, 

participants are less biased and require weaker evidence for negative 

conclusions. This may increase precautionary actions.  

 

Although financial accuracy incentives are thought to reduce biases, the 

empirical evidence is mixed. Chapter 3 examines why they may fail to reduce 

biased evidence accumulation. Coupling a perceptual task with DDM, I show 

that while accuracy incentives increase caution, they modulate a separate 

element of the accumulation process and thus do not reduce the bias, possibly 

due to its unconscious nature. 

 

I propose that when accuracy incentives are coupled with feedback, decisions 

become more accurate. External incentives are pervasive online: people share 

information to receive ‘likes’. I hypothesize that the incentive structure of social 

media platforms, whereby social rewards (‘likes’) and punishments (‘dislikes’) 

are dissociated from accuracy, contributes to the spread of misinformation. 

Chapter 4 combines simulated social media environments and DDM to show 

that when feedback is contingent on accuracy, sharing becomes more 

discerning, reducing misinformation spread. 
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This thesis unveils the mechanisms through which incentives influence 

evidence accumulation and sharing behaviour, offering insights for 

interventions to mitigate biased decision-making. 
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Impact Statement 

In today’s digital world we are perpetually faced with opportunities to 

accumulate evidence and share information. This behaviour is motivated by 

external incentives, such as money or social feedback, and internal incentives, 

such as emotions. These incentives sometimes lead to biased decisions. This 

thesis investigates how altering the incentive structure people face can mitigate 

biased evidence accumulation and make sharing behaviour more discerning.  

 

When accumulating evidence, individuals are biased towards ‘desirable’ 

conclusions that make them feel good and thus prioritize ‘desirable’ evidence 

over ‘undesirable’ evidence. This can have detrimental consequences. For 

example, wanting to avoid negative emotions may cause you to dismiss critical 

signs of disease, and thus fail to get help. Here I examine whether and how 

changing the incentive structure people face — by (1) exposing participants to 

a threatening environment, or (2) rewarding accurate responses — reduces the 

bias in evidence accumulation. 

 

I find that under threat weaker evidence is required to reach undesirable 

conclusions. This can be advantageous as it leads to increased precautionary 

actions in threatening environments. While the negative effects of stress have 

been repeatedly underscored this study shows that stress, induced by 

perceived threat, can be adaptive. These findings may also explain overly 

pessimistic decisions in those with anxiety and depression and highlight 

possible target mechanisms for therapeutic interventions. 

 

While rewarding accuracy is commonly thought to reduce biased decisions, the 

empirical evidence is mixed. I show that accuracy incentives do not reduce 

biased evidence accumulation and provide a mechanistic explanation for why 

this is the case. Specifically, I find that accuracy incentives and the bias towards 

desirable conclusions alter orthogonal aspects of the accumulation process. 

This suggests that participants are unaware of their own bias. As accuracy 

incentives are commonly employed to improve decision-making, these findings 
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are relevant to academics, policymakers and industry leaders and may help 

inform the development of novel interventions against biased decisions. 

 

Building on this research, I propose that when accuracy incentives are coupled 

with direct feedback, decision-making becomes more accurate. I demonstrate 

that the spread of misinformation online is facilitated by the existing incentive 

structure of social media platforms in which existing social rewards (e.g., ‘likes’) 

and punishments (e.g., ‘dislikes’) are dissociated from the accuracy of the 

information shared. We share information others will react positively to and 

avoid sharing information others will react negatively to. However, because this 

feedback is not tied to accuracy, we sometimes share information even if we 

suspect it may be false. I find that an intervention which slightly changes this 

incentive structure, such that feedback is contingent on accuracy increases the 

proportion of true relative to false information shared, without reducing user 

engagement. The results offer a framework for an intervention that could be 

adopted to reduce misinformation spread, which in turn could reduce violence, 

vaccine hesitancy and political polarization. 

 

Bridging theoretical insights with practical solutions, this research provides a 

mechanistic account of how changing incentives alters evidence accumulation 

and sharing behaviour, thereby contributing to the development of theory-

based behavioural interventions to improve decision-making.  
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Chapter 1: Introduction 

1.1 Reward-Oriented Evidence Accumulation 

In today’s age of information (Castells, 1996) data is constantly at our fingertips. 

Recent reports show that every day, internet users spend nearly seven hours 

online (Statista, 2023), able to effortlessly accumulate an abundance of noisy 

information (or ‘evidence’). This raises a fundamental question: Why do we 

accumulate evidence? 

1.1.1 External Incentives 

Humans accumulate evidence by continuously sampling noisy information, in 

order to form beliefs and make decisions (Platt & Glimcher, 1999; Ratcliff, 1978; 

Usher & McClelland, 2001) which can gain them rewards and help them avoid 

punishments ( = external outcomes, see Figure 1.1; Gold & Shadlen, 2002, 

2007). These outcomes can be tangible, such as monetary gains or losses, 

and/or intangible, for instance in the form of social feedback, which at times can 

have tangible consequences. For example, an individual might accumulate 

evidence to decide whether to invest in emerging technology. To make this 

decision, they need to arbitrate between two alternatives: ‘to invest’ or ‘to 

withhold’. In doing so, they may be motivated by financial profit and by others’ 

reactions to their decision. When the evidence in favour of one alternative 

relative to the other is large enough, they make their decision (see also Ratcliff 

& McKoon, 2008). For instance, if the individual finds strong evidence that an 

investment will yield substantial financial and/or social returns, they form the 

belief that the investment is profitable, decide to invest, and may later reap the 

rewards.  

 

1.1.2 Internal Incentives 

Evidence accumulation is not solely motivated by external incentives. Rather, 

information also carries intrinsic utility (Blanchard et al., 2015; Bromberg-Martin 

et al., 2024; Bromberg-Martin & Hikosaka, 2009, 2011; Charpentier et al., 2018; 

Eliaz & Schotter, 2007; Grant et al., 1998) even if it provides no instrumental 
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benefit. It can deepen our sense of understanding the world around us 

(Dörnemann et al., 2022; Johnston & Davey, 1997; Kobayashi & Hsu, 2019; 

Sharot & Sunstein, 2020). For example, imagine someone gathers information 

about black holes. While this information is unlikely to motivate decisions which 

lead to financial or social rewards, it increases the individual’s understanding of 

the world around them. Information can also alter our emotions. For example, 

learning that we are at high risk of cancer will make us feel anxious, while 

learning that we received a high score on a test can make us feel happy. 

Unsurprisingly therefore, people prefer seeking desirable information 

(Charpentier et al., 2018) - which elicits positive emotions (see Figure 1.1). 

 

It has also been shown that individuals selectively accumulate evidence to form 

positive beliefs from which they derive internal rewards, such as positive 

emotions (Gesiarz et al., 2019; Leong et al., 2019). For example, in Gesiarz et 

al. (2019), participants completed a sequential sampling task, in which they had 

to determine whether they were in a desirable state, associated with greater 

financial rewards than losses, or an undesirable state, associated with greater 

financial losses than rewards. Crucially, they had no control over which state 

they were in and were financially incentivized to accurately identify whether they 

were in a desirable or undesirable state. In spite of this, participants were 

biased towards concluding they were in a desirable state and required weaker 

evidence to reach a desirable compared to an undesirable conclusion. 

Computational modelling revealed that this desirability bias was due to 

participants placing more weight on evidence that aligned with their preferred 

(positive) belief (i.e., believing that they were in a desirable state), compared to 

evidence that opposed it. As a result, they were faster to reach a desirable, 

internally rewarding conclusion and continued to accumulate evidence for 

longer when it pointed to an undesirable conclusion, perhaps hoping to refute 

it. This tendency is also observed in the real world. For instance, some missed 

cancer diagnoses are due to doctors deciding not to conduct additional tests 

when the initial evidence suggests that the patient may not be ill (Lyratzopoulos 

et al., 2015). Neurocomputational evidence attributes this bias in evidence 

accumulation to a selective increase in neural activity for the desirable state, 
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which encompasses both anticipatory activity in the nucleus accumbens 

(nACC), as well as activity in sensory regions of the brain which track the 

accumulation of evidence towards the desired conclusion (Calabro et al., 2023; 

Leong et al., 2019). This suggests that internal incentives not only influence the 

way in which we accumulate evidence but also alter the neural representation 

of our current state. Simply put, people accumulate evidence in a way that 

fosters positive emotions and reduces negative emotions. 

 

1.1.3 A Bias towards Internal Incentives: Adaptation or Flaw? 

Prior work suggests that when accumulating evidence, internal incentives may 

take precedence over external incentives (Gesiarz et al., 2019; Leong et al., 

2019). The tasks used in these studies were designed such that a bias towards 

desirable conclusions was financially suboptimal. Participants preferred 

forming positive beliefs from which they derived internal rewards, even if these 

beliefs caused them to incur financial losses. This can have detrimental 

consequences. For instance, it is thought that the tendency to prioritize internal 

incentives, such as positive emotions or increased sense of self-efficacy, has 

contributed to falsely optimistic investment decisions preceding the financial 

crisis (Shefrin, 2015), as well as a false sense of security which resulted in 

failure to take preventative measures against natural disasters (Paton, 2003). 

So why then do humans prioritize positive beliefs, and thus internal incentives 

over external incentives when they accumulate evidence?  

Despite the potential negative repercussions, there are numerous benefits 

associated with forming positive beliefs even when they are false. It has been 

suggested that positive beliefs from which individuals derive internal rewards 

promote mental (Carver & Scheier, 2014; Taylor et al., 2000; Taylor & Brown, 

1994), as well as physical well-being (Hernandez et al., 2015; Tindle et al., 

2009). Patients who had positive expectations of their future, were less likely to 

develop coronary heart disease (Tindle et al., 2009), had a lower chance of re-

hospitalization after surgery (Scheier et al., 1999), and had higher survival rates 

after cancer diagnosis (Allison et al., 2003; Novotny et al., 2010). When 

individuals hold positive beliefs, they feel a greater sense of control and self-
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efficacy (McFarland & Ross, 1982). This motivates them to adopt measures to 

protect their well-being, such as engaging in regular physical exercise (Giltay 

et al., 2007; Steptoe et al., 2006). Positive beliefs have also been shown to 

reduce stress (Jobin et al., 2014), which, over time, improves wellbeing (Taylor 

et al., 2000; Taylor & Brown, 1994). By contrast, individuals with major 

depression tend to be more pessimistic about their future (Cropley & MacLeod, 

2003; Strunk et al., 2006; Strunk & Adler, 2009). In light of their positive 

influence on physical and mental well-being, it has been argued, that positive 

beliefs are adaptive even when inaccurate (McKay & Dennett, 2009). For 

instance, if a patient erroneously believes that they have a high probability of 

fully recovering from a severe injury, this can lead to a more positive attitude 

and greater effort in the rehabilitation process. As such, accumulating evidence 

in a way that prioritizes the formation of positive beliefs (‘biased evidence 

accumulation’) and thus generates internal rewards, may too be adaptive, even 

when those beliefs are inaccurate. 

When vying for resources, biased individuals may be more persistent and 

assertive in staking their claims on otherwise unattainable resources, while their 

more capable, yet less confident rivals might withdraw from the competition 

(Johnson & Fowler, 2011). Compared to unbiased individuals, those who 

overestimate their ability to succeed, may also be more likely to apply to 

challenging jobs, thereby increasing their chances of securing employment. In 

contrast, when the potential costs of erroneously held positive beliefs clearly 

exceed the benefits it is advantageous to be unbiased (Johnson & Fowler, 

2011). In light of this, it has been suggested that whether individuals prioritize 

internal incentives over external incentives depends on the environment 

(Basten et al., 2010; Bromberg-Martin & Sharot, 2020; Garrett et al., 2018; 

Sharot & Garrett, 2016). The same may be true for evidence accumulation (see 

Figure 1.1). In environments where the benefits of being biased towards 

positive beliefs outweigh the costs, as is the case in safe environments, 

individuals place less weight on negative, undesirable evidence, which may be 

advantageous for their physical and mental wellbeing. By contrast, in 

environments where the costs of being biased towards positive beliefs clearly 
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outweigh the benefits, such as threatening environments, they shift their 

attention towards negative evidence and prioritize external incentives. 

Depending on the outcomes they obtain, they can then adjust their behaviour 

to maximize overall utility (Bond et al., 2023). 

 

Figure 1.1. Reward-Oriented Evidence Accumulation. Humans accumulate 
evidence to form beliefs which motivate decisions and actions towards 
desirable external outcomes (e.g., monetary rewards). However, they are also 
motivated to accumulate evidence to form beliefs which give rise to desirable 
internal outcomes (e.g., positive emotions), sometimes even at the expense of 
external outcomes. Informed by the outcomes they obtain; they adaptively 
adjust their behaviour to maximize overall utility in a given environment. 

 

1.1.4 Changing the Incentives to Accumulate Evidence 

Thus far, it has been shown that internal incentives influence evidence 

accumulation, such that participants are biased towards desirable ( = internally 

rewarding) conclusions (Gesiarz et al., 2019; Leong et al., 2019). Prior research 

has also underscored the influence of contextual features on value-based 

decision-making (for a review see Engelmann & Hein, 2013). If individuals 

adaptively prioritize internal and external incentives based on their 

Evidence-Accumulation

Internal Outcomes
positive and/or negative 

emotions, certainty, uncertainty …

External Outcomes
social and/or monetary rewards and 

punishments ….

Beliefs

Decisions
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environment, evidence accumulation should be less biased when false beliefs 

resulting in false conclusions are costly. Based on this assumption, this thesis 

investigates whether incentives for evidence accumulation can be altered to 

make evidence accumulation less biased. First, I will test the hypothesis that 

exposing participants to an environment in which the costs of false beliefs are 

high, they are less biased towards desirable conclusions. Then, I will investigate 

whether increasing the external incentives to provide correct responses can 

mitigate the influence of internal incentives on evidence accumulation. 

 

Perceived Threat 

In threatening environments, the costs of false beliefs can be especially high 

(Dunning, 2009; Haselton & Nettle, 2005; Johnson & Fowler, 2011). These 

environments elicit a physiological stress response which signals a high risk-

situation (Nesse et al., 2016). In these situations, selective sampling of positive, 

desirable evidence could be detrimental, as the potential for adverse outcomes 

is high. Rather, it is adaptive to err on the side of caution. Imagine, you are 

walking through a high-crime area at night, and you see someone walking 

closely behind you. It might just be a coincidence, but it could also be someone 

trying to accost you. Assuming the latter, you will likely change your route and 

as a result avert potential danger. It then follows that under threat individuals 

prioritize the accumulation of negative, undesirable evidence to pre-emptively 

mitigate potential losses, thereby reducing the bias in evidence accumulation 

towards desirable conclusions. This hypothesis aligns with prior research. 

When individuals are anxious, anticipated adverse consequences override the 

importance of possible desirable outcomes in risky decision-making 

(Engelmann et al., 2015). In line with this, Robinson et al., (2011) observed a 

threat-induced bias towards aversive stimuli in an emotional Stroop task in 

which participants had to identify appetitive and aversive faces. Stress 

reportedly increases attention to negative stimuli (Robinson et al., 2012; 

Robinson, Vytal, et al., 2013), thereby reducing preferential belief updating for 

desirable information (Garrett et al., 2018), and improving response inhibition 

(Robinson, Krimsky, et al., 2013). However, until now, the hypothesis that 

perceived threat mitigates biased evidence accumulation has not been tested. 
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In Chapter 2, I therefore examine how perceived threat impacts evidence 

accumulation. I combine a social-threat manipulation with a sequential 

sampling task in which participants have to determine whether they are in a 

desirable state, associated with greater financial rewards than losses, or an 

undesirable state, associated with greater financial losses than rewards. Using 

computational modelling, I then examine if and how acute stress alters the 

process by which evidence is accumulated when participants are motivated to 

reach desirable, internally rewarding conclusions.  

 

Accuracy Incentives 

If evidence accumulation becomes less biased in environments, in which false 

beliefs are costly, it is plausible, that directly increasing the external incentives 

for accurate beliefs might have a similar effect. The rationale for this is that 

when external incentives are tied to accuracy, the costs of false beliefs 

increase. One way this may be achieved, is by financially incentivizing people 

to make more accurate decisions. Historically, many companies have 

employed financial bonuses not only to improve overall performance but also 

as a targeted approach to diminish biases. For instance, Goldman Sachs 

implemented financial incentives in an attempt to reduce bias in hiring practices 

(AFR, 2015). This strategy is predicated on the understanding that biases and 

heuristics, can be moderated through deliberate and effortful thinking when 

performance-related rewards are at stake (Bonner & Sprinkle, 2002; Botvinick 

& Braver, 2015; Smith & Walker, 1993). 

 

Yet, despite the intuitive appeal of this approach, prior research using financial 

accuracy incentives presents a conflicting picture (Dale et al., 2007; Engelmann 

et al., 2019; Epley & Gilovich, 2005; Lefebvre et al., 2011; Meub et al., 2013, 

2013; Wright & Anderson, 1989, 1989; Zhang & Rand, 2023). On the one hand, 

accuracy incentives foster deliberation and (slow) rational thinking thereby 

reducing the reliance on cognitive shortcuts (Dale et al., 2007; Epley & Gilovich, 

2005; Lefebvre et al., 2011; Meub et al., 2013; Wright & Anderson, 1989). On 

the other hand, there is some evidence to suggest that accuracy incentives are 
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ineffective against motivational biases (Engelmann et al., 2019; Enke et al., 

2023; Zhang & Rand, 2023; but see Prior et al., 2015; Rathje et al., 2023), which 

occur because individuals want to hold certain beliefs, such as wanting to 

believe they will be promoted (Montibeller & Von Winterfeldt, 2015). 

 

In Chapter 3, I test a possible explanation for why financial accuracy incentives 

may fail to mitigate motivational biases. I hypothesize that financial incentives 

motivate participants to invest more cognitive effort. While this may aid in 

reducing the use of heuristics, which are the result of fast, careless processing; 

increased effort will fail to mitigate biases, when the cause of the error is a bias 

that is beyond participants’ awareness, such as a bias in how evidence itself is 

processed (for example as when people put greater weight on desirable than 

undesirable evidence as shown in Gesiarz et al., 2019; Globig et al., 2021). To 

test this hypothesis, I examine the effect of varying accuracy incentives in a 

perceptual evidence accumulation task, in which participants have to determine 

whether they are in a desirable state, associated with financial rewards, or an 

undesirable state, associated with no rewards. Using computational modelling, 

I then examine if and how accuracy incentives alter the process by which 

evidence is accumulated when participants are motivated to reach a desirable, 

internally rewarding conclusion. The results will be particularly relevant in areas 

such as finance, politics, and healthcare, where biased evidence accumulation 

can have detrimental consequences and financial incentives are frequently 

used to alter behaviour (AFR, 2015; Fainman & Kucukyazici, 2020; Hasnain & 

Pierskalla Henryk, 2012). 

 

Together, the results from Chapter 2 and 3 will enhance our understanding of 

internal and external incentives for evidence accumulation. The results can 

inform the development of interventions to prevent biased accumulation in 

situations in which it can have detrimental consequences.  
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1.2 Reward-Oriented Information-Sharing 

As the reach of digital information technologies widens, it has become 

increasingly easy not only to accumulate evidence, but also to share 

information with others. Whether it is telling a friend about a new restaurant or 

sharing information about a disease outbreak, the social transmission of 

information has become a ubiquitous feature of everyday life. While this 

mounting ease of sharing has facilitated globalization and social connection, it 

has also given rise to an unprecedented explosion of misinformation (Lazer et 

al., 2018). This has had drastic consequences such as increased polarization, 

racism, and resistance to climate action and vaccines (Barreto et al., 2021; 

Rapp & Salovich, 2018; Tsfati et al., 2020; Van Bavel et al., 2021). 

 

Unsurprisingly therefore, researchers, policymakers and industry leaders alike 

are working on mitigating the spread of misinformation (Saltz et al., 2021; 

Traberg et al., 2022). As yet, however, existing interventions to halt the spread, 

such as flagging misleading content, have only had limited impact (Chan et al., 

2017; Grady et al., 2021; Lees et al., 2022). Here, I propose that to effectively 

improve sharing behaviour, a deep understanding of the underlying incentives 

driving sharing decisions is necessary. This type of ‘from-theory-to-practice’ 

approach has long been adopted in the medical sector, where researchers 

devote significant amounts of time and resources to investigating the pathways 

of health and disease in order to develop and optimize treatments. Such theory-

informed behavioural change interventions have been shown to be more 

successful in promoting health-related behaviour than non-theory-based 

interventions (Webb et al., 2010). Yet, despite frequently drawing analogies 

between infectious diseases and the spread of misinformation (Bonnevie et al., 

2021; van der Linden, 2022; Zarocostas, 2020), over 70% of existing 

interventions are not informed by basic theory (Ziemer & Rothmund, 2024). 

 

1.2.1 Incentives for Information-Sharing 

Classical reinforcement theory stipulates that humans seek actions that result 

in the greatest rewards and avoid those that lead to punishments (Skinner, 
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1966). Accordingly, they accumulate evidence to make decisions which result 

in positive outcomes. One such value-based decision is the decision to share 

information (Globig et al., 2023; Lin et al., 2022; Scholz et al., 2020). 

 

External Incentives 

Prior research shows that people share information with others to optimize 

external outcomes (Lindström et al., 2021; Scholz et al., 2017, 2020; Scissors 

et al., 2016). Often, these outcomes are intangible, in the form of social 

feedback (Barasch, 2020). This feedback can either be positive (‘social 

rewards’), through social approval, reputational gains, or increased sense of 

social connection (Delgado et al., 2023) or negative (‘social punishments’), 

through criticisms, reputational losses, or isolation (Brudner et al., 2023). Since 

the brain processes social feedback analogously to monetary outcomes (Bhanji 

& Delgado, 2014; Gu et al., 2020; Meshi et al., 2013; Ruff & Fehr, 2014; Wake 

& Izuma, 2017), and the receipt of social rewards activates reward-regions of 

the brain including the ventral striatum and the ventromedial prefrontal cortex 

(VMPFC, Davey et al., 2010; Klucharev et al., 2009; Morelli et al., 2014), it is 

no surprise that social feedback has been shown to be just as, if not more, 

effective in directing human action (for a review see Tamir & Hughes, 2018). 

For instance, humans are more likely to share information with others if they 

believe it will elicit positive feedback, and choose to abstain from doing so if 

they fear it will elicit negative feedback (Brudner et al., 2023). Social media 

platforms have capitalized on this sensitivity to incentives, by implementing 

social rewards, such as ‘likes’ and ‘reposts’ to maximize user engagement. 

More recently, they have also implemented monetization schemes, which 

financially reward some users whose sharing behaviour generates particularly 

high engagement (Alizadeh et al., 2023). In these cases, intangible rewards, in 

the form of social feedback, bring about tangible rewards in the form of 

monetary gains. Thus, social media users are motivated to share information 

with others in order to maximize the rewards they receive. The more responsive 

they perceive their social network to be, the more they share (Walsh et al., 

2020). Over time, users learn what elicits positive or negative reactions and 

thus adjust their sharing behaviour to increase the likelihood of positive 
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feedback (Brady et al., 2021; Lindström et al., 2021; Scissors et al., 2016). As 

such, information-sharing is motivated by external incentives (see Figure 1.2). 

 

Internal Incentives 

On top of these external incentives, it has also been suggested that sharing 

may be rewarding in itself (Baek et al., 2017; Tamir et al., 2015; Tamir & 

Mitchell, 2012). For example, consider sharing your experience about a recent 

unsuccessful job interview. Disclosing this experience may elicit reactions of 

social support, but it can also help you regulate your emotions by allowing you 

to reflect on the interview (Berger, 2014; Rimé, 2009). This may help you make 

sense of the experience. For instance, through self-reflection you may realize 

that the unsuccessful interview was not a result of your performance, but rather 

because the job did not match your interests, thereby bolstering your perceived 

self-efficacy and mitigating negative emotions (Niederhoffer & Pennebaker, 

2009). Indeed, a recent study shows that information-sharing processes involve 

the activation of self-related-processing regions of the medial prefrontal cortex 

(MPFC) and the posterior cingulate cortex (PCC, Baek et al., 2017), suggesting 

that self-reflection is a key motivation for information-sharing. It then follows that 

sharing decisions are likely motivated not only by external incentives but also 

by internal incentives (Chen et al., 2019; Fu et al., 2017; Rode, 2016, see 

Figure 1.2). 

 

1.2.2 Sharing as a Value-Based Decision 

Building on this work, sharing has been characterized as a value-based 

decision, that involves both self-related and other-related considerations 

(Scholz et al., 2020, 2023). Sharing decisions elicit activity in regions 

associated with positive valuation, including the ventral striatum and VMPFC 

(Berger, 2014; De Angelis et al., 2012; Lee & Ma, 2012; Wien & Olsen, 2014). 

Activity in these regions scales with how enthusiastically messages are shared 

(Falk et al., 2012). Echoing these findings, this thesis conceptualizes sharing 

decisions, as the result of reward-oriented evidence accumulation, in which 

sharers adjudicate between, sometimes competing, internal and external 
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incentives (see Figure 1.2), weighing the costs against the benefits throughout. 

In some cases, they favour internal incentives, as evidenced by research 

reporting that participants choose to forgo monetary rewards in order to 

disclose information about themselves (Tamir & Mitchell, 2012). In others, the 

prospect of external rewards, such as social capital may override internal 

rewards (Fu et al., 2017). This is especially pertinent in online contexts, where 

shared information can reach a larger audience and thus elicits a greater 

volume of feedback, i.e., social incentives (Bodaghi & Oliveira, 2020). Over time 

users learn what type of information elicits the greatest amount of rewards and 

thus adaptively adjust their behaviour to maximize overall utility (Brady et al., 

2021; Lindström et al., 2021; Scissors et al., 2016). Sharing that elicits rewards 

is reinforced, sharing that elicits punishments is suppressed. As, external 

rewards tend to be easier to quantify than internal rewards and given that social 

incentives are already a core feature of existing social media platforms, the 

reinforcing feedback loop between sharing and social incentives provides a 

bullseye for measures designed to improve sharing behaviour online.  

 

 

Figure 1.2 Reward-Oriented Information-Sharing. Individuals share 
information to obtain external rewards (e.g., positive social feedback and/or 
monetary rewards). However, they are also motivated to share information 
which gives rise to internal rewards (e.g., positive emotions, self-efficacy). 
Informed by the outcomes they obtain and weighing the costs against the 
benefits throughout, they adaptively adjust their behaviour to maximize overall 
utility. 

 

1.2.3 Shaping Sharing Decisions with Social Feedback 

The reinforcement-model like pattern of online behaviour, in which users 

respond to social rewards and punishments (Brady et al., 2021; Lindström et 

al., 2021; Rosenthal-von der Pütten et al., 2019; Scissors et al., 2016) may also 
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explain the apparent disconnect between what people believe themselves and 

what they share online (Pennycook et al., 2021; Ren et al., 2021). For instance, 

users may choose to abstain from sharing content they believe will elicit 

negative reactions and instead post content which they believe will maximize 

engagement (Brady et al., 2021; Lindström et al., 2021; Scissors et al., 2016). 

Notably, it has been shown that misinformation often generates more 

engagement than reliable posts (Lazer et al., 2018). As such, users have little 

reason to take into account the veracity of information when deciding what type 

of content to share. Instead, they are incentivized to share the type of content 

that they anticipate will elicit the largest amount of positive engagement, which 

sometimes translates to monetary rewards. Thus, both social (e.g., ‘likes’, 

‘shares’) and monetary incentives (e.g., monetization schemes) contribute to 

spread of misinformation online (Alizadeh et al., 2023).  

 

With time, this not only vastly accelerates the spread of misinformation, but may 

also alter users’ beliefs. Empirical evidence suggests that when people learn 

that others share their belief, their confidence in those beliefs increases 

(Kappes et al., 2020). Moreover, it has been shown that even a single repetition 

of misinformation leads to it being perceived as more accurate, irrespective of 

whether it aligns with the user’s ideology (Murray et al., 2020; Pennycook et al., 

2018). This ‘illusory truth effect’ (Hasher et al., 1977) then in turn influences 

sharing, suggesting a bi-directional relationship of sharing and beliefs (Van 

Bavel et al., 2021; Vellani et al., 2023). Thus, the current incentive structure of 

social media platforms, in which incentives, such as rewards in the form of 

‘likes’ and punishments in the form of ‘dislikes’ are dissociated from the veracity 

of the information shared, facilitates the dissemination of misinformation, and 

may also fuel the spread of erroneous beliefs (see also Epstein et al., 2023). 

Users strive to maximize external rewards, without being motivated to consider 

whether the information they are sharing is accurate. 

 

In Chapter 4, I suggest that to mitigate the spread of misinformation, a modified 

incentive structure is needed in which rewards and punishments are directly 

contingent on the veracity of the information shared. To test this assumption, I 
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examine the impact of slightly altering the engagement options offered to users. 

Specifically, I add an option to react to posts using ‘trust’ and ‘distrust’ buttons, 

which are, by definition, related to veracity. I then examine how this change 

affects discernment in sharing behaviour between true and false information 

and if it can help in correcting false beliefs. Using computational modelling I 

dissect the mechanisms underlying this change.  

 
 

1.3 Drift-Diffusion Modelling: A Window into the 

Mechanisms of Decision-Making 

A common issue of behavioural studies is the difficulty to obtain insights into 

the mechanisms underlying observed behaviour (Roberts & Hutcherson, 2019). 

In many studies, directly observable variables are limited to choices and 

response times. Notably, these variables are aggregate outcomes and may 

mask the underlying processes (Clithero, 2018; Stafford et al., 2020). For 

example, slower response times can be the result of more tenuous cognitive 

processing, and/or a higher threshold for decision certainty, reflecting a more 

cautious decision-making process (Forstmann et al., 2016; Voss et al., 2013). 

Unsurprisingly therefore, a growing number of researchers are shifting focus 

towards computational models (Calder et al., 2018). By formalizing observed 

behaviours as mathematical frameworks, these models allow researchers to 

examine the underlying mechanisms of decision-making (Wilson & Collins, 

2019). 

 

For instance, Drift-Diffusion Models (DDM), a subtype of sequential sampling 

models, describe the process by which individuals accumulate evidence to 

make a decision (Ratcliff et al., 2016), for example to share information (Globig 

et al., 2023; Lin et al., 2023). They model the decision process between two (or 

more) alternatives as the noisy accumulation of evidence over time (Ratcliff, 

1978; Ratcliff & Rouder, 1998; Voss et al., 2013, see Roxin, 2019 for multi-

alternative DDMs). In doing so, they assume evidence accumulation is driven 

by random fluctuations, i.e., diffusion, to mimic the gradual integration of 

sensory information in the brain. More specifically, DDMs assume that agents 



 27 

accumulate evidence at a given rate until the evidence for one alternative 

relative to the other alternative(s) is large enough to reach a pre-determined 

decision threshold and a decision is made (Forstmann et al., 2016; Ratcliff et 

al., 2016). This evidence can be external, e.g., from the stimuli observed, or 

internal, based on internal representations of the alternatives (Krajbich, 2019).  

 

Conventionally, DDMs include the following parameters: (1) the drift rate (v) – 

which is the rate at which evidence is accumulated; (2) the distance between 

decision thresholds (α) — which captures the amount of evidence required to 

form a decision; (3) the starting point (z) of the accumulation process; and (4) 

the amount of non-decision time (t0)—which includes stimulus encoding as well 

as response preparation and execution. Each of these parameters can be fixed 

based on prior assumptions or can be allowed to vary freely, for example as a 

function of different variables, such as trial condition or trial difficulty. These 

parameters have been found to correspond with specific neural and 

physiological patterns (Basten et al., 2010; Cavanagh, Wiecki, et al., 2011; 

Krajbich et al., 2010; Mulder, 2014). This underscores the potential of DDMs to 

successfully capture and provide insights into neural processes. 

 

Taken together, DDMs therefore offer a viable, cost-efficient, and 

complementary solution to gather insights into decision-making processes 

(Berlinghieri et al., 2023). They can help identify potential target mechanisms 

for measures designed to reduce biases (Arkes, 1991; Krajbich, 2022). In this 

thesis I capitalize on the potential of DDM to dissect the mechanisms underlying 

the influence of incentives on evidence accumulation and sharing decisions. 

 

1.4 Summary  

When navigating today’s information ecosystem, individuals are perpetually 

faced with opportunities to accumulate evidence and share information. This 

behaviour is motivated by (1) external incentives, such as financial or social 

rewards and punishments (Gold & Shadlen, 2002; Rosenthal-von der Pütten et 

al., 2019), and (2) internal incentives, such as positive and negative emotions 
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(Baek et al., 2017; Gesiarz et al., 2019; Leong et al., 2019; Tamir et al., 2015; 

Tamir & Mitchell, 2012). Sometimes, these incentives can steer individuals 

towards decisions that yield adverse consequences, such as overly optimistic 

investment decisions (Barber & Odean, 1999; Shefrin, 2015), or sharing of 

misinformation (Pennycook et al., 2021). While prior research has sought to 

understand how different motivations influence evidence accumulation 

(Gesiarz et al., 2019; Hausmann & Läge, 2008; Kelly & O’Connell, 2013; Leong 

et al., 2019) and information-sharing decisions (Baek et al., 2017; Rode, 2016; 

Scholz et al., 2020), how and when changing these incentives can reduce 

biased evidence accumulation and increase the sharing of accurate information 

has been largely unexplored and is the focus of this thesis. 

 

Individuals accumulate evidence to arrive at desirable, internally rewarding 

conclusions, even at the expense of external outcomes (Gesiarz et al., 2019; 

Leong et al., 2019). By prioritizing internal incentives, they discount 

undesirable, negative evidence. As a result, they are biased towards internally 

rewarding conclusions (Gesiarz et al., 2019; Leong et al., 2019). This bias can 

contribute to negligent decision-making, as for instance observed during the 

financial collapse of 2008 (Shefrin, 2015). To prevent such negative 

ramifications, it is imperative to understand how and when biased evidence 

accumulation can be mitigated.  

 

It has been suggested that individuals adaptively prioritize internal and external 

incentives depending on their environment (Dunning, 2009; Haselton & Nettle, 

2005; Johnson & Fowler, 2011). In Chapter 2, I test the hypothesis that when 

individuals find themselves in a high-threat environment, in which the costs of 

false beliefs are high, they are less biased towards desirable conclusions. To 

that end, I combine a social-threat-manipulation with a sequential sampling task 

and DDM to understand how threat alters evidence accumulation. 

 

Intuitively, we assume that financially incentivizing individuals to provide correct 

responses will enhance the accuracy of their decisions. In Chapter 3, I test an 

explanation for why financial accuracy incentives may fail to mitigate the 
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influence of internal incentives on evidence accumulation. I tease apart the 

underlying mechanisms by combining an incentivized perceptual evidence 

accumulation task with DDM. 

 

Together, these findings will enhance our understanding of the role of internal 

and external incentives in evidence accumulation and can aid in the 

development of interventions to prevent the potential negative ramifications of 

biased evidence accumulation. 

 

One example of a decision based on evidence accumulation is the decision to 

share information with others. Over five billion people globally are now active 

on social media platforms (Statista, 2022), making them a vital source of 

information for many (Pew Research Center, 2021). Ensuring this information 

is reliable is therefore of utmost importance. Much of the success of social 

media platforms has been attributed to the human need for rewards (Rosenthal-

von der Pütten et al., 2019). Over time, users learn what type of information 

elicits the greatest amount of positive feedback (e.g., ‘likes’ and ‘shares’) and 

adjust their sharing behaviour accordingly (Brady et al., 2021; Lindström et al., 

2021; Scissors et al., 2016). But as engagement is not tied to the veracity of 

information, and misinformation often elicits more engagement than reliable 

information, users are not motivated to discern between the two. I thus argue 

that the spread of misinformation is facilitated by the existing incentive structure 

of social media platforms. In Chapter 4, I explore whether a slight change to 

this structure, such that social rewards and punishments are contingent on the 

veracity of information can overturn the adverse effects of incentives on sharing 

behaviour and thereby reduce the spread of misinformation online. I provide a 

mechanistic account of how this change affects discernment between true and 

false posts, by modelling sharing decisions as a drift-diffusion process.  

 

In conclusion, my research will shed new light on how incentives to accumulate 

evidence and share information can be modulated to enhance discernment in 

decision-making. The results not only expand our understanding of how 

incentives impact evidence accumulation and sharing but also highlight the 
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need for innovative approaches in policy and decision-making strategies. 

Ultimately, this work paves the way for more informed and nuanced applications 

of behavioural interventions in various domains ranging from public policy to 

individual decision-making processes.  
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Chapter 2: Under Threat Weaker 
Evidence is Required to Reach 
Undesirable Conclusions 

2.1 Abstract 

Critical decisions, such as in domains ranging from medicine to finance, are 

often made under threatening circumstances that elicit stress and anxiety. The 

negative effects of such reactions on learning and decision-making have been 

repeatedly underscored. In contrast, here we show that perceived threat alters 

the process by which evidence is accumulated in a way that may be adaptive. 

Participants (N = 91) completed a sequential sampling task in which they were 

incentivized to accurately determine whether they were in a desirable state, 

which was associated with greater rewards than losses, or an undesirable state, 

which was associated with greater losses than rewards. Prior to the task 

participants in the ‘threat group’ experienced a social-threat manipulation. 

Results show that perceived threat led to a reduction in the strength of evidence 

required to reach an undesirable conclusion. Computational modelling revealed 

this was due to an increase in the relative rate by which negative evidence was 

accumulated. The effect of the threat manipulation was global, as the alteration 

to evidence accumulation was observed for evidence which was not directly 

related to the cause of the threat. Requiring weaker evidence to reach 

undesirable conclusions in threatening environments may be adaptive as it can 

lead to increased precautionary action.  

