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Introduction
Diffusion-weighted MRI can be used to generate whole-
brain tractography and a connectome. Its topology is 
described using graph theory and graph metrics, which 
can explain disability in multiple sclerosis (MS).1,2 
Integration describes how networks pass information 
between distributed regions; segregation (or modular-
ity) describes network organisation into smaller 
interconnected regions.3 Complex networks balance 
integration and segregation, giving small-worldness.4 

Centrality assesses how well given regions (or nodes) 
are connected with others,3 and resilience is measured 
by how many heavily connected nodes connect to other 
heavily connected nodes.5

Long-range connections are more affected than short-
range connectivity in MS. One study in early MS 
noted increased modularity and decreased long-range 
connectivity.6 Another identified lower global effi-
ciency in long-range connections in established MS.7
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Disrupted connectivity affects clinical outcomes. 
Damage to long-range connections is more linked to 
impaired cognition than short-range connections.7 
Similarly, impaired connectivity in hippocampal net-
works correlates with cognitive deficits in MS.8 
Furthermore, addition of graph metrics explains vari-
ance in disability in established MS beyond conven-
tional MRI.9

The utility of adding graph metrics to conventional 
MRI in clinically isolated syndrome (CIS) has not 
been reported. Some groups looked at connectivity in 
isolation. One identified increased modularity and 
clustering in relapsing-remitting MS versus CIS and 
higher global and local efficiency in CIS against MS.10 
In addition, lower node strength is reported in CIS 
against controls, with greater modularity associated 
with worse cognition.11 This study therefore assesses 
if graph analysis adds value to conventional MRI.

Methods

Participants
The study recruited people with symptoms suggestive 
of a first episode of demyelination within 3 months of 
presentation, identified at the National Hospital for 
Neurology & Neurosurgery and Moorfields Eye 
Hospital, both in London, UK. Age- and sex-matched 
healthy control (HC) participants were also recruited. 
Participants needed to be 18–65 years old, able to give 
written informed consent in English and able to have 
an MRI. Participants with clinically isolated syn-
drome (pwCIS) had CIS without prior conversion to 
MS, and no other condition that might affect the brain; 
HCs had to have no known neurological disease. The 
local research ethics committee approved the study 
protocol (13/LO/1762; 13/0231-CIS2013); all partici-
pants gave written informed consent.

Clinical assessment
pwCIS were assessed using the Expanded Disability 
Status Scale (EDSS),12 timed 25-foot walk (T25FW), 
9-hole peg test (9HPT) and the Paced Auditory Serial 
Addition Test (PASAT); z-scores were calculated for 
the T25FW, 9HPT and PASAT.13 The 2017 revisions 
of the McDonald criteria14 were used to identify MS 
diagnosis.

MRI acquisition
MRI scans were acquired on a 3-Tesla Philips Achieva 
TX (Philips, Best, the Netherlands), upgraded during 
the study to a 3T Philips Ingenia CX scanner. Isotropic 

three-dimensional (3D) T1-weighted, fluid-attenuated 
inversion recovery (FLAIR), proton-density (PD) and 
T2-weighted scans were acquired. Multishell diffu-
sion-weighted imaging (DWI) was acquired with 53 
diffusion directions on Achieva (8 b = 0 s/mm2 images, 
8 b = 300 s/mm2, 15 b = 711 s/mm2, 30 b = 2000 s/mm2) 
and 75 directions on Ingenia (7 b = 0 s/mm2, 20 
b = 1000 s/mm2, 20 b = 2000 s/mm2, 35 b = 2800 s/
mm2).

To reduce misleading differences in tractography due 
to movement,15 heads were immobilised with foam 
wedges and images acquired along the anterior com-
missure to posterior commissure line. Images were 
re-acquired if visual inspection demonstrated signifi-
cant movement artefact.

Lesion and tissue segmentation
Lesion masks were generated on PD images. 
Hyperintense lesions were outlined with the semi-
automated edge-finding tool from JIM v6.0 (Xinapse 
Systems, West Bergholt, UK) by two experienced 
raters (M.A.F., S.C.). Lesions less than 2 mm in any 
direction were excluded, as were those in areas typi-
cal for enlarged perivascular spaces. T2-weighted and 
FLAIR images were references.

PD/T2- and 3D T1-weighted images were rigidly reg-
istered, and lesion masks resampled in 3D T1 space. 
T1-weighted images were filled using a non-local 
patch-match lesion-filling algorithm.16 These were 
parcellated and segmented into white matter, cortical 
grey matter and deep grey matter using Geodesic 
Information Flows17 following the Desikan–Killiany–
Tourville parcellation protocol into 120 distinct 
regions.18 Brain tissue volumes and fractions were 
obtained from segmented images. Lesion proportion 
was calculated as a fraction of lesion volume over 
total intracranial volume.

