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Abstract

Millimetre-wave (mmWave) radar has emerged as an attractive and cost-effective
alternative for human activity sensing compared to traditional camera-based sys-
tems. mmWave radars are also non-intrusive, providing better protection for user
privacy. However, as a Radio Frequency (RF) based technology, mmWave radars
rely on capturing reflected signals from objects, making them more prone to noise
compared to cameras. This raises an intriguing question for the deep learning
community: Can we develop more effective point set-based deep learning methods
for such attractive sensors?
To answer this question, our work, termed MiliPoint2, delves into this idea by
providing a large-scale, open dataset for the community to explore how mmWave
radars can be utilised for human activity recognition. Moreover, MiliPoint stands
out as it is larger in size than existing datasets, has more diverse human actions
represented, and encompasses all three key tasks in human activity recognition. We
have also established a range of point-based deep neural networks such as DGCNN,
PointNet++ and PointTransformer, on MiliPoint, which can serve to set the ground
baseline for further development.

1 Introduction

In modern systems, sensors play a vital role in allowing intelligent decision-making [13, 5].
Millimetre-Wave radar (mmWave radar) is often employed in automotive, industrial and civil applica-
tions. This type of sensor is particularly advantageous as it offers a good balance between resolution,
accuracy, and cost [7, 15]. In this work, we focus on exploring the potential of mmWave radars as
sensors for human activity sensing. Despite the high accuracy of camera-based systems demonstrated
for various tasks in this domain [27, 3], their intrusive nature has raised considerable concerns in
terms of user privacy. The utilization of Radio-Frequency (RF) signals for human activity analysis
presents an attractive alternative due to their non-intrusive nature.

When compared with traditional low frequency RF sensors, like WiFi and Bluetooth, mmWave radars
can utilize a much higher bandwidth and achieve a finer resolution. Together with the multiple-input
multiple-output (MIMO) technique, mmWave radars can serve as 3D imaging sensors and enable
advanced human activity recognition tasks to be performed. Meanwhile, the short wavelength of
mmWave signals facilitates the development of a small-factor and low-cost sensor. However, as
a RF-based technique, mmWave radars rely on the reflected signal phase from an object to detect
its spatial feature, which can be prone to noise and is less accurate than cameras and lidars. A
comparison between mmWave radars and other commonly seen sensors is shown in Table 1. As
shown, mmWave radar is a cost-effective, non-intrusive sensing solution that can be advantageously
used in various sensing scenarios.

∗Work done while the author was at University of Bristol.
2Available at https://github.com/yizzfz/MiliPoint/
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Table 1: A comparison of different sensors, mmWave radar is a cost-effective, non-intrusive sensor
compared to other solutions.

Sensor type 3D camera Lidar Traditional RF mmWave Radar

Cost Medium High Low Low
Intrusiveness High Medium Low Low
Resolution High High Low Medium
Viewing condition requirement High Medium Low Low

Researchers have demonstrated the effectiveness of mmWave radar in many human activity sensing
tasks. However, the varying operation conditions and task specifications of radar-based human pose
estimation make comparisons between existing methods and evaluations of their generalizability
challenging. For instance, single person identification is the focus of Zhao et al. [31], while Pegoraro
et al. [16] show mmWave radars can concurrently identify up to three people. Sengupta et al. [20]
concentrate on differentiating human arm motions with fixed-location subjects, whereas An et al.
[1] cover 12 actions which showcase a variety of human postures, and the number of samples can
span from a few thousand to approximately 160k. In terms of hardware, a single-chip 77GHz radar
with an integral transmitter and receiver is used in various research [31]; nevertheless, two radars
[6, 20] or 60GHz radar with separate transmitters and receivers [10] are also evaluated by researchers.
Furthermore, parameters like the radar chirp configuration, which can have a major impact on the
detection result, have been neglected by many existing studies.

This study presents the development of MiliPoint, a standardised dataset, designed for the facilitation
of future research in this domain, enabling researchers to make cross-comparisons in a uniformed
framework. In this paper, we make the following contributions:

• We introduce the MiliPoint dataset, which includes three main tasks in human activity
recognition: identification, action classification and keypoint estimation.

• MiliPoint offers a more comprehensive view of human motion than existing datasets,
featuring 49 distinct actions - 4.08× more than the most action-diverse dataset - and 545K
frames of data, 3.26× greater than the largest dataset in existence.

• We implemented and tested the performance of existing point-based DNNs on MiliPoint,
and found that action classification is a particular challenging task, compared to identity
classification and keypoint estimation.

