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ABSTRACT
Quantum dynamics simulations are becoming a powerful tool for understanding photo-excited molecules. Their poor scaling, however, means
that it is hard to study molecules with more than a few atoms accurately, and a major challenge at the moment is the inclusion of the molecular
environment. Here, we present a proof of principle for a way to break the two bottlenecks preventing large but accurate simulations. First, the
problem of providing the potential energy surfaces for a general system is addressed by parameterizing a standard force field to reproduce the
potential surfaces of the molecule’s excited-states, including the all-important vibronic coupling. While not shown here, this would trivially
enable the use of an explicit solvent. Second, to help the scaling of the nuclear dynamics propagation, a hierarchy of approximations is
introduced to the variational multi-configurational Gaussian method that retains the variational quantum wavepacket description of the key
quantum degrees of freedom and uses classical trajectories for the remaining in a quantum mechanics/molecular mechanics like approach.
The method is referred to as force field quantum dynamics (FF-QD), and a two-state ππ∗/nπ∗ model of uracil, excited to its lowest bright ππ∗
state, is used as a test case.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0204911

I. INTRODUCTION

Quantum dynamics (QD) simulations, which solve the time-
dependent Schrödinger equation (TDSE), are able to simulate
molecular systems correctly accounting for quantum effects such as
non-adiabaticity and tunneling. They can thus provide the dynam-
ical data required to understand the behavior of photo-excited
molecules. These simulations do, however, require significant com-
puter resources and scale exponentially with increasing system size.
In addition, the environment is known to play a significant role. For
example, polar solvents shift the energies and relative ordering of
states, and hydrogen-bonding from solvent molecules can further

change the relevant potential energy surfaces (PESs). For state-of-
the-art simulations, this presents a major challenge as the many
molecules involved make standard QD simulations prohibitively
expensive.1

Over recent years, a number of QD methods tailored to sys-
tems with many vibrational degrees of freedom (DoFs) have been
developed with differing levels of accuracy. They fall into three
main classes. The most accurate method, exemplified by the multi-
configuration time-dependent Hartree (MCTDH)2–6 method, uses a
grid-based representation of the Hamiltonian and wavefunction to
propagate a wavepacket. They can provide a complete solution of
the TDSE for systems of tens of atoms but require global PESs to
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be calculated before a simulation can be performed. The simplest
techniques are based on classical mechanics and approximate the
evolving wavepacket as a swarm of independent trajectories. The
most widespread of these for non-adiabatic simulations is surface
hopping,7–11 which uses a stochastic algorithm to treat the pop-
ulation transfer between electronic states. These simulations are
cheap to run and can calculate the potential surfaces on-the-fly using
standard quantum chemistry codes. They, however, are expected
to perform poorly in cases where the coupling between the elec-
tronic and nuclear DoFs is very strong. In this case, a full quantum
treatment of the evolving wavepacket is required.

With this in mind, a third class of QD methods was developed
based on expanding the wavepacket in a basis set of time-dependent
Gaussian functions known as Gaussian wavepackets (GWPs). These
GWPs are localized and follow trajectories, bringing some of the
simplicity of trajectory based methods and allowing the use of on-
the-fly potentials. They can also, at least in principle, converge on
the full TDSE solution. Methods in this class include ab initio mul-
tiple spawning (AIMS),12,13 coupled coherent states (CCS),14–16 and
the variational multiconfigurational Gaussian (vMCG) method.17,18