Connectome generation
DWI denoising was performed with MP-PCA;19 FSL 
6.0 (FMRIB, Oxford, UK)20 ‘topup’21 was used for 
echo-planar imaging distortion correction; ‘eddy’22 
corrected for eddy current-induced distortions and 
subject motion. Images were visually inspected for 
Gibbs ringing artefacts; affected participants were 
excluded. 3D T1-weighted images were co-registered 
to an averaged b = 0 s/mm2 image using the NiftyReg 
software package.23

Connectome generation was carried out in MRtrix3,24 
unless stated otherwise. Five-tissue-type files were 
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generated with FSL;20 brain lesions were incorporated 
in the white-matter mask. Nodes on parcellated 
images were labelled and response function calcu-
lated on corrected DWI using the ‘dhollander’ algo-
rithm.25 DWI and response function files were used to 
extract white-matter fibre orientation distribution 
functions with constrained spherical deconvolution.26

Tractograms were formed with anatomically con-
strained tractography and the IFOD2 algorithm.27,28 A 
total of 30 million streamlines were generated (to 
facilitate production of future subnetwork connec-
tomes) and re-weighted with SIFT2, followed by con-
nectome generation.29 Connectomes were not 
normalised for region-of-interest volume, as the effect 
is ambiguous and can cause bias.30,31 ComBat32 was 
used to harmonise connectomes from different scan-
ner versions; disease status (CIS or HC), age and sex 
were used as categorical variables to preserve biologi-
cal differences. No additional inter-subject edge-
weight normalisation was performed beyond SIFT2 
and ComBat.9,33–35

Network metrics
Graph metrics were calculated using the Brain 
Connectivity Toolbox3 for MATLAB (The 
MathWorks, Inc., Natick, MA, USA). Metrics were 
selected for different aspects of brain connectivity: 
integration (global efficiency), segregation (mean 
clustering coefficient, transitivity and mean local effi-
ciency), centrality (mean node strength, mean 
betweenness centrality), resilience (assortativity coef-
ficient) and small-worldness. Following analysis of 
its impact on graph metrics,36 thresholding was not 
applied to generated connectomes.

Statistical analysis
Statistical analysis was performed with R 4.2.3.37 
Linear regression models compared graph metrics 
between pwCIS and HC and associations with clinical 
outcomes, correcting for age and sex throughout. 
T25FW, 9HPT and PASAT z-scores were used; higher 
z-scores indicated better performance. The effect of 
CIS type (optic neuritis against all others) on out-
comes was assessed, as were interactions of CIS type 
with graph metrics.

The ‘glmulti’ package38 was used to identify linear 
regression models comprising conventional MRI 
metrics (brain parenchymal fraction, white-matter 
fraction, grey-matter fraction and lesion proportion) 
that had associations with each measure of disability. 
Models were ranked by corrected Akaike Information 

Criterion (AICC); the lowest AICC model was 
selected as the ‘best’ conventional MRI model. Graph 
metric models were similarly determined. AICC was 
used for model selection to avoid over-fitting from R2 
in isolation.39

Graph metrics in the best graph model were itera-
tively added to the best conventional MRI model to 
create ‘combined’ models, corrected for age, sex and 
CIS type. The combined model with the lowest AICC 
was selected as best. Model coefficients for the best 
conventional MRI model were compared with those 
for the best combined model for each measure of dis-
ability. ANOVA testing was used to calculate likeli-
hood ratios of compared models. Significance was set 
at p < 0.05; no correction for multiple comparisons 
was performed.

Results

Descriptive statistics
Seventy-three people with CIS and 28 HCs were 
included. A total of 57 pwCIS had optic neuritis, 7 had 
a brainstem/cerebellum presentation, 5 presented with 
spinal cord symptoms, 3 had a hemispheric lesion and 
1 had multifocal CIS. Mean time between symptom 
onset and first assessment was 59 days (standard devi-
ation 31 days). A total of 30 pwCIS met criteria for 
relapsing-remitting MS14 at the time of their first 
symptoms. Further descriptives are in Table 1. 
Distributions of EDSS scores and T25FW, 9HPT and 
PASAT z-scores are in Figure 1.

Differences between CIS and HC
Significant reductions in local efficiency 
(β = 0.25 × 10−3 (95% confidence interval 
(CI) = 0.004 × 10−3, 0.49 × 10−3), p = 0.045), cluster-
ing coefficient (β = 0.21 × 10−3 (95% CI = 0.01 × 10−3, 
0.4 × 10−3), p = 0.034) and transitivity (β = 0.21 × 10−3 
(95% CI = 0.01 × 10−3, 0.41 × 10−3), p = 0.036) were 
seen in pwCIS compared with HCs (Table 2 and 
Figure 2). No differences were noted in the other 
graph metrics.

No significant differences in graph metrics were iden-
tified between pwCIS with a confirmed diagnosis of 
MS and those remaining as CIS.