 

2.2 Introduction 

Many important decisions are made when people feel stressed and anxious 

(Beilock, 2010). Consider a doctor in the operating theatre who needs to decide 

on the best course of action, a soldier on the battlefield who must decide 

whether to attack, or a driver stuck in traffic selecting which route to take. 

Whether calm or stressed, to make good decisions people need to accumulate 

evidence over time (Forstmann et al., 2016; Platt & Glimcher, 1999; Ratcliff, 
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1978; Usher & McClelland, 2001). For example, a doctor may decide to consult 

multiple colleagues before deciding to amputate. Because evidence can be 

unlimited, an agent needs to determine when the available data is strong 

enough to reach a conclusion (Gluth et al., 2012, 2013). Here, we examine how 

perceived threat impacts the process by which evidence is accumulated to 

reach a conclusion.  

 

A feature of threatening environments is that the potential for adverse outcomes 

is high. In these instances, it is adaptive to err on the side of caution. For 

example, imagine you are walking through a dark alley and hear a ‘pop’. The 

sound may be a gunshot or perhaps the uncorking of a champagne bottle. 

Interpreting the sound as the former will cause you to escape and mitigate 

potential risk. Thus, under perceived threat it may be adaptive to interpret a 

stimulus as undesirable even if the strength of the evidence supporting this 

conclusion is only limited. The psychophysiological reaction induced by threat 

can provide a global, rather than specific, danger signal. We thus hypothesized 

that the effects of threat on evidence accumulation may be observed even when 

the source of the threat is unrelated to the decision at hand (e.g., a 

psychophysiological reaction triggered by a professional conflict may impact 

how the ‘pop’ is interpreted). 

 

Computationally, this process may occur in at least two ways. First, under 

perceived threat people may be predisposed towards undesirable conclusions 

before attaining any evidence (e.g., you may believe the road you are walking 

down is dangerous before observing any evidence to that effect). A second, not 

mutually exclusive possibility, is that under perceived threat an undesirable 

piece of evidence (e.g., an anxious looking man walking down the road) drives 

beliefs towards an undesirable conclusion (‘this road is dangerous’), more so 

than a desirable piece of evidence (e.g., people are walking past you relaxed 

and happy) towards a desirable conclusion (‘this road is safe’). These two 

distinct mechanisms will result in the same observable behaviour. Specifically, 

weaker evidence will be needed to support undesirable conclusions under 

perceived threat.  
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To tease apart these mechanisms, we used a sequential sampling model to 

model noisy evidence accumulation towards either of two decision thresholds 

(Ratcliff, 1978; Ratcliff & Rouder, 1998; Voss et al., 2013). The model allows 

estimation of both (1) starting point, and (2) rate of evidence accumulation, 

reflecting the quality of information processing. We can then measure whether 

either of these factors are influenced by the desirability of a decision and how 

this is influenced by perceived threat.  

 

We exposed participants to an acute threat manipulation in the lab (Garrett et 

al., 2018) or a control condition, and then asked them to complete an evidence 

accumulation task (Gesiarz et al., 2019) that was unrelated to the cause of the 

threat. In the task, participants witnessed various stimuli that were contingent 

upon which one of two hidden states they were in. One state was associated 

with greater rewards than losses (desirable state) and the other with greater 

losses than rewards (undesirable state). Participants had no control over which 

state they were in; their task was simply to determine the state, gaining 

additional rewards for accurate conclusions and losing rewards for inaccurate 

conclusions. Thus, it was in participants’ interest to be as accurate as possible. 

They were allowed to accumulate as much evidence as they wished before 

making a decision. Here, we examined if and how perceived threat impacts the 

accumulation of evidence towards a decision. 

 

2.3 Methods  

Experimental Design. 

Participants. A total of 91 individuals participated in this study at two sites: 

University College London (UCL, N = 51) and Massachusetts Institute of 

Technology (MIT, N = 40). They were recruited via the participant pools of UCL 

and MIT. All analyses were repeated separately for participants tested in the 

two different locations (MIT, UCL). There were no differences between 

locations in any of our results including model-free analysis, psychometric 

equations and DDM.  
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Participants gave written, informed consent and were remunerated £7.50/$15 

for their participation plus an unspecified performance-related bonus. Ethical 

approval was provided by the Research Ethics Committees at UCL and MIT. 

Both experiments were performed in accordance with the principles expressed 

in the Declaration of Helsinki. One participant who terminated the experiment 

early and another who failed all comprehension checks were excluded from the 

analysis. In addition, we followed the exclusion criteria previously published for 

this task (Gesiarz et al., 2019): we excluded two participants whose accuracy 

was below chance (50%) and four who provided responses based only on the 

first stimulus in over half the trials. Thus, data of 83 participants was included 

in the analysis (Mage = 30.29, SDage  12.20; female = 37, male = 46, UCL = 43, 

MIT = 40). Each participant was randomly assigned to either the threat 

manipulation group (N = 40, Mage = 28.98, SDage  11; female = 14, male = 26, 

UCL = 21 and MIT = 19) or the control group (N = 43, Mage = 31.51, SDage  

13.23; female = 23, male = 20; UCL = 22, MIT = 21). 

 

Manipulation Procedure and Manipulation Check. We followed the exact 

same threat manipulation as in Garrett et al., (2018). Participants assigned to 

the ‘threat group’ were informed that at the end of the experiment they would 

be required to deliver a speech on a surprise topic, which would be recorded 

on video and judged live by a panel of staff members. They were shown an 

adjacent room where chairs and tables were already organized for the panel. 

This manipulation is a variation of the Trier Social Stress Test (Birkett, 2011) 

with the key difference being that participants in this task were threatened by 

the possibility of a stressful social event and completed the main task under 

anticipation of the threat, but the threat was never executed. Having participants 

believe the threatening event would take place at the end of the task, rather 

than before, increased the likelihood that participants’ anxiety levels remained 

high throughout the task. In addition, participants were presented with six 

difficult mathematical problems that they were asked to try and solve in 30 

seconds (s). This exact manipulation procedure was previously executed in our 
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lab, and has been shown to significantly heighten cortisol levels, skin 

conductance and self-reported state anxiety (Garrett et al., 2018). Our lab has 

also shown that the manipulation-induced changes in self-reported state 

anxiety (measured using the Spielberger State Trait Anxiety Inventory, STAI, 

Marteau & Bekker, 1992) correlated across participants with physiological 

indicators of stress (Garrett et al., 2018). 

 

Participants assigned to the ‘control group’ were informed that at the end of the 

experiment they would be required to write a short essay on a surprise topic, 

which would not be judged. They were then presented with six elementary 

mathematical problems to solve in 30s. This control manipulation has been 

shown not to heighten cortisol levels, skin conductance and self-reported state 

anxiety (Garrett et al., 2018). As a manipulation check, before and after the 

induction procedure, we asked participants to complete the STAI (Marteau & 

Bekker, 1992) as a measure of anxiety. 

 

Behavioural Task. After completing the threat/control manipulation, 

participants played 80 trials of the ‘Factory Task’ (Gesiarz et al., 2019, see 

Figure 2.1). On each trial participants witnessed an animated sequence of 

televisions (TVs) and telephones passing along a conveyor belt. There were 

two types of trials: telephone factory trials and TV factory trials. In telephone 

factory trials, the probability of each item in the animated sequence being a 

telephone was 0.6, and the probability of each item in the animated sequence 

being a TV was 0.4. For TV factory trials the proportions were reversed. The 

trial type was randomly determined with replacement on every trial with an 

equal probability for each trial type. Participants were tasked with determining 

whether they were in a telephone factory trial or a TV factory trial. Since the trial 

type was not directly observable, their means of doing this was through reverse 

inference over the sequence of objects they were seeing. Participants were free 

to respond as soon as they wished after initiating the trial and the sequence 

would continue until they made their decision.  
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Participants began the game with an endowment of 5000 points. Each 100 

points was worth 1 pence/1 cent. One of the two factory types was randomly 

assigned per participant to be the ‘desirable’ factory type and the other to be 

the ‘undesirable’ factory type. Participants were informed that each time they 

visited the desirable factory (desirable state), they would win points, and each 

time they visited the undesirable factory (undesirable state), they would lose 

points. We did not specify the exact number of points they would win or lose. 

Crucially, this bonus was entirely outside of the participants’ control, i.e., it was 

not affected by the conclusions participants made. Separately, participants 

were informed that they would earn an unspecified number of points for making 

a correct conclusion and lose an unspecified number of points for making an 

incorrect conclusion. We informed participants that the magnitudes of each 

unspecified bonus/loss were independent of each other, potentially unequal 

and varied randomly on each trial.  

 

The task was the same as published previously (Gesiarz et al., 2019), except 

that we jittered the presentation time of the stimuli, so that participants were 

less likely to have a clear expectation of when the next stimulus would be 

observed. Due to a technical error this jitter was slightly different across sites 

(average stimuli presentation time at UCL: M = 657.28 milliseconds (ms), SD  

1060.73ms; MIT: M = 373.65ms, SD  49.69ms). The lag between stimuli was 

~150ms.  

 

Trials in which participants made their decision before observing the second 

object were removed. In cases where a participant did this in over half their 

trials, we assumed that the participant was not appropriately engaging with the 

task and eliminated the entirety of their trials. Following Gesiarz et al., (2019), 

we excluded four participants for this reason, as well as a further 72 responses 

made before seeing the second item.  

 

Training. Prior to playing the task, participants received extensive instructions 

and were required to answer multiple-choice comprehension check questions 

on the key points of the task, with the question repeated until they either chose 
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correctly or failed three times, upon which the correct answer was displayed. 

The comprehension check questions addressed the following key points of how 

the game worked: that telephone factories mostly produced telephones, but 

sometimes produced TVs; that the bonus for visiting desirable factories was 

independent of the decision they made; which factory was their desirable 

factory; and that trial types (i.e., if they were in a TV or telephone factory) were 

randomly determined and it was not guaranteed that they would see exactly the 

same amount of each type of factory. Participants then played a practice 

session of 20 trials, where the trial type was visibly displayed to them (i.e., if 

they were in a TV or telephone factory), so they could have prior experience of 

the outcome contingencies and the trial type distribution.  

 

 

Figure 2.1 The ‘Factory Task’. In each trial, participants saw an animated 
sequence of TVs and telephones passing along a conveyor belt. Their task was 
to accurately determine whether they were in (a) a telephone factory, i.e., a 
factory that produces telephones most of the time or (b) a TV factory, i.e., a 
factory that produces TVs most of the time. They were incentivized for accuracy 
and could enter their decision whenever they liked. Each participant had 
‘invested’ in one factory. On trials where they happened to be in that (desirable) 
factory they gained points, on trials in which they happened to be in the other 
(undesirable) factory they lost points. Notably, this bonus was beyond 
participants’ control and was not affected by the actual decision made. Stimulus 
presentation time was jittered, so that participants were less likely to have a 
clear expectation of when the next stimulus would be observed. Stimulus 
presentation time on average was ~521ms. The lag between stimuli was on 
average ~150ms. 

 

Statistical Analysis.  

Manipulation Check. An independent two-tailed t-test was computed to 

assess the difference in percentage change in STAI ((post STAI - pre STAI)/pre 

STAI) between the threat and control group. One-sample t-tests were computed 
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to assess percentage change against zero within each group. All statistical tests 

conducted in the present article are two-sided. Analysis was conducted using 

IBM SPSS 27 and R Studio (Version 1.3.1056). 

 

Psychometric Function. We followed the same analysis as in Gesiarz et al., 

(2019) to relate participants’ responses to the strength of evidence they 

observed. We fitted a psychometric function, using a generalized mixed effects 

equivalent of a logistic regression, with fixed and random effects for all 

independent variables. We fitted these functions separately for participants for 

whom the TV factory was desirable and for whom the TV factory was 

undesirable, and separately for each group (control, threat). 

 

P(TV)  =  
1

1 + e−(β1X−β0)
 

 

Where P(TV) is the probability of a participant indicating they were in a TV 

factory; X is the proportion of TV stimuli out of all stimuli observed in a trial. This 

variable was centred, thus ranging from 0.5 when all samples were TVs to -0.5 

when all samples were phones; β0 is the indifference point – reflecting the 

proportion of TVs required to respond TV 50% of the time. If β0 = 0, participants 

would indicate they were in a TV factory half the time when half the samples 

were TVs. When β0 is low, the function will move left and vice versa. β1 is the 

slope, reflecting by how much the probability of a participant indicating they 

were in a TV factory increases when the proportion of TVs increases by one 

unit. 

 

Pieces of evidence gathered. We examined whether the total number of 

pieces of evidence (TVs + telephones) differed when participants reached an 

undesirable or desirable conclusion (within-subject variable) and/or depending 

on group (between-subject variable). Number of pieces of evidence gathered 

before responding was entered into a mixed 2 (group: control/threat) by 2 

(valence of conclusion: desirable/undesirable) ANOVA. We also allowed for an 

interaction of group and valence of conclusion.  
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Drift-Diffusion Modelling. Our aim in modelling our task using the Drift-

Diffusion framework was to assess how perceived threat impacted the evidence 

accumulation process. In particular, we wanted to assess (1) whether the 

evidence accumulation process in the threat and control groups was best 

represented by the same model or a different model, and (2) whether perceived 

threat impacted the parameters of the evidence accumulation process in our 

data.  

 

We implemented and compared four different specifications of a DDM (see 

Table 2.1). The models included the following parameters: (1) t0—amount of 

non-decision time; (2) α—distance between decision thresholds; (3) z—starting 

point of the accumulation process; and (4) v—drift rate - the rate of evidence 

accumulation. Crucially, in models 1 and 3 the starting point was fixed to 0.5, 

while in models 2 and 4, we allowed the starting point to vary towards one 

threshold (its value could vary between 0 and 1, thus allowing a valence-

dependent starting point bias). In models 1 and 2 with an unbiased drift rate, 

the parameter was symmetric for desirable and undesirable factories (v and -

v). In models 3 and 4 we allowed the drift rate to vary (which we call a valence-

dependent drift rate bias) depending upon whether the participant was visiting 

a desirable factory or an undesirable factory (thus allowing a process bias). In 

these models we included a term reflecting the difference between drift rates 

for desirable and undesirable factories (β1factory desirability). ‘Factory 

desirability’—is the true factory visited coded as 1 for desirable factories and 0 

for undesirable factories. Positive values indicated a bias towards desirable 

conclusions, and negative values indicated a bias towards undesirable 

conclusions. β0 is a constant for the drift rate. 

 

Number Model Starting Point (z) Drift Rate (v) 

1. 
Valence 

independent 
z = 0.5 v 

2. 
Valence-dependent 

starting point 
0<z<1 v 

3. 
Valence-dependent 

drift rate 
z = 0.5 

v = 
β0+β1factorydesirability 
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4. 
Valence-dependent 

drift rate and 
starting point 

0<z<1 
v = 

β0+β1factorydesirability 

Table 2.1. DDM Specification. For each group we ran four models which 
differed in whether we allowed the starting point to vary (model 2 & 4), whether 
we included a valence-dependent drift rate bias (model 3 & 4), or neither (model 
1). 

 
We used the HDDM software toolbox (Wiecki et al., 2013) to estimate the 

parameters of our models. The HDDM package employs hierarchical Bayesian 

parameter estimation, using Markov Chain Monte Carlo (MCMC) methods to 

sample the posterior probability density distributions for the estimated 

parameter values. We estimated both group-level parameters as well as 

parameters for each individual participant. Parameters for individual 

participants were assumed to be randomly drawn from a group-level 

distribution. Participants’ parameters both contributed to and were constrained 

by the estimates of group-level parameters. In fitting the models, we used priors 

that assigned equal probability to all possible values of the parameters. Models 

were fit to log-transformed response times (RTs) as done previously (Gesiarz 

et al., 2019), because RTs were non-normally distributed and had a heavy 

positive skew. Also, since our ‘error’ RT distribution included relatively fast 

errors we included an inter-trial starting point parameter (sz) for both models to 

improve model fit (Ratcliff & Rouder, 1998). We sampled 20,000 times from the 

posteriors, discarding the first 5,000 as burn in and thinning set at 5. MCMC are 

guaranteed to reliably approximate the target posterior density as the number 

of samples approaches infinity. To test if the MCMC converged within the 

allotted time, we used Gelman-Rubin statistic (Rubin & Gelman, 1992) on 5 

chains of our sampling procedure. The Gelman–Rubin diagnostic evaluates 

MCMC convergence by analysing the difference between multiple Markov 

chains. The convergence is assessed by comparing the estimated between-

chains and within-chain variances for each model parameter. In each case, the 

Gelman-Rubin statistic was close to one (<1.1), suggesting that MCMC were 

able to converge. To assess if the parameters describing the bias in prior and 

drift rate are significantly different in the control and threat group, we compared 



 41 

95% Confidence Intervals (CIs) of the parameters’ values. Specifically, for each 

parameter in each group we calculated the 95% CIs. If the 95% CIs for a 

parameter between groups did not overlap, we consider there to be a significant 

difference. We also calculated the difference in the posterior distributions and 

reported the 95% Highest Density Interval (HDI) of the difference. If this HDI 

did not overlap zero, we considered there to be a meaningful difference 

between the two groups. HDI testing was conducted in R using HDInterval 

(Meredith & Kruschke, 2016). 

 

In addition, model fits were compared using the Deviance Information Criterion 

(DIC, Spiegelhalter et al., 2002), which is a generalization of the Akaike 

Information Criterion (AIC) for hierarchical models. The DIC is commonly used 

when the posterior distributions of the models have been obtained by MCMC 

simulation (Gamerman & Lopes, 2006). It allows one to assess the goodness 

of fit, while penalizing for model complexity. 

 

To validate the winning model, we used each group’s parameters obtained from 

participants’ data to simulate log-transformed RTs and responses separately 

for the threat and control group. We used the exact number of participants, total 

number of trials and trial structure as in the experiment. Simulated data was 

then used to (1) perform model recovery analysis and (2) to compare the 

pattern of participants’ response to the pattern of simulated responses, 

separately for each group. We sampled 2,000 times from the posteriors, 

discarding the first 500 as burn in. Simulation and model recovery analysis were 

performed using the HDDM software toolbox (Wiecki et al., 2013). 

 

Proportion of correctly identified factories. We examined whether group 

(between-subject variable) and valence of factory visited (within-subject 

variable) affected the proportion of correctly identified factories as desirable or 

undesirable. Proportions were calculated for each participant and then entered 

into a mixed 2 (group: control/threat) by 2 (valence of factory: 

desirable/undesirable) ANOVA. We also allowed for an interaction of group and 
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valence of factory. We compared the pattern of results obtained from 

participants’ real data to those obtained from the simulated data.  

 

 

2.4 Results 

Threat manipulation was successful. The manipulation was successful in 

inducing perceived threat. Participants in the threat group reported a 

significantly larger increase in anxiety as a result of the manipulation (increase 

in STAI score after the manipulation relative to before M = 40.815%, SE = 

5.928, t(39) = 6.885, p < 0.001, Cohen’s d = 1.089), compared to those in the 

control group, who in fact showed a reduction in anxiety (M = -5.742%, SE = 

1.257, t(42) = 4.568, p < 0.001, Cohen’s d = 0.697, difference between the two 

groups: t(81) = 7.943, p < 0.001, Cohen’s d = 1.715, Figure 2.2) an effect often 

observed in control participants, who tend to relax as they learn more about the 

task at hand (Garrett et al., 2018). 

 

 

Figure 2.2. Threat manipulation was successful. Participants in the threat 
group became significantly more anxious after the manipulation than in the 
control group. Data are plotted as boxplots for each condition, in which 
horizontal lines indicate median values, boxes indicate 25/75% interquartile 
range and whiskers indicate 1.5 x interquartile range. Diamond shape indicates 
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the mean percentage change in STAI per experimental group. Individuals’ 
percentage STAI change are shown separately as grey dots. ***p < 0.001 

 

Under threat participants required weaker evidence to conclude they are 

in an undesirable factory. We first examined whether perceived threat alters 

the strength of evidence participants required to reach desirable and 

undesirable conclusions. To that end, we fit a psychometric function to the data 

which relates the percentage of TVs observed on a trial (i.e., the strength of the 

evidence to judge a factory as a TV factory) to participants’ conclusion about 

whether they were visiting a TV or telephone factory. This was done separately 

for participants for whom the TV factory was desirable and for whom it was 

undesirable in the threat and control group.  

 

As observed in Figure 2.3a, under perceived threat the psychometric function 

of participants for whom the TV factory was undesirable (solid orange line) was 

shifted left compared to controls (dotted orange line). This means that 

compared to control, under threat participants required a smaller proportion of 

TVs to be observed before reaching the conclusion that they were in a TV 

factory when the TV factory was undesirable (indifference parameter was 

higher for the threat group: β0 = 0.113, 95% CI [-0.185, 0.411], than controls: 

β0 = -0.582, 95% CI [-0.964, -0.20], Cohen’s d = 0.61, Figure 2.3a). No such 

difference is observed when the TV factory is desirable. Participants in both 

groups required an equal proportion of TVs to be observed before reaching the 

conclusion that they were in a TV factory. This can be seen in Figure 2.3b 

where the psychometric functions for threat and control participants overlap 

(indifference parameter was not different for the threat group: β0 = 0.277, 95% 

CI [-0.068, 0.622] and control group: β0 = 0.23, 95% CI [-0.079, 0.53], Cohen’s 

d = 0.05, Figure 2.3b). 

 

While participants in the control group required weaker evidence to conclude 

they were in a desirable factory than an undesirable factory (replicating 

previous findings from Gesiarz et al., 2019), this difference was abolished under 

perceived threat. This can be observed where the psychometric function of 
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control participants for whom the TV factory was desirable (dotted blue line, 

Figure 2.3c) is shifted to the left of control participants for whom the TV factory 

was undesirable (dotted orange line, Figure 2.3c; indifference parameter was 

greater for desirable factory: β0 = 0.23, 95% CI [-0.079, 0.53], than undesirable: 

β0 = -0.582, 95% CI [-0.964, -0.20], Cohen’s d = 0.694, Figure 2.3c), while for 

participants in the threat group they overlap (indifference parameter when the 

TV factory was desirable β0 = 0.277, 95% CI [-0.068, 0.622] and undesirable 

β0 = 0.113, 95% CI [-0.185, 0.411], Cohen’s d = 0.16, Figure 2.3d).  

 

As expected, both in the threat and control group the greater the proportion of 

TVs in a trial the more likely participants were to judge the factory as a TV 

factory (control: TV factory desirable: β1 = 25.55, 95% CI [23.20, 27.90], TV 

factory undesirable: β1 = 24.943 [15.623, 34.262], Cohen’s d = 0.023, Figure 

2.3c; threat: TV factory desirable: β1 = 27.79, 95% CI [19.169, 36.411], TV 

factory undesirable: β1 = 23.043, 95% CI [17.308, 28.778], Cohen’s d = 0.2, 

Figure 2.3d). 
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Figure 2.3. Under threat weaker evidence is required to reach undesirable 
conclusions. Fitted psychometric functions for data of the threat group (solid 
line) and control group (dotted line). Y axis shows the proportion of times 
participants indicated they were in a TV factory as a function of the proportion 
of TV stimuli they observed in a trial prior to making a decision (x axis). In blue 
is the data of participants for whom the TV factory was the desirable factory. In 
orange is the data of participants for whom the TV factory was the undesirable 
factory. (a) Compared to the control group, under perceived threat participants 
required a smaller proportion of TVs to be observed before reaching the 
conclusion that they were in a TV factory, when the TV factory was undesirable. 
This can be seen as the solid line (threat group) is shifted left relative to the 
dotted line (control group). (b) No such difference is observed when the TV 
factory is desirable. (c) Participants in the control group required a smaller 
proportion of TVs to be observed before reaching the conclusion that they were 
in a TV factory, when the TV factory was desirable than undesirable. This is 
seen as the blue line (desirable) is shifted left relative to the orange line 
(undesirable). (d) This difference is abolished under perceived threat. Error 
bars show SE at given level of proportion of TVs observed (error bars for threat 
group are indicated by ‘x’ at the centre of the error bar). Grey dashed line 
indicates point of indifference – i.e., how much evidence is needed for 
participants to say ‘TV’ half the time. 
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Note, that the total number of pieces of evidence (TVs + telephones) did not 

differ when participants reached an undesirable or desirable conclusion 

(F(1,81) = 1.363, p = 0.247, partial η2 = 0.017), nor did it differ as a function of 

perceived threat (F(1,81) = 0.376, p = 0.542, partial η2 = 0.005), neither was 

there an interaction between these two factors (F(1,81) = 0.023, p = 0.879, 

partial η2 = 0.00). Rather, as shown above, it is the proportion of evidence 

(which signifies the strength of the evidence) needed to reach a conclusion that 

differed as a function of perceived threat and valence.  

 

Thus far our analysis suggests that perceived threat led to a reduction in the 

strength of the evidence needed to reach undesirable conclusions, even though 

the cause of the threat (anticipating a negative social situation) had nothing to 

do with the task at hand. We next sought to identify the precise computational 

factor(s) affected by perceived threat during evidence accumulation. 

 

Under threat the drift rate towards undesirable conclusions is 

greater. Computationally, there are at least two different ways by which 

perceived threat can lower the strength of evidence needed to reach 

undesirable conclusions. First, threat may alter the starting point of the 

accumulation process. That is, if under perceived threat participants are a priori 

more likely to believe they are in an undesirable state relative to controls, then 

weaker evidence will be needed to reach that conclusion. Alternatively, 

perceived threat can enhance the weight given to each piece of undesirable 

evidence relative to control. This again will lead to weaker evidence needed to 

reach an undesirable conclusion. 

 

To tease apart these possibilities we modelled the responses as a drift-diffusion 

process (Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2013) with the 

following parameters: (1) t0—amount of non-decision time; (2) α—distance 

between decision thresholds; (3) z—starting point of the accumulation process; 

and (4) v—drift rate – i.e., the rate of evidence accumulation (see Methods for 

details). Crucially, in models 1 and 3 the starting point was fixed to 0.5, while 

in models 2 and 4 we allowed the starting point to vary towards one threshold 
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(thus allowing a starting point bias). In models 3 and 4 we allowed the drift rate 

to vary (which we call a valence-dependent drift rate bias) depending upon 

whether the participant was visiting a desirable factory or an undesirable factory 

(thus allowing a process bias). 

 

The DIC, a generalization of the AIC for hierarchical models, was calculated for 

each model (Table 2.2). The DIC scores indicated that Model 4 (the valence-

dependent model), which included a valence-dependent starting point and drift 

rate, outperformed all other models for both the threat and the control group. 

As can be observed in Figure 2.4, while for the control group the valence-

dependent model was clearly a better fit than the valence-independent model 

(replicating previous findings from Gesiarz et al., 2019), for the threat group the 

advantage in terms of fit was modest. 

 

 

Number Model 
Starting 

Point 
(z) 

Drift Rate 
(v) 

DIC 
(Control) 

DIC 
(Threat) 

1. 
Valence 

independent 
z = 0.5 v 11373.43 7761.38 

2. 
Valence-

dependent 
starting point 

0<z<1 v 11343.42 7757.88 

3. 
Valence-

dependent 
drift rate 

z = 0.5 
v = 

β0+β1factorydesira-
bility 

11322.83 7758.58 

4. 

Valence-
dependent 

drift rate and 
starting point 

0<z<1 
v = 

β0+β1factorydesira-
bility 

11306.45 7744.82 

Table 2.2 DDM Model Fits. For each group we ran four models which differed 
in whether we allowed the starting point to vary (model 2 & 4), whether we 
included a valence-dependent drift rate bias (model 3 & 4), or neither (model 
1). DIC scores show goodness of fit, with lower numbers indicating better fit. 
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Figure 2.4. Difference in fit between winning valence-dependent model 
and valence-independent model as a function of perceived threat. The Y 
axis shows the difference in DIC scores between the valence-independent 
model and the winning valence-dependent models for the control group (dark 
grey) and threat group (light grey).  

 
We next examined which of the accumulation parameters were affected by 

perceived threat. To that end, we calculated 95% CIs of each parameter for 

each group. If the 95% CIs do not overlap, we infer a significant difference 

between the two groups.  

 

As observed in Table 2.3 and Figure 2.5, only one element in the accumulation 

process was significantly altered by perceived threat: the valence-dependent 

drift rate bias. The drift rate bias is the difference in drift rates between desirable 

and undesirable factories, the greater the bias the greater the drift rate for 

desirable factories relative to undesirable ones. As can be observed in Figure 

2.5e the valence-dependent bias in drift rate in the control group was 

significantly greater than in the threat group (control: β1 = 0.17 [0.07, 0.27]; 

threat: β1 = -0.08 [-0.20, 0.04]). For controls the bias in drift was significantly 

positive (95% CI does not include zero: β1 = 0.17 [0.07, 0.27]), leading to a drift 

rate that was more than double when participants were in the desirable factory 

(vdesirable = 0.63) than undesirable factory (vundesirable = 0.46). In contrast, under 

perceived threat the bias in drift rate was numerically negative and not 
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significantly different from zero (95% CI includes zero: β1 = -0.08 [-0.20, 0.04]), 

leading to a drift rate that was numerically and non-significantly larger when 

participants were in the undesirable factory (vundesirable = 0.63) than when they 

were in the desirable factory (vdesirable = 0.55). We also corroborate these results 

using 95% HDI comparisons (see Appendix 7.1 Supplementary Table 2.1 for 

HDI Comparisons). 

 

Estimate 
(Experimental Data) 

Control [95% CI] Threat [95% CI] 

Distance between 
Decision Thresholds (α) 

2.666 [2.491, 2.85] 2.474 [2.335, 2.62] 

Non-Decision Time (t0) 7.546 [7.383, 7.714] 7.488 [7.334, 7.647] 

Starting Point (z) 0.48 [0.47, 0.505] 0.516 [0.498, 0.535] 
inter-trial starting point 
parameter (sz) 

0.182 [0.066, 0.266] 0.185 [0.056, 0.276] 

Drift Rate (β0) 0.456 [0.369, 0.548] 0.631 [0.544, 0.724] 

Drift Rate Bias (β1) 0.174 [0.079, 0.268] -0.085 [-0.201, 0.04] 

Table 2.3. Parameter estimates of the evidence accumulation process. 
Displayed are the model estimates from the winning model for the control and 
threat groups. These include distance between decision thresholds (α), non-
decision time (t0), starting point (0<z<1), inter-trial starting point parameter (sz), 
constant drift rate (β0) and drift rate bias (β1). The latter is the term reflecting 
the additional weight added to the drift rate as a function of factory desirability. 
Positive values indicate a bias towards desirable conclusions, and negative 
values indicate a bias towards undesirable conclusions. [CI]. 
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Figure 2.5. Under threat the valence-dependent drift rate bias is abolished. 
Displayed are the posterior distributions of parameter estimates for the threat 
group (light grey) and the control group (black). No significant difference is 
observed between groups for estimates of (a) distance between decision 
thresholds, (b) non-decision time, (c) starting point, and (d) drift-rate constant. 
(e) In contrast, a significant difference is observed for the valence-dependent 
drift rate bias. In the control group the bias indicates a significantly larger drift 
rate towards desirable than undesirable conclusions. This bias is corrected for 
under perceived threat and is numerically inverse (that is the bias is non-
significantly negative under perceived threat but significantly positive in the 
control group). *indicates significant difference between parameters in the 
threat and the control group (i.e., CIs do not overlap). Dashed vertical lines 
indicate group mean.  

 

We simulated data using group parameters from the threat and control group 

separately (see Methods for details). We first examined if the model 

parameters could be successfully recovered based on the simulated data. To 

do so the valence-dependent model was fit to simulated data, in the same way 

as for the experimental data. We sampled 2,000 times from the posteriors, 

discarding the first 500 as burn in. As shown in Table 2.4 model parameters 

could be successfully recovered based on the simulated data. Additionally, we 

examined if the simulated data reproduced the same behavioural pattern of 

results as the participants’ data. This was indeed the case (see Figure 2.6d, 

detailed explanation below). 
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Estimate 
(Simulated Data) 

Control [95% CI] Threat [95% CI] 

Distance between Decision 
Thresholds (α) 

2.667 [2.627, 2.722] 2.483 [2.434, 2.533] 

Non-Decision Time (t0) 7.554 [7.51, 7.596] 7.421 [7.388, 7.458] 

Starting Point (z)  0.505 [0.477, 0.532] 0.509 [0.483, 0.535] 

inter-trial starting point 
parameter (sz) 

0.332 [0.199, 0.43] 0.146 [0.008, 0.306] 

Drift Rate (β0) 0.44 [0.383, 0.512] 0.68 [0.596, 0.769] 

Drift Rate Bias (β1) 0.146 [0.075, 0.216] -0.14 [-0.229, -0.049] 

Table 2.4. Recovered Parameter estimates of the evidence accumulation 
process based on simulated data. Displayed are the winning model 
estimates recovered from the simulated data for the control and threat groups. 
These include distance between decision thresholds (α), non-decision time (t0), 
starting point (0<z<1), inter-trial starting point parameter (sz), constant drift rate 
(β0) and drift rate bias (β1). The latter is the term reflecting the additional weight 
added to the drift rate as a function of factory desirability. Positive values 
indicate a bias towards desirable conclusions, and negative values indicate a 
bias towards undesirable conclusions. [CI]. 

 

As DDM parameters are computed partially based on participants’ responses 

we expected the model-based valence-dependent drift rate bias to correlate 

across individuals with a valence-dependent bias in judgments. Indeed, across 

participants there was a strong positive correlation between valence-dependent 

drift rate bias and the proportion of correctly identified desirable factories minus 

the proportion of correctly identified undesirable factories (threat group: r = 

0.802, p < 0.001, Figure 2.6a, control: r = 0.918, p < 0.001, Figure 2.6a), which 

we term ‘valence-dependent judgement bias’. Individuals with a greater drift 

rate towards desirable than undesirable conclusions were more likely to 

correctly identify desirable factories as desirable when they observed them, 

than undesirable factories when they observed them. In contrast, the starting 

point bias did not correlate with the valence-dependent bias in judgements in 

the threat group (r = 0.223, p = 0.191), but did in the control group (r = 0.517, p 

< 0.001). In the latter, a larger starting point bias was related to the proportion 

of correctly identified desirable factories minus the proportion of correctly 

identified undesirable factories (Figure 2.6b). 
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As we have already shown that participants in the control group had a greater 

drift rate bias than those under perceived threat, it follows that they would also 

show a greater valence-dependent judgement bias. This is indeed what we 

observed. Entering the proportion of correctly identified factories as desirable 

or undesirable into a mixed 2 by 2 ANOVA with valence of factory (within-

subject), group (between-subject) and their interaction, revealed a group by 

valence interaction (F(1,81) = 3.868, p = 0.049, partial η2 = 0.05, Figure 2.6c) 

as well as a main effect of factory valence (F(1,81) = 5.045, p = 0.027, partial 

η2 = 0.06) and no main effect of group (F(1,81) = 0.002, p = 0.985, partial η2 = 

0.00). To tease apart the interaction we followed up with pairwise comparisons. 

This revealed that participants in the control group were less likely to correctly 

categorize undesirable factories (M = 0.727, SE = 0.022) than desirable 

factories (M = 0.80, SE = 0.015; t(42) = 3.099, p = 0.003, Cohen’s d = 0.473). 

In contrast, under perceived threat the effect of valence dissappeared (t(39) = 

0.19, p = 0.85, Cohen’s d = 0.03); participants were just as likely to correctly 

categorize undesirable factories (M = 0.76, SE = 0.02) as they were desirable 

factories (M = 0.765, SE = 0.019). This suggests that under perceived threat 

the valence-dependent judgement bias is abolished. 

 

We conducted the same analysis on our simulated data and find that it nicely 

reproduced the behavioural pattern of results (Figure 2.6d, see Appendix 7.1 

Supplementary Table 2.2). 

 



 53 

 

Figure 2.6. Threat-induced change in valence-dependent drift rate bias is 
expressed as a valence-dependent change in the proportion of correctly 
identified factories. (a) A positive relationship is observed between the 
valence-dependent drift rate bias (Y axis) and the valence-dependent bias in 
the proportion of correctly identified factories (X axis). Individuals with a greater 
drift rate towards desirable than undesirable conclusions are more likely to 
correctly categorize desirable than undesirable factories. This is true both for 
both participants in the control group (dark grey) and participants in the threat 
group (light grey). For those in the control group, the regression line is above 
that of participants in the threat group, which is due to the fact that their drift 
rate bias is significantly greater. The regression line for controls is also shifted 
to the right which indicates a significantly greater valence-dependent 
judgement bias. (b) By contrast we did not observe a relationship between the 
starting point bias (Y axis) and the valence-dependent bias in the proportion of 
correctly identified factories (X axis) in the threat group (light grey). A positive 
correlation was observed in the control group (dark grey). In the control group 
individuals with a large starting point bias were more likely to correctly identify 
desirable than undesirable factories. While the line for the threat group is above 
that of the control group this is not a significant difference. (c) Controls are less 
likely to correctly categorize undesirable factories (orange) than desirable 
factories (blue), while this is not the case for participants in the threat group. (d) 
Simulated data based on model parameters reproduced these findings. Data 
are plotted as boxplots for each condition, in which horizontal lines indicate 
median values, boxes indicate 25/75% interquartile range and whiskers 
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indicate 1.5 x interquartile range. Diamond shape indicates the mean. **p < 
0.01, ns = not significant. Clouds represent CIs. 

