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Abstract

Positive-unlabeled (PU) learning handles classification tasks on the data containing

only labeled-positive instances and unlabeled instances. PU learning has been

applied in many fields of observational studies. Support vector machine (SVM)-

based PU learning is one of the main branches of PU learning and offers a range of

advantages, e.g., the efficiency of training and the generalisation ability. Moreover,

the SVM-based PU classifiers are able to generate non-linear decision boundary by

employing kernel trick to capture complex relationships among features and have

been shown to achieve robust performance. This study focuses on SVM-based PU

classifiers and contains three contributions. Firstly we proposed global and local PU

classifier with asymmetric loss (GLPUAL) with kernel trick applied for satisfactory

classification on trifurcated PU datasets, where the positive set is constituted by

two subsets distributing on both sides of the negative set. Secondly, to address

the unsatisfactory interpretability and performance of GLPUAL on the PU datasets

containing irrelevant features, we introduced L1-norm regularisation to the objective

function of GLPUAL to construct a sparse classifier to remove irrelevant features.

The proposed classifier is termed elastic GLPUAL (E-GLPUAL). Then a kernel-free

technique was introduced to E-GLPUAL to generate non-linear decision boundary.

The proposed classifier is termed elastic kernel-free GLPUAL (EKF-GLPUAL).

Thirdly, we proposed class-prior-based GLPUAL (CPB-GLPUAL) by introducing

a technique of unbiased PU learning to GLPUAL for better performance when the

class prior is known. Besides, we explored the conditions for CPB-GLPUAL to

exhibit universal consistency between the 0-1 classification risk of CPB-GLPUAL

and the Bayes risk.



Impact Statement

Positive-unlabeled (PU) learning is a branch of semi-supervised learning, where

only a certain amount of positive instances are labeled in the dataset. PU learning

has received increasing attention in recent years. Our work focuses on binary PU

classification and is expected to be applicable to fields such as deceptive review

detection and text categorization in future.

In Chapter 3, firstly we proposed a new classifier, which is termed global and

local PU classifier with asymmetric loss (GLPUAL), for better performance on the

PU datasets where the distances from the two positive subsets to the ideal decision

boundary are very different. Secondly, we introduced the kernel trick to GLPUAL to

generate non-linear decision boundary in the original feature space for satisfactory

performance on trifurcated datasets, where there are two subsets of the positive set

distributing on both sides of the negative set.

In Chapter 4, firstly we noticed that irrelevant features are hard to be removed

by GLPUAL. Motivated by this, we proposed elastic GLPUAL (E-GLPUAL) by

introducing a L1-norm regularised term into the objective function of GLPUAL

to assign zero coefficients to the irrelevant features on PU datasets. Secondly, for

E-GLPUAL to generate non-linear decision boundary, we introduced the kernel free

techniques from the soft quadratic surface SVM (SQSSVM) to the objective function

of E-GLPUAL.

In Chapter 5, firstly we proposed Class-Prior-Based GLPUAL (CPB-GLPUAL),

where there is one fewer hyper-parameter to be tuned than GLPUAL for better

generalization ability, and classification. The two hyper-parameters critical to classi-

fication can be determined by the class prior. Secondly, we introduced the kernel
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trick to CPB-GLPUAL to generate non-linear decision boundary in the original

feature space for better classification.
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Chapter 1

Introduction

1.1 Background

Current works on positive-unlabeled (PU) learning mainly focus on binary scenarios

[1], and thus the classifiers stated in this thesis are regarded to be binary by default.

PU learning is to train a classifier to distinguish between positive and negative

instances on PU data, which only contain labeled-positive instances and unlabeled

instances; this indicates that PU data lack the information for negative labels while

generally a training set for machine learning should have label information for both

positive labels and negative labels.

For example in practice, if we aim to train a classifier based on YouTube backend

data to discern whether a user likes a particular YouTuber (positive: like; negative:

dislike ) , subscribers can be regarded to be the users who like this YouTuber and

hence can be treated as the positive instances. However, can we confidently assert

that users who did not subscribe dislike the YouTuber? Clearly not. Some users

may merely lack the habit of subscribing or may have subscribed the YouTuber on

alternative platforms but not on YouTube. Therefore, hastily categorizing these non-

subscribed users as negatives without taking any action can introduce significant bias

into the trained classifier, subsequently impacting video recommendation strategies.

Moreover, there are more and more PU data occurring in other areas, such as

deceptive review detection [2], text categorization [3] and remote sensing classifi-

cation [4, 5]. The raising demand for accurate classification on PU data yields the
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development of PU learning, and hence this thesis.

1.2 Notations in this thesis
The notations used in this thesis are summarised in Table 1.1.

Table 1.1: Summary of notations.

Symbol Description
p,u,n Indicators of labeled-positive set, unlabeled set and negative set.
np,nu,nn,npu Size of the labeled-positive set, unlabeled set, negative set, and the whole dataset.
m The number of attributes contained in an instance.
xxx Column vector of attributes of an instance.
XXX [p],XXX [u],XXX [pu] Data matrix of attributes of labeled-positive set, unlabeled set and the whole training set.
y The class of the instances; y = 1: positive; y =−1: negative.
yyy[p],yyy[u],yyy[pu] The class of the instances in positive set, unlabeled set and the whole training set.
YYY [p],YYY [u],YYY [pu] Diagonal matrix with diagonal elements yyy[p], yyy[u] and yyy[pu], respectively.
(XXX ,Y ) An unknown instance of attributes XXX and class Y regarded as random variables.
PPP, NNN The conditional distribution of XXX in the positive set and negative set.
π Class prior P[Y = 1].
γ Label frequency, i.e., the proportion of positive instances to be labeled in the dataset.
f The predictive score function of a binary classifier for PU data.
(βββ ,β0) The vector of the parameters of the classifier to be trained.
J The objective function of the classifier to be trained.
l Loss function of the classifier to be trained.
L Expected loss, i.e., the expectation of loss function l.
L ,La Lagrangian function and augmented Lagrangian function of the objective function.
λ ,c,cp,cu,Cp,Cu Hyper-parameters in GLLC and GLPUAL while Cp =

1
np

cp,Cu =
1
nu

cu.
RRR A similarity matrix of the instances.
s Labeling indicator of an instance; s = 1: labeled (-positive); s =−1: unlabeled.
111 A column with all elements as 1.
hhh,aaa,bbb, ttt Block variables for ADMM.
uuuh,uuua,vvv,qqq Lagrangian variables.
φφφ{aaa,bbb} Kernel transform for vectors aaa and bbb; if aaa = bbb, denoted as φφφ{aaa}.

ΦΦΦ{AAA,BBB} A matrix of the kernel transform for the rows of matrices AAA and BBB;
if AAA = BBB, denoted as ΦΦΦ{AAA} .
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1.3 Important Abbreviations in this Thesis
The important abbreviations and their full names used in this thesis are summarised

in Table 1.2

Table 1.2: Important abbreviations in this thesis

Full Name Abbreviation

positive-unlabeled PU
positive-negative PN
unbiased PU Learning uPU
non-negative PU Learning nnPU
elastic GLPUAL E-GLPUAL
elastic kernel free GLPUAL EKF-GLPUAL
class-prior-based GLPUAL CPB-GLPUAL
global and local PU classifier with asymmetric loss GLPUAL
soft quadratic surface SVM SQSSVM
t-distributed stochastic neighbor embedding t-SNE
alternating direction method of multipliers ADMM
cross-validation CV
radial basis function RBF
Karush-Kuhn-Tucker conditions KKT conditions
principal component analysis PCA



Chapter 2

Literature Review

This chapter introduces previous works on PU learning, including the multi-step

methods and one-step methods. The multi-step methods generally apply several

classifiers for PU learning for its final output, while one-step methods only apply one

classifier [1]. The work done in this study is mainly based on the one-step biased PU

learning methods.

2.1 Multi-Step Methods
The main difficulty in PU learning is the lack of labeled-negative instances. A natural

way to deal with this issue is to pick the instances highly likely to be negative from

the unlabeled set and regard them as negative. In this case, the obtained dataset will

then contain positive, negative and unlabeled instances. Then PU learning can be

converted to semi-supervised learning and thus semi-supervised classifiers can be

applied to this dataset.

The multi-step methods following this idea are often referred as two-step meth-

ods. The first step of two-step methods is to select reliable negative instances from

the unlabeled set, contributing to a dataset for semi-supervised learning; techniques

for this step include Spy [6], 1-DNF [7], Rocchio [8] and PGPU [9]. The second

step of two-step methods is to train a semi-supervised classifier to label the rest

of the unlabeled instances, e.g. by using DILCA-KNN [10] and TFIPNDF [11].

Subsequently, the two step methods are generalised to have more steps by regarding

the output of the second step as the pseudo labels for further iteratively training
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[12, 13, 14, 15, 16].

The main advantage of the multi-step methods is that it constructs an embedded

framework allowing us to solve PU learning problem via the achievements on semi-

supervised learning. However, the accuracy of multi-step methods relies heavily

on the accuracy of the algorithm applied in the first step to pick reliable negative

instances [17].

2.2 One-Step Methods
One-step methods can be further categorized into inconsistent PU learning methods

and consistent PU learning methods, depending on if the objective function is a

consistent estimator of the expectation of a certain loss to classify an unknown

instance form the population.

2.2.1 Inconsistent PU Learning Methods

Motivated by the issue that treating all the unlabeled instances as negative can impose

bias to the training of the classifiers, the inconsistent PU learning methods were

proposed to alleviate the bias in these ’naive’ classifiers. The objective function of

these methods cannot be considered as a consistent estimator of the expectation of a

certain loss on an unknown instance for classification; this is why we collectively

refer to these methods as inconsistent PU learning methods.

An early attempt of the inconsistent PU learning methods was the biased

support vector machine (BSVM) [18] based on the classic supervised support vector

machine (SVM) [19], assigning high weight to the average loss of the labeled-

positive instances and low weight to the average loss of the unlabeled instances in the

objective function. Subsequently, weighted unlabeled samples SVM (WUS-SVM)

was proposed in [20] to assign a unique weight to each of the unlabeled instances

according to the likelihood of this unlabeled instance to be negative. Then, the biased

least squares SVM (BLSSVM) was proposed in [21] by substituting the squared

loss for the hinge loss in the objective of BSVM in case that too much importance

is given to the unlabeled-positive instances during the training of the classifier.

Meanwhile, also in [21], the local constraint was introduced to the objective function
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of BLSSVM, encouraging the instances to be classified into the same class as its

neighborhoods and the proposed method is the global and local learning classifier

(GLLC). Moreover, the large-margin label-calibrated SVM (LLSVM) was proposed

in [22] to further alleviate the bias by introducing hat loss to the objective function,

where the hat loss measures the gap between the arc-tan of the predictive score

function (without intercept) and a certain threshold.

2.2.2 Consistent PU Learning Methods

The consistent PU learning methods were proposed to minimise the risk of the

classification of an unknown instance, thus the objective function of the consistent

PU learning methods was designed to be a consistent estimator of the expectation of

a certain loss on an unknown instance for classification.

A pioneer consistent PU learning method is the unbiased PU learning (uPU)

proposed in [23], whose objective function is an unbiased and consistent estima-

tor of the expectation of a certain loss on an unknown instance for classification.

Subsequently, the non-negative PU learning (nnPU) was proposed in [24] by taking

the absolute value of the estimated average loss on the negative set in the objec-

tive function of uPU for convergence of the classifier training. Furthermore, for

better performance on the imbalanced PU training set, imbalanced nnPU (imbal-

ancednnPU) was proposed in [25] to make the objective function equivalent to a

consistent estimator of the expectation of a certain loss on an unknown instance from

the balanced population for classification.

Then a new framework of the objective function of the PU classifiers was

proposed in [26] based on the variational principle, where the class prior is not

needed for the classifier training while both uPU and nnPU need the class prior as

the prior knowledge. For the similar aim, a Taylor series expansion-based variational

framework named T-HOneCls was proposed in [27] based on the Taylor variational

loss. Then a gradient-based regulariser was introduced into the objective function

of nnPU in [5] to ensure the proposed classifier, named GradPU, can function

effectively in the case of labeling bias. In [28], the pinball loss factorization and

centroid smoothing (Pin-LFCS) was proposed by introducing the pinball loss to the
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objective function for robust classification when there is noise in the features.

According to the above mentioned methods in this section, the probability

of every positive instance in the PU dataset to be labeled is fixed and the same

under the selected completely at random (SCAR) assumption. However, there are

also PU datasets where the positive instances are selected to be labeled with various

probability, leading to the selected at random (SAR) assumption. The performance of

the classifiers constructed under the SCAR assumption is likely to be unsatisfactory

on the PU dataset consistent to the SAR assumption. In this case PU learning with

a Selection Bias (PUSB) was proposed in [29] by applying a score function to the

objective function of nnPU to handle the selection bias problems in uPU and nnPU.

Then based on the SAR assumption, [30] proposed the labeling bias estimation

(LBE) via the graphic method to enhance the performance of the non-linear deep

model with a multi-layer perceptron on PU dataset with labeling bias.

2.3 Details of the Important Methods for this Re-

search
In this section, more details of the important methods for this research are revealed.

2.3.1 Biased Support Vector Machine (BSVM)

Recall the objective function of the classic SVM as

min
βββ ,β0

λ

2
βββ

T
βββ + ∑

xxxT
i ∈XXX pn

[1− yi(xxxiβββ +β0)]+, (2.1)

where XXX pn denotes the dataset with all instances correctly labeled and λ is a positive

hyper-parameter. The objective function in Equation 2.1 is to find the hyperplane

with the maximum margin to separate positive and negative instances. In this case,

SVM can only applied for supervised learning.

In order to enable SVM to handle PU learning classification, BSVM treats all

the unlabeled instances as negative and assign the loss of labeled-positive instances

and the loss of unlabeled instances with different weights in the objective function.

BSVM trains classifiers by solving the following objective function:
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min
βββ ,β0

λ

2
βββ

T
βββ +Cp111T

p [111p − (XXX [p]βββ +111pβ0)]+

+Cu111T
u [111u +(XXX [u]βββ +111uβ0)]+,

(2.2)

where βββ = (β1,β2, . . . ,βm)
T ∈ Rm×1 is the vector of the model parameters, Cp =

1
np

cp, Cu =
1
nu

cu are positive hyper-parameters, [g(·)]+ indicates the column vector

of the maximum between each element of g(·) and 0, and 111p,u = (1,1, · · · ,1︸ ︷︷ ︸
k

)T ,k =

np,nu. The predictive score function obtained by BSVM is the same as the predictive

score function of SVM, i.e.,

f = xxxT
iii βββ +β0. (2.3)

2.3.2 Biased Least-Squares Support Vector Machine (BLS-SVM)

One weakness of BSVM is that sometimes the hinge loss in the objective function of

BSVM in Equation 2.2 selects more unlabeled-positive instances than the unlabeled-

negative instances to be the support vectors for the negative class, which constructs a

decision boundary tending to misclassify the unlabeled-positive instances as negative.

This is more likely to happen when there are many unlabeled-positive instances close

to the unlabeled negative set.

To deal with this issue, the BLS-SVM for the PU learning was proposed by

[31] to force all training instances to contribute to the construction of the decision

boundary of the trained SVM by solving the following optimisation:

min
βββ ,β0

λ

2
βββ

T
βββ +Cp[111p − (XXX [p]βββ +111pβ0)]

T [111p − (XXX [p]βββ +111pβ0)]

+Cu[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)],

(2.4)

where the squared loss replaces the hinge loss applied in BSVM on both labeled-

positive set and unlabeled set. The objective function of BLS-SVM makes all

the instances contribute to the construction of the decision boundary hence the

importance given to the unlabeled-positive instances is restricted [32].

The predictive score function obtained by BLS-SVM is also the same as the

predictive score function of SVM in Equation 2.3.
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2.3.3 Global and Local Learning Classifier (GLLC)

The similarities between a training instance and its neighbors can also be treated as a

factor for classification, which is named local learning [33]. It is noted in [21] that

the gap between PU learning and classical supervised learning on accuracy can be

mitigated via GLLC.

GLLC is a combination of BLS-SVM and local learning. The objective function

of GLLC is given as

min
βββ ,β0

λ

2
βββ

T
βββ +Cp[111p − (XXX [p]βββ +111pβ0)]

T [111p − (XXX [p]βββ +111pβ0)]

+Cu[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0),

(2.5)

where 111pu = (1,1, · · · ,1︸ ︷︷ ︸
k

)T ,k = np +nu. RRR is the similarity matrix for the instances

and their neighbors, which can be obtained in Equation 2.7.

To obtain the similarity matrix RRR, we firstly need to calculate matrix WWW by

wi j =

exp
(
−σ−1(xxxi − xxx j)

T (xxxi − xxx j)
)

if the ith and jth instances are KNN of each other,

0 otherwise,
(2.6)

where σ is a hyper-parameter to be selected.

Let www·i denote the ith column of matrix WWW and WWW ∗ denote a diagonal matrix

with dii = 111T
[pu]www·i, one can obtain

RRR =
1

(np +nu)
(WWW ∗−WWW ). (2.7)

The predictive score function obtained by GLLC is also the same as the predic-

tive score function of SVM in Equation 2.3.
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2.3.4 Unbiased PU Learning (uPU)

The objective function of uPU was designed to be an unbiased estimator of the

expected loss to classify an unknown instance under the SCAR assumption. The

main advantage of uPU is that the weight hyper-parameters in its objective function

are determined by class prior π = P[Y = 1].

To obtain the objective function of uPU, one can firstly let random variables

(XXX ,Y ) denote an unknown instance of attributes XXX and Class Y and suppose that

there is a predictive score function f (XXX ;βββ ) of a PU classifier. The loss function for

f is defined as l( f ,y), where y = −1,1. Let PPP denote the distribution of XXX in the

positive set and NNN denote the distribution of XXX in the negative set. According to the

law of total expectation, the expected loss L( f ) of the predictive score function on a

new instance is given as

L( f ) = E[l( f (XXX ;βββ ),Y )] = πL1
p( f )+(1−π)L−1

n ( f ), (2.8)

where L1
p( f ) = EXXX∼P[l( f (XXX ;βββ ),1)] and L−1

n ( f ) = EXXX∼N[l( f (XXX ;βββ ),−1)].

Then consider

P[l( f (XXX ;βββ ),−1)] =P[l( f (XXX ;βββ ),−1)|Y = 1]π+P[l( f (XXX ;βββ ),−1)|Y =−1](1−π).

(2.9)

Hence we have

P[l( f (XXX ;βββ ),−1)|Y =−1](1−π) =P[l( f (XXX ;βββ ),−1)]−P[l( f (XXX ;βββ ),−1)|Y = 1]π.

(2.10)

Taking expectation w.r.t. XXX using the probabilities at both sides of Equation
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2.10, one can obtain

(1−π)L−1
n ( f ) = L−1

u ( f )−πL−1
p ( f ), (2.11)

where L−1
p ( f ) = EX∼P[l( f (XXX ;βββ ),−1)] and L−1

u ( f ) = E[l( f (XXX ;βββ ),−1)].

Combining Equation 2.8 and Equation 2.11, there is

L( f ) = πL1
p( f )+L−1

u ( f )−πL−1
p ( f ). (2.12)

Therefore the objective function for uPU is

min
βββ

πL̂1
p( f )+ L̂−1

u ( f )−πL̂−1
p ( f ), (2.13)

where L̂1
p( f ) = 1

np
∑xxx∈p l( f (XXX ;βββ ),1), L̂−1

u ( f ) = 1
nu

∑xxx∈u l( f (XXX ;βββ ),−1) and

L̂−1
p ( f ) = 1

np
∑xxx∈p l( f (XXX ;βββ ),−1). In this case, L̂1

p( f ), L̂−1
u ( f ) and L̂−1

p ( f ) are

unbiased estimators of L1
p( f ), L−1

u ( f ) and L−1
p ( f ), respectively. The weights of the

loss in the objective function of uPU in Equation 2.13 are determined by class prior

π .

2.3.5 Non-Negative PU Learning (nnPU) for Balanced Data

In the objective function of uPU in Equation 2.13, negative value of L̂−1
u ( f )−

πL̂−1
p ( f ) might appear and this can cause the algorithm of uPU, which is based on

ADAM [34], unable to converge to the optimal solution.[24].

As a remedy of this issue, nnPU was hence proposed in [24] by simply substi-

tuting L̂−1
u ( f )−πL̂−1

p ( f ) with max{L̂−1
u ( f )−πL̂−1

p ( f ),0} in the objective function

of uPU in Equation 2.13 as

min
βββ

πL̂1
p( f )+max{L̂−1

u ( f )−πL̂−1
p ( f ),0}. (2.14)



Chapter 3

Global and Local PU Classifier with

Asymmetric Loss (GLPUAL)

3.1 Introduction

Recall the objective function of GLLC:

min
βββ ,β0

λ

2
βββ

T
βββ +Cp[111p − (XXX [p]βββ +111pβ0)]

T [111p − (XXX [p]βββ +111pβ0)]

+Cu[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0),

(3.1)

where the squared loss for the classifier is applied to both the labeled-positive set and

the unlabeled set. The similarity matrix RRR is obtained via Equation 2.6 and Equation

2.7.

There is a special kind of PU datasets where the positive set is constituted by

two subsets distributing on the both sides of the negative set. We call this kind of

PU datasets as trifurcated PU datasets. To visualise the pattern of the trifurcated

PU datasets with more than two attributes, we can utilise the t-distributed stochastic

neighbor embedding (t-SNE) [35], which was proposed for non-linear dimensional

reduction. An example of the trifurcated PU datasets is illustrated in the following

2-dimensional projection with t-SNE of dataset wifi [36] in Figure 3.1, which will be

further discussed in Section 3.6. The classifiers with the non-linear decision boundary
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Figure 3.1: The 2-dimensional projection with t-SNE of dataset wifi, where the positive set
is constituted by two subsets distributing on the both sides of the negative set.

in the original feature space are needed for the classification on the trifurcated PU

datasets. However, when we applied kernel trick on GLLC to obtain the non-linear

decision boundary in the original feature space, the satisfactory performance still

cannot be achieved.

It should be noted that the essence of GLLC with kernel trick is to train a

classifier with linear decision boundary in a linearly separable space constructed by

a certain mapping of the original space. In this case, one of the potential reasons for

the unsatisfactory performance of GLLC on the trifurcated PU datasets is that in the

constructed linearly separable space, the original trifurcated PU datasets is converted

to follow the pattern in Figure 3.2, where the distances from the two positive subsets

to the ideal decision boundary, as indicated by a solid blue line, are very different.

Moreover, as shown in Figure 3.3, the squared loss in GLLC can impose quadratic

penalty not only on the instances wrongly classified but also on all the instances

correctly classified. Therefore, the labeled-positive instances correctly classified

by the ideal boundary but far away form the ideal decision boundary, as circled by

the dashed lines in Figure 3.2, can generate large penalty via the squared loss and
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Ideal Decision boundary

Labeled-positive instance

Unlabeled-positive instance

Unlabeled-negative instance

Decision boundary of GLLC

𝑥2

𝑥1

Figure 3.2: A potential pattern of the constructed linearly separable space converted from
the original trifurcated PU datasets via the kernel trick; x1 and x2 represent the
mappings of the features in the original trifurcated PU dataset.

L(f(x),y)

yf(x)-1
0

Squared Loss

Hinge Loss

Figure 3.3: The difference between the hinge loss and the squared loss; x-axis: the distance
between the instance and its correct margin; the negative distance indicates
that the instance lies on the wrong side of margin while the positive distance
indicates that the instance lies on the correct side of the margin; y-axis: the loss
of the predictive score function f .

hence stretches the ideal decision boundary towards the labeled-positive instances

far away. This leads to the optimal decision boundary of GLLC in green solid line,

which misclassified more instances than the ideal decision boundary.
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The aim of applying the squared loss in the objective function of GLLC is

to ensure the importance given to the unlabeled-positive instances to be negative

support vectors to be lower than the importance given to unlabeled-negative instances

to be negative support vectors, hence it is not necessary to also use the squared loss

on the labeled-positive set. Furthermore, as shown in the right side to zero of x-axis

Figure 3.3, the hinge loss does not penalise the instances lying on the correct side of

the margin. Hence with the hinge loss applied, the instances correctly classified but

far away from the ideal decision boundary will not generate any penalty.

Motivated by the above analysis, we proposed Global and Local PU Classifier

with Asymmetric Loss (GLPUAL) for better classification on the trifurcated PU

datasets. Firstly, in Section 3.2 and Section 3.3, we proposed the methodology and

algorithm of GLPUAL to generate the linear decision boundary much more close

to the ideal decision boundary for the datasets following the pattern in Figure 3.2

but in the original feature space. This was achieved by using the hinge loss for the

labeled-positive instances and the squared loss for the unlabeled-instances. Secondly

in Section 3.4, we conducted experiments on simple synthetic datasets to access the

performance of GLPUAL. Thirdly, we introduced the kernel trick to GLPUAL to

generate the non-linear decision boundary in the original feature space in Section

3.5. In this case, GLPUAL can be applied on the trifurcated PU datasets and the

experiments on 16 real datasets, including 4 trifurcated PU datasets, were conducted

to verify our motivation in Section 3.6.

3.2 Methodology of GLPUAL for Linear Decision

Boundary in the Original Feature Space
Suppose that there are np labeled-positive instances and nu unlabeled instances with

m features. Let feature matrix XXX [pu] = (xxx1,xxx2, . . . ,xxxnp , . . . ,xxxnp+nu)
T ∈ R(np+nu)×m,

where the column vector xxxi ∈ Rm×1 denotes the vector of the features of the ith

instance. Similarly, matrix XXX [p] = (xxx1,xxx2, . . . ,xxxnp)
T ∈ Rnp×m denotes the feature

matrix of the labeled-positive set while matrix XXX [u] = (xxxnp+1,xxxnp+2, . . . ,xxxnp+nu)
T ∈

Rnu×m denotes the feature matrix of the unlabeled set. According to [21], we use the
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labeling indicator si as the pseudo label of the instance xxxi. Then the unconstrained

optimisation problem of GLPUAL is formulated as

min
βββ ,β0

λ

2
βββ

T
βββ +Cp111T

p [111p − (XXX [p]βββ +111pβ0)]+

+Cu[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0),

(3.2)

where βββ = (β1,β2, . . . ,βm)
T ∈ Rm×1 is the vector of the model parameters to be

trained, λ , Cp = 1
np

cp, Cu = 1
nu

cu, as defined in Table 1.1, are positive hyper-

parameters, [g(·)]+ = max(0,g(·)) ∈ Rnp×1, RRR is the similarity matrix obtained

by Equation 2.6, and 111p,u,pu = (1,1, · · · ,1︸ ︷︷ ︸
k

)T ,k = np,nu,np+nu, which is formulated

as Equation 2.7.

The predictive score function of GLPUAL for instance xxx is the same as the

predictive score function of SVM, i.e.,

f (xxx) = xxxT
βββ +β0.