Relationship of graph metrics to disability
CIS type had a weakly significant effect on EDSS 
(β = 0.45 (95% CI = −0.03, 0.94), p = 0.064) and 
T25FW performance (β = −0.033 (95% CI = −0.068, 
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Table 1. Clinical and radiological characteristics of patients and healthy controls.

pwCIS (n = 73) HCs (n = 28) p

Age, years (SD) 31.7 (6.8) 36.3 (9.1) 0.021

Sex, number of females 44 15 0.552

Achieva/ingenia 48/25 16/12 0.440

Relapsing-remitting multiple sclerosis 
(%)

30 (41%) – –

EDSS, median (range) 1 (0-3.5) – –

T25FW in seconds, mean (SD) 4.68 (0.70) – –

T25FW z-score, mean (SD) 0.43 (0.06) – –

9HPT in seconds, mean (SD) 21.10 (2.58) – –

9HPT z-score, mean (SD) 0.42 (0.53) – –

PASAT score, mean (SD) 43.82 (13.11) – –

PASAT z-score, mean (SD) -0.16 (1.13) – –

Number of patients whose MRI showed 
white-matter lesions

65 – –

Lesion number, mean (range) 26.11 (0-121) – –

Lesion load, fraction of total intracranial 
volume (range)

0.0036 (0-0.0307) – –

Brain parenchymal fraction (SD) 0.763 (0.008) 0.763 (0.010) 0.9

White-matter fraction (SD) 0.308 (0.009) 0.313 (0.010) 0.033
Grey-matter fraction (SD) 0.454 (0.009) 0.450 (0.006) 0.009

pwCIS: people with CIS; HC: healthy control; SD: standard deviation; EDSS: Expanded Disability Status Scale; T25FW: timed 25-foot 
walk; 9HPT: 9-hole peg test; PASAT: Paced Auditory Serial Addition Test. Significant between-group differences are marked in bold.

Figure 1. (a) Extended Disability Status Scale (EDSS) score distribution; (b) z-score distribution of timed 25-foot walk 
(T25FW), nine-hole peg test (9HPT) and Paced Auditory Serial Addition Test (PASAT).
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0.001), p = 0.058); participants with optic neuritis CIS 
had lower EDSS scores and better T25FW times com-
pared with non-optic neuritis CIS. It had no 

significant effect on 9HPT (β = −0.013 (95% 
CI = −0.318, 0.291), p = 0.931) or PASAT (β = −0.069 
(95% CI = −0.739, 0.602), p = 0.839) outcomes.

Table 2. Graph metrics in pwCIS and HCs.

pwCIS, mean (SD) HCs, mean (SD) β regression coefficient (95% 
CI), p

Global efficiency 4.05 × 10-2

(0.73 × 10-2)
4.19 × 10-2

(0.44 × 10-2)
0.16 × 10-2 (-0.14 × 10-2, 
0.47 × 10-2), p = 0.291

Mean local efficiency 3.40 × 10-3

(0.55 × 10-3)
3.63 × 10-3

(0.43 × 10-3)
0.25 × 10-3 (0.004 × 10-3, 
0.49 × 10-3) p = 0.045

Mean clustering 
coefficient

2.60 × 10-3

(0.44 × 10-3)
2.79 × 10-3

(0.35 × 10-3)
0.21 × 10-3 (0.01 × 10-3, 
0.4 × 10-3), p = 0.034

Transitivity 2.68 × 10-3

(0.46 × 10-3)
2.87 × 10-3

(0.36 × 10-3)
0.21 × 10-3 (0.01 × 10-3, 
0.41 × 10-3), p = 0.036

Assortativity coefficient -1.58 × 10-2

(0.30 × 10-2)
-1.50 × 10-2

(0.28 × 10-2)
0.007 × 10-2 (-0.007 × 10-2, 
0.021 × 10-2), p = 0.300

Mean node strength 1.17 (0.19) 1.23 (0.12) 0.063 (-0.02, 0.14), p = 0.128

Mean betweenness 
centrality

462.18 (38.44) 457.86 (36.79) -4.44 (-22.17, 13.28), p = 0.617

Small-worldness 1.0046
(5.27 × 10-3)

1.0039
(4.24 × 10-3)

-0.87 × 10-3 (-3.21 × 10-3, 
1.47 × 10-3), p = 0.458

pwCIS: people with CIS; SD: standard deviation; HC: healthy control; CI: confidence interval.
Significant results are marked in bold.

Figure 2. Local efficiency, clustering coefficient and transitivity in participants with CIS (pwCIS) and healthy controls (HCs).
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The assortativity coefficient had a significant rela-
tionship with EDSS (β = 74.9 (95% CI = 9.1, 141), 
p = 0.026), with higher assortativity associated with 
increased EDSS.

For the T25FW, multiple measures of segregation had 
significant relationships: local efficiency (β = 27.1 
(95% CI = 1.1, 53.1), p = 0.041) and clustering 
(β = 36.1 (95% CI = 3.1, 69.1), p = 0.032). Transitivity, 
another measure of segregation, had a weakly signifi-
cant relationship (β = 32.1 (95% CI = −0.5, 64.7), 
p = 0.053). The assortativity coefficient (β = 5.39 
(95% CI = 0.67, 10.11), p = 0.026) and small-world-
ness (β = −3.27 (95% CI = −5.89, −0.65), p = 0.015) 
also had significant relationships. These were all posi-
tive correlations, where increased metric value was 
associated with better T25FW performance, save 
small-worldness, which had an inverse relationship. 
Node strength also had a borderline significant posi-
tive relationship with the T25FW (β = 0.066 (95% 
CI = −0.008, 0.14), p = 0.085).

