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Reconstructing the trajectories of charged particles from the collection of hits they leave in the detectors
of collider experiments like those at the Large Hadron Collider (LHC) is a challenging combinatorics
problem and computationally intensive. The tenfold increase in the delivered luminosity at the upgraded
High Luminosity LHC will result in a very densely populated detector environment. The time taken by
conventional techniques for reconstructing particle tracks scales worse than quadratically with track
density. Accurately and efficiently assigning the collection of hits left in the tracking detector to the correct
particle will be a computational bottleneck and has motivated studying possible alternative approaches.
This paper presents a quantum-enhanced machine learning algorithm that uses a support vector machine
(SVM) with a quantum-estimated kernel to classify a set of three hits (triplets) as either belonging to or not
belonging to the same particle track. The performance of the algorithm is then compared to a fully classical
SVM. The quantum algorithm shows an improvement in accuracy versus the classical algorithm. Model
complexity metrics are used to hint at an explanation for favorable performance of the quantum kernel.
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I. INTRODUCTION

The Large Hadron Collider (LHC) is currently the
highest energy particle collider in the world. It accelerates
beams of protons to almost the speed of light and then
collides them at a centre-of-mass energy of 13.6 TeVat the
center of large, multipurpose particle detectors that are
designed to reconstruct the outcome of those collisions.
Among the key physics objectives of the LHC are precise
measurements of the properties of the Higgs boson,
shedding light on the elusive particle(s) that may constitute
dark matter, and searching for a wide breadth of new
physics phenomena beyond the Standard Model (SM) via
exotic decay signatures like long-lived particles.
To attain these physics goals, the LHC is preparing for

an upgrade that will deliver an order of magnitude more

data to the experiments by increasing the intensity of the
proton beams, resulting in a higher instantaneous lumi-
nosity and thus many more collisions taking place every
time the proton bunches cross [1]. At this upgraded High
Luminosity LHC (HL-LHC) the number of concurrent,
overlapping proton-proton interactions (pileup) is
expected to reach up to 200, a significant increase from
the average predicted pileup of 60 for the current Run 3.
Such a step change in the running conditions of the
collider will significantly increase our capabilities to
fulfil the goals of the LHC program. However, it also
presents challenges. The significant increase in detector
occupancy will impact the performance of the entire
pipeline, including data acquisition, processing, and
analysis, as well as simulating the collisions in the
detector. This presents significant overhead on the com-
putational resources, with some elements, such as recon-
structing charged particle trajectories, becoming a major
bottleneck.
To address these high demands on the computational

resources, numerous approaches are being pursued, rang-
ing from the development of more efficient algorithms
and the application of state-of-the-art machine learning
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techniques to the use of graphics processing units (GPUs)
[2,3] to execute code that is parallelizable. One of the
intriguing new avenues being pursued to tackle these
challenges is quantum computing. This new paradigm
offers a fundamentally new form of computing by leverag-
ing the phenomena of quantum mechanics and opens the
prospect of significantly speeding up our current algorithms
and performing calculations that could only be done to
some approximation with classical computers.
Particle physics has seen a surge of interest in ascertain-

ing how quantum computers may impact the future of the
field and establishing the scenarios in which they may be
most advantageous. The current noisy intermediate scale
quantum (NISQ) devices [4], while a stepping stone on the
way to universal, fault-tolerant quantum computers, have
enabled many of these proof-of-principle studies to be
performed. This exploratory phase of applying current
NISQ era quantum computers to challenging problems
in particle physics will pave the way for the emergence of
new ideas and techniques needed to fully exploit quantum
computation and identify the specific problems for which
they are most suitable.
Quantum computing algorithms have been studied

for a range of different scenarios in high energy physics.
The calculation of simple scattering processes via the
helicity spinor formalism and the simulation of a parton
shower was demonstrated in [5]. A quantum walk
framework was proposed in [6], demonstrating that the
parton shower is more naturally and efficiently simulated
using a quantum walk in two dimensions. Quantum
computing has also been applied to jet clustering [7–9],
classification of collisions of interest from those that are
not [10–12], and anomaly detection in searches for new
physics [13].
The challenging task of connecting the hits left

by charged particles in the tracking detector and associ-
ating them with the same particle has been studied
from several different perspectives including: quantum
associative memory to store all the different track patterns
and subsequently employ Grover’s search algorithm to
search through the database and recall the right track
pattern [14]; quantum graph neural networks [15,16]; and
quantum annealing devices to minimise an objective
function [17–19].
This paper approaches the problem of track recon-

struction by proposing a hybrid quantum-classical
algorithm that uses a support vector machine with a
quantum-estimated kernel. The problem is decomposed
into that of classifying short segments of tracks.
Often such segments can form the “seeds” for extrapo-
lating to the full trajectory of the track. This “seeding”
step is expected to be a large consumer of CPU time
at the HL-LHC [2]. Simplifications are implemented to
fit the limitations of the presently available quantum
simulators.