3.3 Algorithm of GLPUAL for Linear Decision

Boundary in the Original Feature Space

3.3.1 Alternating Direction Method of Multipliers (ADMM)

The hinge loss term 111T
p [111p − (XXX [p]βββ +111pβ0)]+ in the objective function of GLPUAL

in Equation 3.2 is not always differentiable in the feasible region of the optimisation

in Equation 3.2, bringing difficulty to applying the gradient descent directly. To

find an alternative way for solving the GLPUAL, the following reformulation of the
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optimisation of GLPUAL in Equation 3.2 can be considered:

min
βββ ,β0,hhh

Cp111T
p [hhh]++Cu(111u +XXX [u]βββ +111uβ0)

T (111u +XXX [u]βββ +111uβ0)

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0)+

λ

2
βββ

T
βββ

s.t. hhh = 111p − (XXX [p]βββ +111pβ0).

(3.3)

The convex objective function in Equation 3.3 can be regarded as the sum of the

functions of (βββ ,β0) and the function of hhh while the constraints in Equation 3.3 can

be regarded as a linear combination of (βββ ,β0) and hhh; this meets the requirement of

ADMM, which was proposed in [37] to decompose a large-scale convex optimisation

problem with affine constraints into several simpler sub-problems and update the

solution iteratively until convergence. ADMM was introduced to the field of machine

learning by [38]. Moreover, ADMM is able to converge to modest accuracy within

fewer iterations than the gradient descent.

The Lagrangian function of problem in Equation 3.3 is

L (θθθ) =Cp111T
p [hhh]++Cu(111u +XXX [u]βββ +111uβ0)

T (111u +XXX [u]βββ +111uβ0)

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0)+

λ

2
βββ

T
βββ

+uuuT
hhh [111p − (XXX [p]βββ +111pβ0)−hhh],

(3.4)

where θθθ = {βββ ,β0,hhh,uuuhhh} and uuuhhh is dual variable. Then the augmented Lagrangian

function is given as

La(θθθ) =L (θθθ)+
µ1

2

∥∥111p − (XXX [p]βββ +111pβ0)−hhh
∥∥2

2 . (3.5)

According to the ADMM, the optimal solution of the GLPUAL can be found
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by solving the following updates of iteration until convergence:

(βββ (k+1),β
(k+1)
0 ) = argmin

βββ ,β0

La(βββ ,β0,hhh(k),uuu
(k)
hhh ),

hhh(k+1) = argmin
hhh

La(βββ
(k+1),β

(k+1)
0 ,hhh,uuu(k)hhh ),

uuu(k+1)
hhh = uuu(k)hhh +µ1[111p − (XXX [p]βββ

(k+1)+111pβ
(k+1)
0 )−hhh(k+1)].

(3.6)

3.3.2 Update of β and β0

The update of βββ and β0 is

(βββ (k+1),β
(k+1)
0 ) = argmin

βββ ,β0

λ

2
βββ

T
βββ

+Cu(111u +XXX [u]βββ +111uβ0)
T (111u +XXX [u]βββ +111uβ0)

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0)

+uuuhhh
(k)T

[111p − (XXX [p]βββ +111pβ0)−hhh(k)]

+
µ1

2

∥∥∥111p − (XXX [p]βββ +111pβ0)−hhh(k)
∥∥∥2

2
,

(3.7)

which is a quadratic optimisation with every term differentiable.

Let IIIk,∀k ∈ Z denote a k× k identity matrix and by defining

MMM11 = λ IIIm +2CuXXXT
[u]XXX [u]+2XXXT

[pu]RRRXXX [pu]+µ1XXXT
[p]XXX [p],

MMM12 = 2CuXXXT
[u]111u +2XXXT

[pu]RRR111pu +µ1XXXT
[p]111p,

MMM21 = 2Cu111T
u XXX [u]+2111T

puRRRXXX [pu]+µ1111T
p XXX [p],

M22 = 2Cunu +2111T
puRRR111pu +µ1np,

mmm1 =−2CuXXXT
[u]111u +XXXT

[p]uuuhhh +µ1XXXT
[p](111p −hhh),

m2 =−2Cunu +uuuT
hhh 111p +µ1(111p −hhh)T 111p,

(3.8)

the solution of problem in Equation 3.7 can be obtained by solving the following

linear equation w.r.t. βββ and β0:MMM11 MMM12

MMM21 M22

βββ
(k+1)

β
(k+1)
0

=

mmm1

m2

 . (3.9)
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3.3.3 Update of h

The update of hhh is

hhh(k+1) =argmin
hhh

Cp111T
p [hhh]++uuu(k)hhh

T
[111p − (XXX [p]βββ

(k+1)+111pβ
(k+1)
0 )−hhh]

+
µ1

2

∥∥∥111p − (XXX [p]βββ
(k+1)+111pβ

(k+1)
0 )−hhh

∥∥∥2

2
,

(3.10)

which is equivalent to solving the problem

min
hhh

np

∑
i=1

{
Cp

µ1
[hi]++

1
2
[1+

u(k)hhhi
µ1

− (xxxT
i βββ

(k+1)+β
(k+1)
0 )−hi]

2

}
. (3.11)

According to [39], for constant c > 0, we can obtain

argmin
x

c[x]++
1
2
∥x−d∥2

2 =


d − c,d > c,

0,0 ≤ d ≤ c,

d,d < 0.

(3.12)

Thus, by defining sc(d) = argmin
x

c[x]++ 1
2∥x−d∥2

2, the ith element of hhh(k+1)

in problem in Equation 3.10 is solved as

h(k+1)
i = sCp

µ1

(
1+

u(k)hhhi
µ1

− (xxxT
i βββ

(k+1)+β
(k+1)
0 )

)
, i = 1,2, . . . ,np. (3.13)
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3.4 Experiments on Synthetic Data
In this section, we conducted experiments on synthetic datasets following the pattern

in Figure 3.2 to access the performance of GLPUAL compared with GLLC.

3.4.1 The Generation of Synthetic Positive-Negative (PN)

Datasets

The simple synthetic datasets following the pattern in Figure 3.2 were obtained by

the following steps:

1. To generate the first subset of the 2-dimensional synthetic positive set, 200

instances were sampled from the multivariate normal distribution with mean

vector (15,15) and the covariance matrix

50 0

0 50

 .
2. To generate the second subset of the 2-dimensional synthetic positive set, 200

instances were sampled from the multivariate normal distribution with the

mean vector (meanp2,meanp2) and the covariance matrix

50 0

0 50

 .
3. To generate the 2-dimensional synthetic negative set, 400 instances were

sampled from the multivariate normal distribution of mean vector (0,0) and

the covariance matrix 50 0.2

0.2 50

 .
4. Mixing the first subset of the synthetic positive set obtained in Step 1, the

second subset of the synthetic positive set obtained in Step 2 and the synthetic

negative set obtained in Step 3, simple 2-dimensional synthetic dataset can be

eventually obtained as shown in Figure 3.2.
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In Step 2, meanp2 took value from (50,100,200,500,1000). For each value of

meanp2, the above steps were repeated 5 times so that we have 5 synthetic datasets

for each value of meanp2.

3.4.2 Training-Test Split for the Synthetic PU Datasets

It should be noted that both GLLC and GLPUAL can be applied on the datasets

sampled from either single-training-set scenario or case-control scenario as we set

the suitable metric for hyper-parameter tuning in practice. More specifically, the

case-control scenario indicates that the unlabeled training set can be regarded to be

i.i.d. sampled from the population, while the single-training-set scenario indicates

that the whole training set can be regarded to be i.i.d. sampled from the population.

In this case, for more intuitive comparison, we split each of the synthetic dataset

generated in Section 3.4.1 to construct the PU training and test sets consistent with

the single-training-set scenario by the following two steps:

1. Firstly, to split the dataset into a the training set and a test set, 70% of the

instances in the simple synthetic dataset obtained in Section 3.4.1 were ran-

domly selected as the training set while the test set was constituted by the rest

30% instances.

2. Secondly, to construct the labeled-positive set and unlabeled-set for training,

25% of the positive instances in the above obtained training set were randomly

selected to form the labeled-positive set for training. The rest of the positive

instances were mixed with the negative set, contributing to the unlabeled set

for training.

Then 25 pairs of PU training set and test set were obtained.

3.4.3 Model Setting

It should be noted that the real value of the F1-score on the training dataset is not

accessible if we do not use the label information during model training. Therefore,

by fixing Cp to 1 and the number K of the nearest neighbors to 5, Cu, λ , σ , in the

objective functions of GLPUAL and GLLC, were determined by the 4-fold cross-

validation (CV), which reached the highest average PUF-score proposed in [40] on
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the validation sets. PUF-score is similar to F1-score and can be directly obtained

from PU data, i.e.,

PUF-score =
recall2

P[sgn( f (xxx)) = 1]
, (3.14)

where recall can be estimated by computing 1
np

∑xxxi∈pℶ(sgn( f (xxxi)) = 1) with

the indicator function denoted by ℶ(·), and at the single-training-set scenario

P[sgn( f (xxx)) = 1] can be estimated by computing 1
np+nu

∑xxxi∈u∪pℶ(sgn( f (xxxi)) = 1).

Furthermore, λ , σ were tuned from the set {1,2,3,4,5}◦{0.1,1,10,100}. Cu was

selected to from the set {0.01,0.02, . . . ,0.5} based on the setting in [21].

3.4.4 Results and Analysis

The results of the experiments, on the constructed synthetic PU datasets are sum-

marised in Table 3.1. The results are measured by the average F1-score, which is

a popular metric for the evaluation of PU learning methods [41]. The patterns of

the decision boundary obtained by GLPUAL and GLLC on the synthetic datasets

are illustrated in Figure 3.4. For each value of meanp2, we use the first generated

synthetic dataset as example.

Table 3.1: Summary of the average F1-score (%) of the experiments on the synthetic dataset
with the standard deviations.

meanp2 GLPUAL GLLC

50 95.07 ± 0.78 91.17 ± 1.52
100 94.89 ± 0.61 86.27 ± 1.83
200 93.56 ± 0.75 81.04 ± 2.93
500 92.83 ± 3.22 73.58 ± 2.58

1000 93.47 ± 2.08 71.28 ± 2.37

According to the experimental results in Table 3.1, GLPUAL always has better

performance than GLLC on the synthetic PU datasets with all the 5 values of meanp2.

Furthermore, with the value of meanp2 increasing, the gap between GLPUAL and

GLLC becomes increasingly large. This is more clearly in the ten plots in Figure 3.4,

as one of the positive subset becomes increasingly far away, the decision boundary

of GLLC is stretched to a strange position so that there are more and more instances

misclassified by the decision boundary of GLLC, while the decision boundary of
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GLPUAL is unaffected. Therefore it is verified that GLPUAL can have better

performance to generate the linear decision boundary than GLLC on the datasets

following the pattern in Figure 3.2.

3.5 Kernel Trick to GLPUAL for Non-Linear Decision

in the Original Feature Space
Now we need to introduce the kernel trick to GLPUAL for the non-linear decision

boundary in the original space so that to make GLLC able to be applied on the

non-linear separable datasets including trifurcated datasets. The techniques applied

in this section are similar to many previous methods [21, 42, 43, 44].

Suppose φφφ(xxx) ∈Rr×1 be a mapping of the instance vector xxx. Then let φφφ(XXX [k]) ∈

Rnk×r,k = p,u, pu be the mapping of the original data matrix XXX [k]. The ith row of

φφφ(XXX [k]) is φ(xxxi)
T . According to Equations 3.8 and 3.9, using φφφ(XXX [k]) as features

matrix instead of XXX [k] for the training of GLPUAL, we can find the following

necessary condition for the optimal solution of βββ :

BBBβββ = φφφ(XXX [pu])
T

ΩΩΩ, (3.15)

where

BBB = MMM11 −
MMM12MMM21

M22
, (3.16)

and

ΩΩΩ =

uuuhhh −µ1
m2
M22

111p +µ1(111p −hhh)

−2Cu111u −2 m2
M22

Cu111u

−2
m2

M22
RRR111pu. (3.17)

Equation 3.15 can be regarded as a condition when the objective function

reaches its minimum. Since BBB is symmetric and invertible, we can obtain

βββ = BBB−1
φφφ(XXX [pu])

T
ΩΩΩ. (3.18)
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Figure 3.4: The decision boundaries trained by GLPUAL and GLLC on the synthetic
data with meanp2 = 50,100,200,500,1000; pink area: the negative field of
GLPUAL; orange area: the negative field of GLLC; the instances in the plots
are from the test sets; red: positive instances; blue: negative instances.
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Substituting Equation 3.18 into the objective function in Equation 3.2, we have

min
ΩΩΩ,β0

λ

2
ΩΩΩ

T
φφφ(XXX [pu])BBB

−1BBB−1
φφφ(XXX [pu])

T
ΩΩΩ+Cp111T

p [111p − (φφφ(XXX [p])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+111pβ0)]+

+Cu[111u +φφφ(XXX [u])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+β0111u][111u +φφφ(XXX [u])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+β0111u]
T

+(φφφ(XXX [pu])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+111puβ0)
T RRR(φφφ(XXX [pu])BBB

−1
φφφ(XXX [pu])

T
ΩΩΩ+111puβ0).

(3.19)

To prove φφφ(XXX [k])BBB
−1

φφφ(XXX [pu])
T and φφφ(XXX [k])BBB

−1BBB−1
φφφ(XXX [pu])

T are kernel matri-

ces for XXX [k] and XXX [pu] in Equation 3.19, we need to introduce two properties for the

construction of kernel functions proved in [45] as

Theorem 1 Let φ(XXX),φ(ZZZ) be a mapping of matrices of XXX ,ZZZ and κκκ1(φ(XXX),φ(ZZZ))

be a kernel matrix of φ(XXX) and φ(ZZZ). Then the following two matrices κκκ2(XXX ,ZZZ) and

κκκ3(XXX ,ZZZ) can be regarded as the kernel matrix w.r.t. XXX ,ZZZ:

• κκκ2(XXX ,ZZZ) = κκκ1(φ(XXX),φ(ZZZ)),

• κκκ3(XXX ,ZZZ) = XXXFFFZZZT , with FFF to be a symmetric matrix.

According to the closure properties in Theorem 1, we can obtain

φφφ(XXX [k])BBB
−1

φφφ(XXX [pu])
T =ΦΦΦ

′(φφφ(XXX [k]),φφφ(XXX [pu]))

=ΦΦΦ(XXX [k],XXX [pu])
(3.20)

and
φφφ(XXX [k])BBB

−1BBB−1
φφφ(XXX [pu])

T =ΦΦΦ
′′(φφφ(XXX [k]),φφφ(XXX [pu]))

=ΦΦΦ2(XXX [k],XXX [pu]),
(3.21)

where ΦΦΦ
′(φφφ(XXX [k]),φφφ(XXX [pu])), ΦΦΦ

′′(φφφ(XXX [k]),φφφ(XXX [pu])) are the kernel matrices for

φφφ(XXX [k]) and φφφ(XXX [pu]), and ΦΦΦ(XXX [k],XXX [pu]),ΦΦΦ2(XXX [k],XXX [pu]) are the kernel matrices

for XXX [k] and XXX [pu].



3.5. Kernel Trick to GLPUAL for Non-Linear Decision in the Original Feature Space39

Thus the objective function of GLPUAL can be reformulated as

min
ΩΩΩ,β0

λ

2
ΩΩΩ

T
ΦΦΦ2(XXX [pu],XXX [pu])ΩΩΩ+Cp111T

p [111p − (ΦΦΦ(XXX [p],XXX [pu])ΩΩΩ+111pβ0)]+

+Cu[111u +ΦΦΦ(XXX [u],XXX [pu])ΩΩΩ+β0111u]
T [111u +ΦΦΦ(XXX [u],XXX [pu])ΩΩΩ+β0111u]

+(ΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ+111puβ0)
T RRR(ΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ+111puβ0),

(3.22)

whose solution is only determined by the kernels.

The predictive score function for instance xxx∗ of GLPUAL can be transformed to

f = ΦΦΦ(xxx∗,XXX [pu])ΩΩΩ+β0. (3.23)

In this case, we can update β0 via

β
(k+1)
0 =

m2

M22
−QQQ(k+1)

b /M22, (3.24)

where m2, M22 are not related to XXX [p],XXX [u],XXX [pu] and

QQQ(k+1)
b =2Cu111T

u ΦΦΦ(XXX [u],XXX [pu])ΩΩΩ
(k+1)

+2111T
puRRRΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ

(k+1)

+µ1111T
p ΦΦΦ(XXX [p],XXX [pu])ΩΩΩ

(k+1).

(3.25)

The update of hhh,uuuhhh can be reformulated as

hhh(k+1)
i = sCp

µ1

(
1+

u(k)hhhi
µ1

− (ΦΦΦ(xxxi,XXX [pu])ΩΩΩ
(k+1)+β

(k+1)
0 )

)
, i = 1,2, . . . ,np,

uuu(k+1)
hhh = uuu(k)hhh +µ1[111p − (ΦΦΦ(XXX [p],XXX [pu])ΩΩΩ

(k+1)+111pβ
(k+1)
0 )−hhh(k+1)].

(3.26)
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Thus the update of ADMM for non-linear decision boundary can be summarised

into the following steps:

1. Set initial values of ΩΩΩ, β0, hhh, uuuhhh.

2. Update ΩΩΩ via Equation 3.17 w.r.t. hhh(k) and uuu(k)hhh .

3. Update β0 via Equation 3.24.

4. Update hhh,uuuhhh via Equation 3.26.

5. Repeat Step 2 and Step 3 until convergence.

ΦΦΦ2(XXX [k],XXX [pu]) does not directly appear in the update process for the optimisa-

tion in this section so that we only need to determine the form of ΦΦΦ(XXX [k],XXX [pu]) in

practice. Moreover, λ either does not appear directly in the above update process

or it is contained in the matrix BBB as a part of ΦΦΦ(XXX [k],XXX [pu]). Therefore, for conve-

nience, in the case of using the kernel trick in Section 3.4, we use λ to represent the

hyper-parameter(s) of the kernel matrix ΦΦΦ(XXX [k],XXX [pu]).

3.6 Experiments on Real Data
In this section, for the further explore the performance of GLPUAL to verify our

motivation, the experiments were conducted on real datasets.

3.6.1 The Source of Real Datasets

Firstly, 16 datasets from the UCI Machine Learning Repository1 were selected to

assess the performance of GLPUAL and verify our motivation: Accelerometer (Acc),

Ecoli, Pen-Based Recognition of Handwritten Digits (Pen), Online Retail (OR1),

Online Retail II (OR2), Parking Birmingham (PB), Wireless Indoor Localization

(wifi), Sepsis survival minimal clinical records (SSMCR), Avila, Raisin Dataset

(RD), Occupancy Detection (OD), User Knowledge Modeling Data Set (UMD),

Seeds, Energy efficiency Data Set (ENB), Heart Disease (HD) and Liver Disorders

(LD). The details of these 16 real datasets are summarised in Table 3.2.

1UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Table 3.2: Summary of the datasets for the verification of the motivation of GLPUAL.

Dataset positive instances negative instances features
Acc 100 red 100 blue 4
Ecoli 116 im & 52 pp 143 cp & 25 om 6
Pen 200 one & 200 eight 400 four 16
OR1 301 UK 301 Germany 4
OR2 500 UK 500 Germany 4
SSMCR 391 alive 109 dead 3
PB 500 Bull Ring 500 BHMBCCMKT01 3
OD 100 occupied 300 not occupied 5
UMD 83 Low 63 high 5
Seeds 70 Kama 70 Rosa 7
ENB 144 TypeII 144 Type III 7
wifi 100 Location 2& 100 Location 4 499 Location 1 & 100 Location 3 7
Avila 300 E 900 A 10
RD 450 Kecimen 450 Besni 7
LD 144 class 1 200 class 2 6
HD 150 absence 119 presence 13

3.6.2 Training-Test Split for the Real PU Datasets

Different from the steps in Section 3.4.2, PU training and test sets for the 16 real

datasets are constructed under the case-control scenario since we would like to

see the performance of GLPUAL on the datasets with various labeling mechanism.

Furthermore, under the case-control scenario, it is possible to do fair comparison

between GLLC and the two convincing methods for PU classification, i.e., uPU [23]

and nnPU [24], since they were proposed under the case-control scenario. The steps

to do training-test split for the 16 PU real datasets are summarised as follows:

1. To obtain the binary positive-negative (PN) datasets from the original multi-

class dataset, certain classes in each of the original real datasets were treated

as positive while some other classes were treated as negative with the rest of

classes abandoned.

2. To construct the labeled-positive set and unlabeled-set, γ ′ of the positive

instances in each binary PN dataset obtained in Step 1 were randomly selected

to form the labeled-positive set, and the rest of the positive instances were

mixed into negative set, contributing to the unlabeled set of the PU dataset.
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3. To generate the training set and the test set from the constructed PU datasets,

the labeled-positive set and 70% of the instances in the unlabeled set were

selected as the training set while the test set was constituted by the rest 30%

of the instances in the unlabeled set; this is corresponding to the setting of

case-control scenario since the unlabeled training set and the test set can be

regarded to be sampled from the same population.

During the preliminary experiment, we found that the label frequency γ needs

to be greater than 0.2 for the hyper-parameter tuning strategy introduced in Section

3.6.4 to achieve satisfactory results. Therefore, the value of γ ′ is set to 7
17 , 7

37 so that

we have the label frequency γ = γ ′/(0.3γ ′+0.7) = 0.5,0.25, which is the fraction

of positive instances that are labeled, in the corresponding constructed PU training

sets, respectively. Then Step 2 and Step 3 were repeated for 10 times on each of the

16 binary PN datasets and obtained 10 pairs of PU training and test sets for each of

the 16 binary PN datasets with a certain value of γ ′.

3.6.3 Compared Methods

GLLC, uPU and nnPU were also trained on the 16 real datasets as the compared

methods with GLPUAL. GLLC serves as the baseline of GLPUAL. uPU and nnPU

are not only two convincing methods for PU classification as mentioned in Section

3.6.2, but also they are related to the subsequent works of GLPUAL in this study.

3.6.4 Model Setting

At the case-control scenario, we also use PUF-score in Equation 3.14 for hyper-

parameter selection. The numerator ’recall’ can still be estimated by computing
1

np
∑xxxi∈pℶ(sgn( f (xxxi)) = 1), while the denominator P[sgn( f (xxx)) = 1] needs to be

estimated by computing 1
nu

∑xxxi∈uℶ(sgn( f (xxxi)) = 1) at the case-control scenario.

Therefore, by fixing Cp to 1 and the number K of the nearest neighbors to 5, Cu, λ ,

σ in the objective functions of GLPUAL and GLLC were firstly tuned by 4-fold CV,

which reached the highest average PUF-score.

Furthermore, considering the higher complexity of the real datasets com-

pared with the synthetic datasets in Section 3.4, we modified our strategy
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for hyper-parameter selection, enabling efficient selection of hyper-parameters

across a broader range. More specifically, λ , σ were tuned from the set

{10−4,10−3,10−2,10−1,100,101,102,103,104} and Cu was selected to from the

set {0.5,0.3,0.1,0.05,0.01} based on the setting in [21]. Then λ , σ and Cu were

continually tuned following the greedy algorithm based on the average PUF-score

on the validation sets as follows:

1. Set λ , σ and Cu to the best combination from the grid search.

2. Sequentially update one of hyper-parameters λ , σ and Cu by increas-

ing/decreasing 10% of its current value with the rest of the hyper-parameters

unchanged. The optimal scenario on 4-fold CV is set to be the final update of

this step.

3. Repeat Step 2 until there is no better scenario appeared.

Besides, the hyper-parameters of uPU and nnPU were fixed as the recommended

setting in the open source provided by [24] on GitHub. Radial Basis Function (RBF)

kernel was applied on both GLPUAL and GLLC. More specifically, we computed

exp
(
−∥xi − x j∥2/2λ 2) as the (i, j) element of ΦΦΦ

′(φφφ(XXX [pu]),φφφ(XXX [pu])).

3.6.5 Summary of Results

The performance of GLPUAL, GLLC, uPU and nnPU on the 16 real datasets are

summarised in Table 3.3.

The results of the difference between the F1-score of GLPUAL and GLLC

on each pairwise experiments are shown in the boxplots in Figure 3.5, Figure 3.6

with γ = 0.5,0.25, respectively. In all of these figures, the best four datasets for

GLPUAL compared with GLLC are wifi, OR1, OR2, and Pen. Furthermore, with

γ = 0.5,0.25, three of the worst four datasets for GLPUAL compared with GLLC

are OD, LD, Avila. When γ = 0.5, the rest one of the worst four datasets is PB.

When γ = 0.25, the rest one of the worst four datasets is RD.
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Figure 3.5: Boxplots for the difference between F1-scores of GLPUAL and GLLC on each
dataset increasingly ranked by medians; label frequency γ=0.5; x-axis: the
datasets; y-axis: the difference between GLPUAL and GLLC on F1-scores.
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Figure 3.6: Label frequency γ=0.25. The rest of the caption is as in Figure 3.5.

3.6.6 Pattern Analysis for the Real Datasets Preferring GLPUAL

to GLLC

The t-SNE plots of the best four datasets, i.e., wifi, OR1, OR2, and Pen, for GLPUAL

compared with GLLC are shown in Figure 3.7. According to the four t-SNE plots,

the following information can be summarised:

1. The trifurcated pattern of the best four datasets in Figure 3.7 is clear that the

positive set is constituted by two subsets distributing on both sides of the

negative set as discussed in the motivation of GLPUAL in Section 3.1.
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2. In the t-SNE plot of dataset OR1, there are much more instances contained

in the right labeled-positive subset than the instances contained in the left

labeled-positive set. This indicates that the trifurcated pattern does not have to

be balanced for GLPUAL to outperform GLLC.
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Figure 3.7: The t-SNE plots of the best four datasets wifi, OR1, OR2 and Pen; cross entropy
loss for training with perplexity = 750, 200, 250, 50; label frequency γ=0.25;
red: positive instances; blue: negative instances; triangle: labeled instances;
circle: unlabeled instances.

3.6.7 Pattern Analysis for the Real Datasets Preferring GLLC to

GLPUAL

There are overall five datasets to be the worst four datasets for GLPUAL compared

with GLLC under two cases of label frequency, i.e., γ = 0.5,0.25. The t-SNE plots

for the six datasets are illustrated in Figure 3.8 and their patterns can be summarised

as follows:

1. According to the t-SNE plots of the two datasets LD and Avila, the positive

set and the negative set are mixed together, making the dataset challenging to

be separated. In this case, the labeled-positive instances selected as support

vectors by the hinge loss of GLPUAL are not sufficient to adequately represent
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the pattern of the positive set, while the squared loss of GLLC on the labeled-

positive set, which selects all positive instances as the support vectors, can

somewhat alleviate this issue. As a result, GLLC on these two datasets

outperforms GLPUAL.