2 Related Work

We begin by introducing the mechanics of millimeter wave sensing in Section 2.1. Section 2.2
surveys existing mmWave datasets and elucidates how MiliPoint differs from them. Following this,
Section 2.3 outlines the popular deep neural network (DNN) models proposed for 3D point sets.

2.1 Millimeter Wave Sensing

A mmWave signal refers to an electromagnetic signal between 30GHz to 300GHz that has a
wavelength of sub 1 cm. Signals at this frequency band can have a much larger bandwidth (a few
gigahertz) than the traditional RF signals, which make them very suitable for short-range radar
applications as the resolution of a radar is directly determined by its signal bandwidth. Meanwhile,
the short wavelength allows many antennas to be integrated into a single small-factor platform,
enabling it to determine the angle-of-incident of the signal refection and depict the 3D spatial feature
of the scene. Although it is less accurate than 3D cameras and lidars, mmWave radars still offer
several distinct advantages such as cost-effectiveness, non-intrusiveness, and lack of reliance on
various viewing conditions. All these features give mmWave radar an increased popularity in human
activity sensing.

mmWave radars often use frequency modulated continuous wave (FMCW) to detect objects in the
scene. Figure 1 presents the workflow of a typical mmWave Radar. The radar transmits millimeter
wave signals. The object in front of the sensor then reflects the signal back and the signal is picked
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Figure 1: An illustration of how a typical mmWave Radar work. The radar has several transmitters
(TX) and Receivers (RX) for transmitting and collecting the reflected signals. These signals are then
mixed and filtered to form an Intermediate Frequency (IF) signal. Subsequent to this, three Fast
Fourier Transforms (FFTs) are implemented on the range, velocity, and angle domains. A Constant
False Alarm Rate (CFAR) algorithm is also utilized to detect potential peaks from the FFT outputs.
Eventually, the (x, y, z) coordinates of the objects in the metric space are acquired.

Table 2: A comparison to existing mmWave datasets (A=Action classification, I=Identification,
K=Keypoint estimation). Our dataset, Milipoint, is far more diverse in both tasks and actions, and
also has a much larger dataset size.

Dataset Task Participants Dataset size Action involved

mmPose [20] K 2 15k 4
MARS [2] K 4 40k 10
HuPR [12] K 6 141k 3
mRI [1] K 20 160k 12
CubeLearn [30] A 8 1k 6
RadHAR [22] A 2 167k 5

MiliPoint A,I,K 11 545k3 49

up by the receiver. The distance and angle of the object would be encoded in the frequency and phase
of the reflected signal. Following this, the on-chip data processing unit mixes and applies a low pass
filter to the signal to produce an Intermediate Frequency (IF) signal. Two Fast Fourier Transforms
(FFTs) are then applied on this mixed signal, before a Constant False Alarm Rate algorithm is used
for peak detection. This, together with the FFT for the angle, provides the user with the data packet
that contains the 3D coordinates of the object in the scene.

2.2 Existing mmWave Datasets

Although many mmWave radar frameworks have been proposed in the human activity recognition
literature, only a few researchers have released their datasets publicly. These are summarized in
Table 2. Existing datasets focus primarily on a single task, with a majority being devoted to keypoint
estimation. Meanwhile, CubeLearn [30] and RadHAR [22] are two datasets specifically designed for
action classification. Previous datasets have limited the number of frames collected, with the largest
datasets, mRI [1] and RadHAR [22], containing a meagre 160K frames. Additionally, the range of
human actions included is not extensive, with the greatest total being 12 in the mRI dataset [1].

Our work is the first mmWave dataset that includes all three main tasks in human activity recognition:
identification, action classification, and keypoint estimation. It also fills a critical gap in terms of size
and diversity, with 11 participants performing a total of 49 different actions across 545k frames. This
provides a more comprehensive picture of human movements than has ever before been possible for
mmWave radar sensing.