 

2.5 Discussion 

The findings show that perceived threat has a profound effect on the process 

by which evidence is accumulated. In particular, it leads to a reduction in the 

strength of the evidence needed to reach undesirable conclusions. Relative to 

controls, participants under perceived threat required a smaller proportion of 

negative stimuli to be observed before reaching an undesirable conclusion. In 

contrast, there was no between-group difference in the strength of evidence 

accumulated before reaching a desirable conclusion. We found this to be true 

despite the fact that the cause of the threat (anticipating a socially stressful 

event) was unrelated to the task performed (judging whether more phones or 

more TVs were observed). 

 

Computationally, there are different mechanisms by which perceived threat can 

lower the strength of evidence needed to reach undesirable conclusions. First, 

under threat participants may be a priori more likely to believe they are in an 

undesirable state relative to controls leading to weaker evidence needed to 

reach that conclusion. Another possibility is that perceived threat can selectively 

increase the rate of negative evidence accumulation (drift rate) relative to 

control. This again will lead to weaker evidence required to reach an 

undesirable conclusion. To tease apart these possibilities we modelled 

responses as a drift-diffusion process (Ratcliff, 1978; Ratcliff & McKoon, 2008; 

Voss et al., 2013). We found support for the latter. Specifically, perceived threat 

altered only one feature of the accumulation process: the relative drift rate 

towards desirable and undesirable conclusions (the ‘valence-dependent drift 

rate bias’). For controls the bias in drift rate was positive – the rate of evidence 

accumulation was greater towards desirable than undesirable conclusions (as 

observed before in Gesiarz et al., 2019). Under threat, however, the bias 

disappeared due to the drift rate towards undesirable conclusions increasing.  
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These results fit with previous suggestions that perceived threat shifts neural 

valuation from desirable to potential aversive outcomes in risky choice 

(Engelmann et al., 2015), directs attention towards negative stimuli (Macatee 

et al., 2017) and leads to greater impact of such stimuli on belief updating 

(Garrett et al., 2018). Indeed, it is possible that the effect of perceived threat on 

the rate of negative evidence accumulation is partially due to increased 

attention towards negative stimuli. The current findings go beyond these 

previous demonstrations to illuminate the effects of perceived threat on the 

process of sequential evidence accumulation and show that weaker evidence 

is needed to reach undesirable conclusions under threat.  

 

Here, we show a causal link between perceived threat and evidence 

accumulation in healthy individuals. It is interesting, however, to consider how 

our findings may be related to evidence accumulation in individuals with 

affective disorders, as these are often triggered by stressful events and/or 

characterized by high anxiety. With regards to individuals with high trait anxiety, 

a processing advantage for threatening words has been previously reported 

(White et al., 2010). While that study was correlational and thus could not 

determine whether anxiety caused the changes to the drift rate and/or vice 

versa, our results support the notion that anxiety can in fact alter the drift rate 

towards undesirable conclusions, even if the anxiety is short-lived rather than 

chronic. With regards to individuals with anxiety and mood disorders, one study 

(Aylward et al., 2019) found a lower drift rate towards desirable conclusions 

compared to healthy individuals. Interestingly, the latter study did not detect any 

effects of induced threat, which may be due to the fact that the task used in that 

study (as well as in all the above-mentioned studies) unlike ours, was a non-

sequential perceptual decision-making task. The process by which pieces of 

evidence are accumulated over time may be especially impacted by perceived 

threat. 

 

Our study suggests that evidence accumulation is a flexible process which 

quickly adjusts to the environment. In particular, the findings show that 

perceived threat leads to a valence-dependent change to the accumulation 
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process, even when the evidence is not directly related to the cause of the 

threat. An increased rate of negative evidence accumulation can then enhance 

the probability of taking precautionary action to avoid aversive consequences. 

As aversive outcomes can be more severe and frequent in threatening 

environments, such generalization can be, on average, adaptive. However, in 

individuals who are hypersensitive to threat and/or falsely perceive situations 

as threatening, such as those suffering from anxiety and depression, an 

increased rate of negative evidence accumulation could be maladaptive. This 

is because such an increased rate can produce overly pessimistic predictions, 

which induce stress and anxiety, further worsening symptoms. 

 

 

 

  



 57 

Chapter 3: Futile Rewards: Why 
Accuracy Incentives Fail to Reduce 
Biased Evidence Accumulation 

3.1 Abstract 

Intuitively, we assume that financially incentivizing individuals to provide a 

correct response will enhance the accuracy of their decisions. Here, we show 

that accuracy incentives fail to reduce a well-known bias in which people reach 

desirable (over undesirable) conclusions (= desirability bias), because the two 

operate on orthogonal aspects of the evidence accumulation process. Over 

three experiments, participants (n = 235) completed a perceptual evidence 

accumulation task in which they had to determine whether they were in a 

desirable state, which was associated with greater rewards, or an undesirable 

state. In some trials they were also financially incentivized for correct 

responses. Results show that while accuracy incentives led participants to take 

more time in reaching a conclusion, they did not impact participants’ desirability 

bias. Fitting the data to an evidence accumulation model revealed that while 

accuracy incentives led to an increase in the distance between the decision 

thresholds, the desirability bias was associated with greater weight on desirable 

relative to undesirable evidence (drift rate bias). These results suggest that the 

desirability bias is likely unconscious. 

 

3.2 Introduction 

Humans demonstrate an impressive ability to understand the world around 

them. At the same time, however, people also exhibit a host of systematic errors 

in judgement (known as biases and heuristics, Gigerenzer & Gaissmaier, 

2011). These errors can lead to poor and costly decisions in domains ranging 

from finance to health (Dunning et al., 2004; Shefrin, 2015). There is thus a 

clear need to identify ways to mitigate such systematic errors. One obvious 

solution is to financially incentivize people to form more accurate beliefs in 
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situations where biases and heuristics are common. But would such incentives 

work? The answer may depend on the nature of the error. 

 

One category of systematic errors, known as heuristics, are cognitive shortcuts 

used to make efficient and effortless decisions (Gigerenzer & Gaissmaier, 

2011). These are not errors that people are motivated to make, but rather the 

result of ‘thoughtless’ processing. Past studies suggest financial incentives are 

generally successful at reducing such errors. For instance, financial incentives 

have been shown to reduce the tendency to falsely believe large-number ratios 

(e.g., 30/100) convey a higher probability than equivalent small-number ratios 

(3/10; Dale et al., 2007; Lefebvre et al., 2011). Incentives also reduce the 

anchoring effect, that is the tendency for decisions to be disproportionally 

influenced by an initial piece of observed information (Meub et al., 2013; Wright 

& Anderson, 1989; but see Epley & Gilovich, 2005; Enke et al., 2023), and the 

conjunction fallacy, which describes the tendency to incorrectly consider multi-

attribute hypotheticals that are more specific (e.g., “The dog surfs and wears a 

hat”) to be more probable than singular hypotheticals (e.g., “The dog surfs", 

Zizzo et al., 2000; for a meta-analysis see Yechiam & Zeif, 2023; but see 

Charness et al., 2010). Thus, there is some evidence that incentives can 

increase (‘slow’) rational thinking and reduce the reliance on cognitive 

shortcuts.  

 

Here, we focus on a distinct, second, category of systematic errors - 

motivational biases. These are errors that occur not due to ‘cognitive laziness’, 

but because the individual prefers one belief over the other (Montibeller & Von 

Winterfeldt, 2015). Only a handful of studies have examined whether incentives 

can overcome such motivational biases. Almost all have focused on the 

partisan bias, which is the tendency to process, interpret, and favour 

information in a way that aligns with one’s political ideology (Van Bavel & 

Pereira, 2018). Indeed, monetary incentives have been shown to reduce the 

impact of the partisan bias on judging the accuracy of political statements (Prior 

et al., 2015; Rathje et al., 2023), however not on non-political advice-taking 

(Zhang and Rand, 2023). Beyond the partisan bias, financial incentives also 
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failed to mitigate the bias to interpret a perceptual stimulus as predicting the 

absence of an upcoming shock (Engelmann et al., 2019). 

 

Thus, while muddy, the literature seems to suggest that monetary incentives 

are relatively unreliable in reducing motivational biases. Here, we propose and 

test a possible explanation. We hypothesize that financial incentives do indeed 

lead individuals to invest cognitive effort in reaching accurate conclusions, by 

for example accumulating more evidence. These efforts may indeed be fruitful 

when the cause of the error is fast, careless, processing. However, when the 

cause of the error is an unconscious bias in how information itself is processed 

(for example as when people put greater weight on desirable than undesirable 

evidence resulting in a desirability bias, as shown in Gesiarz et al., 2019; Globig 

et al., 2021), they will have little effect. In other words, if financial incentives 

alter a feature of the decision process that is orthogonal to the one the bias 

works on, they will fail.  

 

To test this hypothesis we conducted three experiments, where participants 

(total N = 236) played a modified random-dot task. In the task, participants 

observed a cloud of moving dots. Their goal was to determine whether most of 

the dots were moving left or right. On some trials, they were rewarded for 

correct responses, while on other trials there was no reward for correct 

responses. Importantly, participants were told that one of the two directions was 

desirable. That is whenever the dots moved in that direction, they could receive 

an additional bonus. Crucially, participants had no control over the direction of 

the dots; their task was simply to detect it. In Experiment 1 and its replication, 

the reward for correct responses on incentivized trials was equal to this bonus, 

and in Experiment 2 it was five times greater. Thus, in all experiments, to 

maximize reward across the task, it was in participants’ interest to be as 

accurate as possible.  

 

We fit a DDM to our data. This models the process of noisy evidence 

accumulation toward either of two decision thresholds from a given starting 

point (Ratcliff & Rouder, 1998; Voss et al., 2013) and enables us to determine 
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which elements are altered by accuracy incentives. Previous work from our lab 

shows, that the motivation to form desirable conclusions alters the rate at which 

desirable evidence is accumulated (Gesiarz et al., 2019; Globig et al., 2021; 

see also Leong et al., 2019). We speculate that if accuracy incentives fail to 

mitigate biased evidence accumulation, this could be because they affect a 

different element of the accumulation process. For example, incentives may 

increase the distance between decision thresholds, thus making participants 

more cautious, but may not impact the relative rate at which desirable evidence 

is accumulated. Knowledge of the precise decision-making features that 

financial accuracy incentives impact, can shed light on when and why they may 

fail to reduce motivational biases.  

 

3.3 Methods 

Experimental Design 

Participants (Experiment 1): 

Seventy participants residing in the United States (US) completed the task on 

Prolific Academic (www.prolific.com). Participants received £7.50 per hour for 

their participation in addition to a performance-related bonus. Ethical approval 

was provided by the Research Ethics Committee at University College London 

and all participants gave informed consent. All experiments were performed in 

accordance with the principles expressed in the Declaration of Helsinki. 

Participants who failed the comprehension checks at the beginning of the 

experiment more than twice were not allowed to participate. We also adopted 

the following exclusion criteria: response times (RTs) faster than 200ms were 

discarded from further analysis, as recommended in previous literature (Ratcliff 

& Tuerlinckx, 2002; Rollwage et al., 2020; Wiecki et al., 2013). In cases where 

a participant did this in over half their trials, we assumed that the participant 

was not appropriately engaging with the task and eliminated the entirety of their 

trials (as in Gesiarz et al., 2019; Globig et al., 2021). Based on this we removed 

1 participant and a further 64 trials from Experiment 1. Thus, data of 69 

participants were analysed (Experiment 1: N = 69 Mage = 35.319, SDage  

10.222; female = 31, male = 38). Sample size was calculated based on a pilot 
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study. Calculations were performed using g*Power (Faul et al., 2009) to achieve 

power of 0.8. 

 

Participants (Replication):  

Seventy-three participants residing in the US completed the task on Prolific 

Academic. Participants received £7.50 per hour for their participation in addition 

to a performance-related bonus. RTs faster than 200ms were discarded from 

further analysis (see Participants Experiment 1 for details). Forty-nine trials 

were discarded for this reason. No participants were removed. Thus, data of 73 

participants were analysed (Replication: N = 73; Mage = 35.699, SDage  9.253; 

female = 37, male = 36).  

 

Participants (Experiment 2):  

Ninety-three participants residing in the US completed the task on Prolific 

Academic. Participants received £7.50 per hour for their participation in addition 

to a performance-related bonus. RTs faster than 200ms were discarded from 

further analysis (see Participants Experiment 1 for details). In cases where 

a participant did this in over half their trials, we assumed that the participant 

was not appropriately engaging with the task and eliminated the entirety of their 

trials. Based on this we removed 1 participant from Experiment 2 and a further 

134 trials. Thus, data of ninety-two participants were analysed (Experiment 2: 

N = 92; Mage = 29.396, SDage  5.702; female = 44 male = 48). 

 

Behavioural Task (Experiment 1 & Replication): 

In each experiment, participants played a modified forced choice random dot 

kinetogram (RDK) task (Newsome & Pare, 1988; see Figure 3.1). The task 

consisted of four blocks with 60 trials each. On each trial participants observed 

a cloud of white dots (number of dots = 100, dot radius = 2°, dot life = 5 frames) 

moving within a circular aperture on a black background. The direction of 

motion of the clouds was either right or left along the horizontal meridian. Each 

set was replotted one aperture later in which a subset of dots, determined by 

the noise level, was offset from their previous location towards the target 

movement direction, and another subset was offset in the opposite direction, 
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whereas the rest was replotted randomly. Participants had to judge whether the 

majority of the dots were moving in the right or left direction. They were free to 

respond as soon as they wished. The dot motion would either continue until 

they made their choice or up to 5s. Across trials we varied whether participants 

were incentivized for accuracy (i.e., paid for correct responses; reward = $5 vs 

no reward = $0) and the level of noise of the dot motion (i.e., low noise = 0.256 

motion-coherence vs high noise = 0.064 motion-coherence). Participants were 

informed that at the end of the experiment, one trial would randomly be selected 

for pay off. If in this trial participants were incentivized for accuracy, and they 

responded correctly they would receive $5. In addition to this, in each block, 

one direction was assigned to be the desirable direction, and the other to be 

the undesirable direction. Participants were told that if the dots in the trial 

selected for pay off moved in the desirable direction, they would receive an 

additional $5 bonus. Crucially, this bonus was entirely outside of their control, 

i.e., it was not affected by their responses. Desirability was counterbalanced 

across participants and varied across blocks, such that in two blocks 

participants would receive a bonus if the dots moved to the left, and in the 

remaining two blocks participants would receive the bonus if the dots moved to 

the right. Trial type was randomly determined with replacement on every trial 

with an equal probability for each trial type. 

 

Figure 3.1. The Random Dot Kinetogram Task (Experiment 1 & 
Replication). In each trial, participants saw an animated cloud of dots moving 

$5
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either rightward or leftward within a circular aperture. Their task was to 
determine the direction of the majority of the dots. Across trials, we varied the 
level of noise of the dot motion (i.e., % of dots moving in the same direction) 
and whether participants were incentivized for accuracy. The reward for correct 
responses on incentivized trials was $5. Participants were informed that at the 
end of the experiment one trial would randomly be selected for pay off. In each 
block, one direction was assigned to be desirable. On trials where the dots 
happened to move in that direction, participants could receive an additional $5 
bonus, if this trial was selected for pay off. Notably, this bonus was beyond 
participants' control and was not affected by the actual decision made. 
Participants were told which direction was desirable at the start of each block. 
In each trial, they were first informed about whether the trial was incentivized 
for accuracy. Next, they were presented with a reminder about which direction 
was desirable. This was followed by a fixation cross. Each of these was 
presented for 1000ms. Afterwards the random-dot stimulus was displayed for a 
maximum of 5000ms or until button press.  

 

For example, imagine that at the end of the experiment, a trial is selected in 

which there is no reward for correct responses. The trial is in a block where the 

right side is considered desirable. If a participant correctly deduces that the dots 

move to the right, they receive no performance-related reward despite 

answering correctly, because there is no reward for correct responses in this 

trial. However, they do receive a bonus ($5) because the dots are in fact moving 

in the desirable direction. The task was coded using JsPsych and Javascript. 

The task for the replication was identical to Experiment 1. 

Training. Prior to playing the task, participants received extensive instructions 

and were required to answer multiple-choice comprehension check questions 

on the key points of the task, with the question repeated until they either chose 

correctly or failed twice, upon which the experiment was terminated. The 

questions addressed the following key points of how the task worked: that 

participants’ task was to correctly identify the direction of the dot motion; that 

on some trials they could receive a reward for correct responses; and that the 

bonus for dots moving in the desirable direction was independent of the 

responses they gave. Participants then played two practice sessions of 10 trials 

each where they received feedback. During the first practice session, they were 

given the opportunity to familiarize themselves with RDKs before the bonus 
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structure was introduced. The second practice session was included to give 

participants prior experience with the trial types. If their choice accuracy was 

below 50% in practice session 1 and 40% in practice session 2 respectively, 

they had to repeat the training procedures. If they failed the training procedure 

twice, the experiment was terminated. 

 

Statistical Analysis (Experiment 1 & Replication): 

Response Bias. To determine whether participants were biased towards 

reaching desirable conclusions we calculated each participant’s response bias. 

We define this as their tendency to overestimate the proportion of desirable 

trials encountered. We calculated response bias separately for each participant 

as follows: 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 =   𝑃𝑟𝑜𝑝. 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠 𝑚𝑎𝑑𝑒−  𝑃𝑟𝑜𝑝. 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑡𝑟𝑖𝑎𝑙𝑠 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑 

 

Such that positive values indicate a bias towards desirable conclusions while 

negative values indicate a bias towards undesirable conclusions. Response 

bias values were then entered into a one-sample t-test against zero to assess 

whether participants showed a significant response bias in their behaviour for 

each incentive level separately. We then compared the average response bias 

for each incentive level ($0 vs $5) using paired t-tests. Bayes tests were 

calculated to corroborate non-significant findings (Ly et al., 2016). Finally, one-

sample t-tests against zero were performed to assess whether participants 

showed a significant response bias in their behaviour for each incentive level 

separately. We compared the pattern of results obtained from participants’ real 

data to those obtained from simulated data (see Drift-Diffusion Modelling). 

All statistical tests conducted in the present article are two-sided. Analysis was 

conducted using IBM SPSS 27 and R Studio (Version 1.3.1056). All results of 

interest hold when controlling for noise (see Appendix 7.2 Supplementary 

Tables 3.9-3.16). 

 

Response Times. To determine whether participants cared about accuracy 

incentives, we calculated their mean log-transformed RTs for trials in which they 
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were incentivized for accuracy ($5) and trials in which they were not 

incentivized ($0). We then computed a paired t-test to assess how accuracy 

incentives ($0 vs $5) affected log-transformed RTs.  

 

Drift-Diffusion Modelling. Our aim in modelling our task using DDM was to 

gain a better understanding of the underlying mechanisms of how accuracy 

incentives and desirability may alter the evidence accumulation process.  

 

To that end, we implemented and compared 65 different specifications of a 

DDM. The models included the following parameters: (1) t0—amount of non-

decision time; (2) α—distance between decision thresholds; (3) z—starting 

point of the accumulation process; and (4) v—drift rate - the rate of evidence 

accumulation. To reduce computational load, we adopted a theory-driven 

approach: First, a baseline model was estimated where we allowed all 

parameters to vary - but did not include dependencies on any of the motives. 

Then, informed by prior research (Gesiarz et al., 2019; Globig et al., 2021; 

Leong et al., 2019), we reasoned that desirability might (1) reflect as a shift in 

the starting point to be closer to the bound associated with the desirable 

conclusion; and/or (2) induce selective accumulation of evidence in line with the 

desirable conclusion, as evidenced by a valence-dependent drift-rate bias. 

Furthermore, we speculated that when individuals are motivated to make 

accurate decisions, (1) they may be more cautious about making a decision, 

thereby increasing the distance between decision thresholds; and/or (2) they 

might weigh evidence more carefully thus slowing the rate of evidence 

accumulation (Shevlin et al., 2022). We also controlled for noise. We 

hypothesized that noise could (1) increase the distance between decision 

thresholds; such that participants are more cautious when the evidence is 

noisy; and/or (2) slow the rate of evidence accumulation, by making it harder to 

separate the evidence for each response option. 

 

We first compared 64 models in which we tested these possibilities as main 

effects; and then assessed whether adding interactions would improve model 

fit of the winning model (see Appendix 7.2 Supplementary Tables 3.1 & 3.2 
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for list of all models). RTs faster than 200 ms were discarded from the model 

fits and further analysis, as recommended in previous literature (Ratcliff & 

Tuerlinckx, 2002; Rollwage et al., 2020; Wiecki et al., 2013). In cases where a 

participant did this in over half their trials, we assumed that the participant was 

not appropriately engaging with the task and eliminated the entirety of their 

trials. Based on this, from Experiment 1 we removed 1 participant and a further 

64 trials, and from its replication, we removed 49 trials. 

 

We used the HDDM software toolbox (Wiecki et al., 2013) to estimate the 

parameters of our models. The HDDM package employs hierarchical Bayesian 

parameter estimation, using MCMC methods to sample the posterior probability 

density distributions for the estimated parameter values. We estimated both 

group-level parameters as well as parameters for each individual participant. 

Parameters for individual participants were assumed to be randomly drawn 

from a group-level distribution. Participants’ parameters both contributed to and 

were constrained by the estimates of group-level parameters. In fitting the 

models, we used priors that assigned equal probability to all possible values of 

the parameters. Models were fit to log-transformed RTs because RTs were 

non-normally distributed and had a heavy positive skew. Also, since our ‘error’ 

RT distribution included relatively fast errors we included an inter-trial starting 

point parameter (sz) to improve model fit (Ratcliff & Rouder, 1998). We sampled 

10,000 times from the posteriors, discarding the first 5000 as burn in and 

thinning set at 5. MCMC are guaranteed to reliably approximate the target 

posterior density as the number of samples approaches infinity. To test if the 

MCMC converged within the allotted time, we used Gelman-Rubin statistic 

(Rubin & Gelman, 1992) on 5 chains of our sampling procedure. The Gelman–

Rubin diagnostic evaluates MCMC convergence by analysing the difference 

between multiple Markov chains. The convergence is assessed by comparing 

the estimated between-chains and within-chain variances for each model 

parameter. In each case, the Gelman-Rubin statistic was close to one (<1.1), 

suggesting that MCMC were able to converge.  
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Model fits were then compared using the DIC (Spiegelhalter et al., 2002), which 

is a generalization of the AIC for hierarchical models. The DIC is commonly 

used when the posterior distributions of the models have been obtained by 

MCMC simulation (Gamerman & Lopes, 2006). It allows one to assess the 

goodness of fit, while penalizing for model complexity. To examine the 

robustness of these results, we performed a complementary analysis and 

calculated Bayesian Predictive Information Criterion (BPIC) for each model 

(Ando, 2007). This corrects for over-fitting by adjusting for the asymptotic bias 

of the posterior mean of the log-likelihood as an estimator for its expected log-

likelihood.  

To validate the winning model, we used group parameters obtained from 

participants’ data to simulate log-transformed RTs and responses. We used the 

exact number of participants, total number of trials and trial structure as in the 

experiment. Simulated data was then used to (1) perform model recovery 

analysis and (2) to compare the pattern of participants’ responses to the pattern 

of simulated responses. We sampled 2000 times from the posteriors, discarding 

the first 500 as burn in. Simulation and model recovery analysis were performed 

using the HDDM software toolbox (Wiecki et al., 2013). 

 

To assess if desirability, accuracy incentives and noise significantly altered the 

model parameters, we calculated 95% CIs of the parameters’ values. If the 95% 

CI for a parameter does not overlap zero (or 0.5 for the starting point), we 

consider there to be a significant effect. We also computed 95% HDIs of the 

parameter’s posterior distributions. If this HDI did not overlap zero, we 

considered there to be a meaningful effect. HDI testing was conducted in R 

using HDInterval (Meredith & Kruschke, 2016). 

 

Behavioural Task and Analysis (Experiment 2): 

The task and analysis in Experiment 2 was identical to that used in Experiment 

1 and its replication except for the following differences: 

1) As before, we varied whether participants were incentivized for accuracy 

across trials. But this time, we increased the potential reward for correct 
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responses five-fold. In some trials participants could receive $25 for 

correct responses and in others $0 (see Figure 3.2). The bonus for dots 

moving in the desirable direction was $5. Thus, in Experiment 2, we 

compared $0 vs $25 accuracy incentives, instead of $0 vs $5 accuracy 

incentives in Experiment 1 and its replication. 

2) We also increased the range of noise levels. Noise varied across trials 

between 0.03 (high noise) to 0.3 (low noise) in increments of 0.03.  

3) RTs faster than 200ms were discarded from the DDM fits (see Appendix 

7.2 Supplementary Table 3.3 for list of all models) and further 

analysis, as recommended in previous literature (Ratcliff & Tuerlinckx, 

2002; Rollwage et al., 2020; Wiecki et al., 2013). In cases where a 

participant did this in over half their trials, we assumed that the 

participant was not appropriately engaging with the task and eliminated 

the entirety of their trials. Based on this, from Experiment 2 we removed 

1 participant and a further 134 trials. 

 

 

 

Figure 3.2. The Random Dot Kinetogram Task (Experiment 2). The task in 
Experiment 2 was identical to the task in Experiment 1 and its replication except 
for the following: Across trials, we varied the level of noise of the dot motion 
(0.03-0.3 in increments of 0.03) and whether participants were incentivized for 
accuracy. In Experiment 2 we increased the reward on incentivized trials to $25. 
On trials which were not incentivized the reward for correct responses was $0. 

$25
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We maintained the bonus associated with the dots moving in a desirable 
direction at $5.  

 

3.4 Results 

In this study, we assessed whether rewarding participants for correct responses 

reduces the bias towards desirable conclusions in evidence accumulation. To 

test this, we ran two identical experiments (NExperiment 1 = 70; NReplication = 73), in 

which participants completed a modified forced choice RDK task (Newsome & 

Pare, 1988, see Figure 3.1). In this task they judged whether most dots were 

moving right or left. Across trials we varied whether participants were 

incentivized for accuracy (i.e., paid for correct responses; reward = $5 vs no 

reward = $0) and the level of noise (low noise vs high noise). We also told 

participants that in each block, one direction was assigned to be the desirable 

direction, and the other the undesirable direction. Participants were told that 

each time the dots moved in the desirable direction they would win an additional 

$5 bonus. Crucially, participants had no control over which type of trial they 

were in (i.e., which direction the dots were moving), their task was simply to 

determine the direction, gaining rewards for accurate decisions on incentivized 

trials. We anticipated that this manipulation would cause participants to 

systematically err towards believing the dots were moving in the desirable 

direction even when they were not. 

 

The manipulation successfully biased participants towards desirable 

conclusions. We first assessed whether our manipulation successfully 

induced a bias towards desirable conclusions. To that end, we calculated each 

participant’s response bias as follows: 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐵𝑖𝑎𝑠 =   𝑃𝑟𝑜𝑝. 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠 𝑚𝑎𝑑𝑒−  𝑃𝑟𝑜𝑝. 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝑡𝑟𝑖𝑎𝑙𝑠 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑑 

 

such that positive values indicate a bias towards desirable conclusions while 

negative values indicate a bias towards undesirable conclusions. 
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Indeed, participants judged a larger proportion of trials as desirable than the 

proportion of desirable trials they actually encountered (Experiment 1: MResponse 

Bias = 0.032, SE = 0.014, t(68) = 2.361, p = 0.021, Cohen’s d = 0.284, 

Replication: MResponse Bias = 0.047, SE = 0.014, t(72) = 3.323, p = 0.001, 

Cohen’s d = 0.389). Thus, our manipulation was successful at inducing a bias 

towards desirable conclusions (replicating previous findings from Gesiarz et al., 

2019; Globig et al., 2021; Leong et al., 2019). 

 

Participants become more cautious when incentivized for accuracy. We 

next examined whether accuracy incentives altered participants’ behaviour. We 

speculated, that if participants were sensitive to accuracy incentives, they 

should be more cautious on incentivized trials ($5 reward) than on trials in which 

there was no reward for correct responses ($0 reward). Indeed, we found that 

participants were slower to respond when they were incentivized for accuracy 

(Experiment 1: $5 accuracy incentives – MlogRT = 7.25, SE = 0.048; $0 accuracy 

incentives: MlogRT = 7.219, SE = 0.05; t(68)  =  3.478, p < 0.001; Cohen’s d = 

0.07; Replication: $5 accuracy incentive – MlogRT = 7.282, SE = 0.043; $0 

accuracy incentives: MlogRT = 7.26, SE = 0.044; t(72)  = 2.755, p = 0.007; 

Cohen’s d = 0.059; see Figure 3.3). Adding the level of noise to the analysis 

does not alter the results (see Appendix 7.2 Supplementary Tables 3.4 & 

3.5). While the effect of incentives is small, these results suggests that 

participants are sensitive to accuracy incentives and are slower about their 

decisions when incentivized.  
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Figure 3.3. Participants are more cautious when incentivized for accuracy 
(Experiment 1 & Replication). In both (a) Experiment 1, and (b) its replication, 
participants took longer to reach a conclusion when incentivized for accuracy 
($5), compared to when there was no reward for correct responses ($0). Y axis 
shows log-transformed RT. X axis shows accuracy incentive level. Data are 
plotted as boxplots for each incentive level, in which horizontal lines indicate 
median values, boxes indicate 25/75% interquartile range and whiskers 
indicate 1.5 × interquartile range. Diamond shape indicates the mean log-
transformed RT per incentive level. Individuals’ mean response time is shown 
separately as dots. Symbols above each boxplot indicate significance level 
compared to 0. ***p < 0.001, **p < 0.01. 

 

Accuracy incentives do not reduce the bias towards desirable 

conclusions.  

We next turned to our primary question - do accuracy incentives reduce the 

bias towards desirable conclusions? We found that despite participants taking 

longer to reach a conclusion when incentivized for accuracy, their bias towards 

desirable conclusions remained unchanged. In particular, the magnitude of the 

response bias, measured as the proportion of trials judged as desirable minus 

the proportion of desirable trials actually encountered, remained the same 

regardless of whether accuracy was incentivized ($5 accuracy incentives – 

Experiment 1: MResponse Bias = 0.035, SE = 0.014, Replication: MResponse Bias = 

0.042, SE = 0.015) or not ($0 accuracy incentives – Experiment 1: MResponse Bias 

= 0.03, SE = 0.001, Replication: MResponse Bias = 0.052, SE = 0.017; comparison 
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between the two: Experiment 1: t(68) = -0.532, p = 0.96, Cohen’s d = 0.064, 

Replication: t(72) = 0.765, p = 0.447, Cohen’s d = 0.089, see Figure 3.4). 

Adding the level of noise to the analysis does not alter the results (see 

Appendix 7.2 Supplementary Tables 3.6 & 3.7). Bayes tests further provide 

moderate to strong support in favour of the null hypothesis (Experiment 1: BF01 

= 9.181, Replication: BF01 = 8.139).  

 

One-sample t-tests against zero revealed that for each incentive level 

participants concluded they were in a desirable trial significantly more often 

than an undesirable trial and thus overestimated the proportion of desirable 

trials they encountered ($0 accuracy incentives – Experiment 1: t(68) = 2.051, 

p = 0.044, Cohen’s d = 0.247; Replication: M = 0.052, SE = 0.017, t(72) = 

3.146, p = 0.002, Cohen’s d = 0.368; $5 accuracy incentives – Experiment 1: 

M = 0.035, SE = 0.014, t(68) = 2.429, p = 0.018, Cohen’s d = 0.119; 

Replication: M = 0.042, SE = 0.015, t(72) = 2.79, p = 0.007, Cohen’s d = 

0.327). Thus, participants are biased towards desirable responses irrespective 

of whether they are incentivized for accuracy. In line with this, we did not 

observe an improvement in overall discernment between signal and noise 

when incentivized vs when not incentivized (see Appendix 7.2 

Supplementary Results & Supplementary Tables 3.8 & 3.9 for analysis of 

dPrime). 
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Figure 3.4. Accuracy incentives do not reduce the response bias 
(Experiment 1 & Replication). In both (a) Experiment 1, and (b) its replication 
participants were biased towards desirable responses. Accuracy incentives did 
not reduce this bias. For each accuracy incentive level, the proportion of trials 
they judged as desirable was significantly larger than the proportion of desirable 
trials they encountered. Y axis shows response bias, i.e., proportion of 
desirable judgements made minus proportion of desirable trials encountered. X 
axis shows accuracy incentive level. Data are plotted as boxplots for each 
incentive level, in which horizontal lines indicate median values, boxes indicate 
25/75% interquartile range and whiskers indicate 1.5 × interquartile range. 
Diamond shape indicates the mean response bias per incentive level. 
Individuals' response bias is shown separately as dots. Symbols above each 
boxplot indicate significance level compared to 0. *p < 0.05, ns = not significant.  

 

Specifying the impact of accuracy incentives and desirability on the 

stages of evidence accumulation.  

Thus far, our results suggest that although participants are sensitive to 

accuracy incentives, the way in which they accumulate evidence remains 

biased. We next considered different potential mechanisms through which this 

behaviour could be explained. To that end, we considered how accuracy 

incentives, desirability and noise may influence the evidence accumulation 

process. 

 

Informed by prior research (Gesiarz et al., 2019; Globig et al., 2021; Leong et 

al., 2019), we speculated that when participants are motivated to reach a 

desirable conclusion they may (1) selectively accumulate evidence in line with 

this desirable conclusion (drift rate); and/or (2) may be a priori more likely to 

believe they are in the desirable state even before seeing any evidence (starting 

point). Rewarding individuals for accurate responses makes them more 

cautious, potentially (1) increasing the amount of evidence they require before 

reaching a conclusion (distance between decision thresholds); and/or (2) 

causing them to weigh the evidence they gather in a less biased manner (drift 

rate, Shevlin et al., 2022). When the evidence is noisy, participants may (1) 

increase the amount of evidence they require before reaching a conclusion 

(distance between decision thresholds); and/or (2) slow the rate at which they 

accumulate evidence (drift rate).  
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To determine which, if any, of the above holds, we fit a DDM to the data. 

Specifically, we modelled participants’ responses as a drift-diffusion process 

(Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2013) with the following 

parameters: (1) α—distance between decision thresholds; (2) t0—amount of 

non-decision time; (3) z—starting point of the accumulation process; and (4) 

v—drift rate, i.e., the rate of evidence accumulation. 

 

In a first step, we set out to identify the model that best captures the data. To 

that end, we compared different model specifications, each allowing for different 

dependencies of each parameter on accuracy incentives, desirability, and 

noise. To reduce computational load, we first compared 64 different model 

specifications in which we tested all the above possibilities as main effects. We 

then added interactions to the winning model to assess whether this would 

improve model fit (see Methods for further details). 

 

The DIC, a generalization of the AIC for hierarchical models, was calculated for 

each model (see Appendix 7.2 Supplementary Tables 3.1 & 3.2). DIC scores 

indicated that for both experiments the model that outperformed all other 

models allowed: (1) accuracy incentives to influence the distance between 

decision thresholds (2) desirability to influence starting point and drift rate and 

(3) noise to influence drift rate. Allowing for interaction effects did not improve 

model fit (see Appendix 7.2 Supplementary Tables 3.1 & 3.2). This suggests 

that the effect of desirability is not modulated by accuracy incentives, rather 

accuracy incentives and desirability influence different elements of the 

accumulation process. While desirability and noise alter the quality of evidence 

accumulation through the drift rate, accuracy incentives do not alter the quality 

of accumulation but instead influence the decision-making process by adjusting 

the caution with which decisions are made, i.e., the distance between decision 

thresholds. BPIC results corroborate these findings (see Appendix 7.2 

Supplementary Tables 3.1 & 3.2).  
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Thus far, we have therefore established that a model which incorporates 

desirability, accuracy incentives and noise, without interactions among these 

variables fits the data best. To reveal the direction, magnitude, and significance 

of each effect, we, we calculated the 95% CIs for each parameter. If the 95% 

CI of the parameter distribution does not overlap with zero (or 0.5 for the starting 

point), we infer a significant effect. 

 

This revealed that accuracy incentives increased the distance between 

decision thresholds (Experiment 1: α=0.059; 95% CI [0.021, 0.089], 

Replication: α=0.032; 95% CI [0.001, 0.072], Table 3.1 & 3.2, Figure 3.5 a&b). 

When rewarded for correct responses, participants were more cautious and 

needed more evidence before reaching a conclusion. In addition to this, 

desirability had a statistically meaningful effect on the drift rate (Experiment 1: 

v=0.125, 95% CI [0.002, 0.257]; Replication: v=0.278, 95% CI [0.12, 0.431], 

Figure 3.5 c&d replicating previous findings from Gesiarz et al., 2019; Globig 

et al., 2021; Leong et al., 2019). Participants selectively accumulated evidence 

towards desirable conclusions, and thus had a larger drift rate when the dots 

moved in the desirable direction. By contrast, desirability did not significantly 

modulate the starting point (Experiment 1: z=0.504, 95% CI [0.494, 0.515], 

Replication: z=0.49, 95% CI [0.479, 0.50], replicating previous findings from 

Globig et al., 2021). Finally, we observed a significant effect of noise on the drift 

rate (Experiment 1: v=0.383; 95% CI [0.299, 0.461], Replication: v=0.396; 95% 

CI [0.298, 0.492], Figure 3.5 e&f). That is, when the evidence was noisy, it was 

harder for participants to separate the evidence for each response option, 

thereby slowing the rate of evidence accumulation. 95% HDI comparisons 

corroborate this result (see Appendix 7.2 Supplementary Table 3.10 for HDI 

Comparisons). 
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Figure 3.5. Different motives affect different aspects of the evidence 
accumulation process (Experiment 1 & Replication). When participants 
were incentivized for accuracy, (a&b) the distance between decision thresholds 
increased. (c&d) The rate of evidence accumulation was greater when the dots 
were moving in the desirable direction and (e&f) when noise was high. 
Displayed are the posterior distributions of the parameter estimates for each 
feature for the parameter it significantly modulates in Experiment 1 (left) and its 
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replication (right). Coloured dashed vertical lines indicate group means. Black 
line represents 95% CI. *indicates significant effect.  