2. The t-SNE plots of the four datasets OD, PB, and RD represent the typical

two-class patterns. In this type of datasets, the problem of GLLC mentioned

in Section 3.1 does not exist. Therefore, under the strategy of hyper-parameter

tuning in Section 3.6.4, the optimal combination(s) of the hyper-parameters

for GLLC to outperform GLPUAL was (were) found in at least one case of

label frequency γ .
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Figure 3.8: The t-SNE plots of the worst six datasets OD, Avila, LD, PB, RD, Ecoli;
cross entropy loss for training with perplexity = 200, 550, 250, 300, 300; label
frequency γ=0.25, 0.25, 0.25, 0.5, 0.25. The rest of the caption is as in Figure
3.7.



3.6. Experiments on Real Data 47

3.6.8 Results among GLPUAL, uPU and nnPU

According to the results in Table 3.3, there are in total 22 cases of the 32 cases where

GLPUAL outperformed uPU and nnPU. Furthermore, uPU and nnPU sometimes

have much larger standard deviations than GLPUAL since their algorithms based on

ADAM for the optimisation of their non-convex objective functions cannot always

converge to the optimal solution, though nnPU alleviated this issue to some extent.

Finally, there are 11 cases where CPB-GLPUAL is the optimal choice among the

four methods in the experiments.

Table 3.3: The average F1-score (%) of the classifiers; for each of the 16 original datasets,
the average F1-score (%) and standard deviation in the two rows were obtained
under label frequency γ = 0.5,0.25, respectively; the results highlighted in blue
for GLPUAL indicate that it is the best among the four methods.

Dataset GLPUAL GLLC uPU nnPU

ENB 42.82 ± 4.76 42.69 ± 4.62 29.58 ± 22.14 30.20 ± 23.67
45.82 ± 7.50 44.16 ± 6.56 26.12 ± 30.53 26.88 ± 31.28

HD 82.72 ± 2.35 81.97 ± 5.45 71.38 ± 4.23 74.38 ± 2.19
81.92 ± 4.03 84.46 ± 4.11 71.01 ± 3.97 75.06 ± 2.40

Pen 92.47 ± 8.13 88.92 ± 10.15 77.76 ± 31.00 87.50 ± 14.94
91.73 ± 9.04 87.02 ± 11.38 72.55 ± 31.03 84.06 ± 16.85

LD 44.24 ± 5.72 50.79 ± 6.86 11.88 ± 25.75 31.54 ± 27.79
36.85 ± 9.97 40.05 ± 8.85 10.15 ± 22.39 20.09 ± 26.27

OR1 90.05 ± 2.25 85.62 ± 3.77 16.64 ± 33.33 84.08 ± 6.88
83.88 ± 5.78 72.95 ± 5.50 20.90 ± 33.12 72.06 ± 6.99

RD 82.45 ± 2.18 83.01 ± 2.38 70.61 ± 12.89 71.29 ± 13.63
77.63 ± 3.77 81.99 ± 2.84 72.92 ± 14.53 73.12 ± 12.83

Seeds 92.31 ± 4.86 94.63 ± 2.81 92.37 ± 1.51 97.25 ± 3.65
89.05 ± 5.53 91.18 ± 4.48 86.85 ± 3.12 93.08 ± 3.89

wifi 95.10 ± 1.96 90.43 ± 4.65 91.16 ± 4.29 92.17 ± 3.17
96.69 ± 1.83 89.09 ± 4.77 87.69 ± 2.88 89.27 ± 2.61

Avila 55.82 ± 2.90 59.56 ± 4.10 62.74 ± 8.82 63.75 ±9.07
50.05 ± 4.22 54.99 ± 6.17 61.30 ± 9.23 61.00 ± 9.04

OD 89.00 ± 8.44 100.00 ± 0.00 80.00 ± 42.16 100.00 ± 0.00
95.69 ± 6.74 100.00 ± 0.00 80.00 ± 42.16 100.00 ± 0.00

OR2 88.93 ± 1.22 86.49 ± 1.38 76.92 ± 4.90 81.60 ± 4.23
85.50 ± 3.42 77.10 ± 5.65 74.41 ± 5.45 77.28 ± 3.76

PB 95.90 ± 1.12 100.00 ± 0.00 69.77 ± 2.62 67.19 ± 3.17
97.86 ± 0.67 100.00 ± 0.00 68.75 ± 2.63 66.63 ± 4.09
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Table 3.3 – continued from previous page
Dataset GLPUAL GLLC uPU nnPU

Acc 65.02 ± 4.79 68.10 ± 2.18 20.05 ± 27.57 20.46 ± 28.56
66.36 ± 4.42 64.08 ± 6.31 21.95 ± 29.61 23.43 ± 31.40

Ecoli 90.80 ± 2.59 90.15 ± 6.28 84.41 ± 6.13 85.92 ± 6.69
88.04 ± 4.44 88.03 ± 3.96 84.92 ± 6.82 86.05 ± 6.55

SSMCR 87.63 ± 1.29 87.35 ± 2.14 85.71 ± 1.98 87.42 ± 1.37
87.63 ± 1.29 87.35 ± 2.14 84.97 ± 2.03 86.79 ± 1.50

UMD 100.00 ± 0.00 99.80 ± 0.62 100.00 ± 0.00 100.00 ± 0.00
99.58 ± 0.88 98.41 ± 1.80 100.00 ± 0.00 100.00 ± 0.00

3.7 Conclusion
In this chapter, firstly GLPUAL was proposed for better classification on the datasets,

where the distances between the two positive subsets to the ideal decision boundary

are very different. Secondly, an algorithm to solve the optimisation of GLPUAL

was proposed based on ADMM with linear decision boundary generated. Then

experiments were conducted on the synthetic datasets to verify the motivation of the

proposed method. Thirdly, the kernel trick was introduced to GLPUAL and then

the algorithm to solve the non-convex optimisation of GLPUAL was proposed also

based on ADMM with the non-linear decision boundary generated in the original

feature space for satisfactory classification on the trifurcated PU dataset. Fourthly,

GLPUAL was assessed by the experiments on synthetic datasets and real datasets.



Chapter 4

Elastic GLPUAL (E-GLPUAL) and

Elastic Kernel Free GLPUAL

(EKF-GLPUAL)

4.1 Introduction

Recall the objective function of GLPUAL from Equation 3.2:

argmin
βββ ,β0

λ

2
βββ

T
βββ +Cp111T

p [111p − (XXX [p]βββ +111pβ0)]+

+Cu[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0).

There is only the L2-norm regularised term for the model parameters in the objective

function of GLPUAL. In this case, it is hard for GLPUAL to compress the model

parameters of irrelevant features to zero [46]. Therefore, it is hard for GLPUAL

to rule irrelevant features out, and the F1-score of GLPUAL will increase on the

model containing more irrelevant features. Moreover, [47] noted that the SVM-based

methods with kernel trick applied also tend to have relatively worse performance on

the datasets containing irrelevant features. Therefore, GLPUAL with kernel trick

applied for non-linear decision boundary in the original feature space also suffers

from irrelevant features.
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Motivated by this issue, in Section 4.2, firstly we introduce the L1-norm regu-

larised term to the objective function of GLPUAL without kernel trick to construct

the elastic net [48] to compress more parameters of irrelevant features to zero, based

on the idea of [49]. The proposed method in section 4.2 is termed elastic GLPUAL

(E-GLPUAL). The algorithm for the optimisation of E-GLPUAL is also proposed

in Section 4.2 based on multi-block ADMM. Then in Section 4.3, experiments

were conducted on the synthetic PU datasets with irrelevant features to verify our

motivation of E-GLPUAL.

Furthermore, noticing that the kernel trick is not applicable to E-GLPUAL due to

the introduced L1-norm regularised term, which is similar to the issues in [49, 50, 51,

52, 53, 54], we introduced the kernel free techniques from the soft quadratic surface

SVM (SQSSVM) [55] to the predictive score function of E-GLPUAL to generate

the non-linear decision boundary in Section 4.4. The proposed generalisation of

E-GLPUAL is termed as elastic kernel free GLPUAL (EKF-GLPUAL). Besides, we

introduced the techniques for the optimisation of group variables [56] to our ADMM-

based algorithm of E-GLPUAL to construct the algorithm for the optimisation of

EKF-GLPUAL in the rest of Section 4.4. Then we conducted experiments to assess

the performance of E-GLPUAL and EKF-GLPUAL on 14 UCI datasets in Section

4.5. Eventually, in Section 4.6, we do theoretical analysis to discuss the gap between

the optimal coefficients of several features with these features becoming increasingly

similar.

4.2 Methodology and Algorithm of E-GLPUAL for

Linear Decision Boundary

The unconstrained optimisation problem of E-GLPUAL is formulated as

min
βββ ,β0

λ1

2
∥βββ∥1 +

λ2

2
∥βββ∥2

2 +Cp111T
p [111p − (XXXT

[p]βββ +111pβ0)]
+

+Cu[111u +(XXXT
[u]βββ +111uβ0)]

T [111u +(XXXT
[u]βββ +111uβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0),

(4.1)
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with predictive score the same as SVM. i.e.,

f (xxx) = (xxx)T
βββ +β0. (4.2)

Though E-GLPUAL can be treated a special case of EKF-GLPUAL as men-

tioned in Section 4.1, we prefer to preserve the algorithm of E-GLPUAL in this

section, since the number of the dual variables needed in this algorithm is much fewer

than that in the algorithm of EKF-GLPUAL in Section 4.4 and thus the algorithm of

E-GLPUAL converges much faster.

The terms ∥βββ∥1 and ∑
p
i=1 [1− yi(xxxT

iii βββ +β0)]+ are not always differentiable in

the feasible region of the objective function in Equation 4.1, which bring difficulty

to solve the E-GLPUAL by gradient descent. Similar to the case in the optimisation

for the objective function of GLPUAL, the following equivalent reformulation can

be considered:

min
βββ ,β0,hhh,aaa,ttt,bbb

Cp111T
p [hhh]++CuaaaT aaa+bbbT RRRbbb+

λ1

2
∥ttt∥1 +

λ2

2
∥βββ∥2

2

s.t. hhh = 111p − (XXX [p]βββ +111pβ0),

aaa = 111u +XXX [u]βββ +111uβ0,

ttt = βββ ,

bbb = XXX [pu]βββ +111puβ0.

(4.3)

The constraints of the optimisation in Equation 4.3 can be reformulated into the

following form:


IIInp

000nu×np

000m×np

000npu×np

hhh+


000np×nu

IIInu

000m×nu

000npu×nu

aaa+


000np×m

000nu×m

IIIm

000npu×m

 ttt +


000np×npu

000nu×npu

000m×npu

IIInpu

bbb+


XXX [p], 111p

XXX [u], 111u

IIIm, 000m×1

XXX [pu], 1pu


βββ

β0

=


111p

111u

000m×1

111pu

 , (4.4)

where 000k1×k2 denotes a zero matrix of k1 rows and k2 columns. The coefficients

matrices of the model parameters in Equation 4.4 can be divided into two subsets,
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i.e., 


IIInp

000nu×np

000m×np

000npu×np

 ,


000np×nu

IIInu

000m×nu

000npu×nu

 ,


000np×m

000nu×m

IIIm

000npu×m

 ,


000np×npu

000nu×npu

000m×npu

IIInpu




and




XXX [p], 111p

XXX [u], 111u

IIIm, 000m×1

XXX [pu], 1pu




. (4.5)

It should be noted that the objective function of E-GLPUAL in Equation 4.3

is convex for βββ ,β0,hhh,aaa, ttt,bbb and the matrices in the first set in Equation 4.5 are

orthogonal to each other, which meets the conditions for convergence to apply the

direct extension of ADMM of multi-block according to [57].

The Lagrangian function of problem in Equation 4.3 is

L (θθθ) =Cp111T
p [hhh]++CuaaaT aaa+bbbT RRRbbb+

λ1

2
∥ttt∥1 +

λ2

2
∥βββ∥2

2

+uuuT
hhh [111p − (XXX [p]βββ +111pβ0)−hhh]

+uuuT
aaa (111u +XXX [u]βββ +111uβ0 −aaa)

+ vvvT (βββ − ttt)

+qqqT (XXX [pu]βββ +111puβ0 −bbb).

(4.6)

where θθθ = {βββ ,β0,hhh,aaa, ttt,bbb,uuuhhh,uuuaaa,vvv,qqq}, and uuuhhh, uuuaaa, vvv and qqq are dual variables.

Then the augmented Lagrangian function is given as

La(θθθ) =L (θθθ)+
µ1

2

∥∥111p − (XXX [p]βββ +111pβ0)−hhh
∥∥2

2

+
µ2

2

∥∥111u +XXX [u]βββ +111uβ0 −aaa
∥∥2

2

+
µ3

2
∥βββ − ttt∥2

2

+
µ4

2

∥∥XXX [pu]βββ +111puβ0 −bbb
∥∥2

2 .

(4.7)

According to the ADMM, the solution of the E-GLPUAL can be found by
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solving the following updates of iteration until convergence:

(βββ (k+1),β
(k+1)
0 ) = argmin

βββ ,β0
La(βββ ,β0,hhh(k),aaa(k), ttt(k),bbb(k),uuu

(k)
hhh ,uuu(k)aaa ,vvv(k),qqq(k)),

hhh(k+1) = argmin
hhh

La(βββ
(k+1),β

(k+1)
0 ,hhh,aaa(k), ttt(k),bbb(k),uuu(k)hhh ,uuu(k)aaa ,vvv(k),qqq(k)),

aaa(k+1) = argmin
aaa

La(βββ
(k+1),β

(k+1)
0 ,hhh(k+1),aaa, ttt(k),bbb(k),uuu(k)hhh ,uuu(k)aaa ,vvv(k),qqq(k)),

ttt(k+1) = argmin
ttt

La(βββ
(k+1),β

(k+1)
0 ,hhh(k+1),aaa(k+1), ttt,bbb(k),uuu(k)hhh ,uuu(k)aaa ,vvv(k),qqq(k)),

bbb(k+1) = argmin
bbb

La(βββ
(k+1),β

(k+1)
0 ,hhh(k+1),aaa(k+1), ttt(k+1),bbb,uuu(k)hhh ,uuu(k)aaa ,vvv(k),qqq(k)),

uuu(k+1)
hhh = uuu(k)hhh +µ1[111p − (XXX [p]βββ

(k+1)+111pβ
(k+1)
0 )−hhh(k+1)],

uuu(k+1)
aaa = uuu(k)aaa +µ2(111u +XXX [u]βββ

(k+1)+111uβ
(k+1)
0 −aaa(k+1)),

vvv(k+1) = vvv(k)+µ3(βββ
(k+1)− ttt(k+1)),

qqq(k+1) = qqq(k)+µ4(XXX [pu]βββ
(k+1)+111puβ

(k+1)
0 −bbb(k+1)).

(4.8)

4.2.1 Update of β and β0

The update of βββ and β0 is

(βββ (k+1),β
(k+1)
0 ) = argmin

βββ ,β0

λ2

2
βββ

T
βββ +uuuhhh

(k)T
[111p − (XXX [p]βββ +111pβ0)−hhh(k)]

+uuuaaa
(k)T

(111u +XXX [u]βββ +111uβ0 −aaa(k))+ vvv(k)
T
(βββ − ttt(k))

+qqq(k)
T
(XXX [pu]βββ +111puβ0 −bbb(k))+

µ1

2

∥∥∥111p − (XXX [p]βββ +111pβ0)−hhh(k)
∥∥∥2

2

+
µ2

2

∥∥∥111u +XXX [u]βββ +111uβ0 −aaa(k)
∥∥∥2

2
+

µ3

2

∥∥∥βββ − ttt(k)
∥∥∥2

2

+
µ4

2

∥∥∥XXX [pu]βββ +111puβ0 −bbb(k)
∥∥∥2

2
,

(4.9)

which is a quadratic optimisation with every term differentiable.

Defining

βββ
∗ =

βββ

β0

 ,XXX∗
[ j] = [XXX [ j],111 j], j = p,u, pu, III[0]k+1 =

IIIk 0

0 0

 ,
vvv(k)[0] =

vvv(k)

0

 , ttt(k)[0] =
ttt(k)

0

 ,
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the solution of problem in Equation 4.9 can be obtained by solving the following

linear equation w.r.t. βββ and β0:

[
(µ3 +λ2)III

[0]
m+1 +µ1XXX∗T

[p]XXX
∗
[p]+µ2XXX∗T

[u]XXX
∗
[u]+µ4XXX∗T

[pu]XXX
∗
[pu]

]
βββ
∗

= XXX∗T
[p]uuuhhh

(k)−XXX∗T
[u]uuuaaa

(k)− vvv(k)[0]−XXX∗T
[pu]qqq

(k)+µ1XXX∗T
[p](111p −hhh(k))

−µ2XXX∗T
[u] (111u −aaa(k))+µ3III[0]m+1ttt(k)[0]+µ4XXX∗T

[pu]bbb
(k).

(4.10)

4.2.2 Update of h

The update of hhh is

hhh(k+1) =argmin
hhh

Cp111T
p [hhh]++uuu(k)hhh

T
[111p − (XXX [p]βββ

(k+1)+111pβ
(k+1)
0 )−hhh]

+
µ1

2

∥∥∥111p − (XXX [p]βββ
(k+1)+111pβ

(k+1)
0 )−hhh

∥∥∥2

2
,

(4.11)

which is equivalent to solve the problem

min
hhh

np

∑
i=1

{
Cp

µ1
[hi]++

1
2
[1+

u(k)hhhi
µ1

− (xxxT
i βββ

(k+1)+β
(k+1)
0 )−hi]

2

}
. (4.12)

The problem in Equation 4.12 is the same as the problem in Equation 3.11.

Thus, recall function sc(d) = argmin
x

c[x]++ 1
2(x−d)2 and

argmin
x

c[x]++
1
2
(x−d)2 =


d − c,d > c,

0,0 ≤ d ≤ c,

d,d < 0.

(4.13)
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In this case the ith element of hhh(k+1) in problem in Equation 4.11 is solved as

h(k+1)
i = sCp

µ1

[
1+

u(k)hhhi
µ1

− (xxxT
i βββ

(k+1)+β
(k+1)
0 )

]
. (4.14)

4.2.3 Update of a

The update of aaa is

aaa(k+1) = argmin
aaa

CuaaaT aaa+uuu(k)aaa
T
[111u +XXX [u]βββ

(k+1)+111uβ
(k+1)
0 −aaa]

+
µ2

2

∥∥∥(111u +XXX [u]βββ
(k+1)+111uβ

(k+1)
0 −aaa)

∥∥∥2

2
,

(4.15)

which is equivalent to solving

min
aaa

µ2

2
(111u +XXX [u]βββ

(k+1)+111uβ
(k+1)
0 −aaa)T (111u +XXX [u]βββ

(k+1)+111uβ
(k+1)
0 −aaa)

+CuaaaT aaa−uuu(k)aaa
T

aaa.
(4.16)

Problem in Equation 4.16 is also quadratic like problem in Equation 4.9 in

Section 4.2.1. Thus we have

aaa(k+1) =
1

2Cu +µ2
[uuu(k)aaa +µ2(111u +XXX [u]βββ

(k+1)+111uβ
(k+1)
0 )]. (4.17)

4.2.4 Update of t

The update of ttt is

ttt(k+1) = argmin
ttt

λ1

2
∥ttt∥1 + vvv(k)

T
(βββ (k+1)− ttt)+

µ3

2

∥∥∥βββ
(k+1)− ttt

∥∥∥2

2
. (4.18)
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According to [58], problem in Equation 4.18 can be regarded as the sum of m

soft threshold functions, where m denotes the number of features, and hence the ith

element of the solution of ttt(k+1) is

ti(k+1) =

∣∣∣ 1
µ3

v(k)i +β
(k+1)
i

∣∣∣
1
µ3

v(k)i +β
(k+1)
i

[∣∣∣∣ 1
µ3

v(k)i +β
(k+1)
i

∣∣∣∣− λ1

2µ3

]
+

, (4.19)

where v(k)i is the ith element of vvv(k) and β
(k+1)
i is the ith element of βββ

(k+1).

4.2.5 Update of b

The update of bbb is

bbb(k+1) = argmin
bbb

bbbT RRRbbb+qqq(k)
T
(XXX [pu]βββ

(k+1)+111[pu]β
(k+1)
0 −bbb)

+
µ4

2

∥∥∥XXX [pu]βββ
(k+1)+111[pu]β

(k+1)
0 −bbb

∥∥∥2

2
.

(4.20)

which is quadratic as the problem in Equation 4.9 and 4.15. Thus bbb(k+1) can be

obtained by the following equation:

bbb = (2RRR+µ4IIIpu)
−1
[
qqq(k)+µ4(XXX [pu]βββ

(k+1)+111[pu]β
(k+1)
0 )

]
. (4.21)

4.3 Experiments for E-GLPUAL on Synthetic Datasets

In this section, experiments were conducted on the linearly separable synthetic

datasets to verify the motivation of E-GLPUAL compared with GLPUAL.
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4.3.1 The Generation of Synthetic PN Datasets

The 25 linearly separable synthetic datasets in this section were generated based on

the 25 synthetic datasets generated in Section 3.4.1 by the following steps:

1. Standardise the 25 synthetic datasets generated in Section 3.4.1.

2. Add four irrelevant features into the standardised synthetic dataset generated in

Step 1. These irrelevant variables follow the i.i.d. standard normal distribution

and the quantity of these irrelevant features is twice the number of the features

in the standardized synthetic dataset generated in Step 1.

The standardisation in Step 1 is to ensure that the introduced irrelevant features

in Step 2 exert sufficient disturbance on the original datasets for model training,

compared with the magnitude of these datasets. The same as Section 3.4.1, the 25

synthetic datasets in this section are also divided into five categories, according to

the expectation vector (meanp2,meanp2), meanp2 = 50,100,200,500,1000, of the

second positive subset of the original synthetic datasets generated in Section 3.4.1.

4.3.2 Training-Test Split for the Synthetic PU Datasets

The same as Section 3.4.2, both E-GLPUAL and GLPUAL can be applied on the

datasets sampled from either single-training-set scenario or case-control scenario as

we set the suitable metric for hyper-parameter tuning in practice. In this case, for

more intuitive comparison, we split each of the synthetic dataset generated in Section

4.3.1 to construct the PU training and test sets consistent with the single-training-set

scenario by the same steps in Section 3.4.2 and obtained 25 pairs of PU training set

and test set.

4.3.3 Model Setting

For the hyper-parameter tuning of E-GLPUAL, similar to Section 3.4.3, PUF-score

in Equation 3.14 was also utilized as the metric for hyper-parameter tuning. Firstly

Cp was fixed to 1 and the number K of the nearest neighbors to 5. Then Cu, σ ,

λ1 and λ2 were determined by 4-fold CV, which reached the highest average PUF-

score on the validation sets with the denominator P[sgn( f (xxx)) = 1] estimated by



4.3. Experiments for E-GLPUAL on Synthetic Datasets 58

1
np+nu

∑xxxi∈u∪pℶ(sgn( f (xxxi)) = 1) at the single-training-set scenario. More specif-

ically, σ , λ1 and λ2 were tuned from the set{1,2,3,4,5} ◦ {0.1,1,10,100}. Cu

was selected to from the set {0.01,0.02, . . . ,0.5} based on the setting in [21]. The

hyper-parameters for GLPUAL were tuned by the same strategy in Section 3.4.3.

4.3.4 Results and Analysis

The results of the experiments, on the constructed synthetic PU datasets are sum-

marised in Table 4.1. The results are measured by the average F1-score. Moreover,

Table 4.2 summarises the proportion of irrelevant features with coefficients com-

pressed to zero relative to the total number of irrelevant features.

According to the experimental results in Table 4.1, E-GLPUAL outperformed

GLPUAL on the all the 5 categories of the synthetic PU datasets with four irrelevant

features added. Furthermore the variance of the F1-Score of E-GLPUAL is lower

than the variance of the F1-Score of GLPUAL on four out of five categories of the

synthetic PU datasets.

Table 4.1: Summary of the average F1-score (%) the standard deviation of the experiments
on the synthetic datasets.

meanp2 E-GLPUAL GLPUAL

50 94.33 ± 1.92 87.10 ± 8.47
100 93.74 ± 1.79 90.68 ± 8.47
200 93.54 ± 1.92 84.67 ± 3.06
500 91.41 ± 3.85 79.98 ± 3.50

1000 89.04 ± 2.77 78.15 ± 3.66

According to Table 4.2, nearly all the parameters of the irrelevant features

were compressed to zero by E-GLPUAL, while GLPUAL struggled to compress the

parameters of irrelevant features to zero. Consequently, E-GLPUAL exhibited higher

compression efficiency for irrelevant feature parameters than GLPUAL, thereby

enabling E-GLPUAL to outperform GLPUAL on PU datasets with the inclusion of

irrelevant features. This verified our motivation to propose E-GLPUAL.
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Table 4.2: The average proportion (%) and the standard deviation of the irrelevant features
whose coefficients were compressed to zero relative to the total number of irrele-
vant features.

meanp2 E-GLPUAL GLPUAL

50 0.95 ± 0.11 0.10 ± 0.14
100 0.95 ± 0.11 0.10 ± 0.22
200 1.00 ± 0.00 0.05 ± 0.11
500 1.00 ± 0.00 0.10 ± 0.22

1000 1.00 ± 0.00 0.05 ± 0.11

4.4 Methodology and Algorithm of EKF-GLPUAL

for Quadratic Decision Boundary

As discussed in Section 4.1, the introduction of L1-norm regularised term ∥βββ∥1

makes it impossible to apply kernel trick to E-GLPUAL. As a remedy, kernel free

techniques from SQSSVM [55] is introduced to the predictive score function of

E-GLPUAL to generate a quadratic decision boundary for the non-linear separable

datasets:

f (xxx) =
1
2

xxxT Axxx+ xxxT
βββ +β0, (4.22)

where matrix A = {αi j}, i, j = 1, . . . ,m is an m×m matrix of the quadratic model

parameters to be trained.

We firstly consider the objective function without L1-norm regularised term of

the coefficients:

min
A,βββ ,β0

λ2

2

npu

∑
i=1

∥∥AT xxxi +βββ
∥∥2

2 +Cp

np

∑
i=1

[
1− (

1
2

xxxT
i Axxxi + xxxT

i βββ +β0)

]
+

+Cu

npu

∑
i=np+1

[
1+(

1
2

xxxT
i Axxxi + xxxT

i βββ +β0)

]2

+bbbT RRRbbb

s.t.bi =
1
2

xxxT
i Axxxi + xxxT

i βββ +β0, i = 1,2, . . . ,npu.

(4.23)

It should be noted that there exists a way to convert Equation 4.23 to the form
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similar to Equation 4.1 for the simplification of the optimisation based on the idea in

[55] by converting matrix A to a vector. Firstly, consider to place the upper triangle

elements of matrix A into m2+m
2 ×1-dimensional vector

ααα = (α11,α12, . . .α1m,α22, . . .α2m, . . . ,αmm)
T . (4.24)

Then, we are going to map the ith feature vector xxxi into an m× m2+m
2 feature

matrix Xi in the following steps, which is illustrated in Figure 4.1:

1. Initialising Xi as a {000}
m×m2+m

2
matrix.