II. DATA PREPROCESSING

This study utilises the TrackML dataset [20,21] which
has been widely used for proof-of-principle studies of
classical machine learning algorithms and quantum-based
approaches. The dataset provides a simplified simulation of
the detector geometry and conditions expected at the
HL-LHC. It features a silicon tracking detector with 10
cylindrical layers in the central region and disk geometry in
the forward regions, which is typically representative of the
ATLAS [22] and CMS detectors [23]. The detector is
segmented into three subdetectors differing in their spatial
resolution, with the inner pixel detector comprising of 4
layers, followed by a short strip detector of 4 layers and
then a 2-layer long strip detector. These tracking detectors
are immersed in a strong magnetic field aligned with the
direction of the proton-proton beam, so charged particles
moving through these detectors will typically follow an
approximately helical trajectory and show curved trajecto-
ries in the transverse x–y plane which is perpendicular to
the beam line. Figure 1 shows the layout of this virtual
detector used to produce the TrackML dataset and the
coverage of each subdetector in the r–z plane, where r is
the radial dimension and measures the distance from the
beam line and z is the distance along the beam line. For the
analysis in this paper, only the hits in the barrel region of
the detector are used to reduce the total number of hits to a
level that can be processed within the current computa-
tional constraints.
The TrackML dataset contains 10,000 simulated events.

The process of interest is top-antitop production and
overlaid on this “signal” are 200 additional proton-proton
collisions to simulate the conditions expected at the
HL-LHC. This results in an average of 100,000 hits per
event in the tracking detector which must be associated
with approximately 10,000 tracks.
The 3-dimensional spatial information for every hit in

the detector is provided and this information is used to build

FIG. 1. A schematic of the virtual general-purpose detector
simulated in the TrackML challenge and the coverage of each
subdetector in the r-z plane. Highlighted is the barrel region used
in the analysis. The numbers indicate the various detector
components and layers respectively. Original image is taken
from [20].
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the track candidates. The total number of possible combi-
nations of those hits that can lead to a track is very large.
Identifying the correct combination of hits that reconstruct
the true trajectory of a particle is thus a challenging
combinatorics problem. Figure 2 illustrates this by showing
all hits for an event in the x–y plane of the detector and a
fraction of true reconstructed tracks formed from a combi-
nation of those hits. To avoid unphysical hit sequences
which would dominate the resulting dataset, selection
criteria are applied to reduce the number of possible
connections between hits in each event such that they
can be processed without overburdening the computational
resources. In addition, the problem is formulated as a
classification task, with track segments consisting of a set
of three hits in adjacent layers of the detector being
classified as belonging to a single particle track or not.

Such objects often form seeds from which the rest of the
track reconstruction starts.
The hits are described by three coordinates; r;ϕ, and z,

where ϕ is defined as the angle around the z axis. A total of
310 events have been processed for classification. The first
step in constructing the triplets is to make a dataset of
doublets, which are defined as two consecutive hits in the
detector. Selection criteria are applied to reduce the size of
the doublet dataset and improve its quality. The following
observables are used in the selection; the intercept from the
extrapolation of the doublet to the z axis, z0, and the ratio
Δϕ
Δr, as calculated from the difference in ϕ and r between
each hit forming the doublet. This selection is summarized
in Table I, and was originally implemented in [24].
Triplets are constructed by connecting one doublet to the

end of another, with the two doublets sharing a hit such that
the outer hit of the first (inner) doublet is the same as the
inner hit of the second.
The selection of triplets is based on the estimation of the

transverse momentum (pT) as determined from the three
hits, the θ-breaking angle and the ϕ-breaking angle. The
angle θ is defined in the r-z plane and a breaking angle is
that between the straight lines (connecting the two hits in a
doublet) of two doublets that form a triplet. The triplet
selection is summarized in Table II.