2.3 Point-based Neural Networks

Point clouds, composed of 3D points representing an object’s shape, are commonly used in computer
graphics and 3D sensing [19]. Graph neural networks (GNNs) process point clouds directly as
individual points, rather than as voxels [4] or multi-view images [23, 28]. The unordered point

3The action dataset has 213k filtered frames after excluding warm-up time and breaks.
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(a) Front view (b) Back view (c) Radar board

Figure 2: Front and back view of the data collection setup. (1) a mmWave radar, (2) a Zed 2 stereo
camera, (3) a monitor displaying movement for the participant to follow, and (4) is the designated
area for the participant to stand. An overview of the mmWave Radar board is shown in (c).

sets can be treated as nodes and used as inputs for a machine learning system. PointNet [17] and
PointNet++ [18], which use sampling to reduce high-dimensional unordered points in the metric space
into fixed-length feature vectors, and Deep Neural Networks (DNNs) to process these features. Given
it is a natural abstraction to view a set of points as a graph [21, 25, 26], DGCNN employs EdgeConv
to derive local neighbourhood information, which can then be stacked to comprehend global features
[26]. With the increased use of self-attention modules for Natural Language Processing [24], Zhao et
al. applied this computation pattern to point clouds in their method, Point Transformer [29]. Ma et al.
shed a new perspective on this problem; rather than constructing a complex network architecture,
they developed a simple residual Multi-Layer-Perception (MLP) network - termed PointMLP - that
requires no intricate local geometrical extractors yet yields very competitive results [14]. In this work,
we create a benchmark utilising several representative networks including PointNet++ and PointMLP
(purely point-based), DGCNN (GNN based), and PointTransformer (Transformer-based).

3 Dataset

In this section, we provide a detailed overview of the dataset collection and construction process.
Section 3.1 outlines the data collection measures from the participants, Section 3.3 discusses the
associated tasks and their respective specifications and Section 3.4 explains the data processing.

3.1 Data Collection

We conducted an in-person data collection, when participants were asked to perform a series of
low-intensity cardio-burning fitness movements 4. The exercise video was chosen with meticulous
consideration given to factors such as intensity, diversity of movements, and movement speed. The
video lasts around 30 minutes with 49 different actions; each action lasts 30 seconds with a 10 seconds
break in between. The participants are kept anonymous to protect their privacy, and our released
data consists purely of point clouds from our mmWave sensor and ground truth keypoints, with no
imagery contents. The information captured by the camera is used to calculate the keypoints, and the
original video is immediately discarded to ensure the continued protection of participant privacy.

We present the physical data collection setup in Figure 2, which shows how the mmWave radar, Zed 2
Stereo camera, and monitor are assembled to form the setup. The human participants are instructed to
stand in front of both the mmWave and stereo camera sensors, and follow the movements displayed
on the monitor. The mmWave radar is connected to the power and its output data is then transmitted
through serial port to our work station. The stereo camera is placed behind the mmWave radar, but
configured to be at a different height. This setup has been verified to yield a high quality streams of
frames.

4https://www.youtube.com/watch?v=cZu9u_jodyU
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As illustrated in Figure 1, we use an on-the-fly data processing approach with the mmWave radar
chip to obtain data packets at our workstation. These data packets contain information about the
points (x, y, z), which are represented by a dataset d ∈ RN×3, where N indicates the number of
points. We used the TI IWR1843 mmWave radar, a commercial off-the-shelf radar that has received
great popularity among researchers due to its 3D imaging capability and processing power. The
radar operates between 77GHz to 81GHz, has three transmitters and four receivers that operate in a
time-division multiplexing mode, and has an on-chip DSP processor that applies the described data
processing and outputs point clouds to the workstation. The radar was configured to have a chirp time
of 100 us and a chirp slope of 40MHz/us, to utilize the full 4GHz available bandwidth and achieve
a range resolution of 4 cm. The ADC sampling rate was set to 5MHz. The CFAR threshold was
empirically set to 10 dB in both the range and Doppler direction, which gives a reasonable number of
points per frame in our experimental environment.

We utilized the Zed 2 Stereo Camera for producing ground truth data on the keypoint estimation
task. The stereo camera calculates the disparity between two views to give a depth map of the scene,
and applies a posture estimating neural network to get 3D skeleton models of people in the scene.
Given the camera parameters, the 3D coordinates of the skeleton with respect to the camera can be
calculated through simple trigonometry.

The Zed Camera System offers an impressive depth accuracy of less than 1% up to 3 meters and
less than 5% up to 15 meters. While high-end industrial level optical tracking systems, such as the
OpticTrack system and their Motion Capture Suits, may provide a more precise baseline, we found
that the Zed 2 Camera already offers a very strong performance.