 

These findings lend support to some of our hypothesized mechanisms. 

Specifically, we find that (i) when individuals are motivated to make accurate 

decisions, they are more cautious - increasing the distance between decision 

thresholds; (ii) desirability induces selective accumulation of evidence towards 

desirable conclusions, and (iii) high levels of noise slow the rate of evidence 

accumulation. In line with the behavioural results, we do not find evidence for 

accuracy incentives modulating the effect of desirability on behaviour. This 

suggests that accuracy incentives fail to mitigate the influence of desirability on 

evidence accumulation, because the two act on different elements of the 

accumulation process. While participants required more information to make a 

decision, the way in which they accumulated evidence to reach that decision 

remained biased. 

 

Model recovery is successful and simulated data reproduces 

experimental results.  

To determine whether our winning model accurately captured the data we 

examined whether the model parameters could be successfully recovered 

based on simulated data. To that end, we first simulated data using the group 

parameters (see Methods for details). We then fit the winning model to the 

simulated data, in the same way as for the experimental data. We sampled 

2000 times from the posteriors, discarding the first 500 as burn in. As shown 

in Table 3.1-3.2 model parameters could be successfully recovered based on 

the simulated data.  
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Estimate Experimental Data [95% CI] Simulated Data [95% CI] 

Distance between 
Decision Thresholds 
(α) 

2.294 [2.189, 2.39] 2.372 [2.349, 2.398] 

βAccuracy 
Incentives Distance 
between Decision 
Thresholds 

0.059 [0.021, 0.089] 0.051 [0.009, 0.093] 

Non-decision Time 
(t0) 

6.104 [5.983, 6.216] 5.989 [5.974, 0.004] 

Starting Point (z) 0.504 [0.494, 0.515] 0.496 [0.484, 0.509] 
inter-trial Starting  
Point (sz) 

0.053 [0.002, 0.076] 0.069 [0.004, 0.159] 

Drift Rate (β0) 0.093 [-0.004, 0.187] 0.091 [0.056, 0.126] 

βDesirability  
Drift Rate 

0.125 [0.002, 0.257] 0.131 [0.078, 0.182] 

βNoise Drift Rate 0.382 [0.299, 0.461] 0.379 [0.332, 0.427] 

Table 3.1. Real and Recovered Parameter estimates of the evidence 
accumulation process (Experiment 1). Displayed are the real (left) and 
recovered (right) model estimates from the winning model. These include a 
constant for Distance Between Decision Thresholds (α), βAccuracy Incentives 
Distance between Decision Thresholds, Non-decision Time (t0), Starting Point 
(0<z<1), Inter-trial Starting Point (sz), constant Drift Rate (β0), βDesirability Drift 
Rate (β1), and βNoise Drift Rate. [CI]. 

 

Estimate Experimental Data [95% CI] Simulated Data [95% CI] 

Distance between 
Decision 
Thresholds (α) 

2.318 [2.187, 2.449] 2.36 [2.358, 2.367] 

βAccuracy 
Incentives 
Distance between 
Decision 
Thresholds 

0.032 [0.001, 0.072] 0.032 [0.001, 0.055] 

Non-decision 
Time (t0) 

6.181 [6.062, 6.3] 6.068 [6.051, 6.086] 

Starting Point (z)  
0. 49 [0.479, 0.50] 0. 484 [0.474, 0.494] 

inter-trial Starting 
Point (sz) 

0.061 [0.005, 0.12] 0.118 [0.009, 0.206] 

Drift Rate (β0) 0.039 [-0.062, 0.139] 0.019 [-0.009, 0.043] 

βDesirability Drift 
Rate 

0.278 [0.12, 0.431] 0.295 [0.263, 0.328] 

βNoise Drift Rate 0.396 [0.298, 0.492] 0.363 [0.327, 0.40] 

Table 3.2. Real and Recovered Parameter estimates of the evidence 
accumulation process (Replication). Displayed are the real (left) and 
recovered (right) model estimates from the winning model. These include a 
constant for Distance between Decision Thresholds (α), βAccuracy Incentives 
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Distance between Decision Thresholds, Non-decision Time (t0), Starting Point 
(0<z<1), Inter-Trial Starting Point (sz), constant Drift Rate (β0), βDesirability 
Drift Rate (β1), and βNoise Drift Rate. [CI]. 

 

Additionally, we examined whether the simulated data reproduced the same 

behavioural pattern of results as participants' data. This was indeed the case. 

In both the simulated data for Experiment 1 and its replication (see Figure 5) 

the response bias was not reduced by accuracy incentives ($5 accuracy 

incentives – Simulated Data Experiment 1: MResponse Bias = 0.027, SE = 0.009, 

Simulated Data Replication: MResponse Bias = 0.06, SE = 0.007; $0 accuracy 

incentives – Simulated Data Experiment 1: MResponse Bias = 0.032, SE = 0.009, 

Simulated Data Replication: MResponse Bias = 0.057, SE = 0.008; comparison 

between the two: Simulated Data Experiment 1: t(68) = 0.433, p = 0.666, 

Cohen’s d = 0.052, Simulated Data Replication: t(72) = 0.291, p = 0.772, 

Cohen’s d = 0.034, see Figure 3.6). Adding the level of noise to the analysis 

does not alter the results (see Appendix 7.2 Supplementary Tables 3.11 & 

3.12). Bayes tests further provide moderate to strong support in favour of the 

null hypothesis (Simulated Data Experiment 1: BF0 = 9.625, Simulated Data 

Replication: BF01 = 10.407).  

 

One-sample t-tests against zero show that the response bias was significant 

in each incentive level ($0 accuracy incentives – Simulated Data Experiment 

1: t(68) = 3.582, p < 0.001, Cohen’s d = 0.431; Simulated Data Replication: 

t(72) = 6.959, p < 0.001, Cohen’s d = 0.814; $5 accuracy incentives – 

Simulated Data Experiment 1: t(68) = 3.089, p = 0.003, Cohen’s d = 0.372 

Simulated Data Replication: t(72) = 7.993, p < 0.001, Cohen’s d = 0.935). 

Thus, both the simulated data and the experimental data show a bias towards 

desirable conclusions irrespective of accuracy incentives.  
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Figure 3.6. Simulated Data reproduces experimental data (Experiment 1 & 
Replication). As in the experimental data, simulated data from DDM 
parameters for both (a) Experiment 1, and (b) its replication shows a bias 
towards desirable responses. Accuracy incentives did not reduce this bias. Y 
axis shows response bias, i.e., the proportion of trials judged as desirable minus 
proportion of desirable trials encountered. X axis shows accuracy incentive 
level. Data are plotted as boxplots for each incentive level, in which horizontal 
lines indicate median values, boxes indicate 25/75% interquartile range and 
whiskers indicate 1.5 × interquartile range. Diamond shape indicates the mean 
response bias per incentive level. Simulated individuals’ response bias is 
shown separately as dots. Symbols above each boxplot indicate significance 
level compared to 0. ***p< 0.001, **p<0.01, ns = not significant.  
 

Participants remain biased despite a five-fold increase in the reward for 

correct responses. 

Up to this point, we show that modest accuracy incentives ($5), which match 

the magnitude of the bonus amount ($5) participants get when the dots move 

in the desirable direction, fail to mitigate biased evidence accumulation. Could 

a larger accuracy incentive, however, succeed in mitigating the bias? To test 

this, we increased the reward for correct responses five-fold, offering $25 for 

correct responses on some trials, and $0 in others. We maintained the bonus 

for desirable trials at $5 (see Figure 3.7). As before, participants had no control 

over the trial type and were incentivized to give accurate response to maximize 

financial gain in the task.  
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We repeated the analysis as in Experiment 1 and its replication. Once again, 

participants judged a larger proportion of trials as desirable than the proportion 

of desirable they encountered (Experiment 2: M = 0.035, SE = 0.01, t(91) = 

3.568, p < 0.001, Cohen’s d = 0.372). Thus, our manipulation was successful. 

Consistent with our previous results, participants were also slower to respond 

when they were incentivized for accuracy (Experiment 2: $25 accuracy 

incentives – M = 7.211, SE = 0.043; $0 accuracy incentives – M = 7.157, SE = 

0.044; t(91) =  2.649, p < 0.001; Cohen’s d = 0.132, see Figure 3.7). Adding 

the level of noise to the analysis does not alter the results (see Appendix 7.2 

Supplementary Table 3.13). 

 

Figure 3.7. Participants are more cautious when incentivized for accuracy 
(Experiment 2). Participants in Experiment 2 took longer to reach a conclusion 
when incentivized ($25) for correct responses, compared to when they were 
not ($0). Y axis shows log-transformed RT. X axis shows accuracy incentive 
level. Data are plotted as boxplots for each incentive level, in which horizontal 
lines indicate median values, boxes indicate 25/75% interquartile range and 
whiskers indicate 1.5 × interquartile range. Diamond shape indicates the mean 
log-transformed RT per incentive level. Individuals’ mean response time is 
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shown separately as dots. Symbols above boxplot indicate significance level 
compared to 0. ***p < 0.001.  

 

Crucially, despite the large incentive for accuracy, the magnitude of 

participants’ response bias was not significantly reduced ($25 accuracy 

incentives: MResponse Bias = 0.023, SE = 0.012; $0 accuracy incentives: MResponse 

Bias = 0.047, SE = 0.013; comparison between the two: t(91) = 1.508, p = 0.135, 

Cohen’s d = 0.157, see Figure 3.8). Adding the level of noise to the analysis 

does not alter the results (see Appendix 7.2 Supplementary Table 3.14). A 

Bayes test further provides moderate to strong support in favour of the null 

hypothesis (Experiment 2: BF01 = 3.998). 

 

One-sample t-tests against zero showed that participants were biased towards 

desirable conclusions in trials in which there was no reward for correct 

responses ($0 accuracy incentives: M = 0.047, SE = 0.013, t(91) = 3.567, p < 

0.001, Cohen’s d = 0.372) and in trials in which there was a $25 reward for 

correct responses ($25 accuracy incentives: M = 0.023, SE = 0.012, t(91) = 

1.976, p = 0.05, Cohen’s d = 0.206; see Appendix 7.2 Supplementary 

Material & Supplementary Table 3.15 for analysis of dPrime).  
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Figure 3.8. Accuracy incentives that are five times larger than the bonus 
do not reduce the response bias (Experiment 2). The proportion of trials 
participants judged as desirable was significantly larger than the proportion of 
desirable trials they encountered irrespective of whether the accuracy incentive 
was $0 or $25. Y axis shows response bias, i.e., proportion of desirable 
judgements made minus proportion of desirable trials encountered. X axis 
shows accuracy incentive level. Data are plotted as boxplots for each incentive 
level, in which horizontal lines indicate median values, boxes indicate 25/75% 
interquartile range and whiskers indicate 1.5 × interquartile range. Diamond 
shape indicates the mean response bias per incentive level. Individuals' 
response bias is shown separately as dots. Symbols above each boxplot 
indicate significance level compared to 0. *p<0.05, ns = not significant.  

 
As before, we then fit the DDM to our data to examine the mechanisms 

underlying these results. As in Experiment 1 and its replication, we found that 

the model that best explained participants’ behaviour allowed (1) accuracy 

incentives to influence the distance between decision threshold; (2) desirability 

to influence starting point and drift rate; and (3) noise to influence drift rate. 

Allowing for interaction effects once again did not improve model fit (see 

Appendix 7.2 Supplementary Table 3.3). 

 

As before, accuracy incentives increased the distance between decision 

thresholds such that participants were more cautious when incentivized for 

accuracy (Experiment 2: α=0.058; 95% CI [0.024, 0.093, Table 3.3, Figure 

3.9a). The drift rate was larger when the majority of the dots moved in the 

desirable direction (Experiment 2: v=0.124; 95% CI [0.041, 0.209], Figure 3.9b) 

and decreased when the evidence was noisy, thus making it harder for 

participants to separate the evidence for each response option (Experiment 2: 

v=1.68; 95% CI [1.263, 2.105]; Figure 3.9c). Desirability did not significantly 

modulate the starting point (Experiment 2: z=0.503, 95% CI [0.493, 0.513]). We 

therefore replicate the results from Experiment 1 and its replication. 95% HDI 

comparisons corroborate this result (see Appendix 7.2 Supplementary Table 

3.16 for HDI Comparisons). 
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Figure 3.9. Different motives affect different aspects of the evidence 
accumulation process (Experiment 2). When participants were incentivized 
for accuracy, (a) the distance between decision thresholds increased. (b) The 
drift rate was greater when the dots were moving in the desirable direction and 
(c) when noise was low. Displayed are the posterior distributions of the 
parameter estimates for each motive for the parameter it significantly modulates 
in Experiment 2. Coloured dashed vertical lines indicate group means. Black 
line represents 95% CI%. *indicates significant effect.  

 

Finally, we successfully recovered the model parameters based on simulated 

data (see Table 3.3; see Methods for details) and found that the simulated 

data reproduced the same behavioural pattern of results as participants' data. 

Accuracy incentives did not alter the bias towards desirable conclusions 

(Simulated Data Experiment 2: t(91) = 0.032, p = 0.975, Cohen’s d = 0.003, 

Figure 3.10). The response bias across trials in which there was no reward 

for correct responses ($0 accuracy incentives – Simulated Data Experiment 

2: 0.034, SE = 0.004) did not differ from trials in which there was a reward, 

even when the reward was five times larger than the bonus ($25 accuracy 

incentives – Simulated Data Experiment 2: M = 0.034, SE = 0.004). These 

results hold when controlling for noise (see Appendix 7.2 Supplementary 

Table 3.17). Bayes tests further provide moderate to strong support in favour 

of the null hypothesis (Simulated Data Experiment 2: BF01 = 12.143).  

 

Estimate Experimental Data [95% CI] Simulated Data [95% CI] 

Distance between 
Decision Thresholds 
(α) 

2.3 [2.225, 2.374] 2.167 [2.141, 2.195] 

βAccuracy 
Incentives Distance 

0.058 [0.024, 0.093] 
 

0.121 [0.085, 0.158] 
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between Decision 
Thresholds 
Non-Decision Time 
(t0) 

6.037 [5.933, 6.144] 5.889 [5.879, 5.897] 

Starting Point (z) 0.503 [0.493, 0.513] 0.501 [0.497, 0.506] 

inter-trial starting 
point parameter (sz) 

0.051 [0.003, 0.106] 0.044 [0.003, 0.087] 

Drift Rate (β0) -0.018 [-0.076, 0.041] -0.022 [-0.039, -0.006] 

βDesirability Drift 
Rate 

0.124 [0.041, 0.209] 0.127 [0.113, 0.158] 

βNoise Drift Rate 1.68 [1.263, 2.105] 1.56 [1.478, 1.628] 

Table 3.3. Real and Recovered Parameter estimates of the evidence 
accumulation process (Experiment 2). Displayed are the real (left) and 
recovered (right) model estimates from the winning model. These include a 
constant for distance between decision thresholds (α), βAccuracy Incentives 
distance between decision thresholds, non-decision time (t0), starting point 
(0<z<1), inter-trial starting point parameter (sz), constant drift rate (β0), 
βDesirability drift rate (β1), and βNoise Drift Rate. [CI]. 

 

One-sample t-tests against zero show that the response bias was significant 

irrespective of incentive level ($0 accuracy incentives – Simulated Data: t(91) 

= 9.201, p < 0.001, Cohen’s d = 0.959, $25 accuracy incentives – Simulated 

Data: t(91) = 9.551, p < 0.001, Cohen’s d = 0.996). Thus, we observed a bias 

towards desirable responses, in both the simulated data and the experimental 

data, irrespective of the potential reward for correct responses. The results 

from Experiment 2 therefore illustrate that the desire to form positive beliefs 

and thus reach desirable conclusions, are not mitigated by rewarding 

participants for correct responses, even when the magnitude of the reward is 

relatively large. 
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Figure 3.10. Simulated Data reproduces experimental data (Experiment 2). 
As in the experimental data, simulated data from DDM parameters shows a 
bias towards desirable responses. Accuracy incentives did not reduce this bias. 
For each accuracy incentive level, the proportion of trials judged as desirable 
was significantly larger than the proportion of desirable trials encountered. Y 
axis shows response bias, i.e., proportion of desirable judgements made minus 
proportion of desirable trials encountered. X axis shows accuracy incentive 
level. Data are plotted as boxplots for each incentive level, in which horizontal 
lines indicate median values, boxes indicate 25/75% interquartile range and 
whiskers indicate 1.5 × interquartile range. Diamond shape indicates the mean 
response bias per incentive level. Individuals' response bias is shown 
separately as dots. Symbols above each boxplot indicate significance level 
compared to 0. ***p < 0.001, ns = not significant. 

 

3.5 Discussion 

Over three experiments we find that although participants are more cautious in 

reaching conclusions when incentivized for accuracy, the magnitude of their 

bias is unaffected. Specifically, when incentivized participants take longer to 

reach a conclusion, but their tendency to falsely believe they are in a desirable 

state (a state where rewards are greater) remains unchanged. This was true 

even when the reward for correct responses was increased five-fold. 
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Importantly, we reveal that this failure is due to accuracy incentives impacting 

a feature of the accumulation process that is orthogonal to the one influenced 

by wishful thinking. Specifically, when incentivized for accuracy participants 

required more evidence before making a decision, which is signified as a larger 

distance between decision thresholds in the evidence accumulation model (the 

DDM). However, the desire to hold a preferred belief was associated with 

greater weight assigned to desirable evidence, signified in the model as a larger 

drift rate when in a desirable state (replicating previous findings from Gesiarz 

et al., 2019; Globig et al., 2021; Leong et al., 2019). Thus, while participants 

accumulate more evidence before reaching a conclusion, the accumulation 

process remains biased.  

 

These results fit with previous suggestions that even substantial accuracy 

incentives fail to alleviate certain biases, including the partisan bias in advice 

taking (Zhang & Rand), the repeated truth effect (Speckmann & Unkelbach, 

2022), and anxiety-induced wishful thinking (Engelmann et al., 2019). The 

current findings go beyond these previous demonstrations and provide an 

explanation for why accuracy incentives may fail to reduce biased evidence 

accumulation.  

 

Interestingly, our results suggest that participants consciously strive to 

maximize financial gains, slowing down when incentivized. Yet, the fact that this 

attempt is unfruitful may suggest they are not consciously aware of their bias 

towards forming desirable beliefs. This idea, that a desirability bias in evidence 

accumulation is automatic and unconscious, is in accord with findings showing 

that the magnitude of the bias is constant under time constraints and different 

degrees of cognitive load (Kappes & Sharot, 2019). These findings lend support 

to previous suggestions that motivational biases are not merely the product of 

overt preferences but instead beyond individuals’ awareness (Chen & Krajbich, 

2018; Desai & Krajbich, 2022; Krajbich, 2022; but see Sánchez-Fuenzalida et 

al., 2023). 
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A crucial feature of the task is that participants did not receive feedback. Thus, 

they did not have an opportunity to reflect on their errors and become aware of 

their bias. We speculate that to correct motivational biases, accuracy incentives 

should be coupled with feedback. Chapter 4 tests this assumption, by providing 

participants with direct feedback about the accuracy of the content they shared 

in simulated social media environments. We find that providing participants with 

accuracy-related feedback reduced the tendency to share misinformation in 

domains such as politics, culture, and health (Globig et al., 2023). 

 

In summary, the study shows that accuracy incentives fail to mitigate the 

influence of the motivational bias on evidence accumulation. We suggest that 

this is because the desirability bias and accuracy incentives alter distinct 

elements of the evidence accumulation process. The former alters the relative 

weight assigned to desirable and undesirable information, while the latter 

increases the amount of evidence required to reach a conclusion. These 

findings are particularly relevant for policymakers and industry leaders as they 

may explain why financial bonuses may be ineffective in improving decision-

making and performance. 
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Chapter 4: Changing the Incentive 
Structure of Social Media Platforms 
to Halt the Spread of Misinformation 

4.1 Abstract 

The powerful allure of social media platforms has been attributed to the human 

need for social rewards. Here we demonstrate that the spread of misinformation 

on such platforms is facilitated by existing social ‘carrots’ (e.g., ‘likes’) and 

‘sticks’ (e.g., ‘dislikes’) that are dissociated from the veracity of the information 

shared. Testing 951 participants over six experiments, we show that a slight 

change to the incentive structure of social media platforms, such that social 

rewards and punishments are contingent on information veracity, produces a 

considerable increase in the discernment of shared information. Namely, an 

increase in the proportion of true information shared relative to the proportion 

of false information shared. Computational modelling revealed that the 

underlying mechanism of this effect is associated with an increase in the weight 

participants assign to evidence consistent with discerning behaviour. The 

results offer evidence for an intervention that could be adopted to reduce 

misinformation spread, which in turn could reduce violence, vaccine hesitancy 

and political polarization, without reducing engagement. 

 

4.2 Introduction 

In recent years, the spread of misinformation online has skyrocketed, 

increasing polarization, racism and resistance to climate action and vaccines 

(Barreto et al., 2021; Rapp & Salovich, 2018; Tsfati et al., 2020; Van Bavel et 

al., 2021). Existing measures to halt the spread, such as flagging posts, have 

had limited impact (Chan et al., 2017; Grady et al., 2021; Lees et al., 2022). 

 

We hypothesize that the spread of misinformation on social media platforms is 

facilitated by the existing incentive structure of those platforms, where social 

rewards (in the form of ‘likes’ and ‘shares’) are dissociated from the veracity of 
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the information (Sharot, 2021). The rationale for this hypothesis is as follows; 

users can discern true from false content to a reasonable degree (Allen et al., 

2021; Pennycook & Rand, 2019). Yet, because misinformation generates no 

less retweets and ‘likes’ than reliable information (Lazer et al., 2018; Vosoughi 

et al., 2018), and online behaviour conforms to a reinforcement-learning model 

by which users are reacting to social rewards, users have little reason to use 

their discernment to guide sharing behaviour. Thus, people will share 

misinformation even when they do not trust it (Pennycook et al., 2021; Ren et 

al., 2021).  

 

To halt the spread, an incentive structure is needed where ‘carrots’ and ‘sticks’ 

are directly associated with accuracy (Figure 4.1a right panel, (Sharot, 2021). 

Such a system will work with the natural human tendency to select actions that 

lead to the greatest reward and avoid those that lead to punishment (Skinner, 

1966). Scientists have tested different strategies to reduce the spread of 

misinformation, including educating people about fake news (Guess et al., 

2020; Traberg et al., 2022), using a prompt to direct attention to accuracy 

(Kozyreva et al., 2020; Pennycook et al., 2020, 2021) and limiting how widely 

a post can be shared (Jackson et al., 2022). Surprisingly, possible interventions 

in which the incentive structure of social media platforms is altered to reduce 

misinformation had previously been overlooked. 

 

Here, we test the efficacy of such a structure by slightly altering the engagement 

options offered to users. Specifically, we add an option to react to posts using 

‘trust’ and ‘distrust’ buttons (Figure 4.1b). We selected these buttons because 

trust by definition is related to veracity - it is defined as ‘a firm belief in the 

reliability, truth, ability, or strength of someone or something’ (Oxford 

Dictionary).  

 

We hypothesize that (1) people will use the ‘trust’ and ‘distrust’ buttons to 

discern true from misinformation more so than the commonly existing 

engagement options (such as a ‘like’ button; Figure 4.1b, top panel). By 

‘discernment’ we mean that true posts will receive more ‘trust’ reactions than 
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‘distrust’ reactions and vice versa for false posts. This will create an 

environment in which rewards (‘trusts’) and punishments (‘distrusts’) are more 

directly associated with the veracity of information. Thus, (2) when exposed to 

this environment, users will start sharing more true information and less false 

information in order to obtain more ‘trust’ carrots and fewer ‘distrust’ sticks 

(Figure 4.1b, bottom panel). The new feedback options could both reinforce 

user behaviour that generates trustworthy material and signal to others that the 

post is dependable. 

 

We also test environments in which participants receive only ‘trusts’ (a different 

number of trusts for different posts) or only ‘distrusts’ (a different number of 

distrusts for different posts) to examine if and how the impact of small vs large 

positive feedback (‘trust’) on discernment differs from the impact of small vs 

large negative feedback (‘distrust’). It has been proposed that the possibility of 

reward is more likely to reinforce action than the possibility of punishment, while 

the possibility of punishment is more likely to reinforce inaction (Guitart-Masip 

et al., 2011, 2012, 2014). This may translate to a large number of ‘trusts’ 

selectively increasing sharing of true information without decreasing sharing of 

misinformation and vice versa for a large number of ‘distrusts’. Further, being 

mindful of potential differences in sharing behaviour across political parties 

(Grinberg et al., 2019; Guess et al., 2020) we test participants from both sides 

of the political divide (Republicans & Democrats).  
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Figure 4.1. Theoretical Framework. (a) The current incentive structure (blue) 
is such that the veracity of shared information is dissociated from rewards 
(‘carrots’) and punishments (‘sticks’). That is, true information and 
misinformation may lead to roughly equal number of rewards and punishments. 
An optimal incentive structure (orange) is such that sharing true information is 
rewarded with more ‘carrots’ than sharing misinformation, which in turn is 
penalized with more ‘sticks’ than true information. To create an optimal 
environment an intervention is needed by which the number of rewards and 
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punishments are directly associated with the veracity of information. (b) We test 
one such possible intervention (Experiment 1). In particular, we allow people to 
engage with posts using ‘trust’ reaction buttons and ‘distrust’ reaction buttons 
(orange). The rationale is that they will use these reactions to discern true from 
false information more so than ‘like’ and ‘dislike’ reaction buttons. (c) As a 
result, to obtain a greater number of ‘trust’ carrots and a smaller number of 
‘distrust’ sticks in response to a post, people in the optimal environment 
(orange) will share more true than misinformation compared to those in the 
suboptimal environment which includes no feedback at all (grey), and those in 
an environment where the association between veracity of information and 
number of carrots and sticks is weak (blue). This second step is tested in 
Experiment 2 & 3. 

 

To that end, over six experiments 951 participants engaged in simulated social 

media platforms where they encountered true and false information. In 

Experiment 1 we examined whether participants would use ‘trust’ and ‘distrust’ 

buttons to discern true from false information more so than existing ‘like’ and 

‘dislike’ buttons (Figure 4.1b, replication: Experiment 4). In Experiment 2 and 

3 we tested whether new groups of participants would share more true than 

false information in social media platforms that introduce real ‘trust’ and 

‘distrust’ feedback from other participants (Figure 4.1c, replication: Experiment 

5 & 6). The intuition is that ‘trust’ and ‘distrust’ reactions will naturally be used 

to indicate veracity and thus provide a reward structure contingent on accuracy, 

thereby reducing the sharing of misinformation and generating a healthier 

information ecosystem. Using computational modelling we provide insights into 

the specific mechanism by which our intervention improves sharing 

discernment. 

 

4.3 Methods 

Experimental Design 

Power Calculations.  

Sample sizes for all experiments were computed based on our pilot study (see 

Appendix 7.3 Experiment 4-6). Power calculations were performed using 

g*Power (Faul et al., 2009) to achieve power of 0.8 (beta = 0.2, alpha = 0.05; 

Experiment 1: partial η2 = 0.51; Experiment 2: Cohen’s d = 0.33; Experiment 3: 

Cohen’s d = 0.327). 
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Participants (Experiment 1). One-hundred and eleven participants residing in 

the US completed the task on Prolific Academic (www.prolific.com). Data of four 

participants who failed more than two memory checks were excluded from 

further analysis (see Memory/Attention Check for details). Thus, data of 107 

participants were analysed (52 Democrats, 54 Republican, 1 Other, Mage = 

40.579, SDage  14.512; female = 55, male = 52; Non-White = 20, White = 87). 

Participants received £7.50 per hour for their participation in addition to a 

memory test performance-related bonus. For all experiments presented in this 

study, ethical approval was provided by the Research Ethics Committee at 

University College London and all participants gave informed consent. All 

experiments were performed in accordance with the principles expressed in the 

Declaration of Helsinki. All samples were politically balanced for Democrats and 

Republicans. All experiments were replicated (see Appendix 7.3 Experiment 

4-6). 

 

Participants (Experiment 2).  

Three-hundred and twenty participants completed the task on Prolific 

Academic. Data of four participants who failed more than two memory checks 

were excluded from further analysis (see Memory/Attention Check for 

details). Thus, data of three-hundred and sixteen participants were analysed 

(146 Democrats, 142 Republican, 28 Other, Mage = 37.598, SDage  13.60; 

female = 157, male = 157, other = 2, Non-White = 77, White = 239). Participants 

received £7.50 per hour for the participation in addition to a memory test 

performance-related bonus.  

 

Participants (Experiment 3). 

Four-hundred and nine participants completed the task on Prolific Academic. 

Data of three participants who failed more than two memory checks were 

excluded from further analysis (see Participants Experiment 1 for details). 

Further data of three participants who suspected that the feedback provided did 

not stem from real participants were excluded. Thus, data of four-hundred and 

three participants were analysed (194 Democrats, 197 Republican, 12 Other, 
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Mage = 35.179, SDage  11.051; female = 204, male = 194, other = 4, Non-White 

= 85, White = 218). Participants received £7.50 per hour for their participation 

in addition to a memory test performance-related bonus.  

 

Task (Experiment 1). 

Participants engaged in a simulated social media platform where they saw 100 

news posts, each consisting of an image and a headline (see Figure 4.2 & see 

Appendix 7.3 Supplementary Table 4.1 for stimuli and ratings). Half of the 

posts were true, and half were false. They covered a range of different topics 

including COVID-19, environmental issues, politics, health, and culture. They 

were all extracted from the fact-checking website Politifact 

(https://www.politifact.com). For each post, participants had the option to either 

‘like’, ‘dislike’, ‘trust’ or ‘distrust’ the post, or they could choose to ‘skip’ the post. 

They could select as many options as they wished (e.g., ‘like’ and ‘distrust’) or 

none at all. Participants were informed that if they chose to react to a post other 

users would be able to see their reactions. They were asked to treat the platform 

as they would any other social media platform. The order in which reaction 

buttons appeared on screen was counterbalanced across participants. 

Participants also indicated their age, gender, ethnicity, and political orientation. 

The task was coded using the Qualtrics online platform 

(https://www.qualtrics.com). 

 

 

 

Figure 4.2. Task (Experiment 1). Participants observed a series of 100 posts 
in random order (50 true, 50 false). Their task was to react using one or more 
of the ‘like’, ‘dislike’, ‘trust’ or ‘distrust’ buttons or to skip the post. The task was 
self-paced. 

 

https://www.qualtrics.com/
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Memory/Attention check. At the end of the experiment, participants were 

presented with five posts and had to indicate whether these were old or new. 

This is to ensure that participants were attentive during the experiment. 

Participants who failed more than two of the memory checks were excluded 

from the analysis. 

 

Task (Experiment 2). 

In Experiment 2 participants engaged in a simulated social media platform 

where they saw the same 100 posts (50 true, 50 false) shown to participants in 

Experiment 1. Participants had to either ‘repost’ or ‘skip’ each post (see Figure 

4.3). They were told that if they decided to repost, then the post would be shared 

to their feed, and they would observe other participants’ reactions to it. We used 

a between-subject design with five environments. Depending on the 

environment participants were randomly assigned to, they could either see (i) 

how many people disliked the post, (ii) how many people liked the post, (iii) how 

many people distrusted the post, or (iv) how many people trusted the post. We 

also included a Baseline environment, in which participants received no 

feedback. Due to logistic constraints, the feedback was not collected in real 

time but was instead taken from participants’ reactions in Experiment 1. The 

participants, however, believed the reactions were provided in real time as 

indicated by a rotating cogwheel (1s). If participants selected to skip, they would 

also observe a rotating cogwheel (1s) and then a screen asking them to click 

continue. The average duration of the white screen (M = 2.351s; SE = 0.281) 

was not different from the average duration of feedback (M = 2.625s; SE = 

0.245; t(233) = 0.853, p = 0.395, Cohen’s d = 0.056). Though the duration of 

trials in which participants chose to skip (M = 9.046s, SE = 0.38) was slightly 

shorter than those in which they chose to share (M = 9.834s, SE = 0.358; t(233) 

= 2.044, p = 0.042, Cohen’s d = 0.134). Thereafter, participants were presented 

with all the posts again and asked to indicate if they believed the post was 

accurate or inaccurate on a continuous scale from 0 = inaccurate to 100 = 

accurate. Finally, participants completed a short demographic questionnaire 

assessing age, gender, ethnicity, and political orientation. The task was self-

paced. The task was coded using JsPsych and Javascript. 



 97 

 

 

Figure 4.3. Task (Experiment 2 and 3). In Experiment 2 on each of 100 trials 
participants observed a post (50 true, 50 false). They then choose whether to 
share it or skip (self-paced). They were told that if they chose to share a post, 
it would be shared to their feed such that the other participants would be able 
to see the post and react to it in real time (feedback). Depending on the 
environment participants were in, they could either observe the number of (i) 
‘dislikes’ (N = 45), (ii) ‘likes’ (N = 89), (iii) ‘distrusts’ (N = 49), or (iv) ‘trusts’ (N = 
46) feedback. The feedback was in fact the number of reactions gathered from 
Experiment 1, though the participants believed the reactions were in real time 
as indicated by a rotating cogwheel (1s). Once the feedback appeared, 
participants could then click continue (self-paced). If participants selected to 
skip, they would observe a white screen asking them to click continue (self-
paced). In the Baseline environment (N = 59) participants received no 
feedback. Experiment 3 was identical to Experiment 2 with two distinctions: (1) 
Depending on the environment participants were in, they could either observe 
the number of (i) both ‘dislikes’ and ‘likes’ (N = 128), (iii) both ‘distrusts’ and 
‘trusts’ (N = 137) or (iii) no feedback (Baseline, N = 126). (2) In Experiment 3 
we selected 40 posts (20 true, 20 false) to which Republicans and Democrats 
had on average reacted to similarly using the ‘trust’ button in Experiment 1. 
Discernment was calculated for each participant by subtracting the proportion 
of sharing false information from the proportion of sharing true information. High 
discernment indicates greater sharing of true than false information.  
 

 

Task (Experiment 3). 

Experiment 3 (see Figure 4.3) was identical to the task used in Experiment 2 

with three exceptions:  
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(1) We selected 40 posts (20 true, 20 false), in which there was no 

significant difference in the way Republicans and Democrats reacted to 

them using the trust button during Experiment 1. This was done by 

entering participants’ trust responses (0/1) into a vector for Democrats 

and Republicans for each post. We then performed Pearson Chi Square 

Tests for each of the 100 posts to identify whether Democrats and 

Republicans used the trust button differently. Posts where no significant 

difference was observed were included in Experiment 3.  

(2) Three environments were included: a Baseline environment, in which 

participants received no feedback, a ‘Trust & Distrust’ environment, in 

which participants received both Trust and Distrust feedback whenever 

they chose to share a post, and a ‘Like & Dislike’ environment, in which 

participants received Like and Dislike feedback whenever they chose to 

share a post.  

(3) At the end of the experiment, we asked participants: (1) “What do you 

think the purpose of this experiment is?”; and (2) “Did you, at any point 

throughout the experiment, think that the experimenter had deceived you 

in any way? If yes, please specify.”  

 

 

Statistical Analysis 

Statistical Analysis (Experiment 1). 

We examined whether participants used the different reaction buttons to 

discern true from false information. For positive reactions (e.g., ‘likes’ and 

‘trusts’) discernment is equal to the proportion of those reactions for true 

information minus false information, and vice versa for negative reactions 

(‘dislikes’ and ‘distrusts’). Proportions were calculated for each participant and  

then entered into a 2 (type of reaction: ‘trust’ and ‘distrust’ / ‘like’ and ‘dislike’) 

by 2 (valence: positive, i.e., ‘like’, ‘trust’/ negative, i.e., ‘dislike’, ‘distrust’) within-

subject ANOVA. Political orientation was also added as a between-subject 

factor (Republican/Democrat), allowing for an interaction of political orientation 

and type of reaction to assess whether participants with differing political beliefs 

used the reaction buttons in different ways. We performed one-sample t-tests 
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to compare discernment (equal to the proportion of those reactions for true 

information minus false information, and vice versa for negative reactions) 

against zero to assess whether each reaction discerned between true and false 

information. To examine whether participants’ frequency of use of each reaction 

option differed we again ran a within-subject ANOVA, but this time with 

percentage frequency of reaction option used as the dependent variable. We 

computed a Pearson’s correlation across participants between frequency of 

skips and discernment.  

 

One participant selected ‘other’ for political orientations. This participant was 

not included in the analysis because political orientation was included in the 

analysis, and such small group sizes could heavily skew results. Analysis was 

conducted using IBM SPSS 27 and R Studio (Version 1.3.1056). All statistical 

tests conducted in the present article are two-sided. All results of interest hold 

when controlling for demographics (age, gender and ethnicity, when not 

including political orientation in the analysis, and, if applicable, when allowing 

for an interaction between type of feedback and valence. 

 

Discernment Analysis (Experiment 2 and 3). 