2. Record the coordinate g of the element in vector ααα if it is originally from the

jth row or column of matrix A. The other coordinate despite j of this element

in matrix A is subsequently recorded as k.

3. The gth element in the jth row of matrix Xi is determined as xxxik.

4. Repeat Step 2 and Step 3 until the position of all the elements in vector ααα

originally from the jth row or column of matrix A is recorded for fixed j.

5. Repeat Step 4 until j has taken the value from 1 to m.

6. Repeat Step 5 until i has taken the value from 1 to npu.
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A 𝛼

0 in black line

𝑗th row

𝑥𝑖

Xi

(𝑗, 𝑗)

Figure 4.1: Illustration of the steps to construct the jth row of matrix Xi; the elements
marked with green circular markers in vector ααα are equivalent to those repre-
sented by the green dashed lines in matrix A; the elements represented by the
blue circular markers constitute xxxi, and their positions in the jth row of matrix
XXX i correspond to the same positions as the elements represented by the green
circular markers in vector ααα .

After obtaining ααα and Xi, i = 1, . . . ,npu, define ααα∗ = [αααT ,βββ T ]T and X∗
i =

[Xi, IIIm×m].

Then the optimisation of Equation 4.23 can be converted as

min
ααα∗,β0

λ2

2
ααα

∗T GGGααα
∗+bbbT RRRbbb+Cp111T

p
[
111p − (SSS[p]ααα

∗+111pβ0)
]
+

+Cu
[
111u +(SSS[u]ααα

∗+111uβ0)
]T [111u +(SSS[u]ααα

∗+111uβ0)
]

s.t.bbb = SSS[pu]ααα
∗+111puβ0,

(4.25)

where GGG=∑
npu
i=1 (X

∗
i )

T X∗
i , sssi =

1
2 [X

∗
i

T xxxi+(000
1×m2+m

2
,xxxT

i )
T ], SSS[p]= {sssT

i }np×m∗ , SSS[u]=

{sssT
i }nu×m∗ , SSS[pu] = {sssT

i }npu×m∗ , and m∗ = m2+3m
2 .

Then we introduce the regularised term of group LASSO [59] to the objective

function in Equation 4.25, which is able to generate sparse coefficient vector ααα∗ as

the classical L1-norm with the group-wise penalty realised, i.e., once the parameter

of a feature is compressed to 0, all the other parameters of this feature will also be

compressed to 0 so that we can abandon this feature from the model [59]. Hence the
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objective function of EKF-GLPUAL can be obtained as

min
ααα∗,β0

λ2

2
ααα

∗T GGGααα
∗+bbbT RRRbbb+Cp111T

p
[
111p − (SSS[p]ααα

∗+111pβ0)
]
+

+Cu
[
111u +(SSS[u]ααα

∗+111uβ0)
]T [111u +(SSS[u]ααα

∗+111uβ0)
]

+
λ1

2

m

∑
i=1

∥ααα
∗
[i]∥2

s.t. fff = SSS[pu]ααα
∗+111puβ0,

(4.26)

where the column vector ααα∗
[i], i = 1, . . . ,m is the ith subset of ααα∗ containing the

parameters related to the ith feature. The cardinality of ααα∗
[i] for any i = 1, . . . ,m is

m+ 1. It should be noted that one element in ααα∗ may related to up to 2 features,

therefore group overlaps exist among ααα∗
[1],ααα

∗
[2], . . . ,ααα

∗
[m], i.e., ααα∗

[i]∩ααα∗
[ j] ̸= /0, ∀i, j =

1, . . . ,m. This causes difficulty on ADMM for optimisation so that we need firstly

consider the following 5 blocks similar to Equation 4.3:

min
ααα∗,β0,hhh,aaa,ttt, fff

λ1

2

m

∑
i=1

∥ttt [i]∥2 +
λ2

2
ααα

∗T GGGααα
∗+bbbT RRRbbb+Cp111T

p [hhh]++CuaaaT aaa

s.t.hhh = 111p − (SSS[p]ααα
∗+111pβ0),

aaa = 111u +(SSS[u]ααα
∗+111uβ0),

ttt = DDD∗
ααα

∗,

fff = SSS[pu]ααα
∗+111puβ0,

(4.27)

where the m(m+1) column vector ttt = (tttT
[1], ttt

T
[2], . . . , ttt

T
[m])

T . The cardinality of ttt [i], i =

1, . . . ,m is m+ 1. Furthermore, DDD∗ is the m(m+ 1)× m2+3m
2 design matrix. More

specifically, to construct the design matrix DDD∗, firstly we initialise DDD∗ as a m(m+1)×
m2+3m

2 zero matrix. Then if the jth element of ααα∗
[i] is ααα∗

k , the ( j+(i−1)(m+1),k)

element of DDD∗ will be set to 1; after repeating this Step for all i = 1, . . .m and

j = 1, . . .m+1, we can finally obtain the design matrix DDD∗ in Equation 4.27. The

introduced local variable ttt can eliminate the group overlaps among the regularised

terms of group LASSO, i.e., ∀i ̸= j, ttt [i]
⋂

ttt [ j] =∅.
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Similar to the case in E-GLPUAL for linear decision boundary, the objective

function in Equation 4.27 meets the condition to apply ADMM for the optimisation

and the 5-block ADMM for EKF-GLPUAL with kernel free techniques introduced

can be converted as follows:

(ααα∗(k+1),β
(k+1)
0 ) = arg min

ααα∗,β0
La(ααα

∗,β0,hhh(k),aaa(k), ttt(k),bbb(k),uuu
(k)
hhh ,uuu(k)aaa ,vvv(k),qqq(k)),

hhh(k+1) = argmin
hhh

La(ααα
∗(k+1),β

(k+1)
0 ,hhh,uuu(k)hhh ),

aaa(k+1) = argmin
aaa

La(ααα
∗(k+1),β

(k+1)
0 ,aaa,uuu(k)aaa ),

ttt(k+1) = argmin
ttt

La(ααα
∗(k+1),β

(k+1)
0 , ttt,vvv(k)),

bbb(k+1) = argmin
bbb

La(ααα
∗(k+1),β

(k+1)
0 ,bbb,qqq(k)),

uuu(k+1)
hhh = uuu(k)hhh +µ1[111p − (SSS[p]ααα

∗(k+1)+111pβ
(k+1)
0 )−hhh(k+1)],

uuu(k+1)
aaa = uuu(k)aaa +µ2(111u +SSS[u]ααα

∗(k+1)+111uβ
(k+1)
0 −aaa(k+1)),

vvv(k+1) = vvv(k)+µ3(DDD∗
ααα

∗(k+1)− ttt(k+1)),

qqq(k+1) = qqq(k)+µ4(SSS[pu]ααα
∗(k+1)+111puβ

(k+1)
0 −bbb(k+1)).

(4.28)

4.4.1 Update of α∗ and β0

The update of ααα∗ and β0 is

arg min
ααα∗,β0

λ2

2
ααα

∗T GGGααα
∗+uuuhhh

(k)T
[111p − (SSS[p]ααα

∗+111pβ0)−hhh(k)]

+uuuaaa
(k)T

(111u +SSS[u]ααα
∗+111uβ0 −aaa(k))+ vvv(k)

T
(ααα∗− ttt(k))

+qqq(k)
T
(SSS[pu]ααα

∗+111puβ0 −bbb(k))+
µ1

2

∥∥∥111p − (SSS[p]ααα
∗+111pβ0)−hhh(k)

∥∥∥2

2

+
µ2

2

∥∥∥111u +SSS[u]ααα
∗+111uβ0 −aaa(k)

∥∥∥2

2
+

µ3

2

∥∥∥ααα
∗− ttt(k)

∥∥∥2

2

+
µ4

2

∥∥∥SSS[pu]ααα
∗+111puβ0 −bbb(k)

∥∥∥2

2
,

(4.29)

which is a quadratic optimisation with every term differentiable.
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Thus the model parameters in ααα∗∗ = {ααα∗T ,β0}T can be updated by solving

[
µ3DDD∗[0]T DDD∗[0]+λ2GGG[0]+µ1SSS∗T

[p]SSS
∗
[p]+µ2SSS∗T

[u]SSS
∗
[u]+µ4SSS∗T

[pu]SSS
∗
[pu]

]
ααα

∗∗

= SSS∗T
[p]uuuhhh

(k)−SSS∗T
[u]uuuaaa

(k)−DDD∗[0]T vvv(k)[0]−SSS∗T
[pu]qqq

(k)+µ1SSS∗T
[p](111p −hhh(k))

−µ2SSS∗T
[u] (111u −aaa(k))+µ3DDD∗[0]T ttt(k)[0]+µ4SSS∗T

[pu]bbb
(k),

(4.30)

where

SSS∗[ j] = [SSS[ j],111 j], j = p,u,DDD∗[0] =

DDD∗ 0

0 0

 .

4.4.2 Update of h

The update of hhh is

hhh(k+1) =argmin
hhh

Cp111T
p [hhh]++uuu(k)hhh

T
[111p − (SSS[p]ααα

∗(k+1)+111pβ
(k+1)
0 )−hhh]

+
µ1

2

∥∥∥111p − (SSS[p]ααα
∗(k+1)+111pβ

(k+1)
0 )−hhh

∥∥∥2

2
,

(4.31)

As mentioned in the optimisation of E-GLPUAL for linear decision boundary,

considering the following function:

sc(d) = argmin
x

c[x]++
1
2
∥x−d∥2

2 =


d − c,d > c,

0,0 ≤ d ≤ c,

d,d < 0.

(4.32)

we can solve the ith element of hhh(k+1) as

h(k+1)
i = sCp

µ1

[
1+

u(k)hhhi
µ1

− (sssT
i ααα

∗(k+1)+β
(k+1)
0 )

]
. (4.33)



4.4. Methodology and Algorithm of EKF-GLPUAL for Quadratic Decision Boundary65

4.4.3 Update of a

The update of aaa is

aaa(k+1) = argmin
aaa

CuaaaT aaa+uuu(k)aaa
T
[111u +SSS[u]ααα

∗(k+1)+111uβ
(k+1)
0 −aaa]

+
µ2

2

∥∥∥(111u +SSS[u]ααα
∗(k+1)+111uβ

(k+1)
0 −aaa)

∥∥∥2

2
,

(4.34)

This is also a quadratic problem as the update of βββ and β0. Thus we can find the

following solution:

aaa(k+1) =
1

2Cu +µ2
[uuu(k)aaa +µ2(111u +SSS[u]ααα

∗(k+1)+111uβ
(k+1)
0 )]. (4.35)

4.4.4 Update of b

The update of bbb is

bbb(k+1) = argmin
bbb

bbbT RRRbbb+qqq(k)
T
(SSS[pu]ααα

∗(k+1)+111[pu]β
(k+1)
0 −bbb)

+
µ4

2

∥∥∥SSS[pu]ααα
∗(k+1)+111[pu]β

(k+1)
0 −bbb

∥∥∥2

2
,

(4.36)

which is also a quadratic problem. Thus bbb(k+1) can be obtained by the following

equation:

bbb = (2RRR+µ4IIIpu)
−1
[
qqq(k)+µ4(SSS[pu]ααα

∗(k+1)+111[pu]β
(k+1)
0 )

]
. (4.37)
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4.4.5 Update of t

The update of ttt is

ttt(k+1) = argmin
ttt

λ1

2

m

∑
i=1

∥ttt [i]∥2 + vvv(k)
T
(DDD∗

ααα
∗(k+1)− ttt)+

µ3

2

∥∥∥DDD∗
ααα

∗(k+1)− ttt
∥∥∥2

2
.

(4.38)

It is possible to find the closed form of the updated ttt in each iteration of ADMM

since the objective function in Equation 4.38 can be treated as a special scenario of

group LASSO regression.

The sub-optimisation in Equation 4.38 is equivalent to

min
ttt

λ1

2

m

∑
i=1

∥ttt [i]∥2 +
µ3

2

∥∥∥∥∥DDD∗
ααα

∗(k+1)+
vvv(k)

µ3
− ttt

∥∥∥∥∥
2

2

. (4.39)

This can be regarded as a special scenario of the following group LASSO

regression:
λ1

2µ3

m

∑
i=1

∥ttt [i]∥2 +
1
2
∥yyy∗−XXX∗ttt∥2

2 , (4.40)

when yyy∗ = DDD∗
ααα∗(k+1)+ vvv(k)

µ3
and XXX∗ = IIIm(m+1).

Karush–Kuhn–Tucker (KKT) conditions were proposed as necessary and suffi-

cient conditions for the optimal solution of convex optimisation problems. Based on

the techniques for the optimisation of group variables in [56], we can firstly find the

KKT conditions for ttt [i] in Equation 4.40:

−XXX∗T
[i] (yyy∗−XXX∗ttt)+

λ1ttt [i]
2µ3∥ttt [i]∥2

= 0 if ttt [i] ̸= 0,∥∥∥−XXX∗T
[i] (yyy∗−XXX∗ttt)

∥∥∥
2
⩽ λ1

2µ3
if ttt [i] = 0,

(4.41)

where X∗
[i] = XXX∗[·,(i− 1)(m+ 1)+ 1 : i(m+ 1)]. When XXX∗ = IIIm(m+1) for the sub-

optimisation, it is easy to find XXX∗T
[i] XXX∗

[i] = IIIm+1.
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Therefore, denoting Si =XXX∗T
[i]

(
yyy∗−XXX∗

[−i]ttt [−i]

)
=XXX∗T

[i] yyy∗, according to Equation

4.41, we can find

ttt [i] =
[

1− λ1

2µ3 ∥Si∥2

]
+

Si. (4.42)

Thus the closed form of the updated ttt [i] is

ttt(k+1)
[i] =

1− λ1

2µ3

∥∥∥XXX∗T
[i] (DDD

∗
ααα∗(k+1)+ vvv(k)

µ3
)
∥∥∥

2


+

XXX∗T
[i] (DDD

∗
ααα

∗(k+1)+
vvv(k)

µ3
). (4.43)

4.5 Experiments for EKF-GLPUAL on Real Datasets
In this section experiments on real datasets with irrelevant features added were

conducted to compare our proposed EKF-GLPUAL with GLPUAL, and other con-

ventional methods, i.e., uPU and nnPU. More specifically, RBF kernel was applied

to GLPUAL for the non-linear decision in the original feature space.

4.5.1 The Source of Datasets

The Experiments were conducted on the 14 UCI datasets used in Section 3.6, i.e.,

OD, Acc, Ecoli, Pen-Based Recognition of Handwritten Digits (Pen), OR1, OR2,

wifi, UMD,RD, SSMCR, Seeds, ENB, HD, and LD. Due to the computationally

singular errors encountered in the current code of EKF-GLPUAL on datasets PB

and Avila, these two datasets were excluded. The details of these 14 datasets are

summarised in Table 4.3.

4.5.2 The Preprocessing of the Datasets

To make the experiments consistent to the verification of the motivation of EKF-

GLPUAL, the 14 datasets were also preprocessed by the following two steps similar

to Section 4.3.1:

1. Standardise the 14 real datasets in Table 4.3.
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Table 4.3: Summary of the datasets for the verification of the motivation of EKF-GLPUAL.

Dataset positive instances negative instances features
Acc 100 red 100 blue 4
Ecoli 116 im & 52 pp 143 cp & 25 om 6
Pen 200 one & 200 eight 400 four versicolor 16
OR1 301 UK 301 Germany 4
OR2 500 UK 500 Germany 4
SSMCR 391 alive 109 dead 3
OD 100 occupied 300 not occupied 5
UMD 83 Low 63 high 5
Seeds 70 Kama 70 Rosa 7
ENB 144 TypeII 144 Type III 7
wifi 100 Location 2& 100 Location 4 499 Location 1 & 100 Location 3 7
RD 450 Kecimen 450 Besni 7
LD 144 class 1 200 class 2 6
HD 150 absence 119 presence 13

2. Add several irrelevant features into the standardised synthetic dataset gener-

ated in Step 1. These irrelevant variables follow the i.i.d. standard normal

distribution and the quantity of these irrelevant features is twice the number of

the features in the standardized synthetic dataset generated in Step 1.

For the same aim as Section 4.3.1, the standardisation in Step 1 is to ensure

that the introduced irrelevant features in Step 2 exert sufficient disturbance on the

original datasets for model training, compared with the magnitude of these datasets.

4.5.3 Training-Test Split for the Real PU Datasets

The training-test split for the 14 real datasets preprocessed by the steps in Section

4.5.2 is the same as the training-test split in Section 3.6.2. In this case, there obtained

10 pairs of PU training and test sets for each of the 14 real datasets with a certain

label frequency γ = 0.5,0.25 at the case-control scenario.

4.5.4 Compared Methods and Model Setting

GLPUAL, uPU and nnPU were also trained on the 14 real datasets as the compared

methods with EKF-GLPUAL. GLPUAL serves as the baseline of EKF-GLPUAL.

By fixing Cp to 1 and the number K of the nearest neighbors to 5, Cu, λ1,

λ2, and σ in the objective functions of EKF-GLPUAL were firstly tuned by 4-
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fold CV, which reached the highest average PUF-score in Equation 3.14 with

the denominator P[sgn( f (xxx)) = 1] estimated by 1
nu

∑xxxi∈uℶ(sgn( f (xxxi)) = 1) at the

case-control scenario. More specifically, λ1, λ2, and σ were tuned from the set

{10−4,10−3,10−2,10−1,100,101,102,103,104} and Cu was selected to from the set

{0.5,0.3,0.1,0.05,0.01} based on the setting in [21]. Then λ , σ and Cu were con-

tinually tuned following the greedy algorithm based on the average PUF-score on

the validation sets as in Section 3.6.4.

The hyper-parameter tuning for GLPUAL, uPU and nnPU is the same as Section

3.6.4.

4.5.5 Results and Analysis

The results of the experiments are summarised in Table 4.4 by average F1-score. The

details of the features abandoned by EKF-GLPUAL in each dataset are summarised

in Table 4.5.

Firstly, as for the average F1-score in Table 4.4, EKF-GLPUAL performed

better than GLPUAL on 18 cases out of totally 28 cases, which indicates that

EKF-GLPUAL can do better classification than GLPUAL when there are irrelevant

variables in data. More specifically, EKF-GLPUAL worked better not only on the

most cases of the 4 trifurcated PU datasets wifi, OR1, OR2 and Pen, but also on the

most cases of the 6 non-trifurcated PU datasets SSMCR, UMD, OD, ENB, seeds,

and LD. Secondly, there are in total 19 cases where EKF-GLPUAL perform better

than uPU and nnPU. Finally, there are 11 cases where EKF-GLPUAL is the optimal

choice among the four methods in the experiments.

The kernel trick made it impossible to observe the parameters of each feature

trained by GLPUAL, so that we cannot recognise which feature was abandoned

by GLPUAL. In this case, Table 4.5 only summarised the percentage proportion

features abandoned by EKF-GLPUAL in each dataset.

There are mainly two issues reflected from Table 4.5. Firstly, though generally

EKF-GLPUAL can abandoned several irrelevant features on most of the training

sets, on HD and RD, the proportion of the irrelevant features abandoned by EKF-

GLPUAL is lower than 25% in average. This is not a satisfactory result. Considering
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that EKF-GLPUAL works not as good as GLPUAL on these two datasets, especially

on RD, one potential reason for the unsatisfactory performance of EKF-GLPUAL

on HD and RD is that the quadratic boundary generated by the kernel-free setting

in Equation 4.26 is not suitable for the structure of HD and RD. Secondly, another

issue reflected by Table 4.5 is that even on the datasets with good performance of

EKF-GLPUAL, EKF-GLPUAL cannot abandon all the irrelevant features thoroughly.

This is not as good as the case of E-GLPUAL on the synthetic datasets in Section

4.3. Therefore, finding the way to make EKF-GLPUAL to abandon all the irrelevant

features accurately is a main future work on EKF-GLPUAL.

Table 4.4: The average F1-scores (%) of the classifiers and their standard deviations; for
each of the 14 original datasets, the average F1-score (%) and standard deviation
in the two rows were obtained under label frequency γ = 0.5,0.25, respectively;
the results highlighted in blue for EKF-GLPUAL indicate that it is the best among
the four methods; the results highlighted in red for EKF-GLPUAL indicate that it
outperforms GLPUAL but falls short of uPU and nnPU.

Dataset EKF-GLPUAL GLPUAL uPU nnPU

OD 100.00 ± 0.00 85.67 ± 5.97 80.00 ± 42.16 100.00 ± 0.00
91.39 ± 12.26 80.58 ± 7.85 70.00 ± 48.30 100.00 ±0.00

OR1 88.25 ± 3.46 78.40 ± 2.39 15.76 ± 31.60 78.51 ± 6.50
79.32 ± 12.33 73.69 ± 3.36 19.59 ± 31.28 67.60 ± 6.61

OR2 80.34 ± 8.21 73.36 ± 1.82 71.81 ± 6.23 76.88 ± 4.20
80.74 ± 7.07 70.17 ± 6.84 69.26 ± 4.52 72.73 ± 3.81

UMD 91.25 ± 3.14 74.39 ± 4.14 100.00 ± 0.00 100.00 ± 0.00
89.97 ± 4.61 72.44 ± 4.62 100.00 ± 0.00 100.00 ± 0.00

Acc 71.18 ± 5.29 69.97 ± 4.90 19.19 ± 26.41 19.66 ± 27.64
71.59 ± 5.42 69.81 ± 5.14 21.30 ± 28.73 22.62 ± 30.29

Ecoli 89.01 ± 0.90 91.58 ± 3.62 76.12 ± 5.59 77.66 ± 6.06
85.40 ± 7.18 83.41 ± 5.70 76.13 ± 6.39 77.73 ± 5.93

ENB 66.63 ± 5.33 45.25 ± 7.35 28.85 ± 20.18 29.33 ± 21.66
64.44 ± 6.53 44.58 ± 9.35 24.47 ± 28.50 24.88 ± 29.07

HD 75.33 ± 4.29 80.51 ± 3.08 67.50 ± 4.11 70.63 ± 2.07
76.31 ± 2.95 81.19 ± 5.13 66.69 ± 4.04 68.94 ± 2.80

Pen 88.34 ± 10.83 82.47 ± 21.16 83.70 ± 9.43 84.51 ± 12.85
85.77 ± 12.54 80.82 ± 23.88 79.82 ± 10.66 80.49 ± 12.31

LD 58.22 ± 5.00 47.34 ± 6.34 10.89 ± 23.54 29.07 ± 25.57
58.81 ± 4.13 45.43 ± 5.30 9.53 ± 21.69 18.80 ± 24.58

SSMCR 88.21 ± 1.28 82.84 ± 2.75 79.54 ± 1.49 80.72 ± 1.34
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Table 4.4 – continued from previous page
Dataset EKF-GLPUAL GLPUAL uPU nnPU

87.86 ± 1.91 82.33 ± 2.18 79.59 ± 1.88 81.92 ± 1.41

Seeds 86.25 ± 4.18 74.24 ± 7.23 84.14 ± 4.02 91.38 ± 5.44
89.90 ± 3.43 70.78 ± 21.21 80.96 ± 5.89 85.64 ± 5.23

wifi 66.22 ± 1.40 67.09 ± 3.35 82.30 ± 2.71 89.07 ± 4.59
77.87 ± 2.27 63.58 ± 1.51 80.26 ± 3.47 85.75 ± 6.25

RD 32.13 ± 2.16 77.09 ± 2.90 68.57 ± 14.65 69.94 ± 16.27
31.82 ± 2.58 71.83 ± 4.29 67.01 ± 14.08 69.53 ± 12.73

Table 4.5: The average percentage proportion of the irrelevant features whose parameters
were compressed to zero relative to the total number of irrelevant features with
the standard deviation.

OD 84.00 ± 6.99 SSMCR 55.00 ± 15.81
86.00 ± 6.99 53.33 ± 20.49

OR1 75.00 ± 11.79 UMD 86.00 ± 9.66
73.75 ± 10.94 76.00 ± 23.66

OR2 52.50 ± 11.49 RD 24.29 ± 9.04
46.25 ± 13.76 15.71 ± 8.11

Pen 70.94 ± 8.21 Seeds 47.14 ± 9.04
67.19 ± 6.95 51.43 ± 11.07

wifi 75.71 ± 6.02 Acc 91.25 ± 9.22
52.86 ± 10.35 85.00 ± 6.45

Ecoli 77.08 ± 11.85 HD 17.69 ± 4.87
72.92 ± 12.87 15.00 ± 6.14

ENB 48.57 ± 7.38 LD 56.67 ± 11.65
47.86 ± 9.55 55.83 ± 11.15

4.6 Some Theoretical Exploration of on Grouping Ef-

fect
The grouping effect of a classifier is an advantage of elastic net, indicating that a

classifier assign similar coefficients to similar features [48]; this can preserve the

feature which have similar contribution to the classification into the classifier and

is hence benefit to the model interpretation. Meanwhile, the classifier with only
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L1-norm regularised term for the model parameters preserves only one feature and

assign 0 coefficients to the other features similar to this feature. More specifically,

the grouping effect of E-GLPUAL can be summarised into the following theorem:

Theorem 2 Suppose that β̂i and β̂ j are the optimal coefficients of E-GLPUAL for

the ith and jth features with. Then there is
∣∣∣(β̂i − β̂ j)

∣∣∣→ 0 as ∥xxx[pu]·i−xxx[pu]· j∥2 → 0.

As for the proof of Theorem 2, consider the following equivalent reformulation

of unconstrained problem in Equation 4.1:

min
βββ ,β0,ξξξ [p]

λ1

2
∥βββ∥1 +

λ2

2
∥βββ∥2

2 +Cp111T
p ξξξ [p]

+Cu[1+XXX [u]βββ +β0]
T [1+XXX [u]βββ +β0]

+ (XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0)

s.t.

(XXX [p]βββ +111pβ0)+ξξξ [p] ⪰ 111p

ξξξ [p] ⪰ 0.

, (4.44)

where ξξξ [p] = (ξ1,ξ2, . . . ,ξp)
T ∈ Rp×1 is a vector of slack variables. The Lagrangian

function of problem in Equation 4.44 is given as

l′(βββ ,β0,ξξξ [p]) =
λ1

2
∥βββ∥1 +

λ2

2
∥βββ∥2

2 +Cp111T
p ξξξ [p]

+Cu[1+XXX [u]βββ +β0]
T [1+XXX [u]βββ +β0]

+ (XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0)

+υυυ
T [111p − (XXX [p]βββ +111pβ0)−ξξξ [p]]−θθθ

T
ξξξ [p]

, (4.45)

where υυυ ,θθθ ⪰ 000 are the dual variables of constraint 111p − (XXX [p]βββ +111pβ0)−ξξξ [p] ⪯ 0

and −ξξξ [p] ⪯ 0, respectively.

Suppose that the solution of the optimisation in Equation 4.44 is (β̂ββ , β̂0, ξ̂ξξ [p]).