Figure 2 shows the exact experimental setup for the data collection. A mmWave radar (1) is placed
in front of the participant’s designated area (4) and behind the radar is a monitor displaying the
movement for the participant to follow (3), and a Zed 2 Stereo camera (2). The area (4) is set to
1m by 1m. The distances from the radar and camera to the area centre are 0.65m and 3m, and the
heights are 1m and 0.7m, respectively. The positions are chosen to avoid occluding as much as
possible. During data collection, the radar data and camera images are timestamped and synchronized
based on their time-of-arrival to the workstation, at 24 frames per second. After data acquisition, the
camera data is calibrated to the radar coordinate system to serve as the ground truth.

3.2 Participant Recruitment

A total of 11 participants were recruited through university emailing lists and word-of-mouth, with
4 females and 7 males. The average height and weight of the participants were 171.84 cm± 10.41
and 67.73 kg ± 13.08, respectively. All participants had none mobility impairments. All participants
were given information explaining the nature and purpose of the procedures involved in this study
and signed a consent form before starting the experiment. The study was approved by the Faculty of
Engineering Research Ethics Committee, University of Bristol.

3.3 Tasks

The next step after data collection is to design tasks. In this case, three tasks are established, which
are: identification, keypoint estimation, and action classification; an overview is presented in Figure 3.

The process of identification involves analyzing the collected data in order to discriminate between
unique individuals. This requires making comparisons between various characteristics. In doing
so, the DNN model is expected to be capable of recognizing specific traits that are associated with
particular individuals. In our identification task, the output labels are numerical numbers ranging
from 0 to 10 which correspond to the 11 unique participants.

Action classification requires the recognition of behaviour patterns. Our raw data gathered by
mmWave radar can be broken down into sets of frames, each of which is annotated with an action,
that is detailed in Appendix. This segmentation of data greatly facilitates the recognition of actions.

Finally, keypoint estimation involves detecting interest points or key locations in the input data,
which typically involve identifying various keypoint landmarks in a human body. The detection
labels each individual image’s points according to their position, size, and orientation, allowing for
the development of a better understanding of human posture from the input data. We designed two
tasks for keypoint estimation with varying levels of difficulty. The first task requires detection of 9

5



Figure 3: The three tasks: identification, keypoint estimation, and action classification. We show the
raw radar point cloud on the first row and expected predictions on the second row.

keypoints from the human body, including ‘Right Shoulder’, ‘Right Elbow’, ‘Left Shoulder’, ‘Left
Elbow’, ‘Right Hip’, ‘Right Knee’, ‘Left Hip’, ‘Left Knee’ and ‘Head’. The second task presents a
challenge by requiring detection of additional keypoints, namely ‘Nose’, ‘Neck’, ‘Left Wrist’, ‘Left
Ankle’, ‘Left Eye’, ‘Left Ear’, ‘Right Wrist’, ‘Right Ankle’, ‘Right Eye’ and ‘Right Ear’. Notably,
’Head’ is excluded due to the finer granularity of facial keypoints.

3.4 Data Processing Pipeline

The mmWave radar produces data packets in the form of point clouds that encode the spatial shape of
the subject. The number of points in each data packets depends on the scene and can vary from a few
points to a few hundred. The number of points at each frame is not constant since it depends on the
instantaneous signal reflection from the subject. To make the input size consistent across frames, we
set an upper limit k to the point cloud population in each packet. Point clouds with more points will
be randomly sampled to k and point clouds with less points will be zero-padded. This is equivalent to
a data frame d ∈ Rk×3. To create a single data point, we then stack s consecutive frames, forming a
data point d ∈ Rs×k×3.

We process the collected data for each participant, thus providing labels for the identification task.
The ground truth for both keypoint estimation tasks is derived from the Zed 2 detection results, which
serves as the reference for the mmWave radar sensor. The action labels at each timestamp are derived
from the video content and are synchronized to the collected data, as the participants were instructed
to always follow the action in the video. We also manually scrutinized and discarded incorrect labels
when the participants failed to follow the video.

4 Evaluation

We first explain our setup in Section 4.1. Section 4.2 shows how various point-based DNN models
perform on MiliPoint and Section 4.2 explains how an important hyperparameter, the number of
stacking, is picked for each task in MiliPoint.

4.1 Experiment Setup

To assess the usability of our dataset, we ran several representative point-based deep neural networks
(DNNs) with a split of 80%, 10% and 10% for training, validation, and testing partitions, respectively.
All the models shown in the evaluation are implemented in Pytorch and Pytorch Geometric [8]. These
models are trained with mainly two hardware systems. System one has 4 NVIDIA RTX2080TI cards,
where system two has 2 NVIDIA RTX3090TI cards. Running all networks on all downstream tasks
cost around 300 GPU hours.