Discernment is calculated for each participant by subtracting the proportion of 

sharing false information from the proportion of sharing true information. High 

discernment indicates greater sharing of true than false information. In 

Experiment 2 scores were submitted to an ANOVA with type of feedback 

(‘(Dis)Trust’ vs ‘(Dis)Like’ vs Baseline), valence of feedback (positive, i.e., ‘like’, 

‘trust’ vs negative, i.e., ‘dislike’, ‘distrust’), political orientation and an interaction 

of political orientation and type of feedback. To assess whether frequency of 

posts shared differed we used the same ANOVA, this time with percentage of 

posts shared out of all trials as the dependent variable. 

 

To test whether ‘(Dis)Trust’ feedback improves belief accuracy, we transformed 

participants’ belief ratings (which were given on a scale from ‘post is accurate’ 

=100 to ‘post is inaccurate’ = 0) to indicate error. If the post was false 

(inaccurate) error was equal to the rating itself, if the post was true (accurate) 
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error was equal to 100 minus the rating. Participants’ average error scores were 

then entered into a between-subject ANOVA with type of feedback (Baseline, 

‘(Dis)Trust’, ‘(Dis)Like’), valence of feedback, political orientation and an 

interaction of political orientation and type of feedback.  

 

Analysis of Experiment 3 followed that of Experiment 2 with the difference being 

that we had three types of feedback environments (Baseline, ‘Like & Dislike’, 

‘Trust & Distrust’) and of course no valence of feedback (as all environments 

were mixed valence or no valence). Data of participants who selected ‘other’ 

for political orientations (Experiment 2 = 28, Experiment 3 = 12) were not 

analysed, because political orientation was included in the analyses variable, 

and small group sizes of ‘other’ could heavily skew results. 

 

Drift-Diffusion Modelling (Experiment 2 and 3). 

To assess whether being exposed to an environment with ‘(Dis)Trust’ feedback 

impacted the parameters of the evidence accumulation process in our data 

compared to Baseline and ‘(Dis)Like’ feedback we modelled our data using 

DDM. To that end, we ran three separate models – one for each type of 

feedback and included the following parameters: (1) t0—amount of non-

decision time; (2) α—distance between decision thresholds; (3) z—starting 

point of the accumulation process; and (4) v—drift rate, i.e., the rate of evidence 

accumulation.  

 

We used the HDDM software toolbox (Wiecki et al., 2013) to estimate the 

parameters of our models. The HDDM package employs hierarchical Bayesian 

parameter estimation, using MCMC methods to sample the posterior probability 

density distributions for the estimated parameter values. We estimated both 

group-level and individual-level parameters. Parameters for individual 

participants were assumed to be randomly drawn from a group-level 

distribution. Participants' parameters both contributed to and were constrained 

by the estimates of group-level parameters. In fitting the models, we used priors 

that assigned equal probability to all possible values of the parameters. Models 

were fit to log-transformed RTs. We sampled 20,000 times from the posteriors, 



 101 

discarding the first 5000 as burn in and thinning set at 5. MCMCs are 

guaranteed to reliably approximate the target posterior density as the number 

of samples approaches infinity. To test whether the MCMC converged within 

the allotted time, we used Gelman–Rubin statistic (Rubin & Gelman, 1992) on 

five chains of our sampling procedure. The Gelman–Rubin diagnostic evaluates 

MCMC convergence by analysing the difference between multiple Markov 

chains. The convergence is assessed by comparing the estimated between-

chains and within-chain variances for each model parameter. In each case, the 

Gelman–Rubin statistic was close to one (<1.1), suggesting that MCMC were 

able to converge.  

 

We then compared parameter estimates using 95% CIs. Specifically, for each 

parameter in each group (‘(Dis)Trust’ vs ‘(Dis)Like’, ‘(Dis)Trust’ vs Baseline, 

‘(Dis)Like’ vs Baseline) we calculated the 95% CI. If the 95% CI of two groups 

do not overlap, we consider there to be a significant difference between the two 

feedback types compared. We also calculated 95% HDIs. For each comparison 

(‘(Dis)Trust’ vs ‘(Dis)Like’, ‘(Dis)Trust’ vs Baseline, ‘(Dis)Like’ vs Baseline) we 

calculated the difference in the posterior distributions and reported the 95% HDI 

of the difference. If this HDI did not overlap zero, we consider there to be a 

meaningful difference between the two feedback types compared. HDI testing 

was conducted in R using HDInterval (Meredith & Kruschke, 2016). 

  

To validate the DDM, we used each group's parameters obtained from 

participants' data to simulate log-transformed RTs and responses separately 

for each feedback type. We used the exact number of participants and total 

number of trials as in the experiments. Simulated data were then used to (1) 

perform model recovery analysis and (2) to compare the pattern of participants' 

response to the pattern of simulated responses, separately for each group. We 

sampled 2000 times from the posteriors, discarding the first 500 as burn in. 

Simulation and model recovery analysis were performed using the HDDM 

software toolbox (Wiecki et al., 2013). One-way ANOVAs were computed to 

examine if simulated data reproduced the behavioural pattern from the 

experimental data. To that end, discernment was entered into a one-way 
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ANOVA with type of feedback as the independent variable for Experiment 2 

and 3 separately. Note, that we did not enter veracity of the post into our DDM 

and instead entered responses as either ‘veracity-promoting’ (true post shared 

or false post skipped) or ‘veracity-obstructing’ (false post shared or true post 

skipped). Thus, discernment was calculated as the proportion of true posts 

shared and false posts skipped minus the proportion of true posts skipped and 

false posts shared.  

 

 

 

4.4 Results 

Participants’ use ‘trust’ and ‘distrust’ buttons to discern true from false 

information (Experiment 1).  

In a first step, we examined whether participants used ‘trust’ and ‘distrust’ 

reactions to discern true from false information more so than ‘like’ and ‘dislike’ 

reactions. In Experiment 1, participants saw 100 news posts taken from the 

fact-checking website Politifact (https://www.politifact.com; see Figure 4.2). 

Half of the posts were true, and half were false. Participants were given the 

opportunity to react to each post using ‘like’, ‘dislike’, ‘trust’ and ‘distrust’ 

reaction buttons. They could select as many buttons as they wished or none at 

all (‘skip’). Five participants were excluded according to pre-determined criteria 

(see Methods for details). Thus, one-hundred and six participants (52 

Democrats, 54 Republican, Mage = 40.745, SDage  14.479; female = 54, male 

= 52) were included in the analysis.  

 

We then examined whether participants used the different reaction buttons to 

discern true from false information. Discernment was calculated as follows, 

such that high numbers always indicate better discernment: 

 

For ‘like’: 

𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑙𝑖𝑘𝑒𝑠 𝑡𝑟𝑢𝑒 − 𝑃𝑟𝑜𝑝𝑙𝑖𝑘𝑒𝑠 𝑓𝑎𝑙𝑠𝑒  

For ‘dislike’: 
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𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑠 𝑓𝑎𝑙𝑠𝑒 − 𝑃𝑟𝑜𝑝𝑑𝑖𝑠𝑙𝑖𝑘𝑒𝑠 𝑡𝑟𝑢𝑒 

For ‘trust’: 

𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑡𝑟𝑢𝑠𝑡𝑠 𝑡𝑟𝑢𝑒 − 𝑃𝑟𝑜𝑝𝑡𝑟𝑢𝑠𝑡𝑠 𝑓𝑎𝑙𝑠𝑒 

For ‘distrust’: 

𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑠 𝑓𝑎𝑙𝑠𝑒 − 𝑃𝑟𝑜𝑝𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡𝑠 𝑡𝑟𝑢𝑒 

 

With Prop indicating the proportion of that response out of all true posts, or out 

of all false posts, as indicated. 

 

These discernment scores were calculated for each participant separately and 

then entered into a 2 (type of reaction: ‘trust’ and ‘distrust’ / ‘like’ and ‘dislike’) 

by 2 (valence: positive, i.e., ‘like’, ‘trust’/ negative, i.e., ‘dislike’, ‘distrust’) within-

subject ANOVA. Political orientation was also added as a between-subject 

factor (Republican/Democrat), allowing for an interaction of political orientation 

and type of reaction to assess whether participants with differing political beliefs 

used the reaction buttons in different ways.  

 

The results reveal that participants’ use of ‘(Dis)Trust’ reaction buttons (M = 

0.127; SE = 0.007) was more discerning than their use of ‘(Dis)Like’ reaction 

buttons (M = 0.047; SE = 0.005; F(1,104) = 95.832, p < 0.001, partial η2 = 0.48 

Figure 4.4). We additionally observed an effect of valence (F(1,105) = 17.33, p 

< 0.001, partial η2 = 0.14), with negatively valenced reaction buttons (e.g., 

‘dislike’ and ‘distrust’ M = 0.095, SE = 0.007) being used in a more discerning 

manner than positively valenced reaction buttons (e.g., ‘like’ and ‘trust’, M = 

0.087, SE = 0.005) and an effect of political orientation (F(1,104) = 25.262, p < 

0.001, partial η2 = 0.2), with Democrats (M = 0.115, SE = 0.007) being more 

discerning than Republicans (M = 0.06, SE = 0.005). There was also an 

interaction of type of reaction and political orientation (F(1,104) = 24.084, p < 

0.001, partial η2 = 0.19), which was characterized by Democrats showing 

greater discernment than Republicans in their use of ‘(Dis)Trust’ reaction 

buttons (F(1,104) = 33.592, p < 0.001, partial η2 = 0.24), but not in their use of 

‘(Dis)Like’ reaction buttons (F(1,104) = 2.255, p = 0.136, partial η2 = 0.02). 
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Importantly, however, both Democrats (F(1,51) = 93.376, p < 0.001, partial η2 

= 0.65) and Republicans (F(1,53) = 14.715, p < 0.001, partial η2 = 0.22) used 

the ‘(Dis)Trust’ reaction buttons in a more discerning manner than the 

‘(Dis)Like’ reaction buttons.  

 

One-sample t-tests against zero further revealed that participants’ use of each 

reaction button discerned true from false information (‘like’: M = 0.06, SE = 

0.006, t(105) = 10.483, p < 0.001, Cohen’s d = 1.018; ‘trust’: M = 0.099; SE = 

0.01, t(105) = 9.744, p < 0.001, Cohen’s d = 0.946; ‘dislike’: M = 0.034; SE = 

0.007; t(105) = 4.76, p < 0.001, Cohen’s d = 0.462; ‘distrust’: M = 0.156; SE = 

0.01, t(105) = 15.872, p < 0.001, Cohen’s d = 1.542). 

 

 

Figure 4.4. Participants use ‘trust’ and ‘distrust’ reactions to discern true 
from false information. ‘Trust and ‘distrust’ reactions were used in a more 
discerning manner than ‘like’ and ‘dislike’ reactions. Y axis shows discernment 
between true and false posts. For positive reactions (e.g., ‘likes’ and ‘trusts’) 
discernment is equal to the proportion of positive reactions for true information 
minus false information, and vice versa for negative reactions (‘dislikes’ and 
‘distrusts’). X axis shows reaction options. Data are plotted as boxplots for each 
reaction button, in which horizontal lines indicate median values, boxes indicate 
25/75% interquartile range and whiskers indicate 1.5 × interquartile range. 
Diamond shape indicates the mean discernment per reaction. Individuals' mean 
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discernment data are shown separately as grey dots. Symbols above each 
boxplot indicate significance level compared to 0. ***p < 0.001. 

 

Thus far, we have shown that participants use ‘(Dis)Trust’ reaction buttons in a 

more discerning manner than ‘(Dis)Like’ reaction buttons. As social media 

platforms care about overall engagement not only its quality, we examined how 

frequently participants used the different reaction buttons. An ANOVA with the 

same specifications as above was conducted, but this time submitting 

frequency of reaction as the dependent variable. We found that participants 

used ‘(Dis)Trust’ reaction buttons more often than ‘(Dis)Like’ reaction buttons 

(Percentage use of reaction out of all trials: ‘trust’: M = 28.057%; ‘distrust’: M = 

34.085%; ‘like’: M = 18.604%; ‘dislike’: M = 23.745%; F(1,104) = 36.672, p < 

0.001, partial η2 = 0.26). In addition, negative reaction buttons (‘distrust’ and 

‘dislike’: M = 28.915%, SE = 1.177) were used more frequently than positive 

reaction buttons (‘trust’ and ‘like’: M = 23.33%, SE = 1.133; F(1,105) = 16.96, p 

< 0.001, partial η2 = 0.07). No other effect was significant. Interestingly, we also 

found that participants who skipped more posts were less discerning (R = -

0.414, p < 0.001). Together, the results show that the new reaction options 

increase engagement.  

 

The results hold when controlling for demographics, when not including political 

orientation in the analysis, and allowing for an interaction between type of 

reaction and valence (see Appendix 7.3 Supplementary Tables 4.2 & 4.3). 

The results also replicate in an independent sample (see Appendix 7.3 

Experiment 4).  

 

‘Trust’ and ‘distrust’ incentives improve discernment in sharing 

behaviour (Experiment 2).  

Thus far, we have shown that participants use ‘(Dis)Trust’ reaction buttons in a 

more discerning manner than ‘(Dis)Like’ reaction buttons. Thus, an 

environment which offers ‘(Dis)Trust’ feedback is one where the number of 

’carrots’ (in the form of ‘trusts’) and the number of ‘sticks’ (in the form of 

‘distrusts’) are directly associated with the veracity of the posts. It then follows 
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that submitting participants to such an environment will increase their sharing 

of true information (to receive ‘trusts’) and reduce their sharing of 

misinformation (to avoid ‘distrusts’). 

 

To test this, we ran a second experiment. A new group of participants (N = 320) 

were recruited to engage in a simulated social media platform. They observed 

the same 100 posts (50 true, 50 false) shown to the participants in Experiment 

1, but this time instead of reacting to the posts they could either share the post 

or skip it (see Figure 3). They were told that if they chose to share a post, it 

would be shared to their feed such that the other participants would be able to 

see the post and would then be able to react to it in real time (feedback). 

Depending on the environment participants were in, which varied between-

subjects, they could receive feedback in the form of the number of users who 

(i) ‘disliked’, or (ii) ‘liked’, or (iii) ‘distrusted’, or (iv) ‘trusted’ their posts. We also 

included a (v) baseline condition, in which participants received no feedback. If 

participants selected to skip, they would observe a white screen asking them to 

click continue. Data of 32 participants were not analysed according to pre-

determined criteria (see Methods for details). Two-hundred and eighty-eight 

participants (146 Democrats, 142 Republicans, Mage = 38.073, SDage  13.683; 

female = 147, male = 141) were included in the analysis (see Methods for 

details). 

 

𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑟𝑒𝑝𝑜𝑠𝑡𝑠 𝑡𝑟𝑢𝑒 − 𝑃𝑟𝑜𝑝𝑟𝑒𝑝𝑜𝑠𝑡𝑠 𝑓𝑎𝑙𝑠𝑒  

 

These scores were submitted to a between-subject ANOVA with type of 

feedback (‘trust’ & ‘distrust’/ ‘like’ & ‘dislike’/ Baseline), valence (positive, i.e., 

‘like’ & ‘trust’ vs negative, i.e., ‘dislike’, ‘distrust’ vs neutral i.e., no feedback) 

and political orientation (Republican/Democrat) as factors. We also allowed for 

an interaction of political orientation and type of feedback.  

 

We observed an effect of type of feedback (F(1,281) = 15.2, p < 0.001, partial 

η2 = 0.051), such that participants shared more true than false information in 

the ‘(Dis)Trust’ environments (M = 0.18, SE = 0.018) than the ‘(Dis)Like’ 
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environments (M = 0.085, SE = 0.019, F(1,225) = 14.249, p < 0.001, partial η2 

= 0.06) and Baseline environment (M = 0.084, SE = 0.025; F(1,150) = 10.906, 

p = 0.001, partial η2 = 0.068, Figure 5a). Moreover, participants who received 

‘trust’ feedback (M = 0.176, SE = 0.026) were more discerning in their sharing 

behaviour than those who received ‘like’ feedback (M = 0.081, SE = 0.021, 

F(1,131) = 10.084, p = 0.002, partial η2 = 0.071). Those who received ‘distrust’ 

feedback (M = 0.175, SE = 0.026) were more discerning than those who 

received ‘dislike’ feedback (M = 0.092, SE = 0.039, F(1,90) = 5.003, p = 0.028, 

partial η2 = 0.053). We further observed a trend interaction between type of 

feedback and political orientation (F(1,281) = 2.939, p = 0.055, partial η2 = 

0.02). While Democrats (M = 0.213; SE = 0.014) were generally more 

discerning than Republicans (M = 0.017; SE = 0.016; F(1,281) = 77.392, p < 

0.001, partial η2 = 0.216), this difference was smaller in those who received 

‘(Dis)Trust’ feedback (M = 0.082, SE = 0.034) compared to those who received 

‘(Dis)Like’ feedback (M = 0.23, SE = 0.03; F(1,224) = 4.879, p = 0.028, partial 

η2 = 0.021) and by trend smaller than those who received no feedback (M = 

0.229, SE = 0.045; F(1,149) = 3.774, p = 0.054, partial η2 = 0.025). There was 

no difference between the latter two (F(1,188) = 0.00, p = 0.988, partial η2 = 

0.00). No other effects were significant. Overall engagement, measured as 

percentage of posts shared out of all trials, did not differ across environments 

(F(1,281) = 1.218, p = 0.271, partial η2 = 0.004; Mean % posts shared out of 

all trials: Baseline = 27.712%; Dislike = 35.889%; Like = 33.258%; Distrust = 

32.51%; Trust = 30.435%; see Appendix 7.3 Supplementary Table 4.4 for 

means for true and false posts).  

 

Results hold when controlling for demographics, when not including political 

orientation in the analysis, and allowing for an interaction between type of 

reaction and valence (see Appendix 7.3 Supplementary Table 4.5 & 4.6). 

Results replicate in an independent sample (see Appendix 7.3 Experiment 5).  

 

To recap - participants in Experiment 2 decided whether to share content or 

skip. They then observed the reactions of other participants to their post (they 

believed this was happening in real-time, but for simplicity we fed them 
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reactions of participants from Experiment 1). Each participant in Experiment 2 

observed only one type of feedback. For example, only ‘distrusts’. How is it that 

observing ‘distrusts’ alone increases discernment? The rationale behind this 

design is that for any given post, true or false, some users will distrust the post. 

However, true posts will receive fewer ‘distrusts’ than false posts. It is the 

number of ‘distrusts’ per post that matters. Participants are motivated to 

minimize the average number of ‘distrusts’ they receive. To achieve this, they 

should post more true posts and fewer false posts. Of course, if participants 

were simply trying to minimize the total number of distrusts, they would just skip 

on every trial. Participants do not do that, however. Potentially because sharing 

in and of itself is rewarding (Tamir & Mitchell, 2012). The results indicate that 

participants are sensitive to the number of ‘distrusts’ per posts not just to the 

total number of ‘distrusts’ over all posts. 

 

The same rationale holds for the participants that only observe ‘trusts’. They 

receive more ‘trusts’ for true than false posts. It is the magnitude of ‘trusts’ that 

is associated with veracity. This motivates participants to post more true posts 

and fewer false posts in order to maximize the average number of ‘trusts’ per 

post. Of course, if participants were simply trying to maximize the total number 

of ‘trusts’, they would just share on every trial. Participants do not do that, 

however. This indicates that they are sensitive to the number of ‘trusts’ per post 

not just to total number over all posts. Any user of social media platforms could 

relate to this; when posting a tweet, for example, many people will be 

disappointed with only a handful of ‘hearts’. The user’s goal is to maximize 

positive feedback per post. The same rationale as above holds for ‘likes’ and 

‘dislikes’ except that those are less associated with veracity, thus impact 

discernment less. 

 

The posts included in the experiment covered a range of topics including 

politics, science, health, environment, and society. As observed in Figure 4.5b, 

the effect of ‘(Dis)Trust’ environment on discernment is observed regardless of 

content type.  
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Thus far, our results show that changing the incentive structure of social media 

platforms by coupling the number of ‘carrots’ and ‘sticks’ with information 

veracity could be a valuable tool to reduce the spread of misinformation. If 

feedback promotes discernment in sharing behaviour, it is plausible that it may 

in turn improve belief accuracy. To test this, we asked participants at the end 

of the experiment to indicate how accurate they thought a post was on a scale 

from inaccurate (0) to accurate (100). Participants’ error in estimating whether 

a post was true or false was calculated as follows: for false posts error was 

equal to the participants’ accuracy rating and for true posts it was equal to 100 

minus their rating. Participants’ average error scores were entered into a 

between-subject ANOVA with type of feedback and valence of feedback, as 

well as political orientation and its interaction with feedback type. We observed 

an effect of type of feedback (F(1,281) = 7.084, p = 0.008, partial η2 = 0.025), 

such that participants were more accurate (less errors) when they received 

‘(Dis)Trust’ feedback (M = 47.24, SE = 0.938) compared to ‘(Dis)Like’ feedback 

(M = 50.553, SE = 0.851, F(1,224) = 7.024, p = 0.009, partial η2 = 0.03). We 

further observed an effect of political orientation (F(1,281) = 11.402, p < 0.001, 

η2 = 0.039), with Democrats (M = 47.264, SE = 0.773) being more accurate 

than Republicans (M = 51.117, SE = 0.802). No other effects were significant. 

All results hold when controlling for demographics, when not including political 

orientation in the analysis, and allowing for an interaction between type of 

feedback and valence (see Appendix 7.3 Supplementary Table 4.7). Results 

are replicated in an independent sample (see Appendix 7.3 Experiment 5). 
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Figure 4.5. Altering the incentive structure of social media environments 
increases discernment of information shared. (a) Participants operating in 
an environment where ‘(Dis)Trust’ feedback was introduced shared more true 
information relative to false information than participants operating in an 
environment where only ‘(Dis)Like’ feedback was available, or no feedback at 
all (Baseline). Y axis shows discernment, i.e., proportion of true posts shared 
minus proportion of false posts shared. X axis shows the group environment 
(type of feedback). (b) This was the case regardless of the topic of the post 
(politics = turquoise, science = blue, health = olive, environment = salmon, 
society = pink, other = green). Bubble size corresponds to number of the posts 
included in the study. Diagonal dashed line indicates point of equivalence, 
where discernment in equal across the ‘(Dis)Like’ and ‘(Dis)Trust’ 
environments. As can be seen, all bubbles are above the dashed line indicating 
that in all cases discernment is greater in an environment that offers ‘(Dis)Trust’ 
feedback. Y axis shows discernment in the ‘(Dis)Trust’ environment, X axis 
shows discernment in the ‘(Dis)Like’ environment. (c) Experiment 3 showed the 
same results as Experiment 2. Data are plotted as boxplots for each reaction, 
in which horizontal lines indicate median values, boxes indicate 25/75% 
interquartile range and whiskers indicate 1.5 × interquartile range. Diamond 
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shape indicates the mean discernment per reaction. Individuals' mean 
discernment data are shown separately as grey dots. Symbols above each 
boxplot indicate significance level compared to 0. ***p < 0.001, **p < 0.01. 

 

‘Trust’ and ‘distrust’ incentives together improve discernment in sharing 

behaviour (Experiment 3). 

Given that Experiment 2 revealed that receiving ‘trust’ or ‘distrust’ feedback 

separately improves discernment, it is likely that the coupled presentation of 

both will jointly also improve discernment. To test this, we ran a third experiment 

with a new group of participants. The task was identical to Experiment 2 (see 

Figure 4.3), but this time we included three between-subject environments: a 

Baseline environment, in which participants received no feedback, a 'Trust & 

Distrust’ environment, in which participants observed both the number of trust 

and the number of distrust feedback, and a ‘Like & Dislike’ environment, in 

which participants observed both the number of like and the number of dislike 

feedback.  

 

Additionally, to ensure posts align equally with Democratic and Republican 

beliefs, in Experiment 3 we selected 40 posts (20 true, 20 false) in response to 

which Republicans and Democrats utilized the ‘trust’ button in a similar manner 

in Experiment 1 (see Methods). Data of 18 participants were not analysed 

according to pre-determined criteria (see Methods for details). Analysis of 

Experiment 3 (N = 391, 194 Democrats, 197 Republican, Mage = 35.304, SDage 

 11.089; female = 196, male = 192, other = 3) was the same as in Experiment 

2 except that there were three environments (Baseline, ‘Like & Dislike’, ‘Trust 

& Distrust’) and no valence of feedback, because all environments either 

include both positive and negative feedback or no feedback.  

 

Discernment was submitted to a between-subject ANOVA with type of 

feedback (Baseline/ ‘Like & Dislike’ / ‘Trust & Distrust’), political orientation and 

their interaction as factors. Again, we observed an effect of type of feedback 

(F(1,385) = 11.009, p < 0.001, partial η2 = 0.054, Figure 4.5c), with participants 

in the ‘Trust & Distrust’ feedback group posting more true relative to false 
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information (M = 0.101, SE = 0.015) than those in the ‘Like & Dislike’ group (M 

= 0.042, SE = 0.013; F(1,261) = 8.478, p = 0.00, partial η2 = 0.031) or those 

who received no feedback at all (M = 0.008, SE = 0.014, F(1,259) = 20.142, p 

< 0.001, partial η2 = 0.0724). By contrast there was no difference between the 

latter two groups (F(1,250) = 2.981, p = 0.085, partial η2 = 0.012). As observed 

in Experiment 2, Democrats (M = 0.073, SE = 0.011) were more discerning than 

Republicans (M = 0.031, SE = 0.012; F(1,385) = 6.409, p = 0.012, partial η2 = 

0.016). No other effects were significant. 

 

Interestingly participants shared more frequently in the ‘Trust & Distrust’ 

environment compared to the other two environments (% of all trials: ‘Trust & 

Distrust’ = 36.2%, ‘Like & Dislike’ = 30.41%; Baseline = 25.853%; F(1,385) = 

8.7692, p < 0.001, partial η2 = 0.044). This illustrates that ‘(Dis)Trust’ feedback 

improves discernment without reducing engagement. No other effects were 

significant. 

 

All results hold when controlling for demographics, when not including political 

orientation in the analysis, and allowing for an interaction between type of 

reaction and valence (see Appendix 7.3 Supplementary Tables 4.8 & 4.9). 

Results replicate in an independent sample (see Appendix 7.3 Experiment 6). 

 

At the end of Experiment 3, we again asked participants to indicate how 

accurate they thought a post was. Participants’ average error scores were 

calculated as in Experiment 2 and entered into a between-subject ANOVA with 

type of feedback, political orientation and their interaction as factors. Democrats 

(M = 40.591; SE = 6.371) were more accurate than Republicans (M = 42.056; 

SE = 5.633; F(1,385) = 5.723, p = 0.017, partial η2 = 0.015). No other effects 

were significant (for results when controlling for demographics, when not 

including political orientation in the analysis see Appendix 7.3 Supplementary 

Table 4.10). Note, that in the replication study (Experiment 6) we did observe 

an effect of type of feedback (F(1,147) = 4.596, p = 0.012, partial η2 = 0.059), 

with ‘(Dis)Trust’ being most accurate. Thus, we see accuracy effects in three 

(Experiment 2, 5, 6) out of our four studies. 
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Taken together these findings suggest that changing the incentive structure of 

social media platforms, such that ‘carrots’ and ‘sticks’ are strongly associated 

with veracity promotes discernment in sharing behaviour, thereby reducing the 

spread of misinformation.  

 

‘(Dis)Trust’ incentives improve discernment in sharing behaviour by 

increasing the relative importance of evidence consistent with discerning 

behaviour. Next, we set out to characterize the mechanism by which the new 

incentive structure increased discernment. Imagine you observe a post on 

social media, and you need to decide whether to share it – how do you make 

this decision? First, you examine the post. Second, you retrieve your existing 

knowledge. For example, you may think about what you already know about 

the topic, what you heard others say, you may try to estimate how others will 

react to the post if you share it, and so on. This process is called ‘evidence 

accumulation’ - you gradually accumulate and integrate external evidence and 

internal evidence (memories, preferences etc.) to decide. Some of the evidence 

you retrieve will push you towards a ‘good’ response that promotes veracity 

(that is posting a true post and skipping a false post) and some will push you 

towards a ‘bad’ response that obstructs veracity (that is posting a false post and 

skipping a true post). We can think of the evidence that pushes you toward a 

response that promotes veracity as ‘signal’. Using computational modelling it is 

possible to estimate how much a participant is influenced (‘pushed’) by signal 

relative to noise, by calculating a parameter known as a ‘drift rate’ in a class of 

models known as DDM. One possibility then is that in the ‘(Dis)Trust’ 

environment evidence towards responses that promote veracity is given more 

weight than towards responses that obstruct veracity (that is the drift rate is 

larger), thus people make more discerning decisions.  

 

Another, non-exclusive possibility, is that in the ‘(Dis)Trust’ environment 

participants are more careful about their decisions. They require more evidence 

before making a decision. For example, they may spend more time deliberating 

the post. In DDM this is estimated by calculating what is known as the distance 
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between the decision thresholds (that is how much total distance do I need to 

be ‘pushed’ in one direction or the other to finally make a choice).  

 

To test the above possible mechanisms, we modelled our data using the DDM 

(Lin et al., 2023; Ratcliff, 1978; Ratcliff & McKoon, 2008). We modelled 

participants’ responses (‘veracity-promoting’ vs ‘veracity-obstructing’ choice) 

separately for each type of feedback (‘(Dis)Trust’, ‘(Dis)Like’, Baseline) and 

each Experiment (Experiment 2 and 3). The following parameters were 

included: (1) t0—the amount of non-decision time, capturing encoding and 

motor response time; (2) α—the distance between decision thresholds 

(‘veracity-promoting’ response vs ‘veracity-obstructing’ response); (3) z—

starting point of the accumulation process; and (4) v—the drift rate (Ratcliff, 

1978; Ratcliff & McKoon, 2008; Voss et al., 2013). 

 

We next examined which of the parameters were different in the different 

environments (see Table 4.1 & 4.2). To that end, we calculated 95% CIs of 

each parameter for each pair of incentive environments (‘(Dis)Trust’ vs 

‘(Dis)Like’, ‘(Dis)Trust’ vs Baseline, ‘(Dis)Like’ vs Baseline). If the 95% CIs do 

not overlap, we infer a significant difference between the two incentive 

environments. 

 

For both Experiment 2 (see Figure 4.6a) and Experiment 3 (see Figure 4.6c) 

we observed a significant difference in the drift rate. In particular, in the 

‘(Dis)Trust’ environments the drift rate was larger (Experiment 2: v = 0.216; 95% 

CI [0.17, 0.262]; Experiment 3: v = 0.12; 95% CI [0.086, 0.155]) than in 

the‘(Dis)Like’ environments (Experiment 2: v = 0.01; 95% CI [0.056, 0.145]; 

Experiment 3: 0.037; 95% CI [0.002, 0.069]) or no feedback environment 

(Experiment 2: v = 0.098; 95% CI [0.039, 0.158]; Experiment 3: v = 0.006; 95% 

CI [-0.027, 0.037]). The Baseline and ‘(Dis)Like’ environments did not differ for 

drift rate. This suggests that relative to the other environments, in the 

‘(Dis)Trust’ environments evidence consistent with a ‘veracity-promoting’ 

response is weighted more than ‘evidence’ consistent with a ‘veracity-

obstructing’ response. 95% HDI comparisons corroborate this result (see 
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Appendix 7.3 Supplementary Tables 4.11 & 4.12 for HDI Comparisons). 

We replicate these results in Experiment 5 and Experiment 6 see Appendix 

7.3 Experiment 5 & 6).  

 

Figure 4.6. ‘(Dis)Trust’ feedback increases the drift rate. Displayed are the 
posterior distributions of parameter estimates for the Baseline environment, the 
‘(Dis)Like’ environment and the ‘(Dis)Trust’ environment. Dashed vertical lines 
indicate respective group means. (a) In both Experiment 2 and (c) Experiment 
3 95% CI comparison revealed that participants had a larger drift rate in the 
‘(Dis)Trust’ environments than in the other environments. No significant 
difference was observed between the latter two environments. Recovered 
model parameter estimates reproduced experimental results for both (b) 
Experiment 2 and (d) Experiment 3. *indicates significant difference between 
parameters (i.e., CI do not overlap). 

 
Estimate Baseline [95% CI] ‘(Dis)Like’ [95% CI] ‘(Dis)Trust’ [95% CI] 

Distance 
between 
Decision 
Thresholds 
(α) 

2.153 [2.09, 2.214] 2.373 [2.281, 2.466] 2.403 [2.280, 2.529] 



 116 

Non-
Decision 
Time (t0) 

7.025 [6.898, 7.154] 6.936 [6.802, 7.071] 6.681 [6.425, 6.94] 

Starting 
Point (z) 

0.497 [0.486, 0.508] 0.491 [0.483, 0.50] 0.48 [0.471, 0.49] 

Drift Rate 
(v) 

0.098 [0.039, 0.158] 0.10 [0.056, 0.145] 0.216 [0.17, 0.262] 

Table 4.1. Group estimates for DDM in Experiment 2. 

 
 
Estimate Baseline [95% CI] ‘(Dis)Like’ [95% CI] ‘(Dis)Trust’ [95% CI] 

Distance 
between 
Decision 
Thresholds 
(α) 

2.238 [2.153, 2.328] 2.207 [2.132, 2.286] 2.209 [2.134, 2.286] 

Non-
Decision 
Time (t0) 

6.9 [6.762, 7.04] 7.051 [6.918, 7.186] 7.076 [6.944, 7.208] 

Starting 
Point (z) 

0.5 [0.49, 0.51] 0.5 [0.49, 0.511] 0.489 [0.476, 0.5] 

Drift Rate 
(v) 

0.006 [-0.027, 0.037] 0.037 [0.002, 0.069] 0.12 [0.086, 0.155] 

Table 4.2. Group estimates for DDM in Experiment 3. 

 

While in Experiment 2 the distance between decision thresholds in the Baseline 

environment was lower than in the other two environments, and non-decision 

time (t0) higher than in the ‘(Dis)Trust’ environment, these differences are not 

replicated in Experiment 3. More importantly, neither distance between decision 

thresholds nor non-decision time differed between the ‘(Dis)trust’ and ‘(Dis)like’ 

environments (see Table 4.1 & 4.2 and Appendix 7.3 Supplementary Tables 

4.11 & 4.12 for HDI Comparisons). 

 

Model parameters could be successfully recovered with data simulated using 

group-level parameters from Experiment 2 and Experiment 3 separately (see 

Methods for details, see Figure 4.6 b, d, Appendix 7.3 Supplementary 

Tables 4.13 & 4.14). This was done by fitting the model to simulated data, in 

the same way as for the experimental data. We sampled 2000 times from the 

posteriors, discarding the first 500 as burn in. The same pattern of results was 
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reproduced with the simulated data as with real participants' data (Figure 4.7). 

For each Experiment we ran two separate one-way ANOVAs to assess the 

effect of type of feedback on discernment: one for the real data and one for the 

simulated data. We remind the reader that we entered responses into our DDM 

as either ‘veracity-promoting’ (true post shared or false post skipped) or 

‘veracity-obstructing’ (false post shared or true post skipped). Thus, 

discernment here is calculated as: 

 

𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑣𝑒𝑟𝑎𝑐𝑖𝑡𝑦−𝑝𝑟𝑜𝑚𝑜𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

− 𝑃𝑟𝑜𝑝𝑣𝑒𝑟𝑎𝑐𝑖𝑡𝑦−𝑜𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠  

Which is equal to: 

𝐷𝑖𝑠𝑐𝑒𝑟𝑛𝑚𝑒𝑛𝑡 =  𝑃𝑟𝑜𝑝𝑟𝑒𝑝𝑜𝑠𝑡𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑠+𝑟𝑒𝑝𝑜𝑠𝑡𝑠 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑡𝑠

− 𝑃𝑟𝑜𝑝𝑟𝑒𝑝𝑜𝑠𝑡𝑠 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑡𝑠+𝑠𝑘𝑖𝑝𝑠 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑠 

 

As expected, we observed an effect of type of feedback in both the simulated 

(Experiment 2: F(1,285) = 3.795, p = 0.024, η2 = 0.026; Experiment 3: F(1,388 

= 7.843, p = 0.001, η2 = 0.039, Figure 4.7 b, d), and the experimental data 

(Experiment 2: F(1,287) = 7.049, p = 0.001, η2 = 0.047; Experiment 3: F(1,388) 

= 11.166, p < 0.001, η2 = 0.054). That is, discernment was higher in '(Dis)Trust’ 

environments relative to ‘(Dis)Like’ environments or no feedback environments 

(Figure 4.7 a, c, see Appendix 7.3 Supplementary Tables 4.15 & 4.16 for 

pairwise comparisons and Supplementary Table 4.17 for correlations 

between real and recovered individual-level parameters).  
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Figure 4.7. Simulated Data reproduced experimental findings. In both (a) 
Experiment 2 and (c) Experiment 3 participants who received ‘(Dis)Trust’ 
feedback were more discerning than participants in the ‘(Dis)Like’ and Baseline 
environments. Simulated data reproduced these findings (b&d). Y axis shows 
discernment, i.e., proportion of true posts shared and false posts skipped minus 
the proportion of true posts skipped and false posts shared. X axis shows 
feedback group. Data are plotted as boxplots for each reaction, in which 
horizontal lines indicate median values, boxes indicate 25/75% interquartile 
range and whiskers indicate 1.5 × interquartile range. Diamond shape indicates 
the mean discernment per reaction. Individuals' mean discernment data are 
shown separately as grey dots. Symbols above each boxplot indicate 
significance level compared to 0. ***p < 0.001, **p < 0.01, *p < 0.05. 

 

4.5 Discussion 

Here, we created a novel incentive structure that significantly reduced the 

spread of misinformation and provide insights into the cognitive mechanisms 

that make it work. This structure can be adopted by social media platforms at 

no cost. The key was to offer reaction buttons (social ‘carrots’ and ‘sticks’) that 
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participants were likely to use in a way that discerned between true and false 

information. Users who found themselves in such an environment, shared more 

true than false posts in order to receive more ‘carrots’ and less ‘sticks’.  