All measures of segregation showed trends towards 
positive relationships with the 9HPT: local efficiency 
(β = 207 (95% CI = −21, 435), p = 0.074), clustering 
(β = 267 (95% CI = −23, 557), p = 0.071) and transitiv-
ity (β = 264 (95% CI = −22, 550), p = 0.069).

No graph metrics had an association with the 
PASAT. There was no interaction between CIS 
type and graph metrics in predicting any of the dis-
ability outcomes. Results of all models tested are 
in Table 3.

Addition of graph metrics to conventional MRI 
models
The best conventional MRI model for EDSS com-
prised brain parenchymal fraction and lesion propor-
tion. For T25FW, the model contained brain 
parenchymal fraction, white-matter fraction, grey-
matter fraction and lesion proportion. No conven-
tional MRI models demonstrated a relationship with 
9HPT or PASAT.

The best graph metric model for EDSS comprised 
transitivity and assortativity and the model for T25FW 
used global efficiency, clustering and transitivity. For 
9HPT, the best model contained just transitivity; how-
ever, after correcting for age and sex, the contribution 
of transitivity to the model was only borderline sig-
nificant (p = 0.069). No graph metric model demon-
strated a relationship with PASAT. Details of the 
assessed conventional MRI and graph metric models 
are in Table 4. T
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The combined conventional and graph metric model 
with the best fit for EDSS added the assortativity 
coefficient to conventional MRI, and R2 increased 
from 12.6% to 16.6% (Δ = 4.0). ANOVA testing of 
likelihood ratios of conventional and combined EDSS 
models was significant at p = 0.045. For T25FW, the 
best combined model added the clustering coefficient 
to the conventional MRI model, increasing R2 from 
11.5% to 25.1% (Δ = 13.6), p < 0.001. Full details of 
models tested are in Table 5. A regression plot for the 
best combined T25FW model is in Figure 3.

Discussion
One of the most notable outcomes from our analy-
ses is the recurring role of metrics representing 

segregation – local efficiency, clustering coefficient 
and transitivity. They are all reduced in pwCIS com-
pared with HCs. This finding is counter to those by 
other groups,10,40 where the authors identified a higher 
clustering coefficient in pwCIS than in HCs (other 
measures of segregation were not calculated). Tur 
et al.11 reported a decrease in mean node strength in 
pwCIS against HCs, but no differences in local effi-
ciency or clustering coefficient.

Segregation also correlated with physical outcomes: 
local efficiency and clustering coefficient had a sig-
nificant relationship with T25FW performance; tran-
sitivity had a borderline significant relationship. In all 
cases, lower graph metrics were associated with 
worse physical performance. Similar analyses have 

Table 4. Assessment of conventional MRI and graph metric models.

Outcome measure Metrics included AICC Adjusted R2 (%)

Conventional MRI metrics

 EDSS Brain parenchymal fraction + lesion proportion 179.82 11.7

Lesion proportion 180.63 9.2

Grey-matter fraction + lesion proportion 180.82 10.5

 T25FW Grey-matter fraction + white-matter fraction + brain 
parenchymal fraction + lesion proportion

-190.10 10.0

Grey-matter fraction + white-matter fraction + brain 
parenchymal fraction

-188.31 5.9

Lesion proportion -187.98 1.9

 9HPT Null model 117.03 0

Grey-matter fraction 117.61 0.8

Brain parenchymal fraction 117.98 0.3

 PASAT Null model 216.09 0

Lesion proportion 217.34 -0.1

Brain parenchymal fraction 217.50 -0.4

Graph metrics

 EDSS Transitivity + assortativity 182.02 9.0

Mean clustering coefficient + assortativity 182.11 8.9

Transitivity + assortativity + mean node strength 182.12 10.4

 T25FW Global efficiency + mean clustering 
coefficient + transitivity

-195.62 15.3

Global efficiency + assortativity -195.44 13.5

Assortativity + mean node strength -195.18 13.2

 9HPT Transitivity 114.38 5.2

Mean clustering coefficient 114.52 5.0

Mean local efficiency 114.66 4.8
 PASAT Null model 216.09 0

Assortativity 216.71 0.8

Mean local efficiency + transitivity 217.52 1.4

AICC: corrected Akaike Information Criterion; EDSS: Expanded Disability Status Scale; T25FW: timed 25-foot walk; 9HPT: nine-hole 
peg test; PASAT: Paced Auditory Serial Addition Test.
The best three models for each outcome measure have been ranked in order of increasing AICC (lower AICC indicates better model fit).
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Table 5. Assessment of combined models.