III. SUPPORT VECTOR MACHINE

The proposed algorithm utilises a support vector
machine (SVM) [25], where a kernel function is calculated
either on a (simulated) quantum or a classical computer. A
support vector machine is a supervised machine learning
algorithm that classifies data by drawing linear decision
boundaries (hyperplanes) between different groups of data.
This paper focuses on discriminating between two classes

FIG. 2. The 6518 hits in an example event in the x–y detector
plane (top) and some of the true tracks reconstructed from those
hits (bottom). The hits come from 879 particles which produced
triplets in the barrel region. The 10 layers of the detector for the
barrel region are also shown. The blue, red, and green layers
correspond to the pixel, short strip and long strip detectors,
respectively.

TABLE I. The selection criteria applied to select doublets,
using the z0 intercept from the extrapolation of the doublet to the
z axis and the ratio of the difference in ϕ and r between each hit
forming the doublet.

Variable Selection

Δϕ
Δr ≤ 6 × 104 [ radmm]
jz0j ≤ 100 [mm]

TABLE II. The selection criteria applied to select triplets based
on the estimated pT and the θ and ϕ angles between two doublets
that form a triplet. A range of values is given when the selection
depends upon detector components traversed.

Variable Selection

θ-breaking angle ≤0.05–0.07 [rad]
ϕ-breaking angle ≤0.05–0.12 [rad]
pT ≥0.75 [GeV]
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of data. It takes a training dataset of size N of the form
ðx1; y1Þ;…; ðxN; yNÞ, where xi is an M-dimensional
vector and yi ¼ �1 for data that belongs to one of two
classes. The hyperplane is defined by hw · xi þ b ¼ 0,
where w is the normal vector to the hyperplane and b is
an offset. These parameters are determined during
the learning process. For the simple case of linearly
separable data, the training points xi of the two classes
are placed on either side of the decision boundary,
satisfying fðxiÞ ¼ signðhw · xii þ bÞ ¼ yi, where fðxÞ is
called the decision function. The points closest to the
hyperplane are called support vectors and the distance
between them is called the margin. The goal is to optimise
the parameters of the hyperplane such that the margin is
maximized. Figure 3 shows a visual representation of this.
Once the hyperplane has been found, a previously unseen
data point z can be classified using the decision function.
The decision boundary is usually defined not in the

original data space but in a higher-dimensional feature
space obtained with a feature map ϕðxÞ. This can introduce
nonlinearity while keeping the decision boundary linear.
The goal of this operation is to achieve better separation of
the two classes. Figure 4 shows a simple example of a

feature map’s functionality. SVMs are an example of a
kernel method, where the kernel kðx; yÞ ¼ hϕðxÞ · ϕðyÞi is
a function with arguments in the original space of the data,
defining a distance measure between two points in the
feature space. The remarkable property of this function is
that it returns the inner product in the feature space,
sidestepping the explicit application of the feature map,
which can become computationally expensive for sophis-
ticated feature spaces. In support vector machines, this
property can be utilized to find the separation hyperplane.
This is possible because linear learning machines can be
expressed in a dual representation, following the Karush-
Kuhn-Tucker theory [26]. During the optimization of the
dual problem, one needs to find a kernel matrix Kx;y ¼
kðx; yÞ (an N × N symmetric matrix) from all pairs of
training data points. Expressed in its dual form, the decision
function becomes:

fðxÞ ¼ sign

�XN
i¼1

yiαikðxi;xÞ þ b

�
; ð1Þ

whereαi are the coefficientswhich need to be optimized. Just
like quantum computing, kernel methods perform implicit
computations in a possibly intractably-large Hilbert space
through the efficient manipulation of data inputs.