The Adam optimizer [11] is used together with a CosineAnnealing learning rate scheduling [9], and
the learning rate is set to 3e−5. Each data point is run three times with different random seeds to

6



Table 3: Accuracy (Acc ↑) and mean localization error (MLE ↓) values for different point-based
DNN methods running on our MiliPoint dataset. Iden, Action and Keypoint mean Identification,
Action classification and Keypoint estimation respectively.

Model Iden (Acc% ↑) Action (Acc% ↑) Keypoint (MLE in cm ↓)

Top1 Top3 9 point 18 point

Random 7.69 2.59 7.69 155.74± 1.32 161.64± 2.11

DGCNN 77.65± 0.92 13.61± 2.09 34.59± 2.74 16.53± 0.11 18.51± 0.03
Pointformer 83.94± 0.81 29.27± 0.55 50.44± 1.18 14.99± 0.03 17.03± 0.13
PointNet++ 87.30± 0.27 34.45± 0.80 54.96± 1.21 13.55± 0.03 14.94± 0.03
PointMLP 95.88± 0.40 18.37± 0.08 35.94± 0.14 13.12± 0.30 14.11± 0.22

calculate its average and standard deviation values. We set the stacking to s = 5 for identification and
keypoint estimation, but s = 50 for action classification. We futher justify hyperparameter choices in
Section 4.2 and also in our Appendix.

4.2 Results

We present the results of different point-based methods on the MiliPoint in Table 3. A row labelled
Random is also included to show the random guess accuracy for the various classification tasks. It is
noteworthy that the keypoint estimation is evaluated by means of Euclidean distances to the ground
truth, and thus a lower value signifies better performance. The Random results for identification and
action classification are calculated from the number of labels. For keypoint estimation, we employ
models using randomised weights and record their results across three distinct random seeds.

We report Top1 accuracy for identification, both Top1 and Top3 accuracy for action classification,
and mean localization error (MLE) for keypoint estimation. We evaluate four different point-based
DNN methods, namely DGCNN [26], Pointformer [21], PointNet++ [18] and PointMLP [29].

The results presented in Table 3 indicate that point-based methods can perform quite effectively
for identity classification, achieving an accuracy of greater than 75% across all DNNs evaluated.
Conversely, action classification appears to be much more challenging, with the highest accuracy
recorded being below 40%. Action classification is a challenging task, as it requires a construction of
semantic meaning from a sequence of frames, and this is especially challenging when the point cloud
data is sparse and noisy. We chose to stack 50 frames for this task, since an action typically takes one
to two seconds, and our frame rate is 24 frames per second. It is apparent that certain point-based
methods perform better than others; this is evident in Table 3, where PointNet++ and PointMLP have
outperformed the other methods in the MiliPoint benchmark.

As mentioned earlier, the stacking choices for these tasks are different. With the present framework,
the stack will pile up contiguous frames both before and after the current frame. Since our frame rate
is 24 frames per second, the action classification task naturally requires a higher stacking value s.

The results in Figure 4 demonstrate that there is a plateau effect, indicating that when the stacking
number s reaches a certain limit, it ceases to contribute to the network’s final performance. As
indicated in Figure 4, we found that PointNet++ performs the best when s = 5 and s = 50 on
identification and action classification, respectively. Following a few manual experiments, we found
that s = 5 produces optimal results for both keypoint estimation and identification tasks, while
s = 50 is superior for action classification. It is worth noting that higher s values require more
computing and memory resources when training the network, so we summarise all the ‘turning point’
for the plateaus and report them in Table 4 in our Appendix.

5 Discussion

In this paper, we introduce a novel mmWave radar dataset composed of three distinct tasks related to
human activity sensing. Our high-quality dataset is expected to be a valuable training and evaluation
resource for further research into point-based deep learning methods. We hope it will prove to be an
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(a) Keypoint estimation (b) Action classification

Figure 4: An illustration of the plateau effect with stacking more frames (s). We show this effect on
two tasks, keypoint estimation (measured in MLE loss) and action classification (measured in Top1
accuracy). We generally pick the turning point as the optimal stacking, as this offers a good balance
between performance and run-time efficiency. The detail is discussed in Section 4.2.

instrumental asset to the field. However, in Section 5.2 we would like to comprehensively address the
limitations and discuss potential future work in Section 5.2 that can resolve these limitations.

5.1 Why mmWave Sensing?

We have briefly explained the particular advantages of using mmWave radar in Section 1 and a table
to compare different sensors in Table 1. We detail this comparison here by comparing it to camera
based systems and lidar based systems.