The latter differentiates itself by obeying a set of equations of motion
derived from the time-dependent Dirac–Frenkel variational prin-
ciple, allowing the propagated GWPs to follow fully variational
trajectories. This is an important distinction from AIMS and CCS,
in which the GWPs follow classical trajectories and have difficul-
ties reaching classically forbidden regions of the PES. They may also
rapidly become uncoupled from one another during a simulation,
requiring a large number of trajectories to reach convergence. Vari-
ational trajectories, however, can easily account for the quantum
behavior of nuclei and require fewer GWPs for convergence. The
vMCG method thus promises to provide flexible and accurate non-
adiabatic simulations, albeit at a higher computational cost than its
classical trajectory based alternatives. Despite this, a recent bench-
mark study indicates that vMCG may, in fact, be more efficient in
direct dynamics calculations as it uses a database to build up the
potential surfaces rather than calculate new energies and gradients at
each time-step during a propagation.19 Yet, to reach the many DoFs
in a solvated molecular system while retaining the accuracy of the
vMCG method, further developments are needed. In this paper, a
hierarchy of methods is investigated in which different equations of
motion (EOMs) are used for the GWP basis, from fully quantum
(variational) to fully classical. It will be shown that by treating differ-
ent parts of the system at different levels of theory in a similar way to
quantum mechanics (QM)/molecular mechanics (MM) approaches,
the quantum features that need to be described correctly can be
combined with a cheaper treatment of the environment modes.

An additional major computational resource required is related
to the quantum chemistry calculations needed when using ab initio
potentials calculated on-the-fly in so-called direct quantum dynam-
ics simulations. A second aim of this work is to provide a method-
ology for efficient, yet accurate, coupled excited-state potentials that
require lower computational resources so that it can be applied to
much larger systems. Recent methodological advances have been
made toward this goal. One such development is the semi-automatic
parameterization of quantum-mechanically derived force fields
(QMD-FFs),20,21 able to reproduce equilibrium structures, normal
modes, and frequencies and, at the same time, accurately describe
the molecular flexibility for both ground and excited states.22,23 The

FIG. 1. Schematic structures and atom labeling of uracil. Color code: carbon
(green), nitrogen (blue), oxygen (red), and hydrogen (white).

adoption of QMD-FFs in direct quantum dynamics simulations will
enormously speed up the propagations, providing cheap yet reliable
estimates of energies, gradients, and second derivatives, with a gain
even larger for vMCG than for classical MD, where Hessians are not
needed. In order to exploit this potential, however, it is necessary to
interface codes for QD computations with those able to efficiently
manage the FFs. To that end, in this contribution, we introduce an
interface between the quantum dynamics suite QUANTICS and the
classical MD engine GROMACS,24 making it possible to perform QD
with GWPs driven by QMD-FFs. The expected huge speed up of the
computations will also make it possible to push the convergence of
direct QD simulations much further than is usually possible, allow-
ing new aspects of the performance of the methods themselves to be
examined.

We shall use the photoactivated dynamics of uracil (see Fig. 1)
as a test case for our method development. Absorption of UV light
by DNA can indeed trigger many photochemical events, which lead
to the damage of the genetic code and, hence, to many harmful
processes for living beings.25 This makes the study of the excited
state dynamics of the constituents of DNA, the nucleobases, a hot
topic for time-resolved spectroscopy and computational studies.26–29

In particular, the photophysics of uracil has been extensively stud-
ied, and many experimental and computational results are available,
making this molecule, beyond its intrinsic biochemical interest,
an ideal playground for methodological development. Moreover,
uracil and uridine (its corresponding nucleoside), despite their sub-
ps excited state lifetimes, exhibit extremely short and quite rich
photophysics, and many features have not yet been completely
understood.26–28,30–32 Among them, one of the most debated issues
concerns the possible involvement of a “dark” electronic transition
in the excited state decay of the spectroscopic state of uracil and the
other pyrimidines.

In these molecules, the lowest energy bright state corre-
sponds to a ππ∗ transition with a predominant HOMO → LUMO
character,26,28,29 hereafter labeled Sππ∗. In addition, independently
of the electronic structure method, all the recent computational
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studies agree in predicting that in the Franck–Condon (FC) region,
one (for uracil and thymine) or two (for cytosine) nπ∗ transitions
(hereafter Snπ∗) fall within ±0.5 eV of Sππ∗.26,28,29,32 These excited
states can be described as resulting from the excitation from the lone
pair of the carbonyl oxygen and (for cytosine) of the nitrogen of
the ring toward the π∗ LUMO. Many experimental and computa-
tional studies indicate that depending on the pyrimidine and the
solvent, a significant part of the population of Sππ∗ (even ≥90%)
can be transferred to one Snπ∗.26,28,29 These studies indicate that the
amount of population transferred to the lowest energy, dark nπ∗
state depends critically on the nature of the embedding medium.
For example, for thymine in the gas phase, the Sππ∗ → Snπ∗ trans-
fer is a major deactivation channel, according to both experiments33

and calculations,34–36 whereas in water, the population transfer is
negligible (≤10%).31,37 For uracil (see Ref. 32 for a review of the
theoretical studies in the gas phase), both quantum dynamical com-
putations on reduced dimensionality models describing the solvent
effect with continuum models and trajectory surface hopping sim-
ulations in explicit solvents indicate that the Sππ∗ → Snπ∗ is much
more favored in the gas phase than in polar solvents.38,39