IV. QUANTUM KERNEL ESTIMATION

Quantum computers can be utilized in kernel methods if
one considers a quantum circuit UðxÞ whose gates are
parametrized by the original features of some classical data.
The result of such a circuit before measurement is a
quantum state which exists in a higher-dimensional
Hilbert space. This is equivalent to a feature map. The
quantum state is defined as [27]:

x → ρðxÞ ¼ jψðxÞihψðxÞj; ð2Þ

where j·i denotes the usual Dirac vector and ρðxÞ is
obtained via

ρðxÞ ¼ U†ðxÞρ0UðxÞ; ð3Þ

with an initial state ρ0. An all-zero initial state is used with
jψ0i ¼ j0⊗Mi. The kernel associated with such a feature
map is obtained from [28]:

Kðx; zÞ ¼ trfρðxÞρðzÞg ¼ jhψðxÞjψðzÞij2: ð4Þ

This inner product can be calculated from the transition
amplitude of two states;

jhψðxÞjψðzÞij2 ¼ jh0⊗MjU†ðxÞUðzÞj0⊗Mij2: ð5Þ

The circuit U†ðxÞUðzÞj0⊗Mi is run repeatedly over R
identical runs (shots). The fraction of measurements

FIG. 3. A visual representation of two classes of data in a 2-
dimensional space, separated by a hyperplane hw · xi þ b (solid
line). The highlighted points lying closest to the separation plane
are called support vectors and the dotted lines passing through
them define the margins.

FIG. 4. A visual representation of a simple feature map
that takes an inseparable dataset in one-dimension to a two-
dimensional feature space. Separation with a linear hyperplane is
possible in the new feature space.
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yielding an all-zero output gives an estimation of the kernel
function for the two points x and z, which forms an entry in
the kernel matrix. Repeated evaluations for all combina-
tions of the input dataset gives the full kernel matrix.
Similar states have large kernel matrix entries while
orthogonal points give kðz;xÞ ¼ 0.
Feature maps of particular interest are those that are

difficult to calculate using classical means while providing
good classification of data. Ideally, a kernel matrix resulting
from Eq. (4) would produce results better than any classical
classifier and be calculated significantly faster on a quan-
tum device. The kernel function proposed in [28] is based
on the 3-fold forrelation (“Fourier correlation”) problem
[29]. The function is conjectured to have an exponential
separation in complexity between its quantum and classical
estimation. Further discussion of the potential for speedup
is presented later.
The feature map circuit is of the form UðxÞ ¼

UϕðxÞH⊗MUϕðxÞH⊗M where H is the Hadamard gate and

UϕðxÞ ¼ exp

�
i
X
S⊆½M�

ϕSðxÞ
Y
i∈ S

Zi

�
: ð6Þ

Zi is a gate rotating the ith qubit around the Z axis on the
Bloch sphere by an amount defined by ϕSðxÞ. S denotes a
subset of qubits. Only subsets with jSj ≤ 2 are considered.
The circuit for kernel estimation with UðxÞ in the case of
3-dimensional data is shown in Fig. 5. Ideas for general-
izing the circuit have been proposed in [30,31]. Following
the latter, we implement unitaries of the form:

UϕðxÞ ¼ exp

�
iα

X
S⊆½M�

ϕSðxÞ
Y
i∈ S

σi

�
; ð7Þ

where σ ∈X, Y, Z and α is a constant factor to regulate
the degree of rotation of the qubits. An example ofUϕðxÞ for
3-dimensional data can be found in Fig. 6.
This quantum-estimated kernel is then used as input to

a classical support vector machine which performs the

training and classification. The full circuit thus takes
data points of dimension M and projects them into an
2M-dimensional quantum space where the hyperplane
separating the two classes of data is calculated.

V. RESULTS

Results from the quantum-enhanced and fully classical
SVM algorithm presented in this section were obtained
with optimal models found via a grid search [32] with cross
validation and a parameter scan optimizing for validation
score and training time. The rotation mappings were chosen
as ϕkðxÞ ¼ xk (one-qubit), and ϕl;mðxÞ ¼ ðπ − xlÞðπ − xmÞ
(two-qubit). A regularization term C can be included into
the optimization loss function, controlling the trade-off
between finding a large margin and correctly labeling as
much of the training data as possible. Large values of C
favor smaller margins. The value of C ¼ 106 determined
from this optimization procedure proved optimal in both
the classical and quantum kernels. α ¼ 0.1, σk ¼ Z, for
single qubit rotations and σl;m ¼ YlYm for two-qubit
rotations were chosen. These were compared to an RBF
kernel [33], defined as KRBFðx; zÞ ¼ exp−γðkx − zk2Þ
with γ ¼ 1. Both data sets were studied with the same
quantum and classical models.
The metrics used to quantify the performance of the

classifiers are defined below, through the confusion matrix
shown in Table III.

FIG. 5. Quantum circuit diagram used to estimate the kernel
and determine the inner product between two quantum states
shown for data with three features.