When compared to camera-based or infrared systems, mmWave and lidar technology provide an
attractive solution due to their non-intrusiveness and robustness under varying lighting and atmo-
spheric conditions. The non-intrusive nature of these sensors provides a greater guarantee for user
privacy. Atmospheric conditions, such as dust, smoke, and fog, present a formidable obstacle to
visual sensors such as cameras. To contend with these issues, lidar and mmWave technologies provide
a reliable solution [13] – explaining why lidar has become also a popular choice for autonomous
driving applications.

mmWave radar is an attractive option because it is relatively low-cost and is able to fit within small-
form devices. Moreover, with regard to resolution, mmWave radar provides a higher quality of
resolution compared with other options such as microwave radar for the same range.

5.2 Limitations

A major limitation of our dataset is that the data collection experiment was conducted using only one
mmWave radar, whereas in reality, multiple radars can be implemented for the same task [6]. On
the other hand, introducing additional radars into the data collection process would bring significant
complications. The relative positions and angles between the radars can have a significant impact on
the sensing quality, but also there is a risk that the radars may potentially interfere with one another.

The concern of interference naturally brings up another issue: our data collection is predominantly
conducted in a relatively stable indoor environment. It is entirely possible that the outside world may
contain more complex scenarios which can produce signals that significantly interfere with our sensor
signal, thus compromising the quality of the sensing.

Another major limitation is that we only consider a limited range of human movements, primarily
those that focus on the limbs, such as hands and legs. As a result, we do not capture more complex
postures that a human might take, such as sitting or lying down.

Another particular problem with radar sensing is the multi-path effect, where multiple reflection
paths of the RF signal cause noises and ghost targets in radar imaging. However, this issue is less
significant in the mmWave frequency band when compared with the traditional UWB bands, making
mmWave less sensitive to location or distance changes given that all the experiments are conducted in
a clear line of sight and without any neighboring clutters. Meanwhile, the question of how to mitigate
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the multipath effect in a complex and diverse environment is left as future work, as this on its own
can be a huge research topic.

Finally, the radar we used has three transmitters and four receivers that were originally designed for
automotive driving applications, which has more azimuth antennas than elevation ones. This can
potentially result in poor elevation resolution and affect the performance of certain actions when the
height information is critical. Nevertheless, the sensor presently employed is the most widespread
within the sector, in other words, it can be treated as a standardised sensor currently in this domain. A
variation in the number of transmitters and receivers or their relative positioning necessitates rigorous
cooperation and re-engineering on the device side, which is beyond the scope of this paper.

5.3 Future Work

One research direction is using the raw IF signal as the dataset input (See Figure 1). While the point
cloud is an effective spatial representation of the subject motion, it is a high-level data representation
derived from the IF signal, where a large proportion of information may have been discarded. This
also brings up the research question that whether the data processing chain in Figure 1 is optimal
or other signal processing techniques, like Capon beamforming rather than angle-FFT, can increase
the accuracy of the radar point cloud and, hence, the performance of the proposed tasks. However,
capturing and processing the IF signal requires a significantly higher data bandwidth and computation
resources, and, therefore, is left as future work.

Another area of potential future research involves utilising multiple radars for estimating human
activity. Such a cooperative system would enable the collection of more comprehensive data; however,
it is also sensitive to relative positions of each radar, creating the potential for interference resulting
from the mmWave transmissions. The dataset currently focuses on a single-radar case, so the
implications of a multi-radar system are left as an area for future exploration.

6 Conclusion

In this paper, we introduce MiliPoint, a dataset designed to systematically evaluate the performance
of DNNs for point-based mmWave radar. The goal of MiliPoint is to bridge the gap between the
accessible mmWave sensor and various downstream tasks, by providing a diverse yet systematic
mmWave radar dataset.

MiliPoint is the largest mmWave radar dataset assessed to date in terms of the number of frames
collected, and it holds three primary downstream tasks: identification, action classification and
keypoint estimation, with a diverse set of associated actions labelled. With this dataset, the research
community can delve deeper into applying deep learning to advance the function of mmWave radars.

9



References

[1] S. An, Y. Li, and U. Ogras. mRI: Multi-modal 3d human pose estimation dataset using mmwave,
RGB-d, and inertial sensors. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022.

[2] S. An and U. Y. Ogras. Mars: Mmwave-based assistive rehabilitation system for smart healthcare.
ACM Trans. Embed. Comput. Syst., 20(5s), sep 2021.