According to the Karush–Kuhn–Tucker (KKT) conditions [60], for i ̸= j with β̂iβ̂ j >

0 we have
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∂ l′(βββ ,β0,ξξξ [p])

∂βi
|
(β̂ββ ,β̂0,ξ̂ξξ [p])

=
λ1

2
sgn(β̂i)+λ2β̂i +2CuxxxT

[u]·i(111u +X[u]β̂ββ +111uβ̂0)

+2xxxT
[pu]·iRRR(XXX [pu]β̂ββ +111[pu]β̂0)− xxxT

[p]·iυυυ = 0

,

(4.46)
∂ l′(βββ ,β0,ξξξ [p])

∂β j
|
(β̂ββ ,β̂0,ξ̂ξξ [p])

=
λ1

2
sgn(β̂ j)+λ2β̂ j +2CuxxxT

[u]· j(111u +X[u]β̂ββ +111uβ̂0)

+2xxxT
[pu]· jRRR(XXX [pu]β̂ββ +111[pu]β̂0)− xxxT

[p]· jυυυ = 0

,

(4.47)

and
∂ l′(βββ ,β0,ξξξ [p])

∂ξξξ [p]
|
(β̂ββ ,β̂0,

ˆξξξ [p])
=Cp111p −υυυ −θθθ = 000. (4.48)

Combining Equation 4.48 and υυυ ,θθθ ⪰ 000, we have

000 ⪯ υυυ ⪯Cp111p. (4.49)

Assume that β̂iβ̂ j > 0 and hence sgn(β̂i) = sgn(β̂ j). Then subtracting Equation

4.47 from Equation 4.46, the following equation can be obtained:

λ2(β̂i − β̂ j)+2Cu(xxxT
[u]·i − xxxT

[u]· j)(111u +X[u]β̂ββ +111uβ̂0)

+2(xxxT
[pu]·i − xxxT

[pu]· j)RRR(XXX [pu]β̂ββ +111[pu]β̂0)− (xxxT
[p]·i − xxxT

[p]· j)υυυ = 0.
(4.50)

Substituting (βββ ,β0) in Equation 4.1 by (βββ = 000,β0 = 0) and the solution of the
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optimisation (β̂ββ , β̂0), respectively, we have

λ1

2

∥∥∥β̂ββ

∥∥∥
1
+

λ2

2

∥∥∥β̂ββ

∥∥∥2

2
+Cp111T

p [111p − (XXX [p]β̂ββ + β̂0111p)]++Cu

∥∥∥111u +XXX [u]β̂ββ + β̂0111u

∥∥∥2

2

+(XXX [pu]β̂ββ +111puβ̂0)
T RRR(XXX [pu]β̂ββ +111puβ̂0)≤ npCp +nuCu.

(4.51)

It should be noted that the square root of symmetric matrix RRR must exist, denoted

as RRR
1
2 , which satisfies RRR=RRR

1
2

T
RRR

1
2 . Obviously, every term in the left side of inequality

4.51 is non-negative, so that

∥∥∥111u +XXX [u]β̂ββ + β̂0111u

∥∥∥2

2
≤ np

Cp

Cu
+nu (4.52)

and ∥∥∥RRR
1
2 (XXX [pu]β̂ββ +111puβ̂0)

∥∥∥2

2
≤ npCp +nuCu. (4.53)

According to Equation 4.50 and the absolute value inequality, we can obtain

the following inequality:

∣∣∣(β̂i − β̂ j)
∣∣∣= 1

λ2

∣∣∣2Cu(xxxT
[u]·i − xxxT

[u]· j)(111u +X[u]β̂ββ +111uβ̂0)

+2(xxxT
[pu]·i − xxxT

[pu]· j)RRR(XXX [pu]β̂ββ +111[pu]β̂0)− (xxxT
[p]·i − xxxT

[p]· j)υυυ
∣∣∣

≤2Cu

λ2

∣∣∣(xxx[u]·i − xxx[u]· j)
T (111u +X[u]β̂ββ +111uβ̂0)

∣∣∣+ 1
λ2

∣∣(xxx[p]·i − xxx[p]· j)
T

υυυ
∣∣

+
2
λ2

∣∣∣∣(xxx[pu]·i − xxx[pu]· j)
T RRR

1
2

T
RRR

1
2 (XXX [pu]β̂ββ +111[pu]β̂0)

∣∣∣∣ .
(4.54)
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Apply the Cauchy-Schwarz inequality to the right side of Inequality 4.54:

2Cu

λ2

∣∣∣(xxx[u]·i − xxx[u]· j)
T (111u +X[u]β̂ββ +111uβ̂0)

∣∣∣+ 1
λ2

∣∣(xxx[p]·i − xxx[p]· j)
T

υυυ
∣∣

+
2
λ2

∣∣∣∣(xxx[pu]·i − xxx[pu]· j)
T RRR

1
2

T
RRR

1
2 (XXX [pu]β̂ββ +111[pu]β̂0)

∣∣∣∣
≤2Cu

λ2

∥∥xxx[u]·i − xxx[u]· j
∥∥

2

∥∥∥111u +X[u]β̂ββ +111uβ̂0

∥∥∥
2
+

1
λ2

∥∥(xxx[p]·i − xxx[p]· j)
∥∥

2 ∥υυυ∥2

+
2
λ2

∥∥∥RRR
1
2 (xxx[pu]·i − xxx[pu]· j)

∥∥∥
2

∥∥∥RRR
1
2 (XXX [pu]β̂ββ +111[pu]β̂0)

∥∥∥
2
.

(4.55)

Combining Inequality 4.55, Inequality 4.52, Inequality 4.53 and υυυ ⪯Cp111p in

Inequality 4.49, we can obtain

2Cu

λ2

∥∥xxx[u]·i − xxx[u]· j
∥∥

2

∥∥∥111u +X[u]β̂ββ +111uβ̂0

∥∥∥
2
+

1
λ2

∥∥(xxx[p]·i − xxx[p]· j)
∥∥

2 ∥υυυ∥2

+
2
λ2

∥∥∥RRR
1
2 (xxx[pu]·i − xxx[pu]· j)

∥∥∥
2

∥∥∥RRR
1
2 (XXX [pu]β̂ββ +111[pu]β̂0)

∥∥∥
2

≤2Cu

λ2

√
np

Cp

Cu
+nu

∥∥(xxx[u]·i − xxx[u]· j)
∥∥

2 +
2
λ2

√
npCp +nuCu

∥∥∥RRR
1
2 (xxx[pu]·i − xxx[pu]· j)

∥∥∥
2

+

√npCp

λ2

∥∥(xxx[p]·i − xxx[p]· j)
∥∥

2

≤2Cu

λ2

√
np

Cp

Cu
+nu

∥∥(xxx[pu]·i − xxx[pu]· j)
∥∥

2 +
2
λ2

√
npCp +nuCu

∥∥∥RRR
1
2 (xxx[pu]·i − xxx[pu]· j)

∥∥∥
2

+

√npCp

λ2

∥∥(xxx[pu]·i − xxx[pu]· j)
∥∥

2 .

(4.56)

Therefore, combining Inequality 4.54, Inequality 4.55 and Inequality 4.56, we

can eventually obtain

∣∣∣(β̂i − β̂ j)
∣∣∣≤2Cu

λ2

√
np

Cp

Cu
+nu

∥∥(xxx[pu]·i − xxx[pu]· j)
∥∥

2 +

√npCp

λ2

∥∥(xxx[pu]·i − xxx[pu]· j)
∥∥

2

+
2
λ2

√
npCp +nuCu

∥∥∥RRR
1
2 (xxx[pu]·i − xxx[pu]· j)

∥∥∥
2
.

(4.57)
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According to inequality 4.57, when xxx[pu]·i → xxx[pu]· j, the upper bound of∣∣∣(β̂i − β̂ j)
∣∣∣ is tending to 0, hence the grouping effect holds in EKF-GLPUAL

However, if we follow the same steps to verify the grouping effect on EKF-

GLPUAL w.r.t. α∗
i and α∗

j , we will obtain:

∣∣∣∣∣ α̂∗
i

∥ ˆααα∗
[I]∥2

−
α̂∗

j

∥ ˆααα∗
[J]∥2

+(gggi·−ggg j·)α̂αα
∗

∣∣∣∣∣≤ 2Cu

λ2

√
np

Cp

Cu
+nu

∥∥(sss[pu]·i − sss[pu]· j)
∥∥

2

+

√npCp

λ2

∥∥(sss[pu]·i − sss[pu]· j)
∥∥

2 +
2
λ2

√
npCp +nuCu

∥∥∥RRR
1
2 (sss[pu]·i − sss[pu]· j)

∥∥∥
2
,

(4.58)

where α∗
i ∈ {ααα∗

[I]}, α∗
j ∈ {ααα∗

[J]}, sss[pu]·i is the ith column of SSS[pu]·i, gggi· is the ith row of

GGG[pu]. The left side of Inequality 4.58 is much more complex than the left side of 4.57,

where it contains not only the parameters α∗
i and α∗

j but also the other parameters

belong to {ααα∗
[I]} and {ααα∗

[J]}. Therefore, the case-dependent studies on the grouping

effect of EKF-GLPUAL is also regarded as the future work on EKF-GLPUAL.

4.7 Conclusion
In this Chapter, we proposed E-GLPUAL and EKF-GLPUAL for better classification

than GLPUAL on the datasets with irrelevant features. Then the algorithms to solve

the optimisation for objective function of E-GLPUAL and EKF-GLPUAL were

proposed based on ADMM. EKF-GLPUAL was showed to have better performance

than GLPUAL on all the synthetic datasets and several real datasets with irrelevant

features added, which supported our motivation. However, currently EKF-GLPUAL

cannot abandon all the irrelevant features thoroughly. At the end of this chapter, the

grouping effect of E-GLPUAL is proved while the grouping effect of EKF-GLPUAL

is a much more complex case to be left as the future work for more case-dependent

studies.



Chapter 5

Class-Prior-Based GLPUAL

(CPB-GLPUAL)

5.1 Introduction

Recall the objective function of GLPUAL for linear decision boundary:

min
βββ ,β0

λ

2
βββ

T
βββ +Cp111T

p [111p − (XXX [p]βββ +111pβ0)]+

+Cu[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0),

(5.1)

where Cp =
1

np
cp and Cu =

1
nu

cu.

One weakness of GLPUAL is that there are three hyper-parameters Cu, λ , and

σ in similarity matrix RRR to be tuned by CV with hyper-parameter Cp fixed to 1.

An increase in the number of hyper-parameters corresponds to an escalation in the

complexity of the identification of optimal hyper-parameter configuration and thus

the optimal classification performance.

Motivated by this issue, firstly in Section 5.3, we introduced the setting of

uPU [23] to the objective function of GLPUAL to propose a new PU classifier with

hyper-parameters Cp and Cu to be determined by class prior π for better classification.

The proposed classifier is designated as CPB-GLPUAL. Secondly, in Section 5.4,

we proposed an algorithm based on ADMM for the non-convex optimisation of
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CPB-GLPUAL to obtain the linear decision boundary in the original feature space.

Thirdly, experiments on the synthetic datasets were conducted in Section 5.5 to

verify our motivation. Fourthly, in Section 5.6, we introduced the kernel trick to

CPB-GLPUAL to obtain the non-linear decision boundary in the original feature

space. In Section 5.7, we conducted experiments on the real datasets to assess the

performance of CPB-GLPUAL with kernel trick applied.

Furthermore, we found that CPB-GLPUAL can exhibit universal consistency, a

good property indicating that the 0-1 risk of CPB-GLPUAL converges in probability

to the Bayes risk, which is rarely discussed in PU learning. In Section 5.8, we do

theoretical analysis for CPB-GLPUAL to prove its universal consistency to Bayes

risk and propose a lower bound for the gap between the 0-1 risk of CPB-GLPUAL

and Bayes risk.

5.2 Assumption for CPB-GLPUAL

5.2.1 Case-Control Scenario

The case-control scenario assumption was made on the source of datasets that the

labeled-positive and unlabeled instances are collected from two independent datasets,

respectively [61]. Furthermore, the unlabeled set is assumed to follow the same

distribution to the ground-truth population, i.e., the instances from the unlabeled set

are i.i.d. sample of the ground-truth population as shown in the following equation:

P[XXX = xxx|S =−1] = P[XXX = xxx] = πP[XXX = xxx|Y = 1]+(1−π)P[XXX = xxx|Y = 0]. (5.2)

5.2.2 Known Class Prior

Consistent with the methods based on uPU, the class prior π is assumed to be known

for the model training as the setting of [23]. In the experiments of this chapter, π was

estimated by calculating the proportion between the amount of positive instances

and the amount of negative instances in the unlabeled set since the datasets were



5.3. Methodology of CPB-GLPUAL for Linear Decision Boundary in the Original Feature Space79

assumed from the case-control scenario. In practice, π can be obtained by either

prior knowledge of the data source or the class prior estimation methods, e.g., [62],

[63],[64], [65] and [43].

5.3 Methodology of CPB-GLPUAL for Linear Deci-

sion Boundary in the Original Feature Space

The general form of the asymmetric loss function for an instance (x,y) in the objective

function of GLPUAL can be written as

l( f (xxx;βββ ,β0),s) =

 [1− xxxT βββ −β0]+,s = 1,

(1+ xxxT βββ +β0)
2,s =−1,

(5.3)

where s is the labeling indicator.

Then recall the objective function for uPU in Equation 2.8 in Section 2.3.4 is

min
βββ

πL̂1
p( f )+ L̂−1

u ( f )−πL̂−1
p ( f ), (5.4)

where L̂1
p( f ) = 1

np
∑xxx∈p l( f (XXX ;βββ ),1), L̂−1

u ( f ) = 1
nu

∑xxx∈u l( f (XXX ;βββ ),−1) and

L̂−1
p ( f ) = 1

np
∑xxx∈p l( f (XXX ;βββ ),−1). In this case, L̂1

p( f ), L̂−1
u ( f ) and L̂−1

p ( f ) are

unbiased estimators of L1
p( f ) = EXXX∼P[l( f (XXX ;βββ ),1)], L−1

u ( f ) = E[l( f (XXX ;βββ ),−1)]

and L−1
p ( f ) = EX∼P[l( f (XXX ;βββ ),−1)], respectively. The weights of the loss in the

objective function of uPU in Equation 5.4 are determined by class prior π .

Therefore, 1
np

111T
p [111p − (XXX [p]βββ +111pβ0)]+ in the objective function of GLPUAL

in Equation 5.1 can be regarded as L̂1
p( f ) in the objective function of uPU in Equation

5.4, while 1
nu
[111u+(XXX [u]βββ +111uβ0)]

T [111u+(XXX [u]βββ +111uβ0)] can be regarded as L̂−1
u ( f )

in the objective function of uPU. In this case, we need to add 1
np
[111u + (XXX [p]βββ +

111pβ0)]
T [111p +(XXX [p]βββ +111uβ0)], equivalent to L̂−1

p ( f ), into the objective function of

GLPUAL to construct an objective function as
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min
βββ ,β0

λ

2
βββ

T
βββ + cp

1
np

111T
p [111p − (XXX [p]βββ +111pβ0)]+

+ cu
1
nu

[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

+ cp2
1
np

[111p +(XXX [p]βββ +111pβ0)]
T [111p +(XXX [p]βββ +111pβ0)]

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0).

(5.5)

Let cu = c. According to the objective function of uPU in Equation 5.4, cp

and cp2 can be determined as πc and −πc to make the weighted average of the loss

functions disregarding the coefficient c an unbiased and consistent estimator of the

expected loss to classify a new instance. Thus the objective function in Equation 5.5

can be transformed to

min
βββ ,β0

λ

2
βββ

T
βββ +

πc
np

111T
p [111p − (XXX [p]βββ +111pβ0)]+

+
c
nu

[111u +(XXX [u]βββ +111uβ0)]
T [111u +(XXX [u]βββ +111uβ0)]

− πc
np

[111p +(XXX [p]βββ +111pβ0)]
T [111p +(XXX [p]βββ +111pβ0)],

+(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0).

(5.6)

There are only two hyper-parameters, i.e., λ , and σ in similarity matrix RRR, need

to be selected in the objective function in Equation 5.6 as the hyper-parameter c is

fixed to be 1.

It should be noted that there does not exist a certain ζ ∈R to make the asymmet-

ric loss of GLPUAL in Equation 5.3 always meet the linear-odd condition proposed

in [66], i.e.,

l( f ,1)− l( f ,−1) = [1− f ]+− (1+ f )2 =

 − f 2 −3 f ̸=−ζ f , f < 1;

− f 2 −2 f −1 ̸=−ζ f , f >= 1.
(5.7)
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Not satisfying the odd condition can render the objective function in Equation

5.6 non-convex, leading to significant challenges in optimisation [67]. In order to

have an algorithm based on ADMM for solving the non-convex optimisation, we

replace the squared loss in Equation 5.7 with the absolute loss l( f ,−1) = |1+ f |,

which can also make all unlabeled instances contribute to the construction of decision

boundary like the squared loss. The relationship between the absolute loss and the

squared loss is illustrated in figure 5.1.

In this way, the objective function of CPB-GLPUAL for linear decision bound-

ary can be represented as

min
βββ ,β0

λ

2
βββ

T
βββ +

πc
np

111T
p [111p − (XXX [p]βββ +111pβ0)]++

c
nu

∥111u +(XXX [u]βββ +111uβ0)∥1

− πc
np

∥111p +(XXX [p]βββ +111pβ0)∥1 +(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0).

(5.8)

The predictive score function of CPB-GLPUAL for instance xxx is the same as

the predictive score function of GLPUAL, i.e.,

f (xxx) = xxxT
βββ +β0.

5.4 Algorithm of CPB-GLPUAL for Linear Decision

Boundary in the Original Feature Space

5.4.1 ADMM for Non-Convex Optimisation

Despite ADMM being initially proposed for convex optimization in [37], in recent

years, studies [68, 69, 70, 71, 72, 73] have also explored the convergence conditions

of ADMM for non-convex and non-differentiable objective functions. Thus in this

section, we proposed an algorithm based on ADMM for the non-convex optimisation
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L(f(x),y)

yf(x)-1
0

Squared Loss

Absolute Loss

Figure 5.1: The similarity between the absolute loss and the squared loss; x-axis: the
distance between the instance and the correct margin boundary; the negative
distance indicates that the instance lies on the wrong side of margin while the
positive distance indicates that the instance lies on the correct side of the margin;
y-axis: the loss of the predictive score function f .

of CPB-GLPUAL for linear decision boundary.

Firstly, let matrix

CCCn =

−πc
np

IIIp 000

000 c
nu

IIIu,

 , (5.9)

where IIIu is an nu×nu identity matrix and IIIp is an np×np identity matrix, respectively.

In this case, the objective function of GLPUAL in Equation 5.8 can be transformed

to the following form:

min
βββ ,β0,hhh,aaa

λ

2
βββ

T
βββ +(XXX [pu]βββ +111puβ0)

T RRR(XXX [pu]βββ +111puβ0)+
πc
np

111T
p [hhh]++111T

puCCCn[aaa]++

s.t. hhh = 111p − (XXX [p]βββ +111pβ0),

aaa = 111pu +(XXX [pu]βββ +111puβ0),

(5.10)

where [aaa]++ is a column vector and the ith element of [aaa]++ is |ai|

The objective function in Equation 5.10 can be divided into three blocks,

i.e., πc
np

111T
p [hhh]+, 111T

puCCCn[aaa]++ and λ

2 βββ
T

βββ + (XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0).

λ

2 βββ
T

βββ + (XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0) is convex and Lipschitz differen-

tiable w.r.t. βββ and β0. πc
np

111T
p [hhh]+ is convex but not always differentiable w.r.t.



5.4. Algorithm of CPB-GLPUAL for Linear Decision Boundary in the Original Feature Space83

hhh. 111T
puCCCn[aaa]++ is neither convex nor always differentiable w.r.t. aaa.

It should be noted that 111T
p [hhh]+ = ∑

np
i=1 max(0,hi) and 111T

puCCCn[aaa]++ =

c
nu

∑
npu
i=np+1 |ai|− πc

np
∑

np
i=1 |ai|; this indicates that 111T

p [hhh]+ and 111T
puCCCn[aaa]++ are piece-

wise linear functions for hhh and aaa, respectively.

Furthermore,
πc∂111T

p [hhh]+
np∂hhh is a column vector consisting of elements that are

either πc
np

or 0.
∂111T

puCCCn[aaa]++

∂aaa is a column vector whose elements take value from

{πc
np
,−πc

np
, c

nu
,− c

nu
}. This indicates that

πc∂111T
p [hhh]+

np∂hhh and
∂111T

puCCCn[aaa]++

∂aaa are bounded in any

bounded set.

According to [68], for the non-convex objective function which has optimal

solution to be solved via ADMM, the non-convex blocks and the blocks not always

differentiable are required to be piece-wise linear and their partial derivatives are

required to be bounded in any bounded set. [68] also requires the convex blocks to be

Lipschitz differentiable. As discussed above in this section, the three blocks 111T
p [hhh]+,

111T
puCCCn[aaa]++ and λ

2 βββ
T

βββ +(XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0) all meet their cor-

responding requirements, respectively. Therefore, based on the proposed structure

of ADMM in [68], we propose the following algorithm to solve the optimisation of

CPB-GLPUAL in Equation 5.8.

Firstly, the Lagrangian function of the objective function of CPB-GLPUAL in

Equation 5.10 is

L (θθθ cpb) =
λ

2
βββ

T
βββ +(XXX [pu]βββ +111puβ0)

T RRR(XXX [pu]βββ +111puβ0)

+
πc
np

111T
p [hhh]++111T

puCCCn[aaa]++

+uuuT
hhh [111p − (XXX [p]βββ +111pβ0)−hhh]

+uuuT
aaa (111pu +XXX [pu]βββ +111puβ0 −aaa)

s.t. hhh = 111p − (XXX [p]βββ +111pβ0),

aaa = 111pu +XXX [pu]βββ +111puβ0,

(5.11)

where θθθ cpb = {βββ ,β0,hhh,aaa,uuuhhh,uuuaaa}, uuuhhh and uuuaaa are dual variables. Furthermore, the
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augmented Lagrangian function of CPB-GLPUAL is defined as

La(θθθ cpb) =L (θθθ cpb)+
µ1

2

∥∥111p − (XXX [p]βββ +111pβ0)−hhh
∥∥2

2

+
µ2

2

∥∥111pu +XXX [pu]βββ +111puβ0 −aaa
∥∥2

2 .
(5.12)

The Lagrangian function and augmented Lagrangian function of CPB-GLPUAL

is similar to the ones of GLPUAL. Differently, according to [68], we need to optimise

the non-convex blocks at first, the convex blocks but not always differentiable at

second and the convex Lipschitz differentiable blocks at last. Hence, the optimisation

of the CPB-GLPUAL for linear decision boundary can be handled by iteratively

solving the following updates until convergence:

aaa(k+1) = argmin
aaa

La(βββ
(k),β

(k)
0 ,hhh(k),aaa,uuu(k)hhh ,uuu(k)aaa ),

hhh(k+1) = argmin
hhh

La(βββ
(k),β

(k)
0 ,hhh,aaa(k+1),uuu(k)hhh ,uuu(k)aaa ),

(βββ (k+1),β
(k+1)
0 ) = argmin

βββ ,β0

La(βββ ,β0,hhhk+1,aaa(k+1),uuu(k+1)
hhh ,uuu(k)aaa ),

uuu(k+1)
hhh = uuu(k)hhh +µ1[111p − (XXX [p]βββ

(k+1)+111pβ
(k+1)
0 )−hhh(k+1)],

uuu(k+1)
aaa = uuu(k)aaa +µ2[111pu +XXX [pu]βββ

(k+1)+111puβ
(k+1)
0 −aaa(k+1)].

(5.13)

5.4.2 Update of a

According to Equation 5.12, the update of a is to solve

aaa(k+1) =argmin
aaa

1
µ2

111T
puCCCn[aaa]+++

uuu(k)aaa
T

µ2
(111pu +XXX [pu]βββ

(k)+111puβ
(k)
0 −aaa)

+
1
2

∥∥∥111pu +XXX [pu]βββ
(k)+111puβ

(k)
0 −aaa

∥∥∥2

2
.

(5.14)
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This is equivalent to optimise

argmin
aaa

1
µ2

111T
puCCCn[aaa]+++

1
2

∥∥∥∥∥111pu +
uuu(k)aaa

µ2
+XXX [pu]βββ

(k)+111puβ
(k)
0 −aaa

∥∥∥∥∥
2

2

. (5.15)

Noted that the terms containing ai, i = 1,2., . . . ,npu in Equation 5.15 do not

contain other elements of aaa, we can solve the update of a(k+1)
1 ,a(k+1)

2 , . . . ,a(k+1)
npu

independently.

For a(k+1)
i , i = 1,2., . . . ,np, the objective function is

−πc
µ2np

|ai|+
1
2

(
1+

u(k)aaai
µ2

+ xxxT
i βββ

(k)+β
(k)
0 −ai

)2

. (5.16)

To minimise Equation 5.16, we can consider the following function w.r.t. x:

jp|x|+
1
2
(x−dp)

2, jp < 0, (5.17)

where jp and dp are constants. There are four cases of the threshold function in

Equation 5.17, as illustrated in Figure 5.2. Thus we can define

g[1]jp
(dp) = argmin

x
jp|x|+

1
2
(x−dp)

2 =

dp + jp, dp < 0,

dp − jp, dp ≥ 0.
(5.18)

Therefore the solution of a(k+1)
i , i = 1,2., . . . ,np can be obtained via computing

a(k+1)
i = g[1]−πc

µ2np
(1+

u(k)aaai
µ2

+ xxxT
i βββ

(k)+β
(k)
0 ), i = 1,2., . . . ,np. (5.19)

As for the update of a(k+1)
i , i = np + 1,np + 2, . . . ,npu, we need to separately
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𝑔𝑗𝑝(𝑑𝑝)

𝑥
𝑂

𝑥 = 𝑑𝑝 + 𝑗𝑝 

𝑔𝑗𝑝(𝑑𝑝)

𝑥
𝑂

𝑥 = 𝑑𝑝 + 𝑗𝑝

𝑔𝑗𝑝(𝑑𝑝)

𝑥
𝑂

𝑥 = 𝑑𝑝 − 𝑗𝑝 

𝑔𝑗𝑝(𝑑𝑝)

𝑥
𝑂

𝑥 = 𝑑𝑝 − 𝑗𝑝

Figure 5.2: The four cases of the threshold function jp|x|+ 1
2(x−dp)

2, jp < 0 w.r.t. x; top
left: dp < jp ; top right: jp < dp < 0; bottom left: 0 < dp <− jp; bottom right:
dp >− jp.

solve
c

µ2nu
|ai|+

1
2

(
1+

u(k)aaai
µ2

+ xxxT
i βββ

(k)+β
(k)
0 −ai

)2

. (5.20)

To minimise Equation 5.20 we can consider the following function w.r.t. x:

ju|x|+
1
2
(x−du)

2, ju > 0, (5.21)

where ju and du are constants. The three cases of the threshold function in Equation

5.21 are as follows

argmin
x

ju|x|+
1
2
(x−du)

2 =


du + ju, du <− ju,

0, − ju ≤ du ≤ ju,

du − ju, du <− ju.