Outcome 
measure

Best MRI model R2 of MRI 
model

Added graph metrics p R2 of 
combined 
model

ΔR2

EDSS Brain parenchymal 
fraction + lesion 
proportion

12.6% Transitivity 0.382 12.3% -0.3

Assortativity coefficient 0.045 16.6% 4.0

Transitivity + assortativity 
coefficient

0.085 16.5% 3.8

T25FW Brain parenchymal 
fraction + white-
matter 
fraction + grey-
matter 
fraction + lesion 
proportion

11.5% Global efficiency 0.028 17% 5.5

Clustering coefficient <0.001 25.1% 13.6

Transitivity 0.001 24.1% 12.6

Global efficiency + clustering 
coefficient

0.004 24% 12.5

Global efficiency + transitivity 0.006 23% 11.5

Clustering 
coefficient + transitivity

0.002 25.5% 14.0

Global efficiency + clustering 
coefficient + transitivity

0.006 24.8% 13.3

EDSS: Expanded Disability Status Scale; T25FW: timed 25-foot walk.
R2 values reported are adjusted for the model and expressed as percentages. The model for each measure of disability with the lowest 
corrected Akaike Information Criterion value is marked in bold. p-values are of ANOVA comparison testing of the best conventional 
MRI model and best combined model.

Figure 3. Regression plot of best timed 25-foot walk (T25FW) model comprising conventional MRI and graph metrics; 
T25FW z-scores plotted against the mean clustering coefficient.
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not previously been reported, although Tozlu et al.41 
examined the ability of node strength to predict EDSS 
in an MS cohort – it was not able to discriminate 
between the presence or absence of significant disa-
bility. Measures of segregation also had borderline 
relationships with 9HPT times; that they did not reach 
full significance might suggest that T25FW is more 
sensitive to central nervous system (CNS) damage 
than 9HPT in early MS.

The assortativity coefficient is often described as a 
measure of network resilience. Brain networks, as 
with all biological networks, tend to be more dissorta-
tive than assortative, where high-degree nodes con-
nect with lower-degree nodes42 – a characteristic also 
reflected by small-worldness. Assortativity increased 
with increasing EDSS: higher assortativity associated 
with higher disability. However, increased assortativ-
ity was also associated with improved T25FW, indic-
ative of better lower-limb function: higher assortativity 
correlated with worse EDSS and better T25FW.

This apparent paradox could be explained by examin-
ing both the range of outcomes of the two scores and 
the outcome scoring tools themselves. In our cohort 
(Figure 1), T25FW z-scores all fall above 0, indicat-
ing better performance than an MS reference popula-
tion. Although 15 pwCIS had an EDSS of 0 (21% of 
the cohort), the majority had measurable disability on 
EDSS. The T25FW is sensitive to variation in lower-
limb function in early MS (even where performance 
is good), but the EDSS only measures pathological 
disability. The relationship of assortativity with EDSS 
is therefore predominantly a relationship with disabil-
ity, whereas its relationship with T25FW is to values 
that would be considered better than a typical MS 
population. However, it should be noted that T25FW 
z-scores were calculated with reference to the National 
MS Society data set, rather than an age- and sex-
matched data set; our cohort is likely younger than the 
comparison data set with shorter disease duration, 
which may explain the better-than-average T25FW 
performance.

Furthermore, the two scores measure disability dif-
ferently – EDSS is a composite score derived from 
multiple systems, whereas the T25FW is a single, 
specific measurement of lower-limb function. Higher 
EDSS-measured disability (4.0 and above) is heavily 
influenced by ambulation, but it hardly features in 
lower levels (the highest EDSS in the study was 
3.5).12 In addition, as optic neuritis is highly repre-
sented in our cohort, the main contributor to EDSS 
was likely visual disability. Indeed, in a post hoc 

analysis, the relationship was preserved after adding 
T25FW as a model co-variate, supporting the conclu-
sion that EDSS in our cohort was driven by non-
motor disability; similarly, there was good correlation 
between EDSS and LogMAR (Pearson’s coefficient 
0.446, p < 0.001), but no correlation between EDSS 
and T25FW scores. This suggests that the relation-
ship of EDSS with assortativity mostly relates to 
visual disability. Notably, there were no significant 
relationships of visual outcome scores with graph 
metrics. It may be that a visual injury causes a mala-
daptive increase in assortativity, but an actual loss of 
assortativity is directly connected with impaired 
lower-limb function.

Small-worldness also correlated with T25FW out-
comes: higher small-worldness was associated with 
poorer lower-limb function. Since small-worldness 
reflects the balance of integration and segregation,4 
this may simply be a consequence of the relationship 
of lower measures of segregation with poorer 
T25FW outcomes. Indeed, small-worldness and 
assortativity measure similar characteristics; a net-
work with low assortativity will have high small-
worldness. These metrics were strongly negatively 
correlated in our cohort (post hoc analysis: Pearson’s 
−0.707, p < 0.001).