[3] J. Biswas and M. Veloso. Depth camera based indoor mobile robot localization and navigation.
In 2012 IEEE International Conference on Robotics and Automation, pages 1697–1702. IEEE,
2012.

[4] C. Choy, J. Gwak, and S. Savarese. 4d spatio-temporal convnets: Minkowski convolutional
neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3075–3084, 2019.

[5] H. Cui and N. Dahnoun. High precision human detection and tracking using millimeter-wave
radars. IEEE Aerospace and Electronic Systems Magazine, 36(1):22–32, 2021.

[6] H. Cui and N. Dahnoun. Real-time short-range human posture estimation using mmwave radars
and neural networks. IEEE Sensors Journal, 22(1):535–543, 2022.

[7] S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, and B. Ottersten. A mmwave automotive
joint radar-communications system. IEEE Transactions on Aerospace and Electronic Systems,
55(3):1241–1260, 2019.

[8] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

[9] A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher. A closer look at deep learning heuristics:
Learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243, 2018.

[10] T. Gu, Z. Fang, Z. Yang, P. Hu, and P. Mohapatra. Mmsense: Multi-person detection and
identification via mmwave sensing. In Proceedings of the 3rd ACM Workshop on Millimeter-
Wave Networks and Sensing Systems, mmNets’19, page 45–50, New York, NY, USA, 2019.
Association for Computing Machinery.

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] S.-P. Lee, N. P. Kini, W.-H. Peng, C.-W. Ma, and J.-N. Hwang. Hupr: A benchmark for
human pose estimation using millimeter wave radar. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 5715–5724, January 2023.

[13] Y. Li and J. Ibanez-Guzman. Lidar for autonomous driving: The principles, challenges, and
trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4):50–
61, 2020.

[14] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu. Rethinking network design and local geometry in
point cloud: A simple residual mlp framework. arXiv preprint arXiv:2202.07123, 2022.

[15] W. Menzel. Millimeter-wave radar for civil applications. In The 7th European Radar Conference,
pages 89–92. IEEE, 2010.

[16] J. Pegoraro and M. Rossi. Real-time people tracking and identification from sparse mm-wave
radar point-clouds, 2021.

[17] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652–660, 2017.

[18] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[19] R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In 2011 IEEE international
conference on robotics and automation, pages 1–4. IEEE, 2011.

[20] A. Sengupta and S. Cao. mmpose-nlp: A natural language processing approach to precise
skeletal pose estimation using mmwave radars, 2021.

10



[21] W. Shi and R. Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 1711–1719, 2020.

[22] A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivastava. Radhar: Human activity recognition
from point clouds generated through a millimeter-wave radar. In Proceedings of the 3rd ACM
Workshop on Millimeter-Wave Networks and Sensing Systems, 2019.

[23] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE international conference on computer
vision, pages 945–953, 2015.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[25] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph attention convolution for point cloud
semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10296–10305, 2019.

[26] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[27] C. Wu and H. Aghajan. Model-based human posture estimation for gesture analysis in an
opportunistic fusion smart camera network. In 2007 IEEE Conference on Advanced Video and
Signal Based Surveillance, pages 453–458. IEEE, 2007.

[28] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang. Pix2vox: Context-aware 3d reconstruction from
single and multi-view images. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 2690–2698, 2019.

[29] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun. Point transformer. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 16259–16268, 2021.

[30] P. Zhao, C. X. Lu, B. Wang, N. Trigoni, and A. Markham. Cubelearn: End-to-end learning for
human motion recognition from raw mmwave radar signals. IEEE Internet of Things Journal,
2023.

[31] P. Zhao, C. X. Lu, J. Wang, C. Chen, W. Wang, N. Trigoni, and A. Markham. mid: Tracking
and identifying people with millimeter wave radar. In 2019 15th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pages 33–40, 2019.

11



Figure 5: Location heatmap of the participants during the data collection.

A Dataset characteristics

We show the statistics with the datasets used in this section. In Table 4, we demonstrate the used
stacking number s and label domain. Table 5 and Table 6 demonstrate the label statistics of each
dataset respectively.