(5.22)

Thus, by defining g[2]ju (du) = argmin
x

ju|x|+ 1
2(x−du)

2, a(k+1)
i , i = np +1,np +
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2, . . . ,npu can be solved via computing

a(k+1)
i = g[2]c

µ2np
(1+

u(k)aaai
µ2

+ xxxT
i βββ

(k)+β
(k)
0 ), i = np +1,np +2, . . . ,np +nu. (5.23)

5.4.3 Update of h

The update of hhh is to solve

hhh(k+1) =argmin
hhh

πc
np

111T
p [hhh]++uuu(k)hhh

T
[111p − (XXX [p]βββ

(k)+111pβ
(k)
0 )−hhh]

+
µ1

2

∥∥∥111p − (XXX [p]βββ
(k)+111pβ

(k)
0 )−hhh

∥∥∥2

2
,

(5.24)

which is equivalent to solve the problem

min
hhh

np

∑
i=1

{
πc

npµ1
[hi]++

1
2
[1+

u(k)hhhi
µ1

− (xxxT
i βββ

(k)+β
(k)
0 )−hi]

2

}
. (5.25)

The way to minimise the threshold function in Equation 5.25 is the same as the

the way to solve the problem in Equation 3.11. Recall function j[x]++ 1
2(x−d)2, j >

0 and

s j(d) = argmin
x

j[x]++
1
2
(x−d)2 =


d − j,d > j,

0,0 ≤ d ≤ j,

d,d < 0,

(5.26)

hi, i = 1,2., . . . ,np can be updated via computing

h(k+1)
i = s πc

np

[
1+

u(k)hhhi
µ1

− (xxxT
i βββ

(k)+β
(k)
0 )

]
(5.27)
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5.4.4 Update of β and β0

The update of βββ and β0 is to solve

argmin
βββ ,β0

λ

2
βββ

T
βββ +(XXX [pu]βββ +111puβ0)

T RRR(XXX [pu]βββ +111puβ0)

+uuuhhh
(k)T

[111p − (XXX [p]βββ +111pβ0)−hhh(k+1)]+
µ1

2

∥∥∥111p − (XXX [p]βββ +111pβ0)−hhh(k+1)
∥∥∥2

2

+uuuaaa
(k)T

[111pu +XXX [pu]βββ +111puβ0 −aaa(k+1)]+
µ2

2

∥∥∥111pu +XXX [pu]βββ +111puβ0 −aaa(k+1)
∥∥∥2

2
,

(5.28)

which is a quadratic function as discussed in 3.3.2. Therefore we can solve the

optimisation in Equation 5.28 via the KKT condition directly.

Let IIIk,∀k ∈ Z denote a k× k identity matrix. By defining

MMM11 = λ IIIm +2XXXT
[pu]RRRXXX [pu]+µ1XXXT

[p]XXX [p]+µ2XXXT
[pu]XXX [pu],

MMM12 = 2XXXT
[pu]RRR111pu +µ1XXXT

[p]111p +µ2XXXT
[pu]111pu,

MMM21 = MMMT
12,

M22 = 2111T
puRRR111pu +µ1np +µ2(np +nu),

mmm1 = XXXT
[p]uuu

(k)
hhh +µ1XXXT

[p](111p −hhh(k+1))−XXXT
[pu]uuu

(k)
aaa −µ2XXXT

[pu](111pu −aaa(k+1)),

m2 = 111T
p uuu(k)hhh +µ1111T

p (111p −hhh(k+1))−111T
puuuu(k)aaa −µ2111T

pu(111pu −aaa(k+1)),

(5.29)

the solution of problem in Equation 5.28 can be obtained by solving the following

linear equation w.r.t. βββ and β0:MMM11 MMM12

MMM21 M22

βββ
(k+1)

β
(k+1)
0

=

mmm1

m2

 . (5.30)
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5.5 Experiments for CPB-GLPUAL on Synthetic

Datasets

In this section, experiments were conducted on the linearly separable synthetic

datasets to verify the motivation of CPB-GLPUAL compared with GLPUAL.

5.5.1 The Generation of Synthetic PN Datasets

Considering the baseline GLPUAL is relatively good at the linearly separable dataset

following the pattern in Figure 3.2, we use the same way to generate synthetic

datasets as in Section 4.3.1. Also the same as Section 3.4.1, the 25 synthetic datasets

in this section are also divided into five categories, according to the expectation

vector (meanp2,meanp2), meanp2 = 50,100,200,500,1000, of the second positive

subset of the original synthetic datasets generated in Section 3.4.1.

5.5.2 Training-Test Split for the Synthetic PU Datasets

Considering CPB-GLPUAL was proposed at the case-control scenario, we split each

of the synthetic dataset generated in Section 4.3.1 to construct the PU training and

test sets consistent to the case-control scenario by the same steps as in Section 3.6.2

and obtained 25 pairs of PU training set and test set. More specifically, the value of

γ ′ is set to 7
37 so that we have the label frequency γ = γ ′/(0.3γ ′+0.7) = 0.25.

5.5.3 Model Setting

For the hyper-parameter tuning of CPB-GLPUAL, similar to Section 4.3.3, PUF-

score in Equation 3.14 was also utilized as the metric for hyper-parameter tuning.

Firstly c was fixed to 1 and the number K of the nearest neighbors to 5. Then

σ and λ were determined by 4-fold CV, which reached the highest average PUF-

score on the validation sets with the denominator P[sgn( f (xxx)) = 1] estimated by
1
nu

∑xxxi∈uℶ(sgn( f (xxxi)) = 1) at the case-control scenario. More specifically, σ and λ

were tuned from the set {1,2,3,4,5}◦{0.1,1,10,100}. The hyper-parameters for

GLPUAL were tuned by the same strategy in Section 3.4.3.
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5.5.4 Results and Analysis

The results of the experiments, on the constructed synthetic PU datasets are sum-

marised in Table 5.1. The results are measured by the average F1-score. According

to the experimental results in Table 5.1, CPB-GLPUAL always has better perfor-

mance than GLPUAL on the synthetic PU datasets with all the 5 values of meanp2.

Therefore it is verified that CPB-GLPUAL can have better performance to generate

the linear decision boundary than GLPUAL on the datasets following the pattern in

Figure 3.2 with class prior π known.

Table 5.1: Summary of the average F1-score (%) and the standard deviation of the experi-
ments on the synthetic datasets.

meanp2 CPB-GLPUAL GLPUAL

50 96.41 ± 1.43 93.26 ± 1.80
100 96.67 ± 1.48 93.15 ± 0.98
200 96.03 ± 1.63 94.25 ± 1.60
500 97.02 ± 1.52 92.55 ± 2.07

1000 96.97 ± 1.87 91.51 ± 0.84

5.6 Kernel Trick to CPB-GLPUAL for Non-Linear

Decision Boundary

Similar to GLPUAL, the only regularised term in the objective function of CPB-

GLPUAL is the L2-norm of βββ . Therefore, the kernel trick can also be introduced to

CPB-GLPUAL to make CPB-GLPUAL generate non-linear decision boundary for

PU classification. The details to achieve this goal is to be discussed in the rest of this

section.

Suppose φφφ(xxx)∈RM×1 be a mapping of the instance vector xxx. Then let φφφ(XXX [k])∈

Rnk×r,k = p,u, pu be the mapping of the original data matrix XXX [k]. The ith row of

φφφ(XXX [k]) is φ(xxxi)
T ∈ R1×r. According to Equation 5.29 and Equation 5.30, once we

substitute φφφ(XXX pu) for XXX [pu] during the training of classifier, the following necessary
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condition for the optimal solution of βββ to satisfy can be obtained:

βββ = BBB−1
φφφ(XXX [pu])

T
ΩΩΩ, (5.31)

where

BBB = MMM11 −
MMM12MMM21

M22
, (5.32)

and

ΩΩΩ =

uuuhhh −µ1(111p −hhh)−µ1
m2
M22

111p

0


−[uuuaaa +µ2(111pu −aaa)+

2m2

M22
RRR111pu +

µ2

M22
111pu].

(5.33)

Substituting BBB−1
φφφ(XXX [pu])

T ΩΩΩ for βββ in the objective function in Equation 5.8,

we have

min
ΩΩΩ,β0

λ

2
ΩΩΩ

T
φφφ(XXX [pu])BBB

−1BBB−1
φφφ(XXX [pu])

T
ΩΩΩ

+
πc
np

111T
p [111p − (φφφ(XXX [p])BBB

−1
φφφ(XXX [pu])

T
ΩΩΩ+111pβ0)]+

+
c
nu

∥111u +φφφ(XXX [u])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+β0111u∥1

−πc
np

∥111p +φφφ(XXX [p])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+β0111p∥1

+(φφφ(XXX [pu])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+111puβ0)
T RRR

(φφφ(XXX [pu])BBB
−1

φφφ(XXX [pu])
T

ΩΩΩ+111puβ0),

(5.34)

As discussed Section 3.5, according to the two properties for the construction

of kernel in Theorem 1, we can obtain

φφφ(XXX [k])BBB
−1

φφφ(XXX [pu])
T =ΦΦΦ

′(φφφ(XXX [k]),φφφ(XXX [pu]))

=ΦΦΦ(XXX [k],XXX [pu])
(5.35)

and
φφφ(XXX [k])BBB

−1BBB−1
φφφ(XXX [pu])

T =ΦΦΦ
′′(φφφ(XXX [k]),φφφ(XXX [pu]))

=ΦΦΦ2(XXX [k],XXX [pu]),
(5.36)

where ΦΦΦ
′(φφφ(XXX),φφφ(XXX [pu])), ΦΦΦ

′′(φφφ(XXX),φφφ(XXX [pu])) are the kernel matrices for φφφ(XXX)
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and φφφ(XXX [pu]), and ΦΦΦ(XXX ,XXX [pu]),ΦΦΦ2(XXX ,XXX [pu]) are the kernel matrices for XXX and XXX [pu].

Therefore, the predictive score function in Equation 5.3 for instance xxx∗ of

GLPUAL can be transformed to

f = ΦΦΦ(xxx∗,XXX [pu])ΩΩΩ+β0, (5.37)

and the objective function of GLPUAL can be eventually transformed to

min
ΩΩΩ,β0

λ

2
ΩΩΩ

T
ΦΦΦ2(XXX [pu],XXX [pu])ΩΩΩ+

πc
np

111T
p [111p − (ΦΦΦ(XXX [p],XXX [pu])ΩΩΩ+111pβ0)]+

+
c
nu

∥111u +ΦΦΦ(XXX [u],XXX [pu])ΩΩΩ+β0111u∥1 −
πc
np

∥111p +ΦΦΦ(XXX [p],XXX [p])ΩΩΩ+β0111p∥1

+(ΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ+111puβ0)
T RRR(ΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ+111puβ0),

(5.38)

whose solution is only determined by the kernels.

In this case, the update of aaa can be written as

a(k+1)
i =


g[1]−πc

µ2np

[
1+ u(k)aaai

µ2
+ΦΦΦ(xxxi,XXX [pu])ΩΩΩ

(k)+β
(k)
0

]
, i = 1,2., . . . ,np,

g[2]c
µ2np

[
1+ u(k)aaai

µ2
+ΦΦΦ(xxxi,XXX [pu])ΩΩΩ

(k)+β
(k)
0

]
, i = np +1,np +2, . . . ,np +nu.

(5.39)

Furthermore, the update of hhh can be reformulated as

hhh(k+1)
i = s πc

np

[
1+

u(k)hhhi
µ1

− (ΦΦΦ(xxxi,XXX [pu])Ω
(k)+β

(k)
0 )

]
, i = 1,2, . . . ,np. (5.40)

Then we can update β0 via

β
(k+1)
0 =

m2

M22
−QQQ(k+1)

b /M22, (5.41)
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where m2, M22 are not related to XXX [p],XXX [u],XXX [pu] and

QQQ(k+1)
b =(2111T

puRRR+µ2111T
pu)ΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ

(k+1)

+µ1111T
p ΦΦΦ(XXX [p],XXX [pu])ΩΩΩ

(k+1).
(5.42)

The update of uuuhhh and uuuaaa is

uuu(k+1)
hhh = uuu(k)hhh +µ1[111p − (ΦΦΦ(XXX [p],XXX [pu])ΩΩΩ

(k+1)+111pβ
(k+1)
0 )−hhh(k+1)],

uuu(k+1)
aaa = uuu(k)aaa +µ2[111pu +ΦΦΦ(XXX [pu],XXX [pu])ΩΩΩ

(k+1)+111[pu]]β
(k+1)
0 −aaa(k+1)].

(5.43)

Thus the update of ADMM for non-linear decision boundary can be summarised

into the following steps:

1. Set initial values of ΩΩΩ, β0 hhh, uuuhhh.

2. Update aaa via Equation 5.39.

3. Update hhh via Equation 5.40.

4. Update ΩΩΩ and via Equation 5.33 w.r.t. hhh(k+1), aaa(k+1), uuu(k)hhh and uuu(k)aaa .

5. Update β0 via Equation 5.41.

6. Update uuuhhh and uuuaaa via Equation 5.43.

7. Repeat Step 2 to Step 6 until convergence.

As discussed in Section 3.5, ΦΦΦ2(XXX [k],XXX [pu]) does not directly appear in the update

process for the optimisation in this section so that we only need to determine the

form of ΦΦΦ(XXX [k],XXX [pu]). Moreover, λ either does not appear directly in the above

stated update process and it is contained in the matrix BBB as a part of ΦΦΦ(XXX [k],XXX [pu]).

Therefore, for convenience, as the case of using the kernel trick in Section 3.4, we

use λ to represent the hyper-parameter(s) of the kernel matrix ΦΦΦ(XXX [k],XXX [pu]).
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5.7 Experiments for CPB-GLPUAL on Real Datasets
In this section experiments on real datasets were conducted to compare our proposed

CPB-GLPUAL comparing with GLPUAL, and other conventional methods, i.e., uPU

and nnPU. More specifically, RBF kernel was applied to GLPUAL for the non-linear

decision in the original feature space.

5.7.1 The Source of Datasets and Experimental Design

The Experiments were conducted on the 16 UCI datasets used in Section 3.6, i.e.,

OD, Acc, Ecoli, Pen-Based Recognition of Handwritten Digits (Pen), OR1, OR2,

wifi, UMD,RD, SSMCR, Seeds, ENB, HD, PB, Avila, and LD. The details of these

16 datasets are summarised in Table 3.2.

Table 5.2: Summary of the datasets used in experiments for the evaluation of CPB-GLPUAL.

Dataset positive instances negative instances features
Acc 100 red 100 blue 4
Ecoli 116 im & 52 pp 143 cp & 25 om 6
Pen 200 one & 200 eight 400 four versicolor 4
OR1 301 UK 301 Germany 4
OR2 500 UK 500 Germany 4
SSMCR 391 alive 109 dead 3
PB 500 Bull Ring 500 BHMBCCMKT01 3
OD 100 occupied 300 not occupied 5
UMD 83 Low 63 high 5
Seeds 70 Kama 70 Rosa 7
ENB 144 TypeII 144 Type III 7
wifi 100 Location 2& 100 Location 4 499 Location 1 & 100 Location 3 7
Avila 300 E 900 A 10
RD 450 Kecimen 450 Besni 7
LD 144 class 1 200 class 2 6
HD 150 absence 119 presence 13

5.7.2 Training-Test Split for the Real PU Datasets

The training-test split for the 16 real datasets preprocessed by the steps in Section

4.5.2 is the same as the training-test split in Section 3.6.2. In this case, there obtained

10 pairs of PU training and test sets for each of the 16 real datasets with a certain

label frequency γ = 0.5,0.25 at the case-control scenario.
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5.7.3 Compared Methods and Model Setting

GLPUAL, uPU and nnPU were also trained on the 16 real datasets as the compared

methods with CPB-GLPUAL. GLPUAL serves as the baseline of CPB-GLPUAL.

By fixing c to 1 and the number K of the nearest neighbors to 5, λ and

σ , in the objective functions of EKF-GLPUAL were firstly tuned by 4-fold

CV, which reached the highest average PUF-score in Equation 3.14 with the

denominator P[sgn( f (xxx)) = 1] estimated by 1
nu

∑xxxi∈uℶ(sgn( f (xxxi)) = 1) at the

case-control scenario. More specifically, λ and σ were tuned from the set

{10−4,10−3,10−2,10−1,100,101,102,103,104} based on the setting in [21]. Then

λ , σ and Cu were continually tuned following the greedy algorithm based on the

average PUF-score on the validation sets as in Section 3.6.4.

The hyper-parameter tuning for GLPUAL, uPU and nnPU is the same as Section

3.6.4.

5.7.4 Results and Analysis

The results of the experiments are summarised in Table 5.3 by average F1-score.

According to the average F1-score in Table 5.3, firstly CPB-GLPUAL performed

better than GLPUAL on 17 cases out of 32 cases; this generally supports our

motivation that CPB-GLPUAL can outperform GLPUAL when the class prior π

is known. More specifically, CPB-GLPUAL achieved better performance than

GLPUAL not only on all the cases of the two trifurcated PU datasets OR1, Pen

but also on all the cases of the non-trifurcated PU datasets ENB, HD, LD, Seeds,

OD, and HD. This indicates that the structure of the objective function of uPU can

improve the performance of the SVM-based PU classifiers once the class prior π is

known. Secondly, there are in total 19 cases where CPB-GLPUAL outperformed

uPU and nnPU. Finally, there are 14 cases where CPB-GLPUAL is the optimal

choice among the four methods in the experiments.
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Table 5.3: The average F1-score (%) the standard deviation of the classifiers trained on the
16 real PU datasets; for each of the 16 original datasets, the average F1-score
(%) and standard deviation in the two rows were obtained under label frequency
γ = 0.5,0.25, respectively; the results highlighted in blue for CPB-GLPUAL
indicate that it is the best among the four methods; the results highlighted in red
for CPB-GLPUAL indicate that it outperforms GLPUAL but falls short of uPU
and nnPU.

Dataset CPB-GLPUAL GLPUAL uPU nnPU

ENB 55.76 ± 9.32 42.82 ± 4.76 29.58 ± 22.14 30.20 ± 23.67
53.92 ± 9.50 45.82 ± 7.50 26.12 ± 30.53 26.88 ± 31.28

HD 88.08 ± 2.50 82.72 ± 2.35 71.38 ± 4.23 74.38 ± 2.19
87.84 ± 2.62 81.92 ± 4.03 71.01 ± 3.97 75.06 ± 2.40

Pen 98.86 ± 1.21 92.47 ± 8.13 77.76 ± 31.00 87.50 ± 14.94
98.20 ± 1.88 91.73 ± 9.04 72.55 ± 31.03 84.06 ± 16.85

LD 53.41 ± 4.54 44.24 ± 5.72 11.88 ± 25.75 31.54 ± 27.79
56.35 ± 4.43 36.85 ± 9.97 10.15 ± 22.39 20.09 ± 26.27

OR1 93.01 ± 3.23 90.05 ± 2.25 16.64 ± 33.33 84.08 ± 6.88
87.38 ± 2.46 83.88 ± 5.78 20.90 ± 33.12 72.06 ± 6.99

Seeds 94.58 ± 1.87 92.31 ± 4.86 92.37 ± 1.51 97.25 ± 3.65
94.28 ± 1.94 89.05 ± 5.53 86.85 ± 3.12 93.08 ± 3.89

wifi 68.90 ± 1.55 95.10 ± 1.96 91.16 ± 4.29 92.17 ± 3.17
68.21 ± 1.29 96.69 ± 1.83 87.69 ± 2.88 89.27 ± 2.61

Avila 0.00 ± 0.00 55.82 ± 2.90 62.74 ± 8.82 63.75 ±9.07
0.00 ± 0.00 50.05 ± 4.22 61.30 ± 9.23 61.00 ± 9.04

OD 100.00 ± 0.00 89.00 ± 8.44 80.00 ± 42.16 100.00 ± 0.00
100.00 ± 0.00 95.69 ± 6.74 80.00 ± 42.16 100.00 ± 0.00

OR2 88.28 ± 1.64 88.93 ± 1.22 76.92 ± 4.90 81.60 ± 4.23
86.08 ± 2.51 85.50 ± 3.42 74.41 ± 5.45 77.28 ± 3.76

PB 98.70 ± 1.86 95.90 ± 1.12 69.77 ± 2.62 67.19 ± 3.17
99.06 ± 0.64 97.86 ± 0.67 68.75 ± 2.63 66.63 ± 4.09

Acc 62.05 ± 3.31 65.02 ± 4.79 20.05 ± 27.57 20.46 ± 28.56
60.02 ± 7.55 66.36 ± 4.42 21.95 ± 29.61 23.43 ± 31.40

Ecoli 90.32 ± 1.26 90.80 ± 2.59 84.41 ± 6.13 85.92 ± 6.69
89.29 ± 1.27 88.04 ± 4.44 84.92 ± 6.82 86.05 ± 6.55

SSMCR 87.93 ± 0.93 87.63 ± 1.29 85.71 ± 1.98 87.42 ± 1.37
87.93 ± 0.93 87.63 ± 1.29 84.97 ± 2.03 86.79 ± 1.50

UMD 98.42 ± 1.56 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
98.97 ± 1.50 99.58 ± 0.88 100.00 ± 0.00 100.00 ± 0.00

RD 83.07± 2.33 82.45 ± 2.18 70.61 ± 12.89 71.29 ± 13.63
80.87 ± 5.27 77.63 ± 3.77 72.92 ± 14.53 73.12 ± 12.83



5.8. Universal Consistency of CPB-GLPUAL 97

5.8 Universal Consistency of CPB-GLPUAL

5.8.1 Introduction to Bayes Risk

Firstly we define the 0-1 risk, i.e., the expected error rate, of a binary classifier with

decision function f ∗(xxx) = sgn( f (x)) ∈ {−1,1} as:

R0−1( f ∗) =
∫
(xxx,y)∈S

ℶ( f ∗(xxx) ̸= y)P(XXX = xxx,Y = y)dxxxdy = P[ f ∗(XXX) ̸= Y ], (5.44)

where S is the domain of the instance (XXX ,Y ) and ℶ(·) is the indicator function.

R0−1 indicates the probability of a classifier to misclassify instance (XXX ,Y ) selected

at random from this domain.

Let Sx be the domain of XXX . We can divide Sx into the following three regions

by the class which instance (XXX = xxx,Y = y) is more likely to belong to:

ZZZ+ = {xxx ∈ Sx : P(Y = 1 | XXX = xxx)> P(Y =−1 | XXX = xxx)},

ZZZ− = {xxx ∈ Sx : P(Y = 1 | XXX = xxx)< P(Y =−1 | XXX = xxx)},

ZZZ0 = {xxx ∈ Sx : P(Y = 1 | XXX = xxx) = P(Y =−1 | XXX = xxx)}.

(5.45)

Based on the three regions ZZZ+, ZZZ− and ZZZ0 in Equation 5.45, the Bayes decision

function can be defined as

f ∗Bayes =

 1, xxx ∈ ZZZ+∪ZZZ0;

−1, xxx ∈ ZZZ−.
(5.46)

The classifier with the Bayes decision function is called the Bayes classifier and

the 0-1 risk of the Bayes classifier is termed as Bayes risk. According to [74], the

Bayes risk can be transformed to the following form from Equation 5.44:

RBayes = R0−1( f ∗Bayes) =
∫

xxx∈Sx

η(xxx)P(XXX = xxx)dxxx, (5.47)
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where

η(xxx) =

P(Y =−1|XXX = xxx), xxx ∈ ZZZ+∪ZZZ0;

P(Y = 1|XXX = xxx), xxx ∈ ZZZ−.
(5.48)

The Bayes classifier is the optimal classifier for the lowest 0-1 risk [75] i.e., for

any classifier with decision function f ∗, the following relation holds:

R0−1( f ∗)≥ RBayes. (5.49)

5.8.2 Universal Consistency of CPB-GLPUAL

Suppose that the feature mapping φφφ(·) is used to train CPB-GLPUAL and define the

covering number N
((

Sx,dφφφ

)
,ε
)
, where metric dφφφ (xxxi,xxx j) = ∥φφφ(xxxi)−φφφ(xxxi)∥2

2, to

be the minimum amount of hyper-spheres with diameter ε > 0 to cover the entire

metric space (Sx,dφφφ ). Then according to [76], the universal kernel ΦΦΦ
∗(xxx1,xxx2) =

φφφ(xxx1)
T φφφ(xxx2) specifies the kernel functions satisfying the following two conditions:

• φφφ(·) is continuous.

• ∀ε > 0, N
((

Sx,dφφφ

)
,ε
)

can be regarded as a finite function w.r.t. ε .

In practice, the Bayes classifier is not able to be obtained due to the unknown

distribution of the ground-truth population. In this case, people may expect the

proposed classifier to be an approximation of the Bayes classifier. Therefore, the

universal consistency is introduced to measure the gap between the Bayes risk and

the 0-1 risk of the proposed classifier with the size of dataset increasing [77] with

data XXX [pu] to follow any distribution.

Define c′ = 2c
λ

and the decision function of CPB-GLPUAL trained from sample

size npu to be f ∗npu
cpb . Specific to CPB-GLPUAL, the universal consistency of CPB-

GLPUAL can be summarised into the following theorem:

Theorem 3 Firstly, suppose that Sx is compact, and ΦΦΦ
∗(xxx1,xxx2) = φφφ(xxx1)

T φφφ(xxx2) is

a universal kernel function. Secondly, suppose that there exists constant α > 0 to
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satisfy N
((

Sx,dφφφ

)
,ε
)
∈ O (ε−α). Thirdly, suppose that there exists constant δ

satisfying 0 < δ < 1
α

, and when the sample size npu tends to infinity, the value of c′

also tends to infinity with c′ ∈ O(nδ
pu). In this case, ∀ε > 0, we have

Pnpu
[
R0−1

(
f ∗npu
cpb

)
−RBayes ⩽ ε

]
→ 1,

where R0−1

(
f ∗npu
cpb

)
is the 0-1 risk of the trained decision function f ∗npu

cpb of CPB-

GLPUAL at sample size npu.

Theorem 3 indicates that with the size of the training set increasing, the gap

between Bayes risk and the 0-1 risk of GLPUAL tends to 0 by probability.

In the field of PU learning, [23, 26, 78, 79] managed to show the similar theorem

for their proposed PU classifiers. However, the proof in [23, 26, 78, 79] cannot hold

once the regularised terms for the model parameters are added into the objective

function while the L2-norm regularised terms is considered in our proof. Moreover,

it should be noted that [23, 26, 78] force the loss in their objective functions to be

the 0-1 loss or its estimate and [26] makes additional assumptions on the distribution

of data XXX [pu].