 

In particular, we offered ‘trust’ and ‘distrust’ reaction buttons, which in contrast 

to ‘likes’ and ‘dislikes’, are by definition associated with veracity. For example, 

a person may dislike a post about Joe Biden winning the election, however this 

does not necessarily mean that they think it is untrue. Indeed, in our study 

participants used ‘distrust’ and ‘trust’ reaction buttons in a more discerning 

manner than ‘dislike’ and ‘like’ reaction buttons. This created an environment in 

which the number of social rewards (‘carrots’) and punishments (‘sticks’) were 

strongly associated with the veracity of the information shared. Participants who 

were submitted to this new environment were more discerning in their sharing 

behaviour compared to those in traditional environments who saw either no 

feedback or ‘dislike’ and/or ‘like’ feedback. The result was a reduction in sharing 

of misinformation without a reduction in overall engagement. All the effects 

were replicated, and effect sizes of misinformation reduction were large to 

medium. 

 

Using computational modelling we were able to pin-point the changes to 

participants’ decision-making process. In particular, DDM revealed that 

participants in the new environment assigned more weight to evidence 

consistent with discerning than non-discerning behaviour relative to traditional 

environments. In other words, the possibility of receiving rewards that are 

consistent with accuracy led to an increase in the weight participants assigned 

to accuracy-consistent evidence when making a decision. ‘Evidence’ likely 

includes external information that can influence the decision to share a post 

(such as the text and photo associated with the post) as well as internal 

information (e.g., retrieval of associated knowledge and memories). 

 

Our results held when the potential feedback was only negative (‘distrust’), only 

positive (‘trust’), or both (‘trust’ and ‘distrust’). While negative reaction buttons 

were used in a more discerning manner and more frequently than positive 
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reaction buttons, we did not find evidence for a differential strength of positively 

or negatively valenced feedback on discernment of sharing behaviour itself.  

 

The findings also held across a wide range of different topics (e.g., politics, 

health, science, etc.) and a diverse sample of participants, suggesting that the 

intervention is not limited to a set group of topics or users, but instead relies 

more broadly on the underlying mechanism of associating veracity and social 

rewards. Indeed, we speculate that these findings would hold for different 

‘carrots’ and ‘sticks’ (beyond ‘trust’ and ‘distrust’), as long as people use these 

‘carrots’ and ‘sticks’ to reward true information and punish false information. 

However, we speculate that the incentives were especially powerful due to 

being provided by fellow users and easily quantifiable (just as existing buttons 

including ‘like’ and ‘heart’). This may contrast with incentives which are either 

provided by the platform itself and/or not clearly quantified such as verification 

marks (Edgerly & Vraga, 2019) or flagging false news (Brashier et al., 2021; 

Chan et al., 2017; Grady et al., 2021; Lees et al., 2022). Interestingly, a trust 

button has also been shown to increase sharing of private information (Bălău & 

Utz, 2016). 

 

Finally, we observed that feedback not only promotes discernment in sharing 

behaviour but may also increase the accuracy of beliefs. Though, while we see 

an increase in accuracy of beliefs in three of the four experiments, we did not 

observe this effect in Experiment 3. Thus, the new incentive structure reduces 

the spread of misinformation and may help in correcting false beliefs. It does so 

without drastically diverging from the existing incentive structure of social media 

networks by relying on user engagement. Thus, this intervention may be a 

powerful addition to existing intervention such as educating users on how to 

detect misinformation (Lewandowsky & van der Linden, 2021; Maertens et al., 

2021; Pilditch et al., 2022; Roozenbeek & van der Linden, 2019; Traberg et al., 

2022) or prompting users to think about accuracy before they engage in the 

platform (Capraro & Celadin, 2022; Fazio, 2020; Pennycook & Rand, 2022a). 

Over time, these incentives may help users build better habits online (Anderson 

& Wood, 2021; Ceylan et al., 2023). 
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As real-world platforms are in the hands of private entities, studying changes to 

existing platforms requires testing simulated platforms. The advantage of this 

approach is the ability to carefully isolate the effects of different factors. 

However, real-world networks are more complex and involve additional 

features which may interact with the tested factors. Our hope is that the science 

described here will eventually impact how privately owned platforms are 

designed, which will reveal whether the basic mechanisms reported here hold 

in more complex scenarios.  

 

This study lays the groundwork for integration of the new incentive structure 

into existing (and future) social media platforms to further test the external 

validity of the findings. Rather than removing existing forms of engagement, we 

suggest an addition that complements the existing system and could be 

adopted by social media platforms at no cost. The new structure could 

subsequentially help reduce violence, vaccine hesitancy and political 

polarization, without reducing user engagement. 
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Chapter 5: General Discussion 

5.1 Synthesis 

The research detailed in this thesis sheds new light on whether and how, 

prominent incentives to gather and share information can be altered to reduce 

biased evidence accumulation and make sharing decisions more discerning. 

 

In the first part of this thesis, I focus on evidence accumulation as the pathway 

of decision-making (Platt & Glimcher, 1999). Prior research illustrates that 

individuals selectively accumulate evidence to form positive beliefs (Gesiarz et 

al., 2019; Leong et al., 2019) from which they derive internal rewards, such as 

positive emotions, and increased sense of self-efficacy (Bromberg-Martin & 

Sharot, 2020; Loewenstein, 2006; Sharot et al., 2023). Often, they prioritize 

internal incentives over external incentives, such as financial gains. This results 

in a bias towards desirable, internally rewarding conclusions (Gesiarz et al., 

2019; Leong et al., 2019). Such positively biased beliefs can have detrimental 

consequences, such as lack of preparation for natural disasters (Paton, 2003).  

 

In Chapter 2 and 3, I investigate if and how incentives can be altered to make 

evidence accumulation less biased. I hypothesize that evidence accumulation 

becomes less biased towards desirable conclusions when false beliefs 

resulting in false conclusions are costly. I test this in two ways: In Chapter 2, I 

examine how perceived threat impacts evidence accumulation. I find that under 

threat the relative rate at which negative evidence is accumulated increases 

and the bias towards desirable conclusions disappears. This may be adaptive, 

as it can lead to increased precaution in environments in which the risk of 

adverse consequences is high. Building on this work, in Chapter 3, I then 

examine whether increasing the external incentives to reach accurate 

conclusions can also alter the influence of internal incentives on evidence 

accumulation. Results show that while accuracy incentives led participants to 

take more time to reach a conclusion, they did not impact participants’ bias. I 

provide a mechanistic explanation for why this might be. In particular, DDM 
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reveals that accuracy incentives and the desirability bias act on orthogonal 

aspects of the accumulation process. While accuracy incentives led to an 

increase in the distance between decision thresholds, the bias was associated 

with greater weight on desirable relative to undesirable evidence (drift rate 

bias). These results suggest that participants may not be aware of their own 

bias. I suggest that when accuracy incentives are coupled with direct feedback, 

decision-making becomes more discerning. 

 

One decision that is informed by evidence accumulation is the decision to share 

information (Globig et al., 2023; Huang et al., 2015; Lin et al., 2023). In recent 

years, the rising ease of sharing, brought about by the advent of the internet, 

has also facilitated the dissemination of misinformation (Kreps, 2020). This has 

been attributed to the existing incentive structure of social media platforms 

(Brady et al., 2021; Lindström et al., 2021; Scissors et al., 2016), in which social 

rewards (‘likes’) and punishments (‘dislikes’) are dissociated from the veracity 

of the information shared. In the Chapter 4, I therefore test the hypothesis that 

the role of this incentive structure in promoting misinformation spread can be 

curtailed by making social rewards and punishment contingent on the veracity 

of the information shared. Results show that when social incentives are 

contingent on the veracity of information, discernment in sharing behaviour 

increases which in turn reduces the spread of misinformation. 

 

Taken together, this thesis provides insights into how incentive structures can 

be altered to improve the quality of evidence accumulation and sharing 

behaviour. This discussion will summarize the key findings of the studies in 

each chapter, and delve into their implications, limitations, and potential future 

pathways for this research. 
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5.2 Under threat weaker evidence is required to reach 

undesirable conclusions 

5.2.1 Summary 

Many important decisions are made in threatening environments. Such 

settings, often characterized by heightened stress and anxiety, are known to 

have adverse effects on both learning and decision-making (FeldmanHall et al., 

2015; Porcelli & Delgado, 2009, 2017; Raio et al., 2013; Starcke & Brand, 

2012). More recent work, however, highlights that stress can also have an 

adaptive function (Akinola & Mendes, 2012; Garrett et al., 2018; Graybeal et 

al., 2011).  

 

In Chapter 2, I demonstrate that stress induced by perceived threat also alters 

the process by which evidence is accumulated in a way that may be adaptive. 

Ninety-one participants completed a sequential sampling task in which they 

were incentivized to accurately judge whether they were in a desirable state, 

which was associated with greater rewards than losses, or an undesirable state, 

which was associated with greater losses than rewards (Gesiarz et al., 2019). 

Participants were assigned to one of two groups: a ‘threat group’ and a ‘control 

group’. Prior to the task, participants in the threat group experienced a social-

threat manipulation. As expected, we found that participants in the control group 

were biased towards desirable conclusions. They weighed desirable evidence 

more than undesirable evidence (replicating previous findings from Gesiarz et 

al., 2019). Under threat this bias disappears. Relative to the control group, 

participants in the threat group required weaker evidence to reach an 

undesirable conclusion. DDM revealed that this was due to an increase in the 

relative rate at which negative evidence is accumulated. This is line with 

previous findings that stress increases attention to negative stimuli, resulting in 

fewer decision errors (Akinola & Mendes, 2012), and bolsters the integration of 

negative information, thereby moderating the bias for positive information in 

belief updating (Garrett et al., 2018). Such increased attention may also, in part, 

explain the observed effect of stress on the rate of evidence accumulation. The 

results reported in Chapter 2 extend previous research by shedding light on 
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how perceived threat alters the bias towards desirable conclusions in evidence 

accumulation and show that perceived threat reduces the strength of evidence 

required to reach an undesirable conclusion. As the source of the threat in this 

study was unrelated to the behavioural task this threat-induced change in 

evidence accumulation points to a global effect of stress. Taken together, these 

results lend support to the hypothesis that when participants are exposed to an 

environment in which the costs of false beliefs are high, such as a threatening 

environment, they are less biased towards internally rewarding conclusions. 

This study thus suggests that individuals adaptively prioritize internal and 

external incentives depending on the environment.  

 

5.2.2 Limitations and Future Directions 

Chapter 2 sheds light on how perceived threat alters evidence accumulation 

and provides support for the idea that when the costs of false beliefs are high, 

the motivational bias towards internally rewarding conclusions is mitigated. This 

is in line with prior research, showing that stress improves the ability to flexibly 

adjust previously learned behaviours to fit new task requirements (Graybeal et 

al., 2011) and triggers defence mechanisms (Baas et al., 2006; Cornwell et al., 

2007), especially in the face of aversive stimuli (Blanchard et al., 2011; Davis 

et al., 2010; Grillon, 2008; Robinson et al., 2012). However, it is important to 

bear in mind some limitations of this study and future directions for this work. 

 

Anecdotal evidence illustrates that psychophysiological stress-responses often 

provide a global rather than specific signal of threat. For example, stress elicited 

by personal conflict may impact professional performance (Piotrkowski, 1979). 

This fits with prior research reporting a general effect of stress on behaviour 

and neural responses, that goes beyond the source of the threat itself, in both 

humans (Cavanagh, Frank, et al., 2011; Lenow et al., 2017; Otto & Daw, 2019; 

Robinson, Overstreet, et al., 2013; Youssef et al., 2012) and non-human 

animals (Harding et al., 2004; Rygula et al., 2013). As such, in this study, the 

source of the threat (anticipating a stressful event) was intentionally 

disconnected from the behavioural task (the ‘Factory Task’). As expected, the 
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results point to a global effect of perceived threat on evidence accumulation. 

This may be adaptive, as it enhances the likelihood of taking precautions 

against potential aversive outcomes, which tend to be more extreme and/or 

common in threatening environments. 

 

However, there is some evidence to suggest that the effect of global stress may 

differ from the effect of task-specific stress. In some instances, the latter has 

even been found to induce biased cognition (for a review see Yu, 2016). For 

example, a study Engelmann et al., (2019) observed that participants who 

engaged in a visual pattern recognition task, in which some patterns were 

associated with receiving an electric shock, were worse at recognizing these 

patterns, relative to patterns that were not associated with a shock. This 

suggests that participants engaged in ‘wishful thinking’ to deceive themselves 

about the looming electric shock. This stands in contrast to the study described 

in Chapter 2, in which the threat-induction was decoupled from the behavioural 

task and participants were motivated to hold one belief over another using 

financial incentives. In Engelmann et al., (2019) the threat itself motivated 

participants to form a desirable conclusion. This in line with suggestions, that 

people at risk of terminal illnesses avoid negative information to remain 

optimistic and protect their emotional well-being (Ganguly & Tasoff, 2017; 

Lerman et al., 1998; Oster et al., 2013). As participants have no (perceived) 

control over the incoming threat, this response is likely adaptive. This may also 

explain reports of a reduction in attentional bias towards aversive stimuli under 

threat (Jiang et al., 2017). In the study outlined in Chapter 2, the threat response 

is unspecific, and thus participants are alerted to potential dangers in their 

environment. I thus speculate, that when accumulating evidence under threat, 

prioritizing external over internal incentives is an adaptive response to allow 

participants to adopt defensive mechanisms (see also Baas et al., 2006; 

Cornwell et al., 2007); especially in response to threatening stimuli (Blanchard 

et al., 2011; Davis et al., 2010; Grillon, 2008). Taken together, these studies 

suggest, that stress has an adaptive function designed to restore homeostasis 

(de Kloet et al., 2008) and therefore its’ precise effect on decision-making 

depends on the specific context (Starcke & Brand, 2012). Future studies should 
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further investigate this hypothesis and could explore to what extent the findings 

from Chapter 2 hold in different contexts, using different threat induction 

methods, such as cold-pressor tasks (Lenow et al., 2017; Otto et al., 2013), and 

threat of electric shock (Robinson, Overstreet, et al., 2013), or different task 

designs. Moreover it would be interesting to explore how global threat as used 

in Chapter 2 interacts with a task-induced motivational manipulation which uses 

threat as adopted by Engelmann et al., (2019). 

 

In Chapter 2, I establish a causal relationship between perceived threat and 

evidence accumulation in healthy individuals. An intriguing avenue for future 

research is to examine how these findings might apply to chronic stress and 

individuals with affective disorders, who often report heightened anxiety. It has 

been suggested that chronic stress has adverse effects on cognitive and neural 

functions (for a review see Sousa & Almeida, 2012) and may have a more 

pronounced effect on decision-making compared to acute stress (Hales et al., 

2016). In individuals, who are hypersensitive to stress, enhanced accumulation 

of undesirable stimuli could therefore be maladaptive and result in overly 

pessimistic predictions, further aggravating distress. Indeed, Aylward et al. 

(2019) observed a diminished drift rate toward desirable conclusions in 

individuals with anxiety and mood disorders, when studying the effect of stress 

in a two-alternative-forced-choice task, in which participants had to discriminate 

between two types of auditory tones (high reward tone vs low reward tones). 

Future research should explore this effect in a sequential sampling task, like 

the ‘Factory Task’ (Gesiarz et al., 2019) used here. This would allow us to 

examine whether the mechanism by which stress impacts evidence 

accumulation identified in Chapter 2 could serve as a potential target 

mechanism for therapeutic interventions to restore healthy cognitive 

processing. 

 

A further potential limitation of the study is the absence of physiological 

measures, such as salivary cortisol levels, to confirm the efficacy of the elicited 

stress response. In this experiment, anxiety was induced using a variation of 

the Trier Social Stress Test (Birkett, 2011; Marteau & Bekker, 1992; Spielberger 
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et al., 1970) and assessed the success of the manipulation using a well-

established state anxiety questionnaire (Allen et al., 2014). While this procedure 

was validated using salivary cortisol levels and skin conductance in a previous 

study from our lab (Garrett et al., 2018), recording cortisol as a biomarker for 

stress, may have provided a more objective assessment of the stress response, 

complementing the study's findings based on behavioural data (for a detailed 

discussion on this topic see Allen et al., 2014). Furthermore, the effect of 

perceived threat on decision-making varies as a function of sensitivity to cortisol 

response (Kudielka et al., 2009; Van den Bos et al., 2009). Thus, the precise 

effect of perceived threat on evidence accumulation may also be contingent on 

individual differences in sensitivities to threat. Future studies should record 

salivary cortisol changes to provide further insights into the impact of these and 

other differences on the desirability bias in evidence accumulation. 

Neuroimaging could further complement these findings. Additionally, it is 

plausible that a moderate level of stress may enhance behaviour adaptively, 

while minimal or excessive stress, as often seen in clinical disorders, might 

impair performance, thereby suggesting the presence of an inverted U-shaped 

relationship. This hypothesis aligns with existing literature, which reports an 

inverted U-shaped correlation between stress and memory performance (for a 

review see Lupien et al., 2007). Future research should aim to empirically test 

this hypothesis using cortisol levels to further elucidate the nuanced effects of 

stress on biased cognition.  

 

In conclusion, despite its limitations, the present study supports the idea that 

evidence accumulation is a dynamic process in which individuals adaptively 

prioritize internal and external incentives depending on their costs and benefits 

in a given environment. This discussion has also highlighted potential directions 

for future research, which would contribute to a more comprehensive 

understanding of this process. 
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5.3 Futile Rewards: Why Accuracy Incentives Fail to 

Reduce Biased Evidence Accumulation 

5.3.1 Summary 

When accumulating evidence to make a decision, individuals are biased by the 

desire to form positive beliefs, from which they derive internal rewards, such as 

positive emotions. They assign greater weight to evidence that aligns with their 

desired belief. As a result, they are more likely to reach a conclusion that 

confirms this belief, even if it is incorrect (Gesiarz et al., 2019; Globig et al., 

2021; Leong et al., 2019). Such false beliefs can lead to suboptimal decision-

making (for a review see Karayanni & Nelken, 2022) which can have 

detrimental consequences, such as falsely optimistic investment decisions 

preceding the financial crisis (Shefrin, 2015). One obvious solution is to 

financially incentivize people to form more accurate beliefs in situations where 

biases and heuristics are common. This idea is predicated on the 

understanding that biases and heuristics can be moderated through deliberate 

and effortful thinking (Bonner & Sprinkle, 2002; Botvinick & Braver, 2015; Smith 

& Walker, 1993). Yet, despite the intuitive appeal of this approach, the empirical 

evidence is mixed (Engelmann et al., 2019; Prior et al., 2015; Rathje et al., 

2023; Zhang & Rand, 2023).  

 

In Chapter 3, I demonstrate that accuracy incentives fail to counteract biased 

evidence accumulation and provide a mechanistic explanation for why this 

might be. Over three experiments, participants (N = 235) completed a 

perceptual evidence accumulation task in which they had to judge whether they 

were in a desirable state, which was associated with greater rewards, or an 

undesirable state, associated with no reward. In some trials they were also 

financially incentivized for correct responses. Crucially participants had no 

control over which type of trial they were in and had to be as accurate as 

possible to maximize their rewards. The results show that while participants 

were more cautious about their conclusions when incentivized for accuracy, 

they remained biased towards desirable conclusions. This was true even when 

the reward for correct responses was increased five-fold.  
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These results fit with previous suggestions that even substantial accuracy 

incentives fail to alleviate certain biases, including the partisan bias in advice 

taking (Zhang & Rand), and anxiety-induced wishful thinking (Engelmann et al., 

2019). The current findings go beyond these previous demonstrations and 

provide a mechanistic explanation for why accuracy incentives may fail to 

reduce biased evidence accumulation. DDM revealed that accuracy incentives 

and the bias towards internally rewarding conclusions alter orthogonal 

elements of the accumulation process. While the bias selectively increases the 

rate of evidence accumulation towards desirable conclusions, accuracy 

incentives increase the distance between decision thresholds, thereby 

increasing the amount of evidence participants required to make a decision, but 

not changing the way in which this evidence is accumulated. 

 

Taken together, these findings lend support to previous suggestions that 

internal incentives alter pre-conscious processing of information and the 

resultant motivational biases are not merely the product of overt preferences 

but instead beyond individuals’ awareness (Chen & Krajbich, 2018; Desai & 

Krajbich, 2022; Krajbich, 2022; but see Sánchez-Fuenzalida et al., 2023). This 

study lends support to the hypothesis that the inherent subjective value of 

internal rewards exceeds the subjective value of external rewards in safe 

environments. The findings are particularly relevant for policymakers and 

industry leaders as they may explain why financial bonuses may be ineffective 

in improving decision-making. 

 

5.3.2 Limitations and Future Directions 

Chapter 3 provides a mechanistic explanation for why accuracy incentives may 

fail to mitigate the influence of the motivational bias on evidence accumulation. 

These results offer valuable insights for both private and public sectors and may 

help explain why financial bonuses do not always result in more rational 

decision-making. Nevertheless, it is essential to note the limitations inherent in 

this study and to outline future research directions. 
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The findings from Chapter 3 seemingly stand in contrast to those of Chapter 2. 

In theory, both perceived threat and accuracy incentives can increase the 

external costs of holding false beliefs. Participants assign greater weight to 

undesirable than desirable evidence under threat, but not when incentivized for 

accuracy. This could be because stress has a global effect on evidence 

accumulation. The stress response thus alters both conscious and unconscious 

processes. In contrast monetary incentives seemingly operate via more high-

level conscious processes. 

 

Our results indicate that when incentivized for accuracy, participants are more 

cautious about their responses. Yet, despite their increased effort, they remain 

biased towards desirable conclusions. This suggests that participants’ biased 

perception is sincere, and thus cannot be easily modulated through financial 

incentives. This fits with prior work on motivated perception positing that the 

influence of internal incentives extends to pre-conscious processing of 

information (Balcetis & Dunning, 2006,). By contrast, perceived threat elicits a 

global stress response, which can be both implicit and explicit (Verkuil et al., 

2009) and thus also alters the implicit influence of internal incentives on 

evidence accumulation. I speculate, that the reason accuracy incentives fail to 

reduce biased evidence accumulation, is that participants are not aware of their 

mistakes. Their biased processing of information is genuine and not a result of 

deliberation. This is in line with suggestions that preferential belief updating for 

good news compared to bad news occurs even when there is a time limit or 

participants have reduced cognitive load (Kappes & Sharot, 2019). It is possible 

that allowing participants to learn about the inaccuracy of their beliefs, for 

instance by providing feedback would help mitigate biased processing (but see 

Engelmann et al., 2019). Indeed, in Chapter 4, I found that participants who 

received feedback about the accuracy of the content they shared in simulated 

social media environments, were better at discerning between true and false 

posts, than those who did not receive accuracy-related feedback. Similar 

results were also reported by Zhang and Rand (2023) who observed that while 

accuracy incentives failed to mitigate partisan bias in advice-taking, allowing 
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participants to learn about their bias through feedback, successfully reduced 

the partisan bias and improved accuracy. I thus hypothesize that if participants 

learn that their beliefs are false, they adjust how they weigh the evidence they 

observe, reducing the bias towards desirable conclusions. Future studies, for 

instance using neuroimaging and eyetracking, should test this hypothesis and 

investigate whether the preferential sampling of desirable evidence is indeed 

sincere and not deliberate (for a discussion see Krajbich, 2022).  

 

In addition to this, Chapter 2 and Chapter 3 are not entirely comparable, as they 

utilize different paradigms. While Chapter 2 utilizes a sequential sampling task, 

Chapter 3 uses a perceptual accumulation task. Although the bias in the drift 

rate towards desirable conclusions is consistently observed across both tasks, 

a reliable comparison between the two ways of increasing external incentives 

requires identical tasks designs. Future research should therefore test if 

accuracy incentives remain ineffective when a sequential sampling task, like 

the ‘Factory Task’, is used. 

 

Finally, it is important to acknowledge, that although the effect of accuracy 

incentives on response times was observed consistently across experiments in 

Chapter 3, the effect sizes were small. Interestingly, the effect of accuracy 

incentives on response times increased when the reward was increased five-

fold. While it is possible that further increasing the magnitude of accuracy 

incentives could augment caution in such a way that participants become less 

biased, I speculate that while caution would increase, a reduction of the bias is 

unlikely given that the two alter distinct elements of the accumulation process. 

Indeed, prior research using substantially larger financial accuracy incentives 

also failed to show a reduction of motivational biases (Enke et al., 2023; Zhang 

& Rand, 2023). Nevertheless, future studies should examine whether changing 

the type of accuracy incentive, e.g., using a non-monetary accuracy incentive, 

or using punishment instead of reward would alter these results. 

 

In conclusion, Chapter 3 sheds light on why accuracy incentives might fail to 

debias evidence accumulation. This discussion has highlighted important 
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limitations and potential directions for future research, which would contribute 

to a more comprehensive understanding of the influence of internal incentives 

on evidence accumulation and how to mitigate it. 

 

5.4 Changing the Incentive Structure of Social Media 

Platforms to halt the Spread of Misinformation 

5.4.1 Summary 

The wide-spread success of social media platforms has been attributed to the 

human need for social rewards (Nadkarni & Hofmann, 2012). People share 

information in order to receive rewards, in the form of engagement, and in turn 

this engagement reinforces sharing behaviour (Lindström et al., 2021; 

Rosenthal-von der Pütten et al., 2019; Scissors et al., 2016). In Chapter 4, I 

demonstrate that the existing incentive structure of social media platforms, in 

which social rewards (e.g., ‘likes’) and punishments (e.g., ‘dislikes’) are 

dissociated from the veracity of the information shared, contributes to the 

spread of misinformation online. I show that slightly altering this incentive 

structure, such that social rewards and punishments are contingent on the 

veracity of information, improves discernment in sharing behaviour. Recent 

studies corroborate this result (Alizadeh et al., 2023; Butler et al., 2023; Kapoor 

et al., 2023; Pretus et al., 2023; Rathje et al., 2023). 

 

Over six experiments, 951 participants engaged in simulated social media 

platforms where they encountered both true and false information. In some 

platforms ‘trust’ and ‘distrust’ reaction buttons, which are, by definition, related 

to veracity, were added to the existing ‘like’ and ‘dislike’ reaction buttons. We 

found that participants used the buttons in a more discerning manner than the 

existing engagement options, thereby creating an environment in which the 

number of social rewards and punishments were strongly associated with the 

veracity of the information shared. Other participants who were then exposed 

to this environment subsequently shared more true relative to false posts than 

those in traditional environments. This improved the overall quality of the 

information shared thereby reducing the spread of misinformation without 
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reducing overall engagement. DDM revealed that the underlying mechanism of 

this effect is associated with an increase in the weight participants assign to 

evidence consistent with discerning behaviour.  

 

Taken together, these results offer evidence for an intervention that capitalizes 

on the reward-based engagement structures of social media platforms. By 

creating an environment in which engagement is contingent on the veracity of 

the information shared, platforms could create healthier information ecosystem 

without reducing overall engagement. This study therefore lays the groundwork 

for an intervention which could easily be incorporated into a variety of different 

existing social media platforms to reduce the spread of misinformation and thus 

mitigate its devastating consequences for society.  

 

5.4.2 Limitations and Future Directions 

The results of this study provide compelling evidence for an intervention that 

leverages the existing incentive structure of social media platforms and could 

easily be adopted in the real world. However, there are several limitations which 

bear consideration.  

 

First, it is unclear to what extent the efficacy of the intervention generalizes to 

real-world contexts. The study utilizes a highly controlled simulated social 

media environment. Although such approximations of real-world situations are 

vital to establish proof-of-concept (Charness & Fehr, 2015; Falk & Heckman, 

2009), they also bring about several limitations which constrain the ecological 

validity of the study. For instance, participants in this study were either given 

the opportunity to react to posts (Experiment 1 & 4), or to share them 

(Experiment 2-3 & 5-6), never both. Moreover, in the latter experiments, 

participants were assigned to one of three between-subject conditions. They 

either saw no feedback, ‘like’ and/or ‘dislike’ feedback, or ‘trust’ and/or ‘distrust’ 

feedback. By contrast, in real social media platforms users can react and share 

at the same time and are also able to see a range of social feedback 

simultaneously. Furthermore, the design of these experiments was such, that 
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participants first decided whether to repost a piece of content or not, and only 

then would they receive feedback. This was done to ensure that learning what 

others thought about a specific piece of content could not directly impact 

whether participants would repost that specific piece. Instead, the idea was that 

knowing that others would be able to ‘trust’ or ‘distrust’ the post would motivate 

participants to consider the veracity of the post when making their decision. 

However, when users decide to repost something in real social media 

platforms, they can often already see how others have reacted to the original 

post. Thus, future studies should examine whether the observed effects hold 

when users can react and share at the same time and are able to see how 

others have reacted to the original post. 

 

The prevalence of misinformation online has been attributed to large rumour 

cascades which originate from so-called ‘super-spreaders’ with high-follower 

counts (Mosleh & Rand, 2022; Vosoughi et al., 2018). In line with this, 0.01% 

of Twitter (now X) users generated 80% of the misinformation surrounding the 

US election (Grinberg et al., 2019). As such, the reposting of other-generated 

content plays a pivotal role in the spread of misinformation. In Chapter 4, I 

therefore focused on sharing other-generated, rather than sharing self-

generated content. This not only mimics prevalent real-world behaviour, but 

also ensures that all participants in the study observe the same content thereby 

increasing the reliability of the study. Nevertheless, in real platforms users are 

able to share their own content, as well as repost that of others. While I predict 

that anticipating others’ ‘(Dis)Trust’ feedback influences reposting and sharing 

behaviour equally, future studies should directly test this hypothesis. 

Furthermore, participants in this study only observed news-style content which, 

was either true or false. Future studies should investigate how users utilize the 

‘(Dis)Trust’ buttons on other types of content, such as personal interest updates 

or opinion pieces. As ‘(Dis)trust’ feedback is intended to complement existing 

‘(Dis)Like’ feedback, I predict that participants will primarily use the latter when 

interacting with social content, and the former when interacting with verifiable 

content. 
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In addition to utilizing feedback to make sharing decisions, social media users 

may also (rightly or wrongly) use a range of other signals to infer the reliability 

of the content they encounter online, such as the source of the information 

(Epstein et al., 2019). To reduce confounds, this study did not provide 

information about the identity of the original poster or the source of the content. 

Future studies should investigate how these different signals interact. 

Furthermore, it is important to bear in mind that the sample in this study was 

politically balanced. As such, the feedback participants received was also 

politically balanced. Future studies should investigate how this intervention 

behaves in organic polarized networks. For instance, in this study Democrats 

were more discerning in their use of ‘(Dis)Trust’ buttons than Republicans, as 

such it is possible that feedback obtained from a primarily Republican sample 

would be less discerning. In line with this, due to ethical considerations users 

remained anonymous in this study. However, it is possible that the use of the 

‘(Dis)Trust’ buttons as well as the sensitivity to such feedback may vary 

depending on the social proximity of the parties involved. Indeed it has been 

suggested that social media interactions differ depending on the proximity of 

the users (Stopczynski et al., 2018). Another limitation of this study is that it 

only investigated behaviour at one timepoint. It did not assess the longevity of 

the intervention. Future research should investigate whether the results hold 

long-term or whether users habituate to ‘(Dis)Trust’ feedback over time and 

become less responsive to it.  

 

To further aid in the adoption of novel interventions into real-world platforms, it 

is essential not only to consider whether they achieve their desired effect in 

reducing the spread of misinformation, but also to investigate how they 

influence holistic user behaviour. For instance, some platforms use algorithms 

which do not primarily rely on user interactions, but instead utilize more passive 

methods of engagement (Geers et al., 2024), such as dwell-time, that is the 

time spent looking at a piece of content (Epstein et al., 2022). As such, another 

limitation of this study is that it solely focusses on discernment in sharing 

behaviour. Future research should therefore also take into account other 

variables, such measures of attention, that can be utilized by algorithms to 
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determine the dissemination of content. Relevant insights could for instance be 

obtained using eye tracking to assess attention. 

 

To systematically address these limitations and examine the holistic impact of 

this (and other) intervention(s) on user behaviour, future studies should test the 

efficacy of this intervention in real-world settings. However, as platforms are 

seemingly wary of directly implementing proposed interventions, possibly for 

fear of adverse effects, novel solutions are necessary. For instance, some 

researchers are trying to develop immersive social media simulations, that are 

modelled on existing platforms, such as Twitter (now X) or Facebook and have 

varying degrees of experimental control (for an overview see Jagayat & Choma, 

2023). While the existing prototypes of these platforms are either not fully 

interactive or not scalable to larger audiences, they hold great promise for both 

academia and industry alike. By bridging the gap between highly controlled 

experimental settings and the real world, this type of hyper-realistic social 

media simulation could not only provide insights into how this intervention 

impacts user behaviour ‘in the wild’ but it would also aid in the development of 

more optimal solutions to combatting the spread of misinformation online. 

 

Another limitation of the study is that it does not contain a baseline measure of 

participants’ belief accuracy. This was due to a variety of reasons. First, it has 

been shown that directly asking users to indicate whether they think a post is 

true or false alters sharing behaviour (for a review see Pennycook & Rand, 

2022b). To rule out that such accuracy prompts could confound the influence 

of social feedback, belief accuracy was only assessed once participants had 

already made their sharing decisions. Second, it has been shown that the 

repeated exposure of information alters its perceived accuracy and thus 

increases the likelihood of sharing. To avoid such interference, no initial 

(baseline) beliefs were recorded. Thus, it is possible that existing between-

group differences prior to the intervention contributed to the observed effect on 

belief accuracy. Furthermore, it has been shown that participants 

asymmetrically update their beliefs when learning about others’ opinions 

(Kappes et al., 2020). Finding out others agree with them significantly increases 
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their confidence. By contrast, finding out that others disagree only marginally 

diminishes their confidence. It then follows that when participants observe 

social feedback they disagree with, they do not update their beliefs, as much 

as for positive feedback (Kappes et al., 2020). Future studies should strive to 

tease apart this effect of valence on belief updating in response to online 

feedback from others.  

 

In recent years there are also growing concerns about non-genuine user activity 

online. It has been suggested that some social media users deliberately spread 

misinformation to pursue specific geopolitical objectives (Bradshaw & Howard, 

2019). Moreover, many of the accounts disseminating misinformation have 

been identified as social bots (Polychronis & Kogan, 2023; Shao et al., 2018). 

Therefore, at a time where large language models are continuously gaining 

popularity and provide unprecedented access to this technology, there is 

growing concern that social media companies provide platforms which can 

easily be leveraged to maliciously shape public opinion (Hajli et al., 2022; 

Himelein-Wachowiak et al., 2021). It is thus crucial to examine whether the 

‘(Dis)Trust’ button is susceptible to this type of abuse. Thus far, I have studied 

the impact of genuine ‘(Dis)Trust’ feedback. Future studies should assess 

whether the results generalize to environments in which the feedback is non-

sensical, i.e., the buttons are used randomly and not in a manner that signals 

the veracity of the content, as well as whether the results generalize to 

environments in which those using the ‘(Dis)Trust’ button pursue a specific 

misinformation narrative, and thus does not provide a genuine ‘trust’ signal.  

 

Misinformation is thought to have contributed to increasing polarization, racism 

and resistance to climate action and vaccines (Barreto et al., 2021; Rapp & 

Salovich, 2018; Tsfati et al., 2020; Van Bavel et al., 2021). In light of these 

detrimental consequences, it is unsurprising that researchers are devoting 

significant amounts of time to developing new interventions (for a review see 

Ziemer & Rothmund, 2024). Until now however, few have compared the 

efficacy of these interventions (but see Hameleers, 2022; Heuer & Glassman, 

2022). This is important to ensure that policy and industry resources are 
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assigned to the most promising efforts. Future research should therefore 

systematically compare the ‘(Dis)Trust buttons to other interventions by 

determining their efficacy in the same environment. This would also help 

identify which (or if any) combination of interventions is most effective (Bak-

Coleman et al., 2022) 

 

It is also important to acknowledge that participation in our study was limited to 

the US. Emerging research indicates that cultural norms significantly influence 

sharing behaviour on social media (Hsu et al., 2021). While US users are more 

reactive to negative content that others’ have generated, users in Japan 

respond more to positive content. This disparity might also influence how they 

use the ‘(Dis)Trust’ buttons and underscores the importance of considering 

cultural variances in future research. Thus, cultural differences could 

significantly affect the generalizability and efficacy of the proposed intervention.  

 

Finally, it is important to recognize that this study focussed solely on external 

incentives. However, it has been shown that sharing is also internally rewarding 

(Baek et al., 2017; Tamir et al., 2015; Tamir & Mitchell, 2012). Indeed, it is 

unclear to what extent external incentives provided on social media platforms 

affect internal incentives. It has been suggested that when external rewards are 

introduced, activities become less intrinsically rewarding (Deci, 1971). As yet, 

it is unclear how this relates to sharing decisions. Future studies should strive 

to explore how external and internal incentives interact to determine sharing 

behaviour and whether internal incentives could also be utilized to reduce the 

spread of misinformation online. Related to this, it is plausible that platforms are 

more likely to implement interventions which improve the user experience and 

increase their enjoyment of the platform. In the experiments outlined in Chapter 

4, I found that users utilized the new trust and distrust buttons more frequently 

than existing options, and there was no reduction in frequency of sharing. As 

such, I speculate, that the ‘(Dis)Trust’ buttons did not negatively affect the user 

experience. Nevertheless, it would be interesting to ask users about their 

subjective experience of using the buttons.  
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Taken together, this study presents an innovative approach to reducing 

misinformation spread on social media. Here I have outlined several limitations 

which constrain its generalizability to the real world and have outlined future 

research directions which will help determine the efficacy of this intervention in 

real-world contexts and will shed light on how social dynamics and network 

effects impact the efficacy of this (and other) interventions at a population-level. 