FIG. 6. Circuit diagram used to calculate UϕðxÞ, part of a kernel
estimation circuit, shown for a datapoint with three features,
which correspond to the spatial coordinates of a single hit in the
tracking detector. The single-qubit gates are shown in pink and
two-qubit gates in blue.

TABLE III. Confusion matrix used in defining the performance
metrics for the classifiers used in triplet recognition.

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)
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Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

; ð8Þ

Efficiency ¼ TP
TPþ FN

; ð9Þ

Purity ¼ TP
TPþ FP

: ð10Þ

A good model is expected to score high in all three metrics.
In brief, accuracy gives an overall percentage of correct
guesses, efficiency is the fraction of actual true objects
correctly recognized and purity measures how often the
model mistakes a fake object for a true one.

A. Full detector triplets

The dataset used in this classification consists of triplets
within the whole barrel region that passed the preprocess-
ing step described earlier, which ensures a sample purity
(the percentage of data points labeled “þ1” in the remain-
ing data post-selection) of 52% and 80% for doublets and
triplets, respectively and a 99% sample efficiency (the
percentage of data points labeled “þ1” passing the selec-
tion) in both datasets. An average of 4,600 triplets remain
per event. The spatial coordinates of each hit in the triplet
are used as the input data to the hybrid algorithm. This
results in a 9-qubit circuit. To accommodate the dataset
into our current computational constraints, it is further
divided into 16 equal sections in the ϕ plane, with each
section subtending 2π

16
radians in ϕ. A support vector

machine is then defined for each of these regions and
the relevant quantum kernel estimated. The data is divided
into 70 events for training and 15 events for testing,
equivalent to a total of around 320,000 and 70,000 triplets,
respectively. The performance of both the classical
algorithm and the quantum algorithm are evaluated using
the three metrics defined above; accuracy, efficiency
and purity. Furthermore, since the preprocessing step
selects triplets that are more likely to form track candi-
dates, a benchmark scenario is introduced to illustrate the
performance of the classical and quantum algorithms on
top of the preprocessed data. Triplets are randomly
assigned labels based on the sample purity and the
classical and quantum classifiers are compared against
this benchmark to demonstrate the improvements in
classification accuracy.
Figure 7 shows the dependence of the efficiency and

purity scores on relevant geometric and kinematic proper-
ties of the triplets; the angle ϕ of the first (innermost) hit
of the triplet, the pseudorapidity jηj of the triplet, the true
pT of the triplet, the number of true particles in the event
(particle multiplicity), and the number of hits correspond-
ing to a true track (track length). For fake triplets, there is
some ambiguity in determining the true pT and track
length, as the three hits can come from three separate

particles. In such cases, the choice was made to define
these variables using the particle associated with the first
hit. The two classifiers show mostly comparable perfor-
mance and a similar dependence on the observables
defined above. Efficiencies close to 1.0 are achieved
for most bins. Reduced values of the purity are observed
in regions with reduced number of triplets for training,
such as high-η and high-pT . The accuracy scores of the
classical and quantum algorithms as a function of the size
of the training data are shown in Fig. 8. The training size
grows up to the computational limit imposed by the
quantum simulator. While the overall performance of the
two algorithms follows a similar trend, the classical
algorithm performs slightly better at low training size
and the quantum algorithm shows an advantage for
training size above 6,000 triplets. Both algorithms

FIG. 7. Track reconstruction efficiency and purity for triplets in
the barrel detector as a function of ϕ, jηj, pT , particle multiplicity,
and the number of hits associated with the track (track length).
These are compared for the quantum-estimated kernel and the
classical kernel.
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significantly outperform the benchmark scenario of
randomly selecting triplets.
It is also instructive to study the performance of these

algorithms for different layers of the detector, as the
detector occupancy progressively decreases from the inner
to the outer layers. Figure 9 shows the comparison between
the quantum and classical algorithms for the efficiency and
purity in different layers of the detector. While the
efficiency and purity are similar between the two algo-
rithms for the full detector, the largest difference in purity
occurs for triplets identified in the first layer of the detector
(the first hit is in the first layer). Since triplet formation in
the innermost region of the detector is part of the seeding
step used in many track reconstruction algorithms, we
study the performance of our models for triplets identified
in the inner detector, with the first hit being in the first layer
of the detector.