In CPB-GLPUAL, we have an L2-norm regularisation in the objective function,

hence the proof in [23, 26, 78, 79] cannot be used here, and we developed our own

proof. In our proof, the asymmetric loss in the objective function does not need to be

the estimate of the 0-1 loss. Furthermore there is only one weak assumption related

to the distribution of XXX [pu] made in Section 5.8.3.1. This indicates that the universal

consistency of CPB-GLPUAL has broader scope of application and we have more

choices on the loss function in future works.

5.8.3 An Approximate of CPB-GLPUAL to Simplify the Proof of

Universal Consistency

As the initial exploration of the universal consistency on PU classifiers, we firstly

construct a PN classifier to approximate CPB-GLPUAL and then construct a lower

probabilistic boundary for the gap between the 0-1 risk of this PN classifier and the

Bayes risk.
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5.8.3.1 Construction of the Approximate

According to [21], the local constraint (XXX [pu]βββ +111puβ0)
T RRR(XXX [pu]βββ +111puβ0) in the

objective function of GLPUAL in Equation 5.8 can be transformed to

2
npu

∑
xxxi,xxx jare the KNN of each other

exp
(
−σ

−1∥xxxi − xxx j∥2
2
)
( f (φφφ(xxxi))− f (φφφ(xxx j)))

2,

(5.50)

where f (φφφ(xxx)) = φφφ(xxx)T βββ +β0.

Define the r.v. X
[mx]

k[i] to be the kth max value of set {(−∥XXX i −XXX j∥2
2) : j =

1,2, . . . , i−1, i+1, . . . ,npu}. When k = 1, the cdf of X
[mx]

1[i] is

P[X [mx]
1[i] ≤ x] = P

npu−1
i− (x), (5.51)

where Pi−(x) is the cdf of the r.v. −∥XXX i −XXX j∥2
2 for j = 1,2, . . . , i−1, i+1, . . . ,npu.

Here we make an assumption that ∀x < 0, there is Pi−(x)< 1. In this case, as

npu tends to infinity, P[X [mx]
1[i] ≤ x] tends to 0. Therefore, it is obvious to find only the

pdf p[X [mx]
1[i] = 0] tends to infinity as npu tends to infinity, so that X

[mx]
1[i] converges

to 0 in probability. Then for k = 2, we have

P[X [mx]
2[i] ≤ x] = P

npu−1
i− (x)+(1−P[X [mx]

1[i] ≤ x])Pnpu−2
i− (x). (5.52)

We can obtain similar conclusion that X
[mx]

2[i] converges to 0 in probability as

npu tends to infinity. Following this way, we have

P[X [mx]
k[i] ≤ x] = P[X [mx]

1[i] ≤ x]+
k

∑
a=2

(1−P[X [mx]
a[i] ≤ x])Pnpu−a

i− (x). (5.53)

Thus, for limited k, only p[X [mx]
k[i] = 0] tends to infinity as npu tends to infinity

and X
[mx]

k[i] converges to 0 in probability. Furthermore, the case appearing with
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X
[mx]

k[i] = 0 is continuous function ( f (φφφ(xxxi))− f (φφφ(xxx j)))
2 = 0 for xxx j to be the kth

NN of xxxi. Hence the local constraint in Equation 5.50 can be regarded as the weighted

average of the r.v.s converging to 0 in probability. Therefore, the local constraint

also converges to 0 in probability as npu tends to infinity.

In this case, we only need to consider the weighted average of the losses and the

regularised term in the objective function of CPB-GLPUAL for sufficient large npu,

which converges to the following PN objective function in probability with kernel

trick applied according to [23]:

βββ
T

βββ +
c′

npu

npu

∑
i=1

l( f (φφφ(xxxi);βββ ,β0),yi) (5.54)

where c′ = 2c
λ

the asymmetric loss function is

l( f (xxx;βββ ,β0),y) =

 [1−φφφ(xxx)T βββ −β0]+,y = 1;

|1+φφφ(xxx)T βββ +β0|,y =−1.
(5.55)

The predictive score function of this approximate of CPB-GLPUAL is also

f (xxx) = φφφ(xxx)T
βββ +β0.

In this case, there is R0−1

(
f ∗npu
cpb

)
→ R0−1

(
f ∗npu
ap

)
with npu increasing, where

R0−1

(
f ∗npu
ap

)
is the 0-1 risk of the trained decision function f ∗npu

ap of the approximate

of CPB-GLPUAL in Equation 5.54 with c′ = cnpu and the sample size npu.

Furthermore, the objective function of the approximate of CPB-GLPUAL in

Equation 5.54 is equivalent to the following constrained form for the optimisation



5.8. Universal Consistency of CPB-GLPUAL 102

with slack variable ξξξ = (ξ1, . . . ,ξnpu)
T ∈ Rnpu×1 introduced:

βββ
T

βββ +
c′

npu

npu

∑
i=1

ξi

s.t. ξi ≥ 1−φφφ(xxx)T
βββ −β0, i = 1, . . . ,npu −nu;

ξi ≥ 0, i = 1, . . . ,npu −nu;

ξi ≥ 1+φφφ(xxx)T
βββ +β0, i = npu −nu +1, . . . ,npu;

ξi ≥−1−φφφ(xxx)T
βββ −β0, i = npu −nu +1, . . . ,npu.

(5.56)

In this case, one can find the kernel form of the optimisation of Equation 5.56 via

the KKT condition w.r.t. βββ as:

min
υυυ ,β0,ξξξ

1
2

υυυ
T

ΦΦΦ
∗(XXX [pu],XXX [pu])υυυ +

c′

npu

npu

∑
i=1

ξi

s.t. ξi ≥ 1−ΦΦΦ
∗(XXX [pu],XXX [pu])υυυ −β0, i = 1, . . . ,npu −nu;

ξi ≥ 0, i = 1, . . . ,npu −nu;

ξi ≥ 1+ΦΦΦ
∗(XXX [pu],XXX [pu])υυυ +β0, i = npu −nu +1, . . . ,npu;

ξi ≥−1−ΦΦΦ
∗(XXX [pu],XXX [pu])υυυ −β0, i = npu −nu +1, . . . ,npu.

(5.57)

where the (i, j) element of kernel matrix ΦΦΦ
∗(XXX [pu],XXX [pu]) is ΦΦΦ

∗(xxxi,xxx j).

5.8.3.2 Universal Consistency of the Approximate

To prove Theorem 3, firstly we proved the universal consistency of the approximate

of CPB-GLPUAL with the objective function in the form in Equation 5.56 based on

the idea in [80], which proved the universal consistency of the classic supervised

SVM. We can give the following Theorem 4 for the approximate of CPB-GLPUAL:

Theorem 4 Suppose Sx is compact and the kernel function Φ(·) is universal. ∀0 <

ε < 1, we can find a constant c∗ > 0 such that for all c′ ≥ c∗ there is

Pnpu
[
R0−1

(
f ∗npu
ap

)
−RBayes ≤ ε

]
≥ 1−2Me−

ε6npu
229M2 ,

where M = 64
ε

N
(
(Sx,dΦ) ,

ε

32
√

c′

)
.
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5.8.4 Three Steps of the Proof of Theorem 3

The proof of Theorem 3 is based on the proof of Theorem 4, by the following three

steps:

1. Pick the ’representative’ instances xxx1,xxx2, ...,xxxn form the domain Sx to satisfy

P[xxx1,xxx2, ...,xxxn]≥ 1−2Me−
ε6npu
229M2 .

2. Show that once xxx1,xxx2, ...,xxxn are the ’representative’ instances, R0−1

(
f ∗npu
ap

)
−

RBayes ≤ ε by proof by contradiction. In this case Theorem 4 can be proved.

3. Show R0−1

(
f ∗npu
cpb

)
→ R0−1

(
f ∗npu
ap

)
→ RBayes. In this case Theorem 3 can

be proved based on Theorem 4.

5.8.5 Step 1: Construction of the ’Representative’ Dataset

The way to achieve Step 1 is based on the domain Sx itself, which is independent of

the objective function, the loss function and the predictive score function. Therefore,

what we need to do is completely the same as the corresponding part in [80]. In

this case, we summarise the important details of [80] in this section with the proof

(referring to the proof of Lemma 2 to Lemma 4 in [80] ) skipped and then add some

additional analysis.

The key idea of the construction of the ’representative’ dataset is to sample

certain amount positive instances and negative instances from many small subsets of

domain Sx. In this case, by recalling η(xxx) defined in Equation 5.48, firstly we can

divide Sx into the following subsets:

Sx[i] =

{xxx ∈ Sx : i2−ρ ≤ η(xxx)< (i+1)2−ρ}, i = 0,1, . . . ,2ρ−1 −2,

{xxx ∈ Sx : i2−ρ ≤ η(xxx)≤ 1
2} i = 2ρ−1 −1.

(5.58)

where ρ is the integer meeting 2−ρ ≤ τ ≤ 2−ρ+1 and τ = ε/32; this leads to
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the following relationship:

2ρ−1−1

∑
i=0

i
2ρ

P[XXX ∈ Sx[i]]≤ R0−1 ≤
2ρ−1−1

∑
i=0

i
2ρ

P[XXX ∈ Sx[i]]+
1

2ρ

2ρ−1−1

∑
i=0

P[XXX ∈ Sx[i]]

≤
2ρ−1−1

∑
i=0

i
2ρ

P[XXX ∈ Sx[i]]+ τ,

(5.59)

where 0-1 risk R0−1 is defined in Equation 5.44.

To control the amount of the positive and negative instance in the ’representative’

dataset, we need to divide Sx[i], i = 0,1, . . . ,2ρ−1 − 2, into S 1
x[i] = Sx[i]∩ZZZ+ and

S −1
x[i] = Sx[i]∩ZZZ−. Furthermore, we can construct a ’large’ enough compact subset

B j
[i] of S j

x[i], i.e.,

P
[
XXX ∈ S j

x[i]\B
j
[i]

]
≤ τ2−ρ , i = 0, . . . ,2ρ−1 −2, j ∈ {−1,1}. (5.60)

Furthermore, there exists subset B[2ρ−1−1] of Sx[2ρ−1−1] meeting

P
[
XXX ∈ Sx[2ρ−1−1]\B[2ρ−1−1]

]
≤ τ2−ρ (5.61)

For convenience, let B1
[2ρ−1−1] =B[2ρ−1−1]∩(ZZZ+∪ZZZ0) and B−1

[2ρ−1−1] =B[2ρ−1−1]∩

ZZZ−.

As proved in Lemma 2 of [80], when ΦΦΦ
∗(XXX1,XXX2) = φφφ(XXX1)φφφ(XXX2)

T to be uni-

versal kernel, there exists value β̃ββ of βββ to satisfy:

φφφ(xxx)T
β̃ββ ∈ [1,1+ τ], xxx ∈ ∪2ρ−1−2

i=0 B1
[i],

φφφ(xxx)T
β̃ββ ∈ [−(1+ τ),−1], xxx ∈ ∪2ρ−1−2

i=0 B−1
[i] ,

φφφ(xxx)T
β̃ββ ∈ [−τ,τ], xxx ∈ B[2ρ−1−1]

φφφ(xxx)T
β̃ββ ∈ [−(1+ τ),1+ τ], xxx /∈ ∪ j=−1,1 ∪2ρ−1−1

i=0 B j
[i].

(5.62)

Equation 5.62 is used to construct the upper bound of the contradiction in

Section 5.8.6.1.
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Let σ = τ/
√

c′. For i = 0, . . . ,2ρ−1−1 and j =−1,1 we are able to divide B j
[i]

into finite partition Ã j
i with the diameter of each set A ∈ Ã j

i no greater than σ in the

kernel space. According to the definition of the covering numbers, the cardinality of

Ã j
i is no greater than N

((
Sx,dφφφ

)
,σ
)
. Based on this, we can define

A j
i =

{
A ∈ Ã j

i : P[XXX ∈ A ]≥ 2τ

M

}
, (5.63)

with 2ρ ≤ |∪ j=−1,1∪2ρ−1−1
i=0 A j

i | ≤M. Therefore, recalling M = 64
ε

N
(
(Sx,dΦ) ,

ε

32
√

c′

)
,

there is

∑
A ∈A j

i

P[XXX ∈ A ] = P[XXX ∈ B j
[i]]−P[XXX ∈ B j

[i]\ ∪
A ∈A j

i
A ]

≥ P[XXX ∈ B j
[i]]−

2τ

M
N
((

Sx,dφφφ

)
,σ
)

= P[XXX ∈ B j
[i]]−

2τ

M
τ

2
M

= P[XXX ∈ B j
[i]]− τ

2 ≥ P[XXX ∈ B j
[i]]− τ.

(5.64)

For convenience, let B∗ j
[i] = ∪

A ∈A j
i
A for i = 0, . . . ,2ρ−1 −1, j ∈ {−1,1}.

Consider the following conditions for the dataset {(xxx1,y1),(xxx2,y2), . . . ,(xxxnpu,ynpu)}

with npu ≫ 2ρ+1:

F+
npu,A

=

{(
(xxx1,y1), . . . ,(xxxnpu ,ynpu)

)
: |{l : xxxl ∈ A ,yl = j}| ≥ npu(1− τ)

(
1− i+1

2ρ

)
P[XXX ∈ A ]

}
,

F−
npu,A

=

{(
(xxx1,y1), . . . ,(xxxnpu ,ynpu)

)
: |{i : xxxl ∈ A ,yi ̸= j}| ≥ npu(1− τ)

i
2ρ

P[XXX ∈ A ]

}
,

(5.65)

where i = 0, . . . ,2ρ−1 −2, j ∈ {−1,1} and A ∈ A j
i . Besides, for A ∈ A j

2ρ−1−1, j ∈

{−1,1} we can define the conditions as:

F+
npu,A

=

{(
(xxx1,y1), . . . ,(xxxnpu ,ynpu)

)
: |{l : xxxl ∈ A ,y = j}| ≥ npu(1− τ)

(
1
2
− 1

2ρ

)
P[XXX ∈ A ]

}
.

F−
npu,A

=

{(
(xxx1,y1), . . . ,(xxxnpu ,ynpu)

)
: |{l : xxxl ∈ A ,y =−1}| ≥ npu(1− τ)

(
1
2
− 1

2ρ

)
P[XXX ∈ A ].

}
(5.66)

Let Fnpu = ∩ j∈{−1,1}∩2ρ−1−1
i=0 ∩

A ∈A j
i

(
F+

npu,A
∩F−

npu,A

)
. We can construct the ’repre-

sentative’ dataset by making the dataset meet the above conditions in Equation 5.65

and Equation 5.66, i.e., {(xxx1,y1),(xxx2,y2), . . . ,(xxxnpu ,ynpu)} ∈ Fnpu . The probability of
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obtaining such ’representative’ dataset via i.i.d. sampling form the population is

Pnpu
(
Fnpu

)
≥ 1−2Me−2(τ6/M2)npu

= 1−2Me−
ε6npu
229M2 ,

(5.67)

for npu ≫ 2ρ+1 as proved in Lemma 3 of [80]. Besides, there are at least 2ρ positive

instances and at least 2ρ negative instances in the ’representative’ dataset since

P[XXX ∈ A ] in Equation 5.65 and Equation 5.66 is always greater than 0 according to

Equation 5.63,

Additionally, let E j
i denote the subset of S j

x[i] where the proposed classifier and

the Bayes classifier output different class results, i.e.,

E j
i =

{
xxx ∈ S j

x[i] : sgn( f npu
ap (x)) ̸= j

}
, (5.68)

where i = 0, . . . ,2ρ−1−2, j ∈ {−1,1}. Also, for i = 0, . . . ,2ρ−1−1 and j = 1, there

is

E 1
2ρ−1−1 =

{
x ∈ Sx[2ρ−1−1]∩ZZZ+ : sgn( f npu

ap (x)) ̸= 1
}
. (5.69)

For i = 0, . . . ,2ρ−1 −1 and j =−1, there is

E −1
2ρ−1−1 =

{
x ∈ Sx[2ρ−1−1]∩ZZZ− : sgn( f npu

ap (x)) ̸=−1
}
. (5.70)

According to Lemma 4 in [80] and the assumption in Inequality 5.72 we can

obtain

ε −2τ <
2ρ−1−2

∑
i=0

(
1− i

2ρ−1

)
P
[
XXX ∈ E 1

i ∪E −1
i
]
. (5.71)
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5.8.6 Step 2: Proof of Theorem 4 by Contradiction

In this section, we prove that once {(xxx1,y1),(xxx2,y2), . . . ,(xxxnpu,ynpu)} are the ’rep-

resentative’ instances, we will have R0−1

(
f ∗npu
ap

)
−RBayes < ε via the proof by

contradiction in an inequality. In this case Theorem 4 can be proved. More specif-

ically, firstly we construct the upper bound of the inequality in Section 5.8.6.1.

Secondly, we construct the lower bound of the inequality in Section 5.8.6.2. Thirdly

we prove the lower bound is larger than the upper bound of the inequality to cause

contradiction in Section 5.8.6.3.

5.8.6.1 Upper Bound of the Inequality for Contradiction

Firstly, assume that there is a ’representative’ dataset {(xxx1,y1),(xxx2,y2), . . . ,(xxxnpu,ynpu)}∈

Fn with

R0−1

(
f ∗npu
ap

)
−RBayes > ε. (5.72)

Define βββ [ap] and β[ap]0 to be the optimal solution of the objective function in

Equation 5.56. Then let the value of the slack variable of instance (xxxl,yl) in Equation

5.56 of instance (xxxl,yl), with βββ = βββ [ap] and β0 = β[ap]0, to be ξ[ap]l . Similarly, let

the value of the slack variable of instance (xxxl,yl), with βββ = β̃ββ and β0 = 0, to be ξ̃l .

Furthermore, according to the relationships in Equation 5.62 and the constraints

in Equation 5.56, there are the following eight scenarios for ξ̃l:

• For xl ∈B∗1
[i] , i = 0,1, . . . ,2ρ−1−2, and yl = 1, there is 1−φφφ(xxxl)

T β̃ββ ∈ [−τ,0]

thus in this case we can let ξ̃l = 0;

• For xl ∈ B∗1
[i] , i = 0,1, . . . ,2ρ−1 − 2, and yl = −1, there is 1 + φφφ(xxxl)

T β̃ββ ∈

[2,2+ τ] thus in this case we can let ξ̃l = 2+ τ;

• For xl ∈B∗−1
[i] , i = 0,1, . . . ,2ρ−1−2, and yl = 1, there is 1−φφφ(xxxl)

T β̃ββ ∈ [2,2+

τ] thus in this case we can also let ξ̃l = 2+ τ;

• For xl ∈ B∗−1
[i] , i = 0,1, . . . ,2ρ−1 − 2, and yl = −1, there is 1+ φφφ(xxxl)

T β̃ββ ∈

[−τ,0] thus in this case we can let ξ̃l = τ;
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• For xl ∈B[2ρ−1−1] and yl = 1, there is 1−φφφ(xxxl)
T β̃ββ ∈ [1−τ,1+τ] thus in this

case we can let ξ̃l = 1+ τ;

• For xl ∈ B[2ρ−1−1] and yl =−1, there is 1+φφφ(xxxl)
T β̃ββ ∈ [1− τ,1+ τ] thus in

this case we can also let ξ̃l = 1+ τ;

• For xl /∈ (∪2ρ−1−2
i=0 ∪ j={−1,1} B∗ j

[i] ) ∪ B[2ρ−1−1] and yl = 1 there is 1 −

φφφ(xxxl)
T β̃ββ ∈ [−τ,2+ τ] thus in this case we can let ξ̃l = 2+ τ;

• For xl /∈ (∪2ρ−1−2
i=0 ∪ j={−1,1} B∗ j

[i] ) ∪ B[2ρ−1−1] and yl = −1 there is 1 +

φφφ(xxxl)
T β̃ββ ∈ [−τ,2+ τ] thus in this case we can also let ξ̃l = 2+ τ .

Then let n1,n+1 ,n
−
1 ,n2,n3,n4 denote the number of specific instances in the

’representative’ set {(xxx1,y1),(xxx2,y2), . . . ,(xxxnpu,ynpu)} as:

n+1 =
∣∣∣{l : xxxl ∈ ∪2ρ−1

i=0 B∗1
[i] ,yl = 1

}∣∣∣ ,n−1 =
∣∣∣{l : xxxl ∈ ∪2ρ−1

i=0 B∗−1
[i] ,yl =−1

}∣∣∣ ,
n1 = n+1 +n−1 ,

n2 =
∣∣∣{l : xxxl ∈ ∪2ρ−1

i=0 B∗−1
[i] ,yl = 1

}∣∣∣+ ∣∣∣{l : xxxl ∈ ∪2ρ−1−2
i=0 B∗1

[i] ,yl =−1
}∣∣∣ ,

n3 =
∣∣∣{l : xxxl ∈ B[2ρ−1−1]

}∣∣∣ ,
n4 =

∣∣∣{l : xxxl /∈ (∪2ρ−1−2
i=0 ∪ j={−1,1} B∗ j

[i] )∪B[2ρ−1−1]

}∣∣∣ .
(5.73)

According to Equation 5.73, obviously there is npu = n1+n2+n3+n4. Furthermore

as (βββ [ap],β[ap]0) is the optimal solution of (βββ ,β0), there is

βββ
T
[ap]βββ [ap] +

c′

npu

npu

∑
l=1

ξ[ap]l ≤ β̃ββ
T

β̃ββ +
c′

npu

npu

∑
l=1

ξ̃l

≤ β̃ββ
T

β̃ββ +
c′

npu

(
τn−1 +(2+ τ)n2 +(1+ τ)n3 +(2+ τ)n4

)
= β̃ββ

T
β̃ββ +

c′

npu

(
τn−1 +(2+ τ)(npu −n1)−n3

)
.

(5.74)



5.8. Universal Consistency of CPB-GLPUAL 109

Then according to Inequality 5.64 and the condition in Inequality 5.65, the same

as the content in [80], there is

(2+ τ)(npu −n1)

≤npu(2+ τ)

1− ∑
j=−1,1

2ρ−1−2

∑
i=0

∑
A ∈A j

i

(1− τ)

(
1− i+1

2ρ

)
P[XXX ∈ A ]


≤2npu −2npu(1− τ)

2ρ−1−2

∑
i=0

(
1− i+1

2ρ

)
P[XXX ∈ B1

[i]∪B−1
[i] ]+5npuτ

=2npu(1− τ)

(
1−

2ρ−1−2

∑
i=0

(
1− i+1

2ρ

)
P[XXX ∈ B1

[i]∪B−1
[i] ]

)
+7npuτ

≤

(
1−

2ρ−1−2

∑
i=0

P[XXX ∈ B1
[i]∪B−1

[i] ]+
2ρ−1−2

∑
i=0

i
2ρ

P[XXX ∈ B1
[i]∪B−1

[i] ]

)
2npu(1− τ)+9npuτ.

(5.75)

According to Inequality 5.60, Inequality 5.64 and Inequality 5.65, we have

τ

npu
n−n ≤ τ

1−
2ρ−1−2

∑
i=0

∑
A ∈A1

i

(1− τ)

(
1− i+1

2ρ

)
P[XXX ∈ A ]


≤ τ

1− 1
2
(1− τ)

2ρ−1−2

∑
i=0

∑
A ∈A1

i

P[XXX ∈ A ]


≤ τ

[
1− 1

2
(1− τ)

2ρ−1−2

∑
i=0

(P[XXX ∈ B1
[i]]− τ

2)

]

= τ

{
1− 1

2
(1− τ)

[
2ρ−1−2

∑
i=0

P[XXX ∈ B1
[i]]− (2ρ−1 −1)τ2

]}

≤ τ

[
1− 1

2
(1− τ)

(
2ρ−1−2

∑
i=0

P[XXX ∈ B1
[i]]− τ

)]

≤ τ

[
1− 1

2
(1− τ)(D−−2τ)

]

(5.76)

where D− = P[XXX ∈ ZZZ+]−P[XXX ∈ Sx[2ρ−1−1]∩ZZZ+].
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Besides, according to Inequality 5.64 and Inequality 5.66, the same as the

content in [80],there is

n3 ≥ 2npu(1− τ)

 ∑
A ∈A1

2ρ−1−1

(
1
2
− 1

2ρ

)
P[XXX ∈ A ]+ ∑

A ∈A−1
2ρ−1−1

(
1
2
− 1

2ρ

)
P[XXX ∈ A ]


≥ 2npu(1− τ)

(
1
2
− 1

2ρ

)(
P[XXX ∈ B[2ρ−1−1]]−2τ

)
≥ 2npu(1− τ)

{
P[XXX ∈ B[2ρ−1−1]]−

(
1
2
− 1

2ρ

)
P[XXX ∈ B[2ρ−1−1]]

}
−6npuτ.

(5.77)

Combining Inequality 5.75 and Inequality 5.77 with Inequality 5.59, Inequality

5.60, and Inequality 5.61, we can get

1
npu

((2+ τ)(npu −n1)−n3)

≤ 2(1− τ)

(
1−

2ρ−1−1

∑
i=0

P[XXX ∈ B1
[i]∪B−1

[i] ]+
2ρ−1−1

∑
i=0

i
2ρ

P[XXX ∈ B1
[i]∪B−1

[i] ]

)
+15τ

≤ 2(1− τ)

(
τ +

2ρ−1−1

∑
i=0

i
2ρ

P
[
XXX ∈ Sx[i]

])
+15τ

≤ 2(1− τ)(RBayes + τ)+15τ

≤ 2(1− τ)(RBayes +8.75τ).

(5.78)

Combining Inequality 5.75, Inequality 5.76 and Inequality 5.77, we can eventu-
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ally obtain

βββ
T
[ap]βββ [ap] +

c′

npu

npu

∑
l=1

ξ[ap]l ≤ β̃ββ
T

β̃ββ +2c′(1− τ)

[
RBayes +(8.75+

n−1
2npu(1− τ)

)τ

]
≤ β̃ββ

T
β̃ββ +2c′(1− τ)

[
RBayes +(8.75+

nn

2npu(1− τ)
)τ

]
≤ β̃ββ

T
β̃ββ +2c′(1− τ)

[
RBayes +(8.75+

1− 1
2(1− τ)(D−−2τ)

2(1− τ)
)τ

]
(5.79)

5.8.6.2 Lower Bound of the Inequality for Contradiction

If we substitute βββ = 000 and β0 = 0 into the objective function in Equation 5.54, it is

obvious to find

βββ
T
[ap]βββ [ap] ≤ βββ

T
[ap]βββ [ap] +

c′

npu

npu

∑
l=1

ξ[ap]l ≤ 0+
c′

npu

npu

∑
l=1

1 = c′. (5.80)

Then we are to discuss the lower bound of ∑ξ[ap]l with xxxl ∈ A ∈ A j
i and

A ∩E j
i ̸= /0 for i = 0,1, . . . ,2ρ−1 − 2. To simplify the analysis firstly we suppose

j = 1. Let xxxz = argminxxx

(
φφφ(xxx)T βββ [ap] +β[ap]0

)
s.t., xxx ∈ A ∩E 1

i . Then, we define

fz =−
(

φφφ(xxxz)
T βββ [ap] +β[ap]0

)
≥ 0. By the definition of σ in Section 5.8.5, for xxxl ∈

A ∈ A1
i from {xxx1,xxx2, . . . ,xxxnpu}, we have ∥φφφ (xxxl)−φφφ(xxxz)∥2 = dφφφ (xxxl,xxxz)≤ σ = τ√

c′
.