Global efficiency, an indicator of integration, was not 
affected in pwCIS compared with HCs nor did it cor-
relate with outcome measures. Other studies of struc-
tural connectivity in early CIS do not report results for 
global efficiency, nor the related characteristic path 
length.3 However, there are multiple reports of reduc-
tions in global efficiency in established MS when 
compared with HCs.7–9,43 Charalambous et al.9 also 
noted that reduced global efficiency was associated 
with higher EDSS in people with MS. This may sug-
gest that global efficiency is preserved early in the 
disease course – the brain is able to adapt to low bur-
dens of injury, but after a certain threshold loses this 
capacity, with resulting impact on its ability to distrib-
ute signals throughout the network. On the contrary, 
smaller insults may cause interruptions to localised 
network connections which are more difficult to over-
come, causing network subunit breakdown and loss 
of segregation.

This work provides conclusive evidence that graph 
metrics improve our ability to explain disability 
beyond conventional MRI and does so for the first 
time in people at onset of their first demyelinating 
event. It extends previous findings9 that the addition 
of graph metrics to conventional MRI can improve 
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the ability of linear regression models to explain vari-
ance in physical outcomes: the ability of the EDSS 
model to predict variance improved from 12.6% to 
16.6% (a change of 4%) and the T25FW model R2 
was improved by 13.6 from 11.5% to 25.1%.

The inability of any metric, conventional or graph, to 
associate with the PASAT is also important. The find-
ing that conventional MRI is unable to explain PASAT 
outcomes confirms there is a mechanism of disability 
that is not structural (e.g. brain volumes or lesion pro-
portion). While whole-brain graph metrics also lacked 
a relationship, analysis of cognitive subnetworks may 
reveal a stronger association. The findings may also 
suggest cognitive performance is largely preserved in 
early MS.

One limitation of the study is that MRI data were 
acquired on two different scanner versions, with dif-
ferent multishell DWI acquisition protocols. We have 
mitigated this by use of the ComBat algorithm32 – 
although originally developed for genomic work, its 
use in DWI is validated across multiple conditions 
and patient groups.44,45

As noted above, correction for multiple comparisons 
was not performed. As some of the analysis was 
exploratory, the conventional Bonferroni approach 
was too conservative and assumed that the tests were 
independent (which was not the case in this study).46 
Where there is biological similarity in the relation-
ships assessed by individual tests, a biological pattern 
of moderately significant results is very unlikely to 
occur by chance. In this context, it was important to 
highlight the patterns and interrogate biologically iso-
lated individual results.

In addition, the analysis is of people in the very early 
stages of disease. Levels of disability are low, and the 
range of physical outcomes is narrow. It is possible 
that with greater disease duration, more differences in 
disability may emerge and subsequently more associ-
ations with graph metrics. Similarly, as this is a cross-
sectional study, it is not yet possible to say if these 
associations will be sustained through the disease pro-
cess. Longitudinal data are being collected, which 
will delineate the predictive value of graph metrics.

In conclusion, these analyses demonstrate the utility 
of graph metrics derived from multishell DWI-based 
structural connectomes in the assessment of motor 
function early in CIS. They show how impaired seg-
regation may be an early indicator of poorer motor 
function. Furthermore, we show how the addition of 
graph metrics to conventional MRI can improve the 

performance of models of motor (particularly lower-
limb) function. Future analyses will examine the con-
tribution of graph metrics based on brain subnetworks, 
as well as establish if these findings are persistent lon-
gitudinally and whether graph metrics can predict 
long-term outcomes.

Acknowledgements
The authors are grateful to the reviewers for their 
time and expertise in reviewing this manuscript – 
their feedback and suggestions have improved this 
paper.

Data Availability Statement
The data that support the findings of this study are 
available from the corresponding author, upon rea-
sonable request.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of inter-
est with respect to the research, authorship and/or 
publication of this article.

Funding
The author(s) disclosed receipt of the following finan-
cial support for the research, authorship and/or publi-
cation of this article: M.A.F. is supported by a grant 
from the MRC (MR/S026088/1). S.C. is supported by 
the Rosetrees Trust (A1332, MS632), and she was 
awarded a MAGNIMS-ECTRIMS fellowship in 
2016. A.T.T. is supported by grants from the MRC 
(MR/S026088/1), NIHR BRC (541/CAP/OC/818837) 
and Rosetrees Trust (A1332, MS632). F.B., F.P., B.K. 
and O.C. are supported by the NIHR BRC.

ORCID iDs
Michael A Foster  https://orcid.org/0000-0001- 
7201-7475
Sara Collorone  https://orcid.org/0000-0003-1506- 
8983
Ahmed T Toosy  https://orcid.org/0000-0002-4441- 
3750

References
 1. Sotiropoulos SN and Zalesky A. Building 

connectomes using diffusion MRI: Why, how and 
but. NMR Biomed 2019; 32(4): e3752.