B. Innermost triplets

This section presents results when restricting the
classification of triplets to those in the innermost layers

of the tracking detector, with the three hits of a triplet
in the first three layers. The reduction in the total
number of triplets per event allows more events to be
processed before reaching the computational limit. The
dataset is split into 310 events for training and 60 events
for testing, equivalent to about 300,000 and 60,000
triplets, respectively. The efficiency and purity as a
function of triplet parameters are shown in Fig. 10 and
the accuracy is shown as a function of the size of training
data in Fig. 11. The accuracy indicates a clearer separation
between the quantum and classical performances. We see
a continued trend of better purity for the quantum-
enhanced classifier and a comparable performance in
terms of efficiency.

FIG. 10. Track reconstruction efficiency and purity for triplets
in the inner detector barrel region as a function of ϕ, jηj, pT ,
particle multiplicity, and the number of hits associated with the
track (track length). These are compared for the quantum-
estimated kernel and a classical kernel.

FIG. 8. Accuracy to identify triplets in the barrel detector as a
function of the size of the training dataset for the quantum-
estimated kernel, classical kernel and selecting random triplets
from the preprocessed dataset.

FIG. 9. Efficiency and purity as a function of the detector layer,
starting from the innermost layer nearest the center of the
detector. Layers 1–4 correspond to the pixel detector, layers
5–8 belong to the short strip detector and layers 9 and 10 are the
long strip detector. Triplets are binned by their innermost hit.
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C. Model complexity metrics

The authors of [34] introduced a set of metrics which can
be used to quantify the differences between the quantum
and classical models (kernels) KQ and KC, respectively.
The central result of the paper is the prediction error

bound:

Ex∼DjhKðxÞ − hTðxÞj ≤ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKðNÞ
N

r
: ð11Þ

This error bound tells us how much the output of a trained
model [hKðxÞ] is allowed to differ, on average, from a
theoretical target model [hTðxÞ] describing the underlying
distribution we wish to learn. The quantity sK plays a
crucial role in determining the accuracy of the trained
model and describes its complexity. It has a straightforward
interpretation sK ¼ kwk which is the inverse of the length
of the margin of the support vector machine introduced
earlier. To find this quantity, one can use the trained kernel:

sλKðNÞ ¼ y†ð
ffiffiffiffi
K

p
ðK þ λIÞ−2

ffiffiffiffi
K

p
Þy; ð12Þ

where λ ¼ 1
2C.

If sKðNÞ is linear or sublinear, a small upper bound on
the prediction error in Eq. (11) can be achieved. Note,
however, that this theoretical error does not readily translate
to the classification error in our task. It describes the
difference between the output of the model itself
(hw · xi þ b) and some ideal theoretical model, not the
labels assigned to points based on those models. This
means that while a point mapped by the trained model may
be near the ideal point, there is still a possibility that it falls
on the opposite side of the decision boundary. However,
generally speaking, the closer these points are, on average,
to the target model, the lower the likelihood of them falling
on the wrong side of the decision boundary.

One can compare two models using their geometric
difference gCQ, which describes how different the feature
mappings made by the two models are

gCQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ffiffiffiffiffiffiffi

KQ
p ffiffiffiffiffiffiffi

KC
p

ðKC þ λIÞ−2
ffiffiffiffiffiffiffi
KC

p ffiffiffiffiffiffiffi
KQ

p ����
∞

s
: ð13Þ

This quantity is independent of the training labels. The
maximal model complexity for one model (e.g. the classical
kernel) compared to another (the quantum kernel) is
bounded with sC ≤ g2CQsQ. A small value of g indicates
that the classical model will always perform similarly or
better. A large gCQ means that there exists a dataset (a
specific configuration of labels in the training set) for which
the quantum model should generalize much better than the
classical one. In particular, a scaling of g ∝

ffiffiffiffi
N

p
ensures a

possible large separation between the two models’
complexities.
Figure 12 shows the geometric difference between the

two kernels used in the classifications of the different
datasets in this study at increasing training sizes. Also
included is a best fit to a square-root function of the training
size. The two triplet datasets show clear upward trends that

FIG. 12. Geometric difference (solid line) between the quantum
and classical models for the (a) full detector triplets and (b) inner
detector triplets along with a square-root fit (dashed line).