We instructed all participants to face the radar direction and carry out specific actions within a
pre-defined area measuring 1m × 1m, located approximately 0.65m from the radar. The instruc-
tional video provided for the participants was a cardio workout, ensuring a reasonable variation of
movements across the entire 1m × 1m space. These movements included adjustments (relatively
small) in position, such as stepping leftwards, rightwards, forwards, or backwards. Essentially, our
dataset incorporates slight variations in positions while keeping the direction or angular changes
fixed. We hypothesized that increasing the angular and positioning variations would require gathering
significantly more (or maybe orders of magnitude more) data to achieve the same level of accuracy,
and thus is left as future work. In order to provide a glimpse of the diversity captured in our collected
dataset, we have created a ’heatmap’ visualization in Figure 5. This heatmap encompasses all the
data points obtained for each of the 18 human keypoints in our samples.

Table 4: Suggested stacking number and label domain for each task in MiliPoint.

Identification Action Recognition Keypoint Detection

9 point 18 point

Suggested s 5 50 5 5
Label Domain R11 R39 R9×3 R18×3

B Stacking styles

Section 3.4 explained why we set an upper limit k to the mmWave radar sensor: the number of points
in each data packet depends on the scene and can vary from a few points to a few hundreds. There
are obvisouly two padding strategies we can follow:

• Pad each data packet to a fixed size and stack them (This is what we have used)
• Stack each data packet to a batch, and pad the whole batch to a fixed size.
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Table 5: Label statistics for the identification task.
Label ID Number of Samples

0 91,566
1 91,369
2 61,879
3 29,456
4 61,752
5 32,054
6 24,921
7 28,943
8 60,799
9 31,911
10 30,409

Total 545,059

Table 6: Label statistics for the action classification task.
Label ID Number of Samples Label ID Number of Samples Label ID Number of Samples

0 4,986 17 4,870 34 4,284
1 5,119 18 5,096 35 4,292
2 5,174 19 5,117 36 4,337
3 5,122 20 4,602 37 4,577
4 5,150 21 4,299 38 4,580
5 5,148 22 4,282 39 4,578
6 5,118 23 4,241 40 4,291
7 5,129 24 4,558 41 4,284
8 5,145 25 4,525 42 2,176
9 5,088 26 4,299 43 2,234

10 5,149 27 4,556 44 2,232
11 5,142 28 4,535 45 2,038
12 5,172 29 4,337 46 2,015
13 5,153 30 4,580 47 1,951
14 4,893 31 4,321 48 968
15 5,135 32 4,346
16 5,117 33 4,579

Total 212,920

Table 7: Different padding styles, tested with PointNet++ on the identification task, batch size is 128
and s = 5.

Pad per data packet Pad per batch

87.30% 72.31%

We experimented the two different padding strategies in Table 7, and our results suggest that padding
per data packet shows a significantly better performance. Intuitively, padding at a per data packet
level provides a better data alignment for the DNN to deal with.

C Instruction and Compensation to Participants

Each participant was given an information sheet that explains the purpose of this research, what tasks
they were required to complete, what data would be collected and how they would be processed. We
specifically emphasized that all data would be anonymized and it would not be possible to identify
the participants from the data. Participants were then requested to sign a consent form for using and
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publishing the data for research purposes. A copy of the information sheet and the consent form are
attached as supplementary materials. Each participant was given a £10 Amazon voucher for entering
the study. The study was approved by the Faculty of Engineering Research Ethics Committee at the
University of Bristol (ethics approval reference code 12802).

D Dataset Documentation, Intended Uses and Maintenance

Our dataset is publicly available on GitHub (https://github.com/yizzfz/MiliPoint/) with raw data on
Google drive (https://drive.google.com/file/d/1rq8yyokrNhAGQryx7trpUqKenDnTI6Ky/), where we not only pro-
vide the dataset, but also baseline point-based methods and accompanying training and evaluation
code for full reproducibility. To further increase accessibility, we have also open-sourced a number
of pre-trained baseline models. We created a detailed Readme file to facilitate user onboarding and
to guide users through the entire flow, and through running each model with varying downstream
tasks. We are responsible for upkeep and maintenance, mainly through GitHub Issues. An MIT
license is used for the dataset, as one can check on the GitHub project. We declare that we bear all
responsibility in case of violation of rights, and have participants signed the consent forms before
conducting this experiment, as explained in Section 3.1.

Table 8: Open source assets used for the MiliPoint benchmarks and the corresponding licenses.
Name License Link

PyTorch Modified BSD https://github.com/pytorch/pytorch
PyTorch Geometric MIT https://github.com/pyg-team/pytorch_geometric

PointMLP Apache 2.0 https://github.com/ma-xu/pointMLP-pytorch

The dataset itself does not rely on any existing code assets, but to demonstrate the dataset and the
benchmarks, we used several open source projects as listed in Table 8.
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