 2. Barkhof F. The clinico-radiological paradox in 
multiple sclerosis revisited. Curr Opin Neurol 2002; 
15(3): 239–245.

 3. Rubinov M and Sporns O. Complex network 
measures of brain connectivity: Uses and 
interpretations. NeuroImage 2010; 52(3): 1059–1069.

https://journals.sagepub.com/home/msj
https://orcid.org/0000-0001-7201-7475
https://orcid.org/0000-0001-7201-7475
https://orcid.org/0000-0003-1506-8983
https://orcid.org/0000-0003-1506-8983
https://orcid.org/0000-0002-4441-3750
https://orcid.org/0000-0002-4441-3750


MA Foster, F Prados et al.

journals.sagepub.com/home/msj 11

 4. Bassett DS and Bullmore ET. Small-world brain 
networks revisited. Neuroscientist 2017; 23(5): 
499–516.

 5. Newman MEJ. Assortative mixing in networks. Phys 
Rev Lett 2002; 89: 208701.

 6. Fleischer V, Gröger A, Koirala N, et al. Increased 
structural white and grey matter network connectivity 
compensates for functional decline in early multiple 
sclerosis. Mult Scler 2017; 23(3): 432–441.

 7. Meijer KA, Steenwijk MD, Douw L, et al. Long-
range connections are more severely damaged and 
relevant for cognition in multiple sclerosis. Brain 
2020; 143: 150–160.

 8. Llufriu S, Rocca MA, Pagani E, et al. Hippocampal-
related memory network in multiple sclerosis: A 
structural connectivity analysis. Mult Scler 2019; 
25(6): 801–810.

 9. Charalambous T, Tur C, Prados F, et al. Structural 
network disruption markers explain disability in 
multiple sclerosis. J Neurol Neurosurg Psychiatry 
2019; 90(2): 219–226.

 10. Muthuraman M, Fleischer V, Kolber P, et al. 
Structural brain network characteristics can 
differentiate CIS from early RRMS. Front Neurosci 
2016; 10: 14.

 11. Tur C, Grussu F, Prados F, et al. A multi-shell multi-
tissue diffusion study of brain connectivity in early 
multiple sclerosis. Mult Scler 2020; 26: 774–785.

 12. Kurtzke JF. Rating neurologic impairment in multiple 
sclerosis: An expanded disability status scale (EDSS). 
Neurology 1983; 33(11): 1444–1452.

 13. Fischer JS, Rudick RA, Cutter GR, et al. The Multiple 
Sclerosis Functional Composite measure (MSFC): 
An integrated approach to MS clinical outcome 
assessment. Mult Scler 1999; 5(4): 244–250.

 14. Thompson AJ, Banwell BL, Barkhof F, et al. 
Diagnosis of multiple sclerosis: 2017 revisions of the 
McDonald criteria. Lancet Neurol 2018; 17: 162–173.

 15. Yendiki A, Koldewyn K, Kakunoori S, et al. Spurious 
group differences due to head motion in a diffusion 
MRI study. NeuroImage 2014; 88: 79–90.

 16. Prados F, Cardoso MJ, Kanber B, et al. A multi-
time-point modality-agnostic patch-based method for 
lesion filling in multiple sclerosis. NeuroImage 2016; 
139: 376–384.

 17. Cardoso MJ, Modat M, Wolz R, et al. Geodesic 
information flows: Spatially-variant graphs and their 
application to segmentation and fusion. IEEE Trans 
Med Imaging 2015; 34(9): 1976–1988.

 18. Klein A and Tourville J. 101 labeled brain images and 
a consistent human cortical labeling protocol. Front 
Neurosci 2012; 6: 171.

 19. Veraart J, Novikov DS, Christiaens D, et al. 
Denoising of diffusion MRI using random matrix 
theory. NeuroImage 2016; 142: 394–406.

 20. Jenkinson M, Beckmann CF, Behrens TEJ, et al. FSL. 
NeuroImage 2012; 62: 782–790.

 21. Andersson JLR, Skare S and Ashburner J. How 
to correct susceptibility distortions in spin-echo 
echo-planar images: Application to diffusion tensor 
imaging. NeuroImage 2003; 20: 870–888.

 22. Andersson JLR and Sotiropoulos SN. An integrated 
approach to correction for off-resonance effects 
and subject movement in diffusion MR imaging. 
NeuroImage 2016; 125: 1063–1078.

 23. Modat M, Cash DM, Daga P, et al. Global image 
registration using a symmetric block-matching 
approach. J Med Imaging (Bellingham) 2014; 1(2): 
024003.

 24. Tournier J-D, Smith RE, Raffelt D, et al. MRtrix3: 
A fast, flexible and open software framework 
for medical image processing and visualisation. 
NeuroImage 2019; 202: 116137.

 25. Dhollander T, Mito R, Raffelt D, et al. Improved 
white matter response function estimation for 
3-tissue constrained spherical deconvolution. In: 27th 
scientific meeting and exhibition of the International 
Society for Magnetic Resonance in Medicine, 
Montreal, QC, Canada, 11–16 May 2019, https://
archive.ismrm.org/2019/0555.html (accessed 1 
September 2022).

 26. Jeurissen B, Tournier JD, Dhollander T, et al. 
Multi-tissue constrained spherical deconvolution for 
improved analysis of multi-shell diffusion MRI data. 
NeuroImage 2014; 103: 411–426.