FIG. 11. Accuracy to identify triplets in the inner detector barrel
region as a function of the size of the training data for the
quantum-estimated kernel, classical kernel and selecting random
triplets from the preprocessed data.
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can visually be fit well by a square-root dependence, both
reaching high values of g.
In Fig. 13 we compare the growth in training data size of

the model complexity of the two kernels for the datasets.
The quantum complexity follows a linear or sublinear trend
in both of them. Interestingly, in the case of the inner
triplets, the classical model complexity becomes larger than
the quantum one, tending above a linear fit.
We argue that these results provide a potential explan-

ation of the overall good performance of the quantum and
classical models in the two datasets. They can also suggest
why the separation between the accuracy results is larger in
the inner triplet dataset.

VI. POTENTIALS OF QUANTUM SPEEDUP

In general, we can assume that the evaluation of the
matrix elements dominates the complexity of the SVM
[35]. Thus, the complexity of the algorithm is C ¼ OðβN2Þ,
where the β factor depends on the kernel type and method
used. For a single value of the kernel, the quantum
complexity is βQ ¼ Oðϵ−2Þ for some additive error ϵ
[28,36]. The current best classical algorithm proposed
in [37] has βC ¼ Oðϵ−2

32
2M
3 Þ. Demanding that βQ < βC

for ϵ ¼ 10−3 results in a possible advantage for M ≈ 20.

In [36] it has been shown that in order for the full kernel
matrix to approximate the ideal kernel, the propagation of
the desired accuracy into the classification with an SVM
causes βQ to pick up a non-negligible scaling with training
size N; βQ → β0Q ¼ OðN8

3ϵ−2Þ. It is possible that a similar
analysis could introduce an N-scaling to βC. Regardless, it
appears that at the current stage, quantum kernel estima-
tion could provide possible advantage for small datasets
where the data has many features. In our study, while
quantum advantage in accuracy has been observed, nine
features were used. Possible speedup may be obtained if
the length of the track segments is extended or additional
hit information (beyond the three spatial points) is added
to the data features.
Another point to consider for quantum kernel estimation

is the noise on current quantum devices. In [38], the authors
show that the presence of noise can cause kernel entries
produced with Eq. (6) evaluated over different input data to
concentrate around some fixed value. The difference
between any kernel entry and that value becomes expo-
nentially small with the number of qubits. This results in an
exponential number of shots necessary to resolve kernel
entries for successful training. This dependence would have
to be added into βQ in order for the required precision to be
obtained.
Some proposals for different quantum kernel estimation

methods can be found in [36], where a probabilistic
algorithm calculates only a subset of the kernel entries
and [39] where the quantum computation timescales
linearly with N, and building of the kernel is outsourced
back to a classical computer. Further studies could include
empirical tests of classical and quantum time complexities,
study of noise effects in simulations and real quantum
devices as well as implementation of other proposed
quantum kernel estimation techniques in the context of
high energy physics.

VII. SUMMARY

Reconstructing the trajectories of charged particles at
particle colliders like the Large Hadron Collider is a
challenging, computationally intensive problem. This is
expected to become increasingly complexwith the upgraded
Large Hadron Collider (HL-LHC) whereOð105Þ hits in the
tracking detector must be quickly and accurately connected
to form around 10,000 tracks.
This paper presents a hybrid quantum-classical algo-

rithm that utilises a support vector machine (SVM) with a
quantum-estimated kernel for the classification of track
segments in this challenging track reconstruction prob-
lem. Using a publicly available dataset that simulates a
generic particle detector for the HL-LHC, we apply
selection criteria to select doublets (sets of two consecu-
tive hits) and subsequently triplets (sets of three con-
secutive hits). The proposed algorithm classifies these

FIG. 13. Model complexity (solid line) of the quantum and
classical models for the (a) full detector triplets and (b) inner
detector triplets along with a linear fit (dashed line).
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triplets as either belonging to a particle track or not. A
comparison is made between the performance of a
quantum-estimated kernel, a classical kernel, and ran-
domly selected triplets from the dataset. The quantum
algorithm demonstrates a slightly higher level of perfor-
mance. Notably, when focusing on triplets from the inner
part of the tracking detector, the distinction in perfor-
mance becomes more pronounced. This is promising as
the innermost layers are expected to be the most impor-
tant for the initial seeding step of track reconstruction.
Additionally, complexity metrics are employed to pro-
vide insights into the obtained results. This is the first

implementation of a quantum-kernel SVM approach in
the context of track reconstruction.
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