In the following, the hierarchy of vMCG methods will be
described, along with the parameterization of the QMD-FF for
simulating photo-excited uracil via the semi-automatic JOYCE
procedure.20,21 The interface between the QUANTICS program that
runs direct dynamics (DD)-vMCG simulations and the classical MD
code GROMACS is also introduced as a tool to perform FF-QD
calculations. These are necessary prerequisites for any further explo-
ration. Therefore, although in this contribution we do not explicitly
run computations in the solvent, we use our QUANTICS/GROMACS
interface to run a number of tests on the expansion of the total
WP in GWPs that are preparatory to such propagations. The final
addition of solvent will then be tackled in a subsequent dedicated
contribution.

II. METHODOLOGY
A. Grid-based quantum dynamics

In order to provide a reliable benchmark for our study, we
used the Multi-Configuration Time-Dependent Hartree (MCTDH)
method,2,3 which is able to provide a numerically exact solu-
tion to the time-dependent Schrödinger equation. In this method,
the nuclear wavefunction is expanded as a full direct-product of
time-dependent basis functions,

Ψ(q, t) =∑
s
∑

j1...jp

Aj1...jpsφ(1)j1
(q1, t) ⋅ ⋅ ⋅φ(p)jp

(qp, t)∣s⟩, (1)

where the “single-particle functions” (SPFs), φ, are expanded in turn
on a time-independent basis,

φj(qκ, t) =∑
a

caj(t)χa(qκ), (2)

and ∣s⟩ is a vector to provide the associated electronic state basis. The
Dirac–Frenkel variational principle is then used together with this
ansatz to provide equations of motion for the expansion coefficients
and basis functions to optimally describe the evolving wavepacket.

MCTDH is well established and described in detail in the lit-
erature. In the following, the multi-layer (ML-MCTDH) form will

be used,4,5,40 which is required for systems with large numbers of
vibrational modes, such as uracil. In this approach, the single parti-
cle functions of Eq. (1) are multi-dimensional functions that are first
expanded in an MCTDH form. This is repeated, forming layers of
functions, until the lowest layer is reached, which is described by a
set of time-independent grids.

The disadvantage of the MCTDH scheme is that it requires the
potential surfaces to be known analytically in advance and to be in
a particular “sum of product” form for efficiency. Fortunately, the
vibronic coupling model on which the QMD-FF to be developed is
based has exactly this form, whereas the QMD-FF potentials do not.
An ML-MCTDH calculation can thus provide benchmarks for the
time-evolution of the state populations. This is done by projecting
the time-dependent wavepacket onto an electronic state,

Ps = ⟨Ψ(t)∣s⟩⟨s∣Ψ(t)⟩. (3)

B. vMCG: Partitioning and approximation hierarchy
A different, potentially more flexible way of solving the TDSE is

to expand the wavefunction using a set of time-dependent Gaussian
wavepackets (GWPs), Gj,

Ψ(q, t) =∑
js

Ajs(t)Gj(q, t)∣s⟩, (4)

where ∣s⟩ is again the electronic state basis. The Gaussian wavepack-
ets themselves are separable functions of one-dimensional Gaussian
functions,

Gj(q, t) = g(1)j (q1, t) ⋅ ⋅ ⋅ g( f )
j (q f, t), (5)

with the form

g(κ)i (qκ, t) = exp (−α(κ)i q2
κ + ξ(κ)i (t)qκ + η(κ)i (t)). (6)

In these functions, the widths, α, of the functions are time indepen-
dent (frozen Gaussian approximation). The scalar, η, parameters are
defined by keeping the functions normalized with no phase, allowing
the phase to be carried by the expansion coefficient. This leaves the
linear, ξi, parameters to carry the time-dependence of the functions.