Supposing yl = 1, according to the Cauchy–Schwarz inequality and Inequality 5.80,

there is
1−ξ[ap]l ≤ φφφ (xl)

T
βββ [ap] +β[ap]0

= (φφφ (xl)−φφφ(xxxz))
T

βββ [ap] +φφφ(xxxz)βββ
T
[ap] +β[ap]0

= (φφφ (xl)−φφφ(xxxz))
T

βββ [ap] − fz

≤ |(φφφ (xl)−φφφ(xxxz))
T

βββ [ap]|− fz

≤ ∥φφφ (xl)−φφφ(xxxz)∥2 ·
∥∥∥βββ

T
[ap]

∥∥∥
2
− fz

≤ τ − fz.

(5.81)
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Thus there is ξ[ap]l ≥ 1− τ + fz for xxxl ∈ A ∈ A1
i from {xxx1,xxx2, . . . ,xxxnpu} with

A ∩E 1
i ̸= /0 and yl = 1.

Furthermore, suppose that there exists an xxxk ∈ A ∈ A1
i from {xxx1,xxx2, . . . ,xxxnpu}

with
(

φφφ(xxxk)
T βββ [ap] +β[ap]0

)
≤ −1, which suffices to xxxk ∈ A ∪ E 1

i so that fff z ≥

1 in this case. For xxxl ∈ A ∈ A−1
i from {xxx1,xxx2, . . . ,xxxnpu} with yl = −1 and(

φφφ(xxxl)
T βββ [ap] +β[ap]0

)
≤−1, there is

1−ξ[ap]l ≤ 1−|1+βββ
T
[ap]φφφ(xxxl)+β[ap]0|

= 2+φφφ(xxxl)
T

βββ [ap] +β[ap]0

= 2+(φφφ (xl)−φφφ(xxxz))
T

βββ [ap] +φφφ(xxxz)βββ
T
[ap] +β[ap]0

= (φφφ (xl)−φφφ(xxxz))
T

βββ [ap] − fz

≤ 2+ |(φφφ (xl)−φφφ(xxxz))
T

βββ [ap]|− fz

≤ 2+∥φφφ (xl)−φφφ(xxxz)∥2 ·
∥∥∥βββ

T
[ap]

∥∥∥
2
− fz

≤ 2+ τ − fz.

(5.82)

Then for xxxl ∈ A ∈ A1
i with yl =−1 and

(
φφφ(xxxl)

T βββ [ap] +β[ap]0

)
>−1, there is

1−ξ[ap]l ≤ 1−|1+βββ
T
[ap]φφφ(xxxl)+β[ap]0|

=−φφφ(xxxl)
T

βββ [ap] −β[ap]0

=−(φφφ (xl)−φφφ(xxxz))
T

βββ [ap] −φφφ(xxxz)βββ
T
[ap] −β[ap]0

=−(φφφ (xl)−φφφ(xxxz))
T

βββ [ap] + fz

≤ |(φφφ (xl)−φφφ(xxxz))
T

βββ [ap]|+ fz

≤ ∥φφφ (xl)−φφφ(xxxz)∥2 ·
∥∥∥βββ

T
[ap]

∥∥∥
2
+ fz

≤ τ + fz.

(5.83)

Since fff z ≥ 1 here, we have τ + fz ≥ 2+ τ − fz. Therefore, once there exists
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an xxxk ∈ A from {xxx1,xxx2, . . . ,xxxnpu} with
(

φφφ(xxxk)
T βββ [ap] +β[ap]0

)
≤−1, we have 1−

ξ[ap]l ≤ τ + fz for xxxl ∈ A ∈ A1
i with yl =−1.

Moreover, suppose that
(

φφφ(xxxl)
T βββ [ap] +β[ap]0

)
>−1 holds for any xxxl ∈ A ∈

A1
i with A ∩E 1

i ̸= /0. In this case we only need to consider Inequality 5.83, i.e.,

1− ξ[ap]l ≤ τ + fz for yl = −1. Thus, generally we have ξ[ap]l ≥ 1− τ − fz for

xxxl ∈ A ∈ A1
i from {xxx1,xxx2, . . . ,xxxnpu} with A ∩E 1

i ̸= /0 and yl =−1. Then according

to Inequality 5.65, we get the same result as the content in [80]:

1
npu

∑
xl∈A

ξ[ap]l ≥ (1− τ + fz)(1− τ)

(
1− i+1

2ρ

)
P[XXX ∈ A ]

+ (1− τ − fz)(1− τ)
i

2ρ
P[XXX ∈ A ]

= (1− τ)2
(

1− 1
2ρ

)
P[XXX ∈ A ]

+ fz(1− τ)

(
1− 2i+1

2ρ

)
P[XXX ∈ A ]

≥ (1− τ)2
(

1− 1
2ρ

)
P[XXX ∈ A ].

(5.84)

For A ∈ A−1
i with A ∩E −1

i ̸= /0, let xxxz = argmaxxxx

(
φφφ(xxx)T βββ [ap] +β[ap]0

)
s.t.,

xxx ∈ A ∩E−1
i . Then, we define fz =

(
φφφ(xxxz)

T βββ [ap] +β[ap]0

)
≥ 0. For xxxl ∈ A ∈ A−1

i

from {xxx1,xxx2, . . . ,xxxnpu} with yl = 1, there is

1−ξ[ap]l ≤ φφφ (xl)
T

βββ [ap] +β[ap]0

= (φφφ (xl)−φφφ(xxxz))
T

βββ [ap] +φφφ(xxxz)βββ
T
[ap] +β[ap]0

= (φφφ (xl)−φφφ(xxxz))
T

βββ [ap] + fz

≤ |(φφφ (xl)−φφφ(xxxz))
T

βββ [ap]|+ fz

≤ ∥φφφ (xl)−φφφ(xxxz)∥2 ·
∥∥∥βββ

T
[ap]

∥∥∥
2
+ fz

≤ τ + fz,

(5.85)

so that there is ξ[ap]l ≥ 1 − τ − fz for xxxl ∈ A ∈ A−1
i with A ∩ E −1

i ̸= /0 and

yl = 1. Moreover, A ∩E −1
i ̸= /0 indicates that there exists xxx ∈ A ∩E −1

i meeting
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φφφ(xxx)T βββ [ap] +β[ap]0

)
> 0. Considering the continuity of φφφ(·) and the diameter of

A ∈ Ã−1
i no greater than σ as discussed in Section 5.8.5,

(
φφφ(xxxl)

T βββ [ap] +β[ap]0

)
≥

−1 holds for any xxxl ∈ A ∈ A−1
i from {xxx1,xxx2, . . . ,xxxnpu} when there exists xxx ∈ A

meeting
(

φφφ(xxx)T βββ [ap] +β[ap]0

)
> 0. In this case, for xxxl ∈ A ∈ A−1

i with yl = −1,

we have

1−ξ[ap]l ≤−φφφ(xxxl)
T

βββ [ap] −β[ap]0

=−(φφφ (xl)−φφφ(xxxz))
T

βββ [ap] −φφφ(xxxz)βββ
T
[ap] −β[ap]0

=−(φφφ (xl)−φφφ(xxxz))
T

βββ [ap] − fz

≤ |(φφφ (xl)−φφφ(xxxz))
T

βββ [ap]|− fz

≤ ∥φφφ (xl)−φφφ(xxxz)∥2 ·
∥∥∥βββ

T
[ap]

∥∥∥
2
− fz

≤ τ − fz,

(5.86)

so that there is ξ[ap]l ≥ 1− τ + fz for xxxl ∈ A ∈ A−1
i from {xxx1,xxx2, . . . ,xxxnpu} with

A ∩E −1
i ̸= /0 and yl =−1. In this case, we can obtain the same result as Inequality

5.84, i.e., 1
npu

∑xl∈A ξ[ap]l ≥ (1− τ)2 (1− 1
2ρ

)
P[XXX ∈ A ].

Thus, according to Inequality 5.84, we can obtain the same result as the content

in [80]:

1
npu

∑
j=−1,1

∑
A ∈A j

i
A ∩E j

i ̸= /0

∑
xxxl∈A

ξ[ap]l ≥ (1− τ)2
(

1− 1
2ρ

)
∑

A ∈A j
i

A ∩E j
i ̸=0

P[XXX ∈ A ].
(5.87)

Then we are to discuss the lower bound of ∑ξ[ap]l with xxxl ∈ A ∈

A j
i and A ∩ E j

i = /0 for i = 0,1, . . . ,2ρ−1 − 2. Firstly we suppose j =

1. Let xxxz = argmaxxxx

(
φφφ(xxx)T βββ [ap] +β[ap]0

)
s.t., xxx ∈ A . Then define fz =(

φφφ(xxxz)
T βββ [ap] +β[ap]0

)
≥ 0. For xxxl ∈ A ∈ A1

i from {xxx1,xxx2, . . . ,xxxnpu} with yl = 1,

there is the same analysis as Inequality 5.85, i.e.,1 − ξ[ap]l ≤ τ + fz so that

ξ[ap]l ≥ max1− τ −a.

Furthermore, A ∩E 1
i = /0 indicates that (φφφ(xxx)T βββ [ap]+β[ap]0)> 0 holds for any

xxx ∈A . Thus, for xxxl ∈A ∈A1
i from {xxx1,xxx2, . . . ,xxxnpu} with yl =−1, we only need to

consider the case in Inequality 5.86, i.e., 1−ξ[ap]l ≤ τ − fz so that ξ[ap]l ≥ 1−τ + fz
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for xxxl ∈ A ∈ A1
i from {xxx1,xxx2, . . . ,xxxnpu} with A ∩E 1

i = /0 and yl =−1. According

to Inequality 5.65, we can get the same result as the content in [80], i.e.,

1
npu

∑
xxxl∈A

ξ[ap]l ≥ (1− τ − fz)(1− τ)

(
1− i+1

2ρ

)
P[XXX ∈ A ]

+ (1− τ + fz)(1− τ)
i

2ρ
P[XXX ∈ A ]

= (1− τ)2
(

1− 1
2ρ

)
P[XXX ∈ A ]

− fz(1− τ)

(
1− 2i+1

2ρ

)
P[XXX ∈ A ]

≥ (1− τ)2 i
2ρ−1 P[XXX ∈ A ].

(5.88)

Then we are to discuss the lower bound of ∑ξ[ap]l with xxxl ∈ A ∈ A−1
i and

A ∩ E −1
i = /0 for i = 0,1, . . . ,2ρ−1 − 2. Let xxxz = argminxxx

(
φφφ(xxx)T βββ [ap] +β[ap]0

)
s.t., xxx ∈ A . Then define fz = −

(
φφφ(xxxz)

T βββ [ap] +β[ap]0

)
≥ 0. For xxxl ∈ A ∈ A1

i

from {xxx1,xxx2, . . . ,xxxnpu} with A ∩E −1
i = /0 and yl = 1, there is the same result as

Inequality 5.81, i.e.,1−ξ[ap]l ≤ τ − fz so that ξ[ap]l ≥ 1− τ + fz for xxxl ∈ A ∈ A−1
i

from {xxx1,xxx2, . . . ,xxxnpu} with A ∩E −1
i = /0 and yl = 1.

Furthermore, suppose that there exists an xxxk ∈ A ∈A−1
i from {xxx1,xxx2, . . . ,xxxnpu}

with
(

φφφ(xxxk)
T βββ [ap] +β[ap]0

)
≤ −1, which suffices to fff z ≥ 1 in this case. For xxxl ∈

A ∈ A−1
i from {xxx1,xxx2, . . . ,xxxnpu} with yl = −1 and

(
φφφ(xxxl)

T βββ [ap] +β[ap]0

)
≤ −1,

there is the same result as the Inequality 5.82, i.e., ξ[ap]l ≤ 2+ τ − fz. For xxxl ∈ A ∈

A−1
i from {xxx1,xxx2, . . . ,xxxnpu} with yl =−1 and

(
φφφ(xxxl)

T βββ [ap] +β[ap]0

)
>−1, there is

the same result as the Inequality 5.83, i.e., ξ[ap]l ≤ τ + fz.

Moreover, suppose that
(

φφφ(xxxl)
T βββ [ap] +β[ap]0

)
>−1 holds for any xxxl ∈ A ∈

A−1
i with A ∩ E −1

i = /0. In this case we only need to consider Inequality 5.83,

i.e., 1−ξ[ap]l ≤ τ + fz for yl =−1. Thus, generally we have ξ[ap]l ≥ 1− τ − fz for

xxxl ∈ A ∈ A−1
i from {xxx1,xxx2, . . . ,xxxnpu} with A ∩E −1

i = /0 and yl = −1. Therefore,

Inequality 5.88 also holds for xxxl ∈ A ∈ A−1
i with A ∩E −1

i = /0 so that there is the
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same result as in [80]:

1
npu

∑
j=−1,1

∑
A ∈A j

i
A ∩E j

i =0

∑
xxxl∈A

ξ[ap]l ≥ (1− τ)2 i
2ρ−1 ∑

A ∈A j
i

A ∩E j
i =0

P[XXX ∈ A ]. (5.89)

Finally, as for the lower bound of ∑ξ[ap]l with xxxl ∈ A ∈ A j
2ρ−1−1, the analysis

is very similar to the above analysis for the lower bound of ∑ξ[ap]l with xxxl ∈A ∈A j
i

and A ∩E j
i = /0 for i = 0,1, . . . ,2ρ−1 −2. There for we skip to the results as:

• For xxxl ∈ A ∈A1
2ρ−1−1 from {xxx1,xxx2, . . . ,xxxnpu} with yl = 1, there is 1−ξ[ap]l ≤

τ + fz so that ξ[ap]l ≥ 1− τ −a

• For xxxl ∈A ∈A1
2ρ−1−1 from {xxx1,xxx2, . . . ,xxxnpu} with yl =−1, there is 1−ξ[ap]l ≤

τ − fz so that ξ[ap]l ≥ 1− τ + fz

• For xxxl ∈ A ∈A−1
2ρ−1−1 from {xxx1,xxx2, . . . ,xxxnpu} with yl = 1, there is 1−ξ[ap]l ≤

τ − fz so that ξ[ap]l ≥ 1− τ + fz

• For xxxl ∈A ∈A−1
2ρ−1−1 from {xxx1,xxx2, . . . ,xxxnpu} with yl =−1, there is 1−ξ[ap]l ≤

τ + fz so that ξ[ap]l ≥ 1− τ −a

According to Inequality 5.64 and Inequality, there is the same result as the

content in [80] with , i.e.,

1
npu

∑
j=−1,1

∑
A ∈A j

2ρ−1−1

∑
xxxl∈A

ξ[ap]l ≥ P[XXX ∈ B∗1
2ρ−1−1 ∪B∗−1

2ρ−1−1]

[
(1− τ − fz)(1− τ)

(
1
2
− 1

2ρ

)

+(1− τ + fz)(1− τ)

(
1
2
− 1

2ρ

)]
> (1− τ)2

(
1− 1

2ρ−1

)(
P[XXX ∈ B2ρ−1−1]−2τ

)
.

(5.90)

Up to now, we have got the three same results as [80] in Inequality 5.87,

Inequality 5.89 and Inequality 5.90. We can eventually obtain the following lower

bound for ∑
npu
l=1 ξ[ap]l by summing Inequality 5.87, Inequality 5.89 and Inequality
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5.90 together, which has been proved in [80].

c′

npu

npu

∑
l=1

ξ[ap]l ≥ (1− τ)2c′
(

2RBayes + ∑
j=−1,1

2ρ−1−2

∑
i=0

(
1− i

2ρ−1

)
P[XXX ∈ E j

i ]−9τ

)
.

(5.91)

Considering RBayes ≤ 1
2 and Inequality 5.71, there is

c′

npu

npu

∑
l=1

ξ[ap]l > (1− τ)2c′
(
2RBayes + ε −11τ

)
= c′(1− τ)

(
2RBayes +32τ −11τ −2τRBayes − ετ +11τ

2)
> c′(1− τ)

(
2RBayes +19τ

)
.

(5.92)

5.8.6.3 Construction of Contradiction for the Proof of Theorem 4

Combining Inequality 5.79 with Inequality 5.92 we can find

β̃ββ
T

β̃ββ ≥ βββ
T
[ap]βββ [ap] +

c′

npu

npu

∑
l=1

ξ[ap]l

−2c′(1− τ)

[
RBayes +(8.75+

1− 1
2(1− τ)(D−−2τ)

2(1− τ)
)τ

]

≥ c′

npu

npu

∑
l=1

ξ[ap]l −2c′(1− τ)

[
RBayes +(8.75+

1− 1
2(1− τ)(D−−2τ)

2(1− τ)
)τ

]
> c′(1− τ)

(
2RBayes +19τ

)
−2c′(1− τ)

[
RBayes +(8.75+

1− 1
2(1− τ)(D−−2τ)

2(1− τ)
)τ

]

= c′τ
[

0.5−1.5τ +
1
2
(1− τ)(D−−2τ)

]
.

(5.93)

It should be noted that

τ ≤ 1
32

< 0.2 <
1
4

min
D−∈[0,1]

{5+D−−
√
(5+D−)2 −8(D−+1)}. (5.94)
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Therefore, 0.5−1.5τ + 1
2(1− τ)(D−−2τ)> 0 holds for all 0 < τ = ε

32 ≤ 1
32 . Then,

we let

c∗ =
β̃ββ

T
β̃ββ

τ minD−∈[0,1]{0.5−1.5τ + 1
2(1− τ)(D−−2τ)}

=
2β̃ββ

T
β̃ββ

τ(1−5τ +2τ2)
.

(5.95)

For c′ ≥ c∗, we can finally obtain the contradiction according to Inequality 5.93,

i.e.,

β̃ββ
T

β̃ββ > c∗τ

[
0.5−1.5τ +

1
2
(1− τ)(D−−2τ)

]
> β̃ββ

T
β̃ββ . (5.96)

Thus the assumption in Inequality 5.72 is false and we can draw a conclusion

that for 0 < ε = 32τ < 1 and c′ ≥ c∗,

R0−1

(
f ∗npu
ap

)
−RBayes ≤ ε

holds on the ’representative’ dataset. Finally Theorem 4 is proved.

5.8.7 Step 3: Proof of Theorem 3

As the value of c′ tends to infinity with npu increasing, we can find n∗ so that c′ ≥ c∗

when there is npu ≥ n∗. In this case, according to Theorem 4, there is

Pnpu
[
R0−1

(
f ∗npu
ap

)
−RBayes ≤ ε

]
≥ 1−2Mnpue−

(
ε6/229M2

npu

)
npu, (5.97)

where Mnpu =
64
ε

N
((

Sx,dφφφ

)
, ε

32
√

c′

)
. There is M2

npu
∈ O

(
c
′α
)

according to the

assumption on the covering numbers of kernel space (Sx,dφφφ ). Therefore, npuM−2
npu

tends to infinity with npu increasing and there is

Pnpu
[
R0−1

(
f ∗npu
ap

)
−RBayes ≤ ε

]
→ 1.
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As R0−1

(
f ∗npu
cpb

)
→ R0−1

(
f ∗npu
ap

)
with npu increasing, Theorem 3 is proved, i.e.,

Pnpu
[
R0−1

(
f ∗npu
cpb

)
−RBayes ≤ ε

]
→ 1.

5.8.8 Discussion on Universal Consistency of CPB-GLPUAL.

There is still one problem left. The construction of the kernel function various ac-

cording to the form of the objective function for optimisation. Currently, to have an

algorithm to solve the optimisation, we did the kernel trick based on the blocked form

of the objective function of CPB-GLPUAL in Section 5.6, where we can only deter-

mine the form of kernel matrices ΦΦΦ(XXX [k],XXX [pu]) = φφφ(XXX [k])BBB
−1

φφφ(XXX [pu])
T ,k = p,u, pu

as a whole directly. In this case, the form of kernel matrices ΦΦΦ
∗(XXX [k],XXX [pu]) =

φφφ(XXX [k])φφφ(XXX [pu])
T ,k = p,u, pu is unknown due to the lack of expertise. As a com-

promise, during the experiments on real datasets in Section 5.7, we set ΦΦΦ(XXX [k],XXX [pu])

to be universal kernel matrices, i.e., RBF kernel matrices, to intuitively increase the

likelihood of ΦΦΦ
∗(XXX [k],XXX [pu]) to be universal matrices.

Therefore, in future, we need to construct the kernel trick of CPB-GLPUAL

in a way more consistent to the construction of kernel in Section 5.8.3.1 and then

to propose the algorithm for the corresponding the optimisation. In this case, we

will be able to completely ensure that the universal consistency holds in practice as

universal kernel is applied.

5.9 Conclusions

In this chapter, firstly CPB-GLPUAL was proposed for better classification than

GLPUAL with the class prior π known. Secondly, the algorithm to solve the

non-convex optimisation of GLPUAL was proposed based on ADMM with the

linear decision boundary in the original feature space generated. Thirdly, the kernel

trick was introduced to GLPUAL and then the algorithm to solve the non-convex

optimisation of GLPUAL was proposed also based on ADMM with the non-linear

decision boundary generated in the original feature space. Fourthly, the motivation of

CPB-GLPUAL was verified by the experiments on both synthetic and real datasets.
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At the end of this chapter, the universal consistency of CPB-GLPUAL was proved to

theoretically.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, three classifiers were proposed for better classification on various type

of PU dataset.

In Chapter 3, firstly GLPUAL was proposed for better classification on the

datasets where the distances from two positive subsets to the ideal decision boundary

are very different. Secondly, an algorithm to solve the optimisation of GLPUAL

was proposed based on ADMM with linear decision boundary generated. Thirdly,

the kernel trick was introduced to GLPUAL and then the algorithm to solve the

non-convex optimisation of GLPUAL was proposed also based on ADMM with the

non-linear decision boundary generated in the original feature space for satisfactory

classification on trifurcated PU datasets.

As SVM-based methods, both GLLC and GLPUAL are negatively affected by

the irrelevant features in the datasets, especially when the kernel trick is applied

[54]. This motivated us to introduce the elastic net [48] to the objective function

of GLPUAL and the kernel-free technique [81] to the predictive score function of

GLPUAL to propose E-GLPUAL and EKF-GLPUAL for the better performance

than GLPUAL on the PU datasets with irrelevant features in Chapter 4.

In Chapter 4, we proposed E-GLPUAL and EKF-GLPUAL for better classi-

fication than GLPUAL on the datasets with irrelevant features contained. Then

the algorithms to solve the optimisation for E-GLPUAL and EKF-GLPUAL were
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proposed based on ADMM. The experimental results on the synthetic datasets and

real datasets support our motivation though currently EKF-GLPUAL cannot abandon

all the irrelevant features thoroughly. In the end of Chapter 4, the grouping effect of

E-GLPUAL is proved.

There are too many hyper-parameters to be tuned in the objective of GLPUAL,

which may make the model miss the best combination of the hyper-parameters.

Motivated by this issue, CPB-GLPUAL was proposed in Chapter 5 to reduce the

number of the hyper-parameters to be tuned via introducing prior information of the

datasets to the objective function.

In Chapter 5, firstly CPB-GLPUAL was proposed for better classification than

GLPUAL with the class prior π known. Secondly, the algorithm to solve the non-

convex optimisation of CPB-GLPUAL was proposed based on ADMM with the

linear decision boundary in the original feature space generated. Thirdly, the kernel

trick was introduced to CPB-GLPUAL and then the algorithm to solve the non-

convex optimisation of GLPUAL was proposed also based on ADMM with the

non-linear decision boundary generated in the original feature space. Fourthly, the

universal consistency of CPB-GLPUAL was proved to theoretically ensure that

extending the sample size can enhance the performance of CPB-GLPUAL.

6.2 Limitations and Implications

In Chapter 3, there is no closed form of the solution of the optimisation of GLPUAL

and the numerical solution is to be obtained by the iterative algorithm based on

ADMM, while the closed form of the optimisation of GLLC can be easily obtained.

In this case, it takes much longer time to train GLPUAL than GLLC. More specif-

ically, during the experiments in Chapter 3, we found that the training time for

GLPUAL is approximately ten times longer than the training time for GLLC. After

considering CV, the difference in training efficiency becomes even more distinct.

In Chapter 4, E-GLPUAL introduced a new hyper-parameter for the L1-norm

regularisation term, making hyper-parameter tuning more complex compared to

GLPUAL. This exacerbates the time consumption. The same holds true for EKF-
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GLPUAL. Furthermore, before training EKF-GLPUAL, we have to convert each

instance vector into a matrix form; this further extends the training time. Moreover,

as mentioned in Section 4.5.1, computationally singular errors might encounter

during the training of EKF-GLPUAL.

In Chapter 5, although there is one important hyper-parameter determined for

CPB-GLPUAL, the non-convex objective function requires more iterative steps for

the algorithm to converge to the optimal solution. Consequently, we still require

more than seven times the training time for CPB-GLPUAL compared with GLLC.

Considering the above discussed limitations of the proposed methods in this

thesis, it is time-costly to train all the methods mentioned in this thesis on a new PU

dataset. In this case, for the convenience in selecting the method mentioned in this

paper, the flowchart in Figure 6.1 is given. More specifically, the 2-dimensional pro-

jection with t-SNE is a strong tool to check if the PU data is trifurcated. Furthermore,

if there are many features with low contribution during the principal component

analysis (PCA), it will be reasonable to regard the PU data as the one with too many

irrelevant features.

If the PU data 
are trifurcated

If the PU data contain 
too many irrelevant 
features

If the PU data is linearly 
separable in the original 
feature space

YesNo

Yes

Yes

No

No

Train GLLC

If the class prior 𝜋 can 
be determined before 
hyper-parameter tuning

YesNo

Train GLPUAL Train CPB-GLPUAL
Train E-GLPUALTrain EKF-GLPUAL

Figure 6.1: Flowchart to determine which method mentioned in this thesis to use.
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6.3 Future Work
Firstly, as discussed in Section 4.5.5, EKF-GLPUAL cannot abandon all the irrelevant

features in the real datasets thoroughly. In this case, the main future work is to find a

regularised term for the parameters, which is better on the feature selection under

the framework of kernel-free SVMs.

Secondly, in Section 4.6, the grouping effect of EKF-GLPUAL is more complex

to be explored than the grouping effect of E-GLPUAL. Therefore, the case-dependent

studies on the grouping effect of EKF-GLPUAL is also regarded as the future work

on EKF-GLPUAL.

Thirdly, as discussed in Section 5.8.8, we need to construct the kernel trick of

CPB-GLPUAL in a way more consistent to the construction of kernel in Section

5.8.3.1 and then to propose the algorithm for the corresponding the optimisation. In

this case, we will be able to completely ensure that the universal consistency holds

in practice as universal kernel is applied.
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