 27. Smith RE, Tournier JD, Calamante F, et al. 
Anatomically-constrained tractography: Improved 
diffusion MRI streamlines tractography through 
effective use of anatomical information. NeuroImage 
2012; 62(3): 1924–1938.

 28. Tournier J-D, Calamante F and Connelly A. Improved 
probabilistic streamlines tractography by 2nd order 
integration over fibre orientation distributions. 
In: 18th scientific meeting and exhibition of the 
International Society for Magnetic Resonance in 
Medicine. Stockholm, p. 1670, https://cds.ismrm.org/
protected/10MProceedings/PDFfiles/1670_4298.pdf

 29. Smith RE, Tournier J-D, Calamante F, et al. SIFT2: 
Enabling dense quantitative assessment of brain white 
matter connectivity using streamlines tractography. 
NeuroImage 2015; 119: 338–351.

 30. Yeh FC, Vettel JM, Singh A, et al. Quantifying 
differences and similarities in whole-brain white 
matter architecture using local connectome 
fingerprints. PLoS Comput Biol 2016; 12(11): 
e1005203.

https://journals.sagepub.com/home/msj
https://archive.ismrm.org/2019/0555.html
https://archive.ismrm.org/2019/0555.html
https://cds.ismrm.org/protected/10MProceedings/PDFfiles/1670_4298.pdf
https://cds.ismrm.org/protected/10MProceedings/PDFfiles/1670_4298.pdf


Multiple Sclerosis Journal 00(0)

12 journals.sagepub.com/home/msj

 31. van den Heuvel MP and Sporns O. Rich-club 
organization of the human connectome. J Neurosci 
2011; 31: 15775–15786.

 32. Fortin JP, Parker D, Tunç B, et al. Harmonization of 
multi-site diffusion tensor imaging data. NeuroImage 
2017; 161: 149–170.

 33. Borrelli P, Savini G, Cavaliere C, et al. Normative 
values of the topological metrics of the structural 
connectome: A multi-site reproducibility study across 
the Italian Neuroscience network. Phys Med 2023; 
112: 102610.

 34. Casas-Roma J, Martinez-Heras E, Solé-Ribalta A, 
et al. Applying multilayer analysis to morphological, 
structural, and functional brain networks to identify 
relevant dysfunction patterns. Netw Neurosci 2022; 
6(3): 916–933.

 35. Martinez-Heras E, Solana E, Vivó F, et al. Diffusion-
based structural connectivity patterns of multiple 
sclerosis phenotypes. J Neurol Neurosurg Psychiatry 
2023; 94(11): 916–923.

 36. Foster MA, Prados F, Collorone S, et al. Connectome 
thresholding in a cohort of patients with demyelinating 
clinically-isolated syndrome. In: 28th annual meeting 
of OHBM, Glasgow, 19–23 June 2022.

 37. R Core Team. R: A language and environment for 
statistical computing. Vienna: R Foundation for 
Statistical Computing.

 38. Calcagno V and de Mazancourt C. Glmulti: An R 
package for easy automated model selection with 
(generalized) linear models. J Stat Softw 2010; 34: 
1–29.

 39. Babyak MA. What you see may not be what you get: 
A brief, nontechnical introduction to overfitting in 
regression-type models. Psychosom Med 2004; 66: 
411–421.

 40. Koubiyr I, Besson P, Deloire M, et al. Dynamic 
modular-level alterations of structural-functional 
coupling in clinically isolated syndrome. Brain 2019; 
142: 3428–3439.

 41. Tozlu C, Jamison K, Gauthier SA, et al. Dynamic 
functional connectivity better predicts disability than 
structural and static functional connectivity in people 
with multiple sclerosis. Front Neurosci 2021; 15: 
763966.

 42. Xulvi-Brunet R and Sokolov IM. Changing 
correlations in networks: Assortativity and 
dissortativity. Acta Phys Pol B 2005; 36: 1431–1455.

 43. Kocevar G, Stamile C, Hannoun S, et al. Graph 
theory-based brain connectivity for automatic 
classification of multiple sclerosis clinical courses. 
Front Neurosci 2016; 10: 478.

 44. Belge JB, Mulders PCR, Van Diermen L, et al. White 
matter changes following electroconvulsive therapy 
for depression: A multicenter ComBat harmonization 
approach. Transl Psychiatry 2022; 12: 517.

 45. Richter S, Winzeck S, Correia MM, et al. Validation 
of cross-sectional and longitudinal ComBat 
harmonization methods for magnetic resonance 
imaging data on a travelling subject cohort. 
NeuroImage Rep 2022; 2(4): 100136.

 46. Perneger TV. What’s wrong with Bonferroni 
adjustments. BMJ 1998; 316: 1236–1238.

Visit SAGE journals online 
journals.sagepub.com/
home/msj

 journals

https://journals.sagepub.com/home/msj
https://journals.sagepub.com/home/msj
https://journals.sagepub.com/home/msj