 

5.5 Conclusion 

Every day humans are faced with copious opportunities to accumulate evidence 

and sharing information. This behaviour is driven by (1) external incentives, 

such as financial or social gains (Gold & Shadlen, 2002; Rosenthal-von der 

Pütten et al., 2019), and (2) internal incentives, such as positive emotions and 

self-efficacy (Baek et al., 2017; Gesiarz et al., 2019; Leong et al., 2019; Tamir 

et al., 2015; Tamir & Mitchell, 2012). This thesis explores how the incentive 

structure people face can be altered to improve the quality of evidence 

accumulation and sharing behaviour.  

 

First, I test the assumption that evidence accumulation should be less biased 

when false beliefs are costly. I test this assumption in two ways: In Chapter 2, I 

examine the impact of exposing participants to a threatening environment in 

which external punishments for holding negative beliefs may be high; and in 

Chapter 3, I examine the impact of increasing monetary incentives to form 

accurate beliefs. I find that while perceived threat induces a global shift towards 

negative evidence such that evidence accumulation becomes less biased, in a 

manner that may be adaptive, monetary incentives to form accurate 

conclusions fail to mitigate biased evidence accumulation. This is because 

external and internal incentives alter orthogonal elements of the accumulation 

process. I speculate that stress elicits a global psychophysiological response 

which elicits an automatic shift in evidence accumulation towards negative 

evidence. By contrast accuracy incentives alter deliberate processing. While 

participants try to be more cautious when incentivized for accuracy, this does 

not change their biased perception, as they believe it to be genuine. 
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I speculate that feedback will allow participants to become aware of their biases 

and thus will enable them to update their beliefs in order to maximize external 

rewards. I test this assumption in Chapter 4 by providing participants with social 

feedback about the accuracy of the information they share online. I demonstrate 

that the existing incentive structure of social media platforms, in which social 

rewards (e.g., ‘likes’) and punishments (e.g., ‘dislikes’) are dissociated from the 

veracity of the information shared, contributes to the spread of misinformation 

online. I show that slightly altering this incentive structure, such that social 

rewards and punishments are contingent on the veracity of information, 

improves discernment in sharing behaviour and reduces the spread of 

misinformation. These findings highlight the importance of considering both 

automatic and deliberate processes when designing interventions to increase 

the accuracy of decision-making.  

 

In conclusion, this thesis not only sheds light on the mechanisms by which 

incentives alter evidence accumulation and sharing behaviour, but also bridges 

the gap between theory and practice, offering actionable strategies that hold 

the potential to mitigate biased decision-making across digital and physical 

realms. 
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Chapter 7: Appendix 

7.1 Chapter 2: Under threat weaker evidence is required 

to reach an undesirable conclusion 

 
Supplementary Table 2.1. Mean difference in posterior distributions and 
95% HDI Comparison (Experimental Data) 

Estimate Threat Minus Control 

Distance between Decision Thresholds (α) -0.191 [-0.426 0.05] 

Non-Decision Time (t0) -0.056 [-0.299, 0.192] 

Starting Point (z) 0.028 [-0.001, 0.054] 
Drift Rate (β0) 0.172 [-0.001, 0.304] 
Drift Rate Bias (β1) -0.255 [-0.412, -0.092] 

 
 
Supplementary Table 2.2. Proportion of correctly identified factories 
(Simulated Data). 

Proportion of correctly 
identified factories 

df F-value p-value 

Group (1,78) 1.916 0.17 
Valence of Factory (1,78) 1.766 0.188 

Group * Valence of Factory (1,78) 13.113 <0.001 

 
As in the experimental data, we observed a significant group by valence 
interaction (F(1,78) = 13.113, p < 0.001, partial η2 = 0.144) in the simulated 
data. In the simulated control group data, the proportion of correctly categorized 
desirable factories (M = 0.812, SE = 0.016) was larger than the proportion of 
correctly categorized undesirable factories (M = 0.735, SE = 0.017; t(42) = 
3.552, p < 0.001, Cohen’s d = 0.542). This difference was not observed in the 
simulated threat group data (proportion of correctly identified undesirable 
factories: M = 0.819, SE = 0.019; proportion of correctly identified desirable 
factories: M = 0.783, SE = 0.02; t(36) = 1.611, p = 0.116, Cohen’s d = 0.265). 
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7.2 Chapter 3: Futile Rewards: Why Accuracy 

Incentives Fail to Reduce Biased Evidence 

Accumulation 

7.2.1 Supplementary Methods 

Sensitivity. To assess whether accuracy incentives influenced participants' 

discernment between signal and noise, we calculated each individual's dPrime 

(d') for each incentive level separately using the psycho R package (Makowski, 

2018). d’ is as a measure of sensitivity from signal detection theory (Pallier, 

2002) to distinguish between correct and incorrect trials. It reflects the distance 

between the signal and signal + noise distributions and is calculated as follows: 

𝑑′  =  𝑍(𝐻𝑖𝑡 𝑅𝑎𝑡𝑒) − 𝑍(𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒) 

 

Here, a higher d' value indicates greater sensitivity in differentiating correct from 

incorrect trials. We then compared the average d' between the different 

incentive levels (Experiment 1 & Replication: $0 vs $5; Experiment 2: $0 vs 

$25) using paired t-tests. To substantiate findings that were not statistically 

significant, Bayes tests were computed. 

 

7.2.2 Supplementary Results 

Accuracy incentives do not alter discernment between signal and noise. 

Thus far we have shown that accuracy incentives do not reduce the bias 

towards desirable responses, it then follows that they may also be ineffective 

as a tool to increase accuracy and therefore might not improve participants’ 

ability to discriminate between signal and noise. To test this, we calculated each 

participant's d’, representing their sensitivity in distinguishing correct from 

incorrect trials, for each incentive level. We entered the d’ for each incentive 

level into a paired t-tests. This revealed that providing incentives for correct 

responses did not significantly enhance participants' discrimination accuracy 

(Experiment 1: t(68) = 1.055, p = 0.295, Cohen’s d = 0.127, Replication: t(71) = 

0.387, p = 0.7, Cohen’s d = 0.046, Experiment 2: t(91) = 0.834, p = 0.407, 
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Cohen’s d = 0.087; see Figure S3.1). Specifically, the d’ scores in trials without 

a reward for correct responses ($0 accuracy incentives - Experiment 1: M = 

0.81, SE = 0.078, Replication: M = 0.779, SE = 0.09, Experiment 2: M = 0.731, 

SE = 0.072) were not significantly different from those in trials where 

participants were rewarded for accuracy, regardless of the reward amount ($25 

accuracy incentives - Experiment 1: M = 0.763, SE = 0.078, Replication: M = 

0.762, SE = 0.095, $25 accuracy incentives - Experiment 2: M = 0.767, SE = 

0.072). These results hold when controlling for noise (see Supplementary 

Tables 3.8 & 3.9 & 3.15). Again, Bayes tests provide moderate to strong 

support in favour of the null hypothesis (Experiment 1: BF01 = 6.125, 

Replication: BF01 = 10.009, Experiment 2: BF01 = 8.623). 

 

Taken together these results illustrate that accuracy incentives do not improve 

participants’ discernment between signal and noise. 

 

 

Figure S3.1. Accuracy Incentives do not improve discernment between 
signal and noise. In (a) Experiment 1, (b) its replication, and (c) Experiment 2 
participants’ sensitivity (d’) did not differ between trials in which they were 
incentivized for accuracy and those in which they were not incentivized. Y axis 
shows Sensitivity (d’). X axis shows accuracy incentive level. Data are plotted 
as boxplots for each incentive level, in which horizontal lines indicate median 
values, boxes indicate 25/75% interquartile range and whiskers indicate 1.5 × 
interquartile range. Diamond shape indicates the mean d’ score per incentive 
level. Individuals' d’ scores are shown separately as dots. Symbols above each 
boxplot indicate significance level compared to 0. ns = not significant.  
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7.2.3 Supplementary Tables 

Supplementary Table 3.1. Model Fits (Experiment 1)  

Model 
Starting 
Point 

Distance between 
Decision 
Thresholds 

Drift Rate DIC BPIC 

Model 0 z = 0.5 a ~ 1 v ~ 1 34303 34488 
Model 1 0<z<1 a ~ 1 v ~ 1 34315 34509 
Model 2 z = 0.5 a ~ 1 + noise v ~ 1 34232 34434 
Model 3 0<z<1 a ~ 1 + noise v ~ 1 34239 34446 

Model 4 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 
34295 34494 

Model 5 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 
34067 34322 

Model 6 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 
34251 34473 

Model 7 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 
34015 34293 

Model 8 z = 0.5 a ~ 1 v ~ 1 + noise 33761 33999 
Model 9 0<z<1 a ~ 1 v ~ 1 + noise 33525 33820 
Model 10 z = 0.5 a ~ 1 + noise v ~ 1 + noise 33764 34007 
Model 11 0<z<1 a ~ 1 + noise v ~ 1 + noise 33528 33829 

Model 12 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise 
33757 34002 

Model 13 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise 
33519 34008 

Model 14 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise 
33758 34008 

Model 15 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise 
33522 33827 

Model 16 z = 0.5 a ~ 1 v ~ 1 + desirability 33676 33934 
Model 17 0<z<1 a ~ 1 v ~ 1 + desirability 33652 33941 
Model 18 z = 0.5 a ~ 1 + noise v ~ 1 + desirability 33625 33906 
Model 19 0<z<1 a ~ 1 + noise v ~ 1 + desirability 33603 33915 

Model 20 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
33669 33932 

Model 21 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
33645 33939 

Model 22 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + desirability 
33618 33906 

Model 23 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + desirability 
33595 33912 

Model 24 z = 0.5 a ~ 1 
v ~ 1 + noise + 
desirability 33131 33446 

Model 25 0<z<1 a ~ 1 
v ~ 1 + noise + 
desirability 33109 33451 

Model 26 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
desirability 33132 33447 

Model 27 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
desirability 33111 33458 

Model 28 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability 33125 33446 
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Model 29 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability 33102 33441 

Model 30 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise + 
desirability 33130 33453 

Model 31 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise + 
desirability 33108 33461 

Model 32 z = 0.5 a ~ 1 
v ~ 1 + accuracy 
incentives 34304 34502 

Model 33 0<z<1 a ~ 1 
v ~ 1 + accuracy 
incentives 34077 34331 

Model 34 z = 0.5 a ~ 1 + noise 
v ~ 1 + accuracy 
incentives 34257 34477 

Model 35 0<z<1 a ~ 1 + noise 
v ~ 1 + accuracy 
incentives 34024 34302 

Model 36 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + accuracy 
incentives 34300 34504 

Model 37 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + accuracy 
incentives 34073 34335 

Model 38 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + accuracy 
incentives 34251 34478 

Model 39 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + accuracy 
incentives 34022 34304 

Model 40 z = 0.5 a ~ 1 
v ~ 1 + noise + 
accuracy 
incentives 33762 34005 

Model 41 0<z<1 a ~ 1 
v ~ 1 + noise + 
accuracy 
incentives 33525 33829 

Model 42 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
accuracy 
incentives 33764 34012 

Model 43 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
accuracy 
incentives 33528 33833 

Model 44 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
accuracy 
incentives 33759 34008 

Model 45 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
accuracy 
incentives 33521 33825 

Model 46 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise + 
accuracy 
incentives 33759 34014 

Model 47 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise + 
accuracy 
incentives 33525 33829 

Model 48 z = 0.5 a ~ 1 
v ~ 1 + desirability 
+ accuracy 
incentives 33679 33944 

Model 49 0<z<1 a ~ 1 
v ~ 1 + desirability 
+ accuracy 
incentives 33655 33949 
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Model 50 z = 0.5 a ~ 1 + noise 
v ~ 1 + desirability 
+ accuracy 
incentives 33625 33911 

Model 51 0<z<1 a ~ 1 + noise 
v ~ 1 + desirability 
+ accuracy 
incentives 33604 33921 

Model 52 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33672 33941 

Model 53 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33948 33948 

Model 54 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33620 33910 

Model 55 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33598 33920 

Model 56 z = 0.5 a ~ 1 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33134 33449 

Model 57 0<z<1 a ~ 1 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33111 33457 

Model 58 z = 0.5 a ~ 1 + noise 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33138 33460 

Model 59 0<z<1 a ~ 1 + noise 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33110 33459 

Model 60 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33131 33456 

Model 61 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33105 33457 

Model 62 z = 0.5 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33130 33457 

Model 63 0<z<1 
a ~ 1 + noise + 
accuracy incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33111 33472 

Model 64 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
noise*desirability 33105 33457 
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Supplementary Table 3.2. Model Fits (Replication)  

Model 
Starting 
Point 

Distance 
between 
Decision 
Thresholds 

Drift Rate DIC BPIC 

Model 0 z = 0.5 a ~ 1 v ~ 1 34852 35057 

Model 1 0<z<1 a ~ 1 v ~ 1 34678 34942 

Model 2 z = 0.5 a ~ 1 + noise v ~ 1 34789 35016 

Model 3 0<z<1 a ~ 1 + noise v ~ 1 34613 34899 

Model 4 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 
34852 35061 

Model 5 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 
34679 34946 

Model 6 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 
34789 35022 

Model 7 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 
34614 34903 

Model 8 z = 0.5 a ~ 1 v ~ 1 + noise 34224 34485 

Model 9 0<z<1 a ~ 1 v ~ 1 + noise 34041 34359 

Model 10 z = 0.5 a ~ 1 + noise v ~ 1 + noise 34224 34489 

Model 11 0<z<1 a ~ 1 + noise v ~ 1 + noise 34044 34367 

Model 12 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise 
34225 34492 

Model 13 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise 
34042 34363 

Model 14 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise 
34222 34491 

Model 15 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise 
34045 34372 

Model 16 z = 0.5 a ~ 1 v ~ 1 + desirability 33895 34172 

Model 17 0<z<1 a ~ 1 v ~ 1 + desirability 33859 34171 

Model 18 z = 0.5 a ~ 1 + noise v ~ 1 + desirability 33829 34128 

Model 19 0<z<1 a ~ 1 + noise v ~ 1 + desirability 33798 34132 

Model 20 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
33896 34177 

Model 21 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
33859 34173 

Model 22 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + desirability 
33829 34129 

Model 23 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + desirability 
33798 34130 

Model 24 z = 0.5 a ~ 1 
v ~ 1 + noise + 
desirability 33269 33607 
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Model 25 0<z<1 a ~ 1 
v ~ 1 + noise + 
desirability 33235 33610 

Model 26 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
desirability 33269 33610 

Model 27 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
desirability 33234 33609 

Model 28 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability 33271 33611 

Model 29 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability 33233 33604 

Model 30 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability 

33271 33616 

Model 31 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability 

33235 33613 

Model 32 z = 0.5 a ~ 1 
v ~ 1 + accuracy 
incentives 34855 35064 

Model 33 0<z<1 a ~ 1 
v ~ 1 + accuracy 
incentives 34682 34950 

Model 34 z = 0.5 a ~ 1 + noise 
v ~ 1 + accuracy 
incentives 34793 35026 

Model 35 0<z<1 a ~ 1 + noise 
v ~ 1 + accuracy 
incentives 34621 34912 

Model 36 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + accuracy 
incentives 34858 35074 

Model 37 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + accuracy 
incentives 34682 34953 

Model 38 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + accuracy 
incentives 

34791 35029 

Model 39 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + accuracy 
incentives 

34618 34912 

Model 40 z = 0.5 a ~ 1 
v ~ 1 + noise + 
accuracy 
incentives 34229 34495 

Model 41 0<z<1 a ~ 1 
v ~ 1 + noise + 
accuracy 
incentives 34046 34370 

Model 42 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
accuracy 
incentives 34226 34494 

Model 43 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
accuracy 
incentives 34045 34372 

Model 44 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
accuracy 
incentives 34227 34496 

Model 45 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
accuracy 
incentives 34048 34375 
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Model 46 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise + 
accuracy 
incentives 34228 34502 

Model 47 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise + 
accuracy 
incentives 34046 34374 

Model 48 z = 0.5 a ~ 1 
v ~ 1 + desirability 
+ accuracy 
incentives 33897 34177 

Model 49 0<z<1 a ~ 1 
v ~ 1 + desirability 
+ accuracy 
incentives 33861 34177 

Model 50 z = 0.5 a ~ 1 + noise 
v ~ 1 + desirability 
+ accuracy 
incentives 33832 34496 

Model 51 0<z<1 a ~ 1 + noise 
v ~ 1 + desirability 
+ accuracy 
incentives 33797 34133 

Model 52 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33898 34182 

Model 53 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33865 34183 

Model 54 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33830 34134 

Model 55 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + desirability 
+ accuracy 
incentives 33800 34139 

Model 56 z = 0.5 a ~ 1 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33273 33615 

Model 57 0<z<1 a ~ 1 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33237 33613 

Model 58 z = 0.5 a ~ 1 + noise 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33270 33614 

Model 59 0<z<1 a ~ 1 + noise 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33234 33614 

Model 60 z = 0.5 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33273 33618 

Model 61 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability + 33237 33615 
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accuracy 
incentives 

Model 62 z = 0.5 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33272 33620 

Model 63 0<z<1 
a ~ 1 + noise + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy 
incentives 33239 33622 

Model 64 0<z<1 
a ~ 1 + accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
noise*desirability 33239 33617 

 

Supplementary Table 3.3. Model Fits for Experiment 2 

Model 
Starting 
Point 

Distance 
between 
Decision 
Thresholds 

Drift Rate DIC BPIC 

Model 0 z = 0.5 a ~ 1 v ~ 1 46411 46667 

Model 1 0<z<1 a ~ 1 v ~ 1 46110 46441 

Model 2 z = 0.5 a ~ 1 + noise v ~ 1 46387 46647 

Model 3 0<z<1 a ~ 1 + noise v ~ 1 46087 46424 

Model 4 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 
46388 46674 

Model 5 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 
46105 46444 

Model 6 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 
46366 46661 

Model 7 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 
46084 46429 

Model 8 z = 0.5 a ~ 1 v ~ 1 + noise 45890 46164 

Model 9 0<z<1 a ~ 1 v ~ 1 + noise 45587 45932 

Model 10 z = 0.5 a ~ 1 + noise v ~ 1 + noise 45906 46184 

Model 11 0<z<1 a ~ 1 + noise v ~ 1 + noise 45588 45938 

Model 12 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise 
45869 46178 

Model 13 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise 
45586 45945 

Model 14 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise 
45884 46195 
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Model 15 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise 
45586 45950 

Model 16 z = 0.5 a ~ 1 v ~ 1 + desirability 45854 46190 

Model 17 0<z<1 a ~ 1 v ~ 1 + desirability 45749 46141 

Model 18 z = 0.5 a ~ 1 + noise v ~ 1 + desirability 45846 46189 

Model 19 0<z<1 a ~ 1 + noise v ~ 1 + desirability 45725 46124 

Model 20 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + desirability 
45844 46201 

Model 21 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + desirability 
45745 46144 

Model 22 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + desirability 
45832 46192 

Model 23 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + desirability 
45722 46128 

Model 24 z = 0.5 a ~ 1 
v ~ 1 + noise + 
desirability 45364 45749 

Model 25 0<z<1 a ~ 1 
v ~ 1 + noise + 
desirability 45256 45701 

Model 26 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
desirability 45380 45769 

Model 27 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
desirability 45263 45705 

Model 28 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability 

45351 45760 

Model 29 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability 

45254 45693 

Model 30 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise + 
desirability 

45370 45778 

Model 31 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise + 
desirability 

45268 45717 

Model 32 z = 0.5 a ~ 1 
v ~ 1 + accuracy 
incentives 46410 46673 

Model 33 0<z<1 a ~ 1 
v ~ 1 + accuracy 
incentives 46109 46445 

Model 34 z = 0.5 a ~ 1 + noise 
v ~ 1 + accuracy 
incentives 46392 46664 

Model 35 0<z<1 a ~ 1 + noise 
v ~ 1 + accuracy 
incentives 46103 46448 

Model 36 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + accuracy 
incentives 

46403 45700 

Model 37 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + accuracy 
incentives 

46121 46467 
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Model 38 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + accuracy 
incentives 

46382 46687 

Model 39 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + accuracy 
incentives 

46100 46456 

Model 40 z = 0.5 a ~ 1 
v ~ 1 + noise + 
accuracy incentives 45903 46181 

Model 41 0<z<1 a ~ 1 
v ~ 1 + noise + 
accuracy incentives 45603 45958 

Model 42 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
accuracy incentives 45904 46186 

Model 43 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
accuracy incentives 45604 45963 

Model 44 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
accuracy incentives 

45885 46199 

Model 45 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
accuracy incentives 

45595 45959 

Model 46 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise + 
accuracy incentives 

45888 46209 

Model 47 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise + 
accuracy incentives 

45601 45971 

Model 48 z = 0.5 a ~ 1 
v ~ 1 + desirability + 
accuracy incentives 45867 46211 

Model 49 0<z<1 a ~ 1 
v ~ 1 + desirability + 
accuracy incentives 45764 46165 

Model 50 z = 0.5 a ~ 1 + noise 
v ~ 1 + desirability + 
accuracy incentives 45834 46184 

Model 51 0<z<1 a ~ 1 + noise 
v ~ 1 + desirability + 
accuracy incentives 45740 46135 

Model 52 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + desirability + 
accuracy incentives 

45859 46207 

Model 53 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + desirability + 
accuracy incentives 

45755 46156 

Model 54 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + desirability + 
accuracy incentives 

45822 46193 

Model 55 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + desirability + 
accuracy incentives 

45725 46127 

Model 56 z = 0.5 a ~ 1 
v ~ 1 + noise + 
desirability + 
accuracy incentives 45376 45769 

Model 57 0<z<1 a ~ 1 
v ~ 1 + noise + 
desirability + 
accuracy incentives 45277 45722 
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Model 58 z = 0.5 a ~ 1 + noise 
v ~ 1 + noise + 
desirability + 
accuracy incentives 45381 45779 

Model 59 0<z<1 a ~ 1 + noise 
v ~ 1 + noise + 
desirability + 
accuracy incentives 45275 45727 

Model 60 z = 0.5 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy incentives 45356 45771 

Model 61 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy incentives 45257 45709 

Model 62 z = 0.5 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy incentives 45357 45777 

Model 63 0<z<1 
a ~ 1 + noise 
+ accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
accuracy incentives 45263 45725 

Model 64 0<z<1 
a ~ 1 + 
accuracy 
incentives 

v ~ 1 + noise + 
desirability + 
noise*desirability 45271 45731 

 
 
Supplementary Table 3.4. Repeated Measures ANOVA log Response 
Times (Experiment 1). 

Log-transformed RT 
 

df F-value p-value partial 
η2 

Accuracy Incentives (1,68) 12.059 <0.001 0.151 

Noise (1,68) 41.101 <0.001 0.377 

Noise x Accuracy 
Incentives 

(1,68) 0.075 0.785 0.001 

 

Supplementary Table 3.5. Repeated Measures ANOVA log Response 
Times (Replication). 

Log-transformed RT df F-value p-value partial 
η2 

Accuracy Incentives (1,72) 7.908 0.006 0.099 

Noise (1,72) 66.572 <0.001 0.48 

Noise x Accuracy 
Incentives 

(1,72) 0.52 0.4730 
 

0.007 

 

Supplementary Table 3.6. Repeated Measures ANOVA Response Bias 
(Experiment 1). 

Response Bias df F-value p-value 
partial 
η2 

Accuracy Incentives (1,68) 0.299 0.586 0.004 
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Noise (1,68) 0.151 0.699 0.002 

Noise x Accuracy 
Incentives 

(1,68) 0.218 0.642 0.003 

 

Supplementary Table 3.7. Repeated Measures ANOVA Response Bias 
(Replication). 

Response Bias df F-value p-value partial 
η2 

Accuracy Incentives (1,72) 0.585 0.447 0.008 

Noise (1,72) 0.033 0.857 0.000 

Noise x Accuracy 
Incentives 

(1,72) 0.361 0.550 0.005 

 

Supplementary Table 3.8. Repeated Measures ANOVA dPrime 
(Experiment 1). 

dPrime df F-value p-value partial 
η2 

Accuracy Incentives (1,68) 0.739 0.393 0.011 

Noise (1,68) 107.076 <0.001 0.612 

Noise x Accuracy 
Incentives 

(1,68) 0.313 0.578 0.005 

 
 
Supplementary Table 3.9. Repeated Measures ANOVA dPrime 
(Replication). 

dPrime df F-value p-value partial 
η2 

Accuracy Incentives (1,71) 0.257 0.614 0.004 

Noise (1,71) 66.766 <0.001 0.485 

Noise x Accuracy 
Incentives 

(1,71) 0.491 0.486 0.007 

 

Supplementary Table 3.10. 95% HDI Comparisons (Experiment 1 & 
Replication). 

Estimate Experiment 1 Experiment 2 

Distance between 
Decision Thresholds (α) 

2.29 [2.18, 2.4] 2.32 [2.18, 2.46] 

βAccuracy Incentives 
Distance between 
Decision Thresholds 

0.058 [0.019, 0.092] 0.032 [0.001, 0.072] 

Non-decision Time (t0) 6.1 [5.98, 6.23] 6.18 [6.05, 6.31] 
Starting Point (z) 0.504 [0.493, 0.515] 0.49 [0.478, 0.501] 
inter-trial Starting  
Point (sz) 

0.053 [-0.009, 0.116] 0.061 [-0.003, 0.124] 
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Drift Rate (β0) 0.093 [-0.009, 0.196] 0.032 [-0.072, 0.146] 
βDesirability  
Drift Rate 

0.125 [0.002, 0.264] 0.278 [0.111, 0.449] 

βNoise Drift Rate 0.383 [0.294, 0.47] 0.396 [0.29, 0.5] 

 
 
Supplementary Table 3.11. Repeated Measures ANOVA Response Bias 
based on simulated data (Experiment 1). 

Response Bias df F-value p-value partial 
η2 

Accuracy Incentives (1,68) 0.193 0.662 0.003 

Noise (1,68) 1.736 0.192 0.025 

Noise x Accuracy 
Incentives 

(1,68) 0.99 0.323 0.014 

 

Supplementary Table 3.12. Repeated Measures ANOVA Response Bias 
based on simulated data (Replication). 

Response Bias df F-value p-value partial 
η2 

Accuracy Incentives (1,72) 0.087 0.769 0.001 

Noise (1,72) 0.297 0.587 0.004 

Noise x Accuracy 
Incentives 

(1,72) 1.255 0.266 0.017 

 

Supplementary Table 3.13. Repeated Measures ANOVA log Response 
Times (Experiment 2). 

Log-transformed RT df F-value p-value partial 
η2 

Accuracy Incentives (1,91) 7.157 0.009 0.073 

Noise (6.77,616.22) 11.842 <0.001 0.115 

Noise x Accuracy 
Incentives 

(7.6,691.72) 0.61 
0.761 

0.007 

 

Supplementary Table 3.14. Repeated Measures ANOVA Response Bias 
(Experiment 2). 

Response Bias df F-value p-value partial 
η2 

Accuracy Incentives (1,91) 2.254 0.899 0.005 

Noise (9,819) 0.464 0.137 0.024 

Noise x Accuracy 
Incentives 

(7.87,716.28) 0.743 0.651 0.008 
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Supplementary Table 3.15. Repeated Measures ANOVA dPrime 
(Experiment 2). 

dPrime df F-value p-value partial 
η2 

Accuracy Incentives (1,91) 1.398 0.240 0.015 

Noise (7.04,640.272) 20.261 <0.001 0.182 
Noise x Accuracy 
Incentives 

(9,819) 0.864 0.557 0.009 

 

Supplementary Table 3.16. 95% HDI Comparison in Experiment 3. 

Estimate Experiment 1 

Distance between Decision Thresholds (α) 2.3 [2.22, 2.38] 
βAccuracy Incentives Distance between 
Decision Thresholds 

0.058 [0.02, 0.094] 

Non-decision Time (t0) 6.04 [5.92, 6.15] 
Starting Point (z) 0.503 [0.492, 0.514] 
inter-trial Starting Point (sz) 0.051 [-0.006, 0.108] 
Drift Rate (β0) -0.018 [-0.08, 0.044] 
βDesirability Drift Rate 0.124 [0.034, 0.215] 
βNoise Drift Rate 1.68 [1.22, 2.16] 

 
 

Supplementary Table 3.17. Repeated Measures ANOVA Response Bias 
based on simulated data (Experiment 2). 

Response Bias df F-value p-value partial η2 

Accuracy Incentives (1,92) 0.001 0.975 0.000 

Noise (9,828) 0.749 0.664 0.08 
Noise x Accuracy 
Incentives 

(9,828) 0.811 0.606 0.009 
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7.3 Chapter 4: Changing the Incentive Structure of 

Social Media Platforms to halt the Spread of 

Misinformation 

 
 

7.3.1 Replication Studies 

Methods (Experiment 4-6) 

Participants (Experiment 4). Fifty participants residing in the US completed 

the task on Prolific Academic (25 Democrats, 8 Republican, 17 Other, Mage = 

33.16, SDage  9.804; female = 24, male = 25, other = 1, Non-White = 15, White 

= 35). No participants failed the attention checks. Participants received £7.50 

per hour for their participation in addition to a memory test performance-related 

bonus. For all experiments in this study, ethical approval has been provided by 

the Research Ethics Committee at University College London and all 

participants gave informed consent.  

 

Participants (Experiment 5).  

Two-hundred and sixty-one participants completed the task on Prolific 

Academic (132 Democrats, 90 Republican, 39 Other, Mage = 34.824, SDage  

12.632; female = 122, male = 131, others = 8, Non-White = 84, White = 177). 

Participants received £7.50 per hour for their participation in addition to a 

memory test performance-related bonus.  

 

Participants (Experiment 6). 

One-hundred and fifty participants completed the task on Prolific Academic (74 

Democrats, 14 Republican, 62 Other, Mage = 34.2, SDage  12.489; female = 70, 

male = 77, other = 3, Non-White = 39, White = 150). Participants received £7.50 

per hour for their participation in addition to a memory test performance-related 

bonus.  

 

 

Tasks and Statistical Analysis. 
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The tasks and analysis in Experiment 4-6 were identical to those used in 

Experiment 1-3 except for the following differences: 

1) In Experiment 4 a ‘repost’ button was included in addition to ‘skip’, 

‘(Dis)Like’ and ‘(Dis)Trust’ options.  

2) In Experiment 5 feedback symbols were coloured – ‘distrusts’ and 

‘dislikes’ in red and ‘trusts’ and ‘likes’ in green, instead of black and 

white. 

3) Experiment 6 contained all 100 posts instead of a selection of 40 posts 

and did not contain final questions to assess whether participants 

believed the feedback was real. 

4) The samples were not politically balanced (see Participants 

Experiment 4-6), as such analysis did not take into account political 

orientation.  

 

Results (Experiments 4-6) 

Participants use ‘(Dis)Trust’ buttons to discern true from false 

information (Experiment 4).  

Experiment 4 is a replication of Experiment 1, in which participants observe 

posts (half true half false) and could respond by clicking all, none or some of 

the following buttons: ‘like’, ‘dislike’, ‘trust’, ‘distrust’ (see Methods for details). 

Participant’s use of ‘(Dis)Trust’ (M = 0.111; SE = 0.01) was more discerning 

than their use of ‘(Dis)Like’ (M = 0.03; SE = 0.006; F(1,49) = 51.996, p < 0.001, 

partial η2 = 0.51, Figure S4.1). They also used negative reactions (M = 0.082; 

SE = 0.011) in a more discerning manner than positive reactions (M = 0.06, SE 

= 0.006; F(1,49) = 7.147, p = 0.01, partial η2 = 0.13). Participants’ used all 

reaction buttons, except ‘dislike’, to discern between true and false posts (‘like’: 

M = 0.053; SE = 0.008; t(49) = 6.982, p < 0.001, Cohen’s d = 0.987; ‘trust’: M 

= 0.066; SE = 0.01; t(49) = 6.641, p < 0.001, Cohen’s d = 0.939; ‘dislike’: M = 

0.007; SE = 0.008; t(49) = 0.883, p = 0.381, Cohen’s d = 0.125; ‘distrust’: M = 

0.157; SE = 0.014; t(49) = 11.312, p < 0.001, Cohen’s d = 1.6). These results 

hold when including an interaction of type of reaction and valence (see 

Supplementary Table 4.18).  
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Experiment 4 thus replicates the results of Experiment 1 to show that 

‘(Dis)Trust’ buttons are used to discern true from false information.  

 

 

Figure S4.1. Participants’ use ‘(Dis)Trust’ to discern true from false 
information. ‘Distrust’ and ‘trust’ reactions were more discerning than ‘like’ and 
‘dislike’ reactions. Y axis shows discernment between true and false posts. For 
positive reactions (e.g., ‘likes’ and ‘trusts’) discernment is equal to the 
proportion of positive reactions for true information minus false information, and 
vice versa for negative reactions (‘dislikes’ and ‘distrusts’). X axis shows 
reaction buttons. Data are plotted as boxplots for each reaction, in which 
horizontal lines indicate median values, boxes indicate 25/75% interquartile 
range and whiskers indicate 1.5 × interquartile range. Diamond shape indicates 
the mean discernment per reaction. Individuals' mean discernment data are 
shown separately as grey dots. Symbols above each boxplot indicate 
significance level compared to 0. ***p < 0.001. 
 

‘(Dis)Trust’ incentives improve discernment in sharing behaviour 

(Experiment 5 and Experiment 6). As in Experiment 2, we found an effect of 

type of feedback (F(1,257) = 8.112, p = 0.005, partial η2 = 0.031). In particular, 

participants reposted more true relative to false information in the ‘(Dis)Trust’ 

conditions (M = 0.236, SE = 0.019) than the ‘(Dis)Like’ conditions (M = 0.111, 

SE = 0.022; F(1,212) = 7.682, p = 0.006, partial η2 = 0.035, Figure S4.2a) and 

Baseline condition (M = 0.102, SE = 0.026; F(1,163) = 16.246, p < 0.001, partial 

η2 = 0.087). ‘(Dis)Like’ feedback did not improve discernment in sharing 

behaviour compared to Baseline (F(1,142) = 2.184, p = 0.142, partial η2 = 
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0.015). No other effects were significant. These results hold when including an 

interaction of type of feedback and valence (see Supplementary Table 4.19). 

 

In line with our results from Experiment 2, we observed an effect of feedback 

type (F(1,258) = 4.179, p = 0.042, partial η2 = 0.016), such that participants 

were more accurate (less errors) when they received ‘(Dis)Trust’ feedback (M 

= 35.717, SE = 0.65) compared to ‘(Dis)Like’ feedback (M = 37.63, SE = 0.767; 

F(1,212) = 3.955, p = 0.048, partial η2 = 0.018) and also more accurate than 

those who received no feedback (Baseline, M = 39.73, SE = 0.886; F(1,162) = 

11.759, p < 0.001, partial η2 = 0.068). There was no difference in accuracy 

between participants in the ‘(Dis)Like’ environment and those in the Baseline 

environment (F(1,143) = 2.746, p = 0.1, partial η2 = 0.019). No other effects 

were significant. These results hold when allowing for an interaction between 

type of feedback and valence (see Supplementary Table 4.20).  

 

Figure S4.2. ‘(Dis)Trust’ Feedback improves discernment in sharing 
behaviour. In both (a) Experiment 2 and (b) Experiment 3 participants who 
received ‘(Dis)Trust feedback shared more true relative to false information 
than participants in the ‘(Dis)Like’ and Baseline conditions. ‘(Dis)Like’ reactions 
are indicated in blue, ‘(Dis)Trust in orange and Baseline in black. Y axis shows 
proportion of true posts shared minus proportion of false posts shared. X axis 
shows feedback type. Data are plotted as boxplots for each reaction, in which 
horizontal lines indicate median values, boxes indicate 25/75% interquartile 
range and whiskers indicate 1.5 × interquartile range. Diamond shape indicates 
the mean discernment per reaction. Individuals' mean discernment data are 
shown separately as grey dots. Symbols above each boxplot indicate 
significance level compared to 0. ***p < 0.001, **p < 0.01. 
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In Experiment 6, we again observed an effect of type of feedback (F(1,147) = 

11.150, p < 0.001, partial η2 = 0.132, Figure S2b), with participants in the ‘Trust 

and Distrust’ feedback group posting more true relative to false information (M 

= 0.264, SE = 0.023) than those in the ‘Like and Dislike’ group (M = 0.147, SE 

= 0.027; F(1,101) = 11.122, p = 0.001, partial η2 = 0.099) or those who received 

no feedback at all (M = 0.106, SE = 0.026; F(1,101) = 21.141, p < 0.001, partial 

η2 = 0.173). By contrast there was no difference between the latter two groups 

(F(1,92) = 1.188, p = 0.279, partial η2 = 0.013).  

 

There was also an effect of type of feedback on accuracy (F(1,147) = 4.596, p 

= 0.012, partial η2 = 0.059). Participants were more accurate when they 

received ‘(Dis)Trust’ feedback (M = 35.464, SE = 0.596) compared to no 

feedback (Baseline, M = 39.7, SE = 0.89; F(1,101) = 10.694, p < 0.001, partial 

η2 = 0.096) with no difference between participants in the ‘(Dis)Like’ 

environment and those in the Baseline environment (F(1,92) = 1.949, p = 0.11, 

partial η2 = 0.021) or (Dis)trust environment (M = 37.656, SE = 1.193; F(1,101) 

= 2.149, p = 0.146, partial η2 = 0.021) 

 

The findings replicate those of Experiment 2 and 3 in suggesting that changing 

the incentive structure of social media platforms, such that ‘carrots’ and ‘sticks’ 

are partially contingent on accuracy, promotes discernment in sharing 

behaviour.  

 

‘(Dis)Trust’ feedback increases the drift rate.  

DDM was conducted as for Experiment 2 and 3. For both Experiment 5 (see 

Table S4.1) and Experiment 6 (see Table S4.2) we observed a significant 

difference in the drift rate. That is to say, ‘(Dis)Trust’ feedback (Experiment 5: v 

= 0.287; 95% CI [0.242, 0.335]; Experiment 6: v = 0.321; 95% CI [0.265, 0.379]) 

increased the relative importance of the veracity of information when 

participants decided whether or not to share a post, compared to ‘(Dis)Like’ 

feedback (Experiment 5: v = 0.198; 95% CI [0.147, 0.248], Experiment 6: 0.172; 

95% CI [0.112, 0.233]) or no feedback at all (Experiment 5: v = 0.11; 95% CI 

[0.048, 0.171]; Experiment 6: v = 0.139; 95% CI [0.065, 0.215]). In Experiment 
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5 the drift rate in the ‘(Dis)Like’ condition was also higher than in the Baseline 

condition. While in Experiment 6 there was no difference between the Baseline 

condition and the ‘(Dis)Like’ condition. As shown in Table S4.1 and Table S4.2 

the ‘(Dis)Like’ and ‘(Dis)Trust’ conditions did not differ on any other parameters, 

though some other parameters were different between the Baseline condition 

and the other conditions, but those were not consistent over all replications. 

95% HDI comparisons corroborate this result (see Supplementary Table 4.21 

& 4.22 for HDI Comparisons). In sum, Experiment 5 and 6 replicate the main 

results of interest in Experiment 2 and 3. 

 

Table S4.1. Group estimates for DDM in Experiment 5. 

Estimate 
Baseline 
 [95% CI] 

‘(Dis)Like’  
[95% CI] 

‘(Dis)Trust’  
 [95% CI] 

Distance 
between 
Decision 
Thresholds 
(α) 

2.2 [2.11, 2.298] 2.451 [2.326, 2.58] 2.458 [2.35, 2.573] 

Non-
Decision 
Time (t0) 

6.973 [6.799, 7.139] 6.685 [6.429, 6.949] 6.757 [6.541, 6.973] 

Starting 
Point (z) 

0.496 [0.484, 0.504] 0.477 [0.467, 0.487] 0.472 [0.463, 0.482] 

Drift Rate 
(v) 

0.11 [0.048, 0.171] 0.198 [0.147, 0.248] 0.287 [0.242, 0.335] 

 

 

 

 

Table S4.2. Group estimates for DDM in Experiment 6. 

Estimate 
Baseline 
 [95% CI] 

‘(Dis)Like’  
[95% CI] 

‘(Dis)Trust’  
[95% CI] 

Distance 
between 
Decision 
Thresholds 
(α) 

2.21 [2.117, 2.309] 2.489 [2.298, 2.691] 2.461 [2.312, 2.619] 
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Non-
Decision 
Time (t0) 

6.982 [6.812, 7.151] 6.476 [6.172, 6.769] 6.819 [6.567, 7.063] 

Starting 
Point (z) 

0.493 [0.482, 0.505] 0.483 [0.47, 0.497] 0.469 [0.458, 0.48] 

Drift Rate 
(v) 

0.139 [0.065, 0.215] 0.172 [0.112, 0.233] 0.321 [0.265, 0.379] 

 

Effects on True and False Posts  

Within the field, the gold standard is to measure discernment (that is 

endorsement of true relative to false posts) rather than measure endorsement 

of true and/or false posts separately (for a detailed explanation see Guay et al., 

2023; Pennycook & Rand, 2021). In our manuscript we follow these 

recommendations and indeed find that the effects on discernment are very 

consistent across all experiments. Nevertheless, here we also report the effects 

of ‘(Dis)Trust’ relative to the effects of ‘(Dis)Like’ on true and false posts 

separately. We find that sometimes the effect is observed as a decrease in 

endorsing false posts, sometimes as an increase in endorsing true posts and 

sometimes as both, but always (as reported in the main text) as an increase in 

discernment. In particular, participants selected the ‘trust’ reaction button more 

for true (M = 37.906%, SE = 2.477) than false posts (M = 18.208%, SE = 1.568; 

t(105) = 9.744, p < 0.001, Cohen’s d = 0.946), and the ‘distrust’ reaction button 

more for false (M = 49.66%, SE = 2.179) than for true posts (M = 18.509%, SE 

= 1.476; t(105) = 15.872, p < 0.001, Cohen’s d = 1.542). Moreover, participants 

selected ‘trust’ (M = 37.906%, SE = 2.477) more than ‘like’ (M = 24.604%, SE 

= 1.601) for true posts (t(105) = 4.843, p < 0.001, Cohen’s d = 0.47), and 

selected ‘distrust’ (M = 49.66%, SE = 2.179) more than ‘dislike’ (M = 27.132%, 

SE = 1.897) for false posts (t(105) = 8.53, p < 0.001, Cohen’s d = 0.829). This 

latter effect is also observed in Experiment 4, where ‘distrust’ (M = 45.32%, SE 

= 3.317) is selected more often than ‘dislike’ (M = 13.88%, SE = 1.879) for false 

posts (t(49) = 8.637, p < 0.001, Cohen’s d = 1.221). With regards to sharing, in 

Experiment 2 participants shared fewer false posts in the ‘trust’ condition (M = 

21.217%, SE = 2.423) than in the ‘like’ condition (M = 29.214%, SE = 2.233; 

t(133) = 0.244, p = 0.027, Cohen’s d = 0.407), and tended to do the same in 

the ‘distrust’ condition (M = 23.755%, SE = 2.7) than the ‘dislike’ condition (M = 
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31.289%, SE = 3.343; t(92) = 1.766, p = 0.081, Cohen’s d = 0.365). In 

Experiment 3, participants shared more true posts in the ‘Trust & Distrust’ 

condition (M = 41.241%, SE = 2.162) than the ‘Like & Dislike’ condition (M = 

32.5%, SE = 2.161; t(263) = 2.857, p = 0.005, Cohen’s = 0.351). This was 

repeated in Experiment 6, with true posts shared more in ‘Trust & Distrust’ 

condition (M = 46.607%, SE = 3.197) compared to those in the ‘Like & Dislike’ 

condition (M = 33.702%, SE = 3.618; t(101) = 2.266, p = 0.026, Cohen’s d = 

0.448).  
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7.3.2 Supplementary Tables  

Supplementary Tables for Experiment 1-3. 

Supplementary Table 4.1. Individual Ratings per Stimulus in Experiment 
1. 

Stimuli Veracity Trusts Distrusts Likes Dislikes Skips 

90% to 95% of those 
hospitalized for 
COVID-19 in the 
United States are 
unvaccinated. 

TRUE 53 29 20 17 12 

Over,the past two 
years, climate and 
weather disaster 
damage has cost the 
US over 400 billion 
dollars. 

TRUE 63 12 22 28 18 

The concentration of 
carbon dioxide in the 
earth’s atmosphere 
has climbed to a level 
last seen more than 3 
million years ago. 

TRUE 38 26 12 35 25 

Flamingos dye their 
sun-faded feathers to 
attract mates. 

TRUE 22 37 47 4 26 

Climate change has 
made hurricanes 
more dangerous, but 
not more frequent. 

TRUE 34 34 19 18 26 

Babies born in 2020 
may suffer up to 7 
times as many 
extreme heatwaves 
as 1960s kids. 

TRUE 47 25 9 42 22 

Some dinosaurs may 
have lived in herds as 
early as 193 million 
years ago. 

TRUE 48 11 53 4 21 

Some birds learn to 
recognize calls while 
still in their eggs. 

TRUE 44 8 75 1 13 

Wild parsnips can 
cause skin blisters 
which are dangerous 
to humans. 

TRUE 40 19 20 19 36 

A canadian woman 
was nearly hit by a 
meteorite that 
crashed through her 
bedroom ceiling. 

TRUE 41 19 36 12 24 

A solar storm hit the 
earth and brought 
northern lights to New 
York. 

TRUE 31 33 51 3 18 
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Climate change is 
making the earth 
dimmer. 

TRUE 21 43 10 23 35 

Rain fell at the 
normally snowy 
summit of Greenland 
for the first time on 
record. 

TRUE 40 20 25 19 26 

A third of Antarctic ice 
shelf risks collapse as 
our planet warms. 

TRUE 63 15 14 42 15 

The clothing industry 
contributes up to 10% 
to the pollution driving 
the climate crisis. 

TRUE 57 11 13 36 20 

Deforestation has 
made humans more 
vulnerable to 
pandemics. 

TRUE 36 32 16 28 30 

From 2010 to 2017, 
natural gas 
production decreased 
by nearly 70% in New 
York and increased 
almost 1000%. 

TRUE 23 33 8 13 49 

Each year, 324,000 
pregnant women 
experience domestic 
violence during their 
pregnancy. 

TRUE 57 7 5 64 15 

San Francisco had 
twice as many drug 
overdose deaths as 
COVID deaths last 
year. 

TRUE 38 26 8 39 21 

Marijuana intake is 
significantly 
correlated to 
psychotic disorders, 
particularly in 
teenagers. 

TRUE 30 43 11 34 19 

Overdose deaths in 
West Virginia are up 
by 45% from the prior 
year. 

TRUE 45 11 8 54 19 

Tattoo ink isn’t 
approved by the U.S. 
Food and Drug 
Administration. 

TRUE 22 32 7 26 39 

The fortification of 
flour with folic acid 
can prevent certain 
birth defects. 

TRUE 27 33 34 7 32 

Replacing table salt 
with a low-sodium 
substitute lowers the 
risk of stroke and 

TRUE 56 12 57 4 14 
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other cardiovascular 
diseases. 

Professional soccer 
defenders, who head 
the ball most often, 
are almost five times 
more likely to develop 
a brain disease than 
the average person. 

TRUE 48 22 12 30 22 

Some fast-food items 
contain plastics 
linked to serious 
health problems. 

TRUE 45 19 18 32 23 

In the last 10 years 
less than half of the 
adults in the U.S. 
received a flu shot. 

TRUE 48 20 18 22 21 

Burnt seeds show 
that people used 
tobacco 12,000 years 
ago. 

TRUE 45 11 41 5 27 

Twitter is banned in 
Iran. 

TRUE 43 11 15 30 33 

France sets a 
minimum book 
delivery fee in effort 
to protect 
independent stores 
from Amazon. 

TRUE 37 13 56 4 28 

82% of gun owners in 
the U.S. support 
requiring all gun 
buyers to pass a 
background check. 

TRUE 49 16 68 4 12 

The US is the only 
modern industrialized 
country that does not 
already have a paid 
family medical leave. 

TRUE 55 15 11 48 19 

Canada charges the 
U.S. a 270% tariff on 
dairy products. 

TRUE 17 36 10 37 25 

China imposes the 
death penalty on drug 
dealers. 

TRUE 39 10 20 29 31 

The Texas power grid 
is not part of the U.S. 
power grid because 
Texas wanted to 
avoid federal 
regulation. 

TRUE 46 30 15 23 26 

Black-Lives-Matter 
apparels and other 
political expressions 
were banned at the 
2021 Olympics. 

TRUE 23 30 22 32 26 

Having higher 
testosterone levels 

TRUE 64 13 39 9 17 
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generally provides an 
advantage in athletic 
performance. 

Astronomers may 
have spotted the first 
known exoplanet in 
another galaxy. 

TRUE 44 9 66 1 21 

Surgeons in New 
York City 
successfully attached 
a pig kidney to a 
human patient. 

TRUE 50 17 39 5 29 

China’s lunar rock 
samples show that 
lava flowed on the 
moon 2 billion years 
ago. 

TRUE 27 27 40 4 31 

All identical twins 
may share a common 
set of chemical 
markers on their 
DNA. 

TRUE 62 4 48 0 23 

Scientists used a tiny 
brain implant to help 
a blind teacher see 
letters again. 

TRUE 42 17 69 2 13 

30 years ago, the US. 
ranked sixth among 
advanced economies 
in the share of 
women in the 
workforce. Today 
they rank 23th. 

TRUE 26 37 12 29 29 

Approximately 
60,000 Canadians 
currently live 
undocumented in the 
USA. 

TRUE 29 29 17 18 38 

Rwanda presently 
has the global highest 
number of women in 
parliament at 61.1%. 

TRUE 36 9 63 3 26 

More than a million 
Californians do not 
have direct access to 
clean water. 

TRUE 33 33 5 40 21 

Inflation is costing US 
households with 
medium incomes an 
extra $175 a month. 

TRUE 70 8 16 54 9 

People of color and 
those of not use 
marijuana at the 
same rate. People of 
color are 3 times 
more likely to get 
arrested and 
convicted. 

TRUE 58 13 14 36 24 
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10% of children in the 
United States are 
Texans. 

TRUE 21 30 16 7 43 

More than a half of 
Afghanistan’s 
population faces an 
acute food crisis this 
winter. 

TRUE 62 2 10 48 15 

Reports show that 
babies whose 
mothers got the 
COVID-19 vaccine 
died after 
breastfeeding. 

FALSE 3 92 2 47 11 

In the United 
Kingdom, 81% of 
COVID- 19 deaths 
are among the 
vaccinated. 

FALSE 15 75 5 34 14 

United Airlines lost 
40% of their staff 
because of vaccine 
requirements. 

FALSE 46 31 13 42 13 

COVID-19 vaccines 
contain graphene and 
living organisms 
made of aluminum. 

FALSE 6 70 3 30 29 

At least two children 
died in Australia after 
receiving COVID-19 
vaccines in a mass 
vaccination program 
for students. 

FALSE 31 37 2 45 18 

Test results show that 
Covid-19 shots 
damage the immune 
system. 

FALSE 14 80 4 36 12 

Children are more 
likely to end up in the 
hospital because of 
the vaccine than they 
are because of 
COVID 

FALSE 15 75 7 49 12 

Vaccinated 
individuals are more 
susceptible to COVID 
variant infections 
than unvaccinated. 

FALSE 13 80 5 38 12 

Cancer increased 
twentyfold among 
COVID-19 
vaccinated due to 
suppressed T cells. 

FALSE 12 78 0 36 16 

COVID-19 PCR tests 
cannot differentiate 
between flu and 
COVID-19. 

FALSE 10 73 7 31 14 
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A wind turbine could 
never generate as 
much energy as was 
invested in building it. 

FALSE 27 59 13 31 12 

90 percent of the 
world’s glaciers are 
growing. 

FALSE 11 69 18 17 25 

Forest fires are 
caused by poor 
management. Not by 
climate change. 

FALSE 26 55 17 29 18 

Ivermectin sterilizes 
the majority (85%) of 
the men who take it. 

FALSE 7 79 6 24 20 

The Centers for 
Disease Control and 
Prevention warn of a 
polio-like outbreak in 
children coming 
within the next four 
months. 

FALSE 15 59 4 30 19 

It would cost $20 
billion to end 
homelessness in the 
U.S. and halting 
global warming would 
cost $300 billion.  

FALSE 34 33 24 14 25 

An air quality test 
under a mask proved 
that it is not healthy to 
wear one. 

FALSE 19 69 15 35 13 

Flu cases dropped by 
379 million in one 
year. 

FALSE 31 37 37 8 24 

New York hospitals 
reported thousands 
of fungal lung 
infections from mask- 
wearing. 

FALSE 15 70 5 40 15 

The Impossible 
Burger contains more 
estrogen than 
transgender hormone 
therapy. 

FALSE 13 73 4 27 20 

Prenatal ultrasounds 
carry extreme risks, 
including miscarriage 
and genetic damage. 

FALSE 5 89 2 32 14 

For men, a positive 
pregnancy test 
equals testicular 
cancer. 

FALSE 13 73 8 26 20 

AIDS was cured in 
more than a dozen 
patients. 

FALSE 26 37 46 7 22 
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Abortion increases 
the risk of breast 
cancer. 

FALSE 12 72 6 41 17 

It is possible to 
completely detox the 
body from chemicals. 

FALSE 18 62 32 14 13 

Two forms of fluoride 
in our drinking water 
are labeled as 
extremely toxic by the 
Centers for Disease 
Control and 
Prevention. 

FALSE 29 48 9 37 20 

Sophia Stewart wrote 
books in the 70s that 
were stolen from her 
by Warner Bros. She 
won Hollywood‘s 
biggest lawsuit. 

FALSE 22 14 37 11 48 

Gravestones in 
Japanese cemeteries 
have QR-codes 
which can be 
scanned to get a 
biography of the 
deceased person. 

FALSE 21 33 44 13 24 

52% of Metropolitan 
Police officers have 
been found guilty of 
sexual misconduct 
while wearing uniform 
in the line of duty. 

FALSE 20 55 1 47 16 

Most of the money 
made by the National 
Football League goes 
to the players. 

FALSE 17 61 14 18 22 

The Biden 
administration gifted 
the Taliban with over 
$80 billion worth of 
military grade 
weapons. 

FALSE 31 53 3 52 11 

Sweden is abolishing 
cash. 

FALSE 18 29 21 27 35 

Refugees get more in 
monthly benefits than 
social security 
recipients. 

FALSE 24 47 9 48 12 

Members of 
Congress and their 
families and staff are 
exempt from repaying 
student loans. 

FALSE 15 38 7 58 23 

A single immigrant 
can bring an 
unlimited number of 
relatives to the U.S. 

FALSE 15 61 6 37 18 
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The Soviet Union 
took all of its 
equipment from 
Afghanistan. 

FALSE 9 62 6 19 32 

There wasn’t a single 
American casualty in 
Afghanistan in the 
last year and a half of 
the Trump 
administration. 

FALSE 23 60 26 13 19 

More than half of the 
human genes are 
identical to those of 
mice. 

FALSE 43 30 23 7 29 

The top 1% pays 90% 
of income taxes in the 
U.S. 

FALSE 18 69 10 30 12 

The American murder 
rate is 50 times that of 
any other developed 
nation. 

FALSE 42 28 8 49 14 

The U.S. poverty rate 
is the 4th highest in 
the world. 

FALSE 37 33 5 45 20 

In the United States, 
50 percent of social 
services are provided 
by the Catholic 
church. 

FALSE 13 52 10 17 35 

Marine fossils found 
on the Mount Everest 
are evidence of a 
global flooding. 

FALSE 35 23 41 6 32 

Joe Biden’s climate 
plan includes cutting 
90% of red meat from 
our diets by 2030. 

FALSE 9 65 12 51 10 

14,000 abandoned 
wind turbines litter the 
United States. 

FALSE 29 29 9 49 22 

Wildfires were worse 
in the early part of the 
1900s than they are 
today. 

FALSE 16 59 3 18 30 

The U.S. corn crop, at 
its peak, produces 
40% more oxygen 
than the Amazon 
rainforest. 

FALSE 21 41 39 6 25 

An electric car costs 
more than seven 
times as much as a 
gasoline powered 
car. 

FALSE 22 57 7 32 21 

The amount of coral 
on the Great Barrier 
Reef is at record high 
levels. 

FALSE 56 35 10 19 22 
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There has not been a 
long-term distinctive 
change in sea level 
rise rates in the last 
120 years. 

FALSE 62 14 24 21 25 

 
Supplementary Table 4.2. Discernment of reactions (Experiment 1). 

Discernment df F-value p-value 

including demographics    

Type of Reaction (1,104) 95.832 <0.001 

Valence of Reaction (1,105) 17.33 <0.001 

Gender (1,101) 8.698 0.004 

Political Orientation (1,101) 26.928 <0.001 

Ethnicity (1,101) 0.276 0.601 

Age (1,101) 0.884 0.349 

Type of Reaction x Political 
Orientation 

(1,104) 24.084 <0.001 

including valence x reaction    

Type of Reaction (1,106) 80.936 <0.001 

Valence of Reaction (1,106) 18.26 <0.001 

Type of Reaction x Valence of 
Reaction 

(1,106) 51.489 <0.001 

 
The interaction of type and valence of reaction is characterized by participants 

using the ‘distrust’ reaction button (M = 0.157, SE = 0.008) in a more discerning 

manner than the ‘trust’ reaction button (M = 0.099, SE = 0.008; t(106) = 9.338, 

p < 0.001, Cohen’s d = 0.903), but the ‘like’ reaction button (M = 0.06, SE = 

0.008) in a more discerning manner than the ‘dislike’ button (M = 0.034, SE = 

0.008; t(106) = 3.474, p < 0.001, Cohen’s d = 0.336).  

 
 
Supplementary Table 4.3. % Reactions out of all posts. (Experiment 1). 

% Reactions df F-value p-value 

including demographics    

Type of Reaction (1,104) 36.672 <0.001 

Valence of Reaction (1,105) 13.964 <0.001 

Gender (1,101) 0.891 0.347 

Political Orientation (1,101) 0.939 0.335 

Ethnicity (1,101) 0.139 0.71 

Age (1,101) 9.519 0.003 

Type of Reaction x Political 
Orientation 

(1,104) 0.062 0.803 
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including valence x reaction    

Type of Reaction (1,106) 37.785 <0.001 

Valence of Reaction (1,106) 14.891 <0.001 

Type of Reaction x Valence of 
Reaction 

(1,106) 0.19 0.664 

 
 
Supplementary Table 4.4. % true and false posts shared out of all true or 
false posts in that feedback condition (Experiment 2). 

Feedback 
Condition 

%True Posts Shared 
out of all true posts 
(SE) 

%False Posts 
Shared out of all 
false posts (SE) 

% of True Posts 
Shared Minus % 
False Posts 
Shared 

Trust 40 (3.419) 21 (2.423) 18 (2.592) 

Like 37 (2.536) 29 (2.233) 8 (2.083) 
Distrust 41 (3.192) 24 (2.7) 18 (2.646) 

Dislike 40 (3.715) 31 (3.343) 9 (3.92) 

Baseline 32 (3.537) 23 (2.817) 8 (2.498) 

 
 
Supplementary Table 4.5. Discernment of sharing behaviour (Experiment 
2). 

Discernment df F-value p-value 

including demographics    

Intercept (1,278) 15.286 <0.001 

Type of Feedback (1,278) 14.908 <0.001 

Valence of Feedback (1,278) 0.105 0.746 

Gender (1,278) 2.977 0.086 

Political Orientation (1,278) 66.606 <0.001 

Ethnicity (1,278) 0.688 0.408 

Age (1,278) 0.071 0.791 

Type of Feedback x Political 
Orientation 

(1,278) 3.012 0.051 

including valence x reaction    

Intercept (1,311) 105.905 0.001 

Type of Feedback (1, 311) 12.238 <0.001 

Valence of Feedback (1, 311) 0.012 0.913 

Type of Feedback x Valence of 
Feedback 

(1,311) 0.199 0.656 
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Supplementary Table 4.6. % posts shared out of all posts (Experiment 2). 

% posts shared df F-value p-value 

including demographics    

Intercept (1,278) 78.161 <0.001 

Type of Feedback (1,278) 1.031 0.311 

Valence of Feedback (1,278) 1.219 0.270 

Gender (1,278) 4.479 0.035 

Political Orientation (1,278) 1.518 0.219 

Ethnicity (1,278) 2.341 0.127 

Age (1,278) 0.032 0.858 

Type of Feedback x Political 
Orientation 

(1,278) 0.117 0.890 

including valence x reaction    

Intercept (1,311) 701.419 <0.001 

Type of Feedback (1, 311) 1.533 0.217 

Valence of Feedback (1, 311) 0.741 0.39 

Type of Feedback x Valence of 
Feedback 

(1, 311) 0 0.986 

 
 
Supplementary Table 4.7. Belief Accuracy (Experiment 2).  

Belief Accuracy df F-value p-value 

including demographics    

Intercept (1,278) 78.161 <0.001 

Type of Feedback (1,278) 7.679 0.006 

Valence of Feedback (1,278) 0.386 0.535 

Gender (1,278) 2.112 0.147 

Political Orientation (1,278) 7.593 0.006 

Ethnicity (1,278) 3.984 0.047 

Age (1,278) 0.038 0.845 

Type of Feedback x Political 
Orientation 

(1,278) 0.171 0.843 

including valence x reaction    

Intercept (1,311) 7536.676 <0.001 

Type of Feedback (1,311) 8.847 0.003 

Valence of Feedback (1,311) 0.948 0.331 

Type of Feedback x Valence of 
Feedback 

(1,311) 0.323 0.57 

 
 
Supplementary Table 4.8. Discernment of sharing behaviour (Experiment 
3). 

Discernment df F-value p-value 
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including demographics    

Intercept (1,381) 1.231 0.268 

Type of Feedback (1,381) 11.028 <0.001 

Gender (1,381) 1.357 0.259 

Political Orientation (1,381) 6.233 0.013 

Ethnicity (1,381) 0.169 0.682 

Age (1,381) 0.002 0.968 

Type of Feedback x Political 
Orientation 

(1,381) 1.524 0.219 

    

Intercept (1,400) 42.658 <0.001 

Type of Feedback (1, 400) 11.416 <0.001 

 
 
Supplementary Table 4.9. % posts shared out of all posts (Experiment 3). 

% posts shared df F-value p-value 

including demographics    

Intercept (1,381) 41.384 <0.001 

Type of Feedback (1,381) 8.97 <0.001 

Gender (1,381) 0.614 0.542 

Political Orientation (1,381) 3.98 0.047 

Ethnicity (1,381) 4.732 0.03 

Age (1,381) 1.146 0.285 

Type of Feedback x Political 
Orientation 

(1,381) 0.342 0.71 

    

Intercept (1,400) 932.702 <0.001 

Type of Feedback (1, 400) 8.897 <0.001 

 
 
Supplementary Table 4.10. Belief Accuracy (Experiment 3). 

Belief Accuracy df F-value p-value 

including demographics    

Intercept (1,381) 1123.65 <0.001 

Type of Feedback (1,381) 3.248 0.04 

Gender (1,381) 14.164 <0.001 

Political Orientation (1,381) 14.749 <0.001 

Ethnicity (1,381) 3.486 0.063 

Age (1,381) 25.786 <0.001 

Type of Feedback x Political 
Orientation 

(1,381) 0.301 0.74 

    

Intercept (1,400) 18657.083 <0.001 
Type of Feedback (1,400) 1.043 0.353 
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Supplementary Table 4.11. Mean difference in posterior distributions and 
95% HDI Comparison in Experiment 2. 

Estimate 
‘(Dis)Trust’ minus 

Baseline 
‘(Dis)Trust’ minus 

‘(Dis)Like’ 
‘(Dis)Like’ minus 

Baseline 

Distance 
between 
Decision 
Thresholds 
(α) 

0.25 [0.105, 0.398] 0.03 [-0.13, 0.188] 0.22 [0.102, 0.339] 

Non-
Decision 
Time (t0) 

-0.34 [-0.644, -0.039] -0.255 [-0.557,0.045] 
-0.089 [-0.291, 0.11] 
 

Starting 
Point (z) 

-0.016 [-0.032, 0.001] -0.011 [-0.025,0.003] -0.005 [-0.02, 0.009] 

Drift  
Rate (v) 

0.118 [0.041, 0.195] 0.115 [0.048, 0.183] 0.002[-0.075, 0.08] 

 
 
Supplementary Table 4.12. Mean difference in posterior distributions and 
95% HDI Comparison in Experiment 3. 

Estimate 
‘(Dis)Trust’ minus 

Baseline 
‘(Dis)Trust’ minus 

‘(Dis)Like’ 
‘(Dis)Like’ minus 

Baseline 

Distance 
between 
Decision 
Thresholds 
(α) 

-0.029 [-0.15, 0.091] 0.002  
[-0.114, 0.119] 

-0.031 [-0.155, 0.095] 

Non-
Decision 
Time (t0) 

0.176 [-0.03, 0.381] 0.025 
[-0.177, 0.224] 

0.151 [-0. 057, 0.354] 
 

Starting  
Point (z) 

-0.011 [-0.027, 0.005] -0.012  
[-0.028, 0.003] 

0.001 [-0.015, 0.016] 

Drift Rate 
(v) 

0.114 [0.061, 0.167] 0.083 [0.032, 0.135] 0.031 [-0.0164, 0.079] 

 
 
Supplementary Table 4.13. Recovered Group estimates for DDM in 
Experiment 2 based on simulated data. 

Estimate 
Baseline 
[95% CI] 

‘(Dis)Like’ 
[95% CI] 

‘(Dis)Trust’ 
[95% CI] 

Distance 
between 
Decision 
Thresholds (α) 

2.143 [2.11, 2.176] 2.336 [2.314, 2.358] 2.379 [2.35, 2.41] 

Non-Decision 
Time (t0) 

7.016 [6.986, 7.046] 6.945 [6.929, 6.962] 6.667 [6.648, 6.687] 

Starting Point 
(z) 

0.499 [0.479, 0.518] 0.501 [0.485, 0.517] 0.486 [0.468, 0.504] 
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Drift Rate (v) 0.107 [0.068, 0.146] 0.107 [0.081, 0.133] 0.24 [0.209, 0.27] 

 
 
Supplementary Table 4.14. Recovered Group estimates for DDM in 
Experiment 3 based on simulated data. 

Estimate Baseline [95% CI] ‘(Dis)Like’ [95% CI] 
‘(Dis)Trust’ [95% 
CI] 

Distance 
between 
Decision 
Thresholds (α) 

2.247 [2.209, 2.284] 2.213 [2.183, 2.243] 

2.195 
[2.163, 2.228] 

Non-Decision 
Time (t0) 

6.904 [6.884, 6.926] 7.04 [7.021, 7.059] 
7.083 
[7.061, 7.105] 

Starting Point 
(z) 

0.493 [0.475, 0.511] 0.515 [0.498, 0.531] 
0.485 
[0.468, 0.501] 

Drift Rate (v) 
-0.005  
[-0.035, 0.024] 

0.007  
[-0.024, 0.036] 

0.141 
[0.1, 0.181] 

 
 
Supplementary Table 4.15. Pairwise Comparisons for Discernment 
Experiment 2. 

 
Supplementary Table 4.16. Pairwise Comparisons for Discernment 
Experiment 3. 

Pairwise 
Compari

son 

Experimental Data Simulated Data 

Me
an 
1 

(SE
) 

Mean 
2 

(SE) 

Statistic Mean 1 
(SE) 

Mean 2 
(SE) 

Statistic 

(Dis)Trus
t 

vs 
Baseline 

0.1
8 

(0.
018

) 

0.109 
(0.02

8) 

t(152) = 3.112, 
p = 0.002,  
Cohen’s d = 
0.515 

0.2 
(0.027) 

0.109 
(0.028) 

t(152) = 2.243, p = 
0.026,  
Cohen’s d = 0.372 

(Dis)Trus
t 

vs 
(Dis)Like 

0.1
8 

(0.
018

) 

0.085 
(0.01

9) 

t(227) = 3.464, 
p < 0.001,  
Cohen’s d = 
0.465 

0.2 
(0.027) 

0.118 
(0.022) 

t(227) = 2.407, p = 
0.017,  
Cohen’s d = 0.323 

(Dis)Like 
vs 

Baseline 

0.0
85 
(0.
019

) 

0.084 
(0.02

5) 

t(191) = 0.007, 
p = 0.995,  
Cohen’s d = 
0.001 

0.118 
(0.022) 

0.109 
(0.028) 

t(191) = 0.255, p = 
0.822,  
Cohen’s d = 0.035 

Experimental Data Simulated Data 
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Supplementary Table 4.17. Correlations between participants’ real and 
recovered DDM estimates in Experiment 2 and Experiment 3. 

Estimate Experiment 2 Experiment 3 

Distance between Decision 
Thresholds (α) 

r = 0.926, p < 
0.001 

r = 0.886, p < 
0.001 

Non-Decision Time (t0) 
r = 0.997, p < 
0.001 

r = 0.995, p < 
0.001 

Starting Point (z) 
r = 0.471, p < 
0.001 

r = 0.321, p < 
0.001 

Drift Rate (v) 
r = 0.869, p < 
0.001 

r = 0.877, p < 
0.001 

 
We estimated both group-level and individual-level parameters. We then used 

the individual-level parameter estimates to simulate data for each participant 

respectively in the dataset. We used the same number of trials as in the 

experiments. Simulated data from each participant were then combined and 

used to perform model recovery analysis. We sampled 2000 times from the 

posteriors, discarding the first 500 as burn in. We then correlated the real and 

the recovered individual-level parameters. 

 

Pairwi
se 

Compa
rison 

Mean 
1 (SE) 

Mean 
2 (SE) 

Statistic Mean 1 
(SE) 

Mean 
2 (SE) 

Statistic 

(Dis)Tr
ust 
vs 

Baseli
ne 

0.101 
(0.015

) 

0.008 
(0.014

) 

t(261) = 4.498, p 
< 0.001, Cohen’s 
d = 0.555 

0.116 
(0.024) 

-0.019 
(0.025

) 

t(261) = 3.826, p < 
0.001, Cohen’s d 
= 0.285 

(Dis)Tr
ust 
vs 

(Dis)Li
ke 

0.101 
(0.015

) 

0.042 
(0.013

) 

t(263) = 2.958, p 
= 0.003, Cohen’s 
d = 0.364 

0.116 
(0.024) 

0.032 
(0.024

) 

t(263) = 2.463, p = 
0.014, Cohen’s d 
= 0.303) 

(Dis)Li
ke 
vs 

Baseli
ne 

0.042 
(0.013

) 

0.008 
(0.014

) 

t(252) = 1.731, p 
= 0.085, Cohen’s 
d = 0.217 

0.032 
(0.024) 

-0.019 
(0.025

) 

t(252) = 1.476, p = 
0.141, Cohen’s d 
= 0.185 
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Supplementary Tables for Experiment 4-6. 
 
Supplementary Table 4.18. Discernment of reactions (Experiment 4, 
including type x valence of reaction interaction). 

Discernment df F-value p-value 

Type of Reaction (1,49) 51.996 <0.001 
Valence of Reaction (1,49) 7.147 0.01 

Type of Reaction * Valence of 
Reaction 

(1,49) 71.625 <0.001 

 
The interaction is characterized by participants using the ‘distrust’ reaction 

button (M = 0.157, SE = 0.014) in a more discerning manner than the ‘trust’ 

reaction button (M = 0.066, SE = 0.01; t(49) = 7.192, p < 0.001, Cohen’s d = 

1.017), but the ‘like’ reaction button (M = 0.053, SE = 0.008) in a more 

discerning manner than the ‘dislike’ button (M = 0.007, SE = 0.008; t(49) = 

4.407, p < 0.001, Cohen’s d = 0.623).  

 
Supplementary Table 4.19. Discernment of sharing behaviour 
(Experiment 5). 

Discernment df F-value p-value 

Intercept (1,256) 157.841 <0.001 
Type of Feedback (1,256) 8.08 0.005 
Valence of Feedback (1,256) 0.009 0.927 
Type of Feedback * Valence of 
Feedback 

(1,256) 0.001 0.982 

 
 
Supplementary Table 4.20. Belief Accuracy (Experiment 5). 

Belief Accuracy df F-value p-value 

Intercept (1,257) 6727.546 <0.001 

Type of Feedback (1,257) 4.151 0.043 

Valence of Feedback (1,257) 2.591 0.109 

Type of Feedback * Valence 
of Feedback 

(1,257) 0.013 0.909 
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Supplementary Table 4.21. Mean difference in posterior distributions and 
95% HDI Comparison in Experiment 5. 

Estimate 
‘(Dis)Trust’ 

minus Baseline 

‘(Dis)Trust’ 
minus 

‘(Dis)Like’ 

‘(Dis)Like’ minus 
Baseline 

Distance between 
Decision 
Thresholds (α) 

0.258 [0.101 
0.415] 

0.007 [-0.17, 
0.186] 

0.251 [0.085, 
0.418] 

Non-Decision Time 
(t0) 

-0.216 [-0.502, 
0.07] 

0.072 [-0.293, 
0.432] 

-0.288 [-0. 622, 
0.046] 
 

Starting Point (z) 
-0.024 [-0.04, -
0.007] 

-0.005 [-0.019, 
0.009] 

-0.019 [-0.036, -
0.002] 

Drift Rate (v) 
0.177 [0.095, 
0.259] 

0.089 [0.018, 
0.163] 

0.088 [0.005, 
0.173] 

 
 
Supplementary Table 4.21. Mean difference in posterior distributions and 
95% HDI Comparison in Experiment 6. 

Estimate 
‘(Dis)Trust’ 

minus Baseline 

‘(Dis)Trust’ 
minus 

‘(Dis)Like’ 

‘(Dis)Like’ minus 
Baseline 

Distance between 
Decision 
Thresholds (α) 

0.251 [0.059, 
0.442] 

-0.027 [-0.29, 
0.227] 

0.278 [0.048, 
0.511] 

Non-Decision Time 
(t0) 

-0.163 [-0.491, 
0.157] 

0.343 [-0.059, 
0.749] 

-0.506 [-0. 859, -
0.152] 
 

Starting Point (z) 
-0.025 [-0.041, -
0.008] 

-0.014 [-0.033, 
0.005] 

-0.011 [-0.029, 
0.008] 

Drift Rate (v) 
0.182 [0.085, 0.28] 0.149 [0.058, 

0.236] 
0.033 [-0.068, 
0.135] 
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