The GWP basis functions can be compared with the Gaussian
wavepackets pioneered by Heller,41,42

g̃(κ)i (qκ, t) = exp (−α(qκ − qiκ(t))2 + ipiκ(t)(qκ − qiκ(t)) + iγi(t)),
(7)

where piκ, qiκ are the momentum and coordinate of the center of
the wavepacket and γi the phase and normalization. This leads to
a relationship between the linear parameter, the momentum and the
coordinate,

ξi(t) = −2αqiκ(t) + ipiκ(t). (8)

Using the Dirac–Frenkel variational principle to solve the
TDSE with the ansatz Eq. (4) leads to equations of motion for the
expansion coefficients,

iȦis =∑
jks′

S−1
i j (H(ss

′
)

jk − iτjkδss′)Aks′ , (9)
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with

Sij = ⟨Gi∣Gj⟩, GWP overlap, (10)

H(ss
′
)

ij = ⟨sGi∣H∣Gjs′⟩, Hamiltonian matrix, (11)

τij = ⟨Gi∣Ġj⟩, overlap time − derivative, (12)

and for the Gaussian parameters for each set of functions,

iξ̇κi = Xκi +∑
μj

C−1
κi,μ jYμj , (13)

with

Cκi,μj = ρij(Sκμ
i j − S(κ0)

ik S−1
kl S(0μ)

l j ), (14)

Yκi =∑
μj
(iρijH

0μ
i j − ρimS(κ0)

ik S−1
kl S(0μ)

l j Hjm), (15)

Hij = ⟨Gi∣H∣Gj⟩, Hamiltonian matrix, (16)

Xκi = −2α
∂V
∂qκ
+ i

pκi

mκ
, classical terms, (17)

ρij = A∗i Aj , density matrix, (18)

S(αβ)
i j = ⟨ ∂Gi

∂λiα
∣ ∂Gj

∂λjβ
⟩, (19)

H(αβ)
i j = ⟨ ∂Gi

∂λiα
∣H∣ ∂Gj

∂λjβ
⟩, (20)

where the last two lines define the overlaps and Hamiltonian matrix
elements in terms of the derivatives of the GWPs with respect to the
linear parameters.

This is the variational Multiconfigurational Gaussian (vMCG)
ansatz.18,43 It has the property that the centers of the GWP func-
tions follow trajectories that have a classical part and an additional
“variational coupling” (C−1YR) that allows the GWPs to move opti-
mally as a set to describe the evolving wavepacket. In addition, if
the integrals involving the Hamiltonian are evaluated exactly, the
result will converge on the full numerical solution of the TDSE with
conservation of energy and norm by construction.

The major part of the effort of solving the vMCG equations is
inverting the C-matrix of Eq. (14). In a calculation with N DoFs
and n GWPs, this matrix has dimensions (nN)2, and the effort of
inverting a matrix scales with the cube of the dimension. It is possi-
ble to reduce this effort by partitioning the GWPs into products of
lower-dimensional GWPs, i.e.,

Gj(q, t) = G(1)j1
(q1, t)G(2)j2

(q2, t) ⋅ ⋅ ⋅ . (21)

Using these lower-dimensional GWPs as the basis sets, the overall
wavefunction ansatz is

Ψ(q, t) = ∑
j1j2...s

Aj1j2...s(t)G
(1)
j1
(q1, t)G(2)j2

(q2, t) ⋅ ⋅ ⋅ ∣s⟩. (22)

This is the G-MCTDH method of Burghardt et al.,44 and it can
be viewed as partitioning a wavefunction into κ parts, described by
sets of GWPs, G(κ)j (qκ, t). The equations of motion for the expan-
sion coefficients, Eq. (9), are unchanged, with Gj referring to a
configuration of GWPs [Eq. (21)] rather than a single basis function.
The equations for the GWP function parameters also retain the same
form as Eq. (13), but now the H terms in Eq. (15) become mean field
operators linking the different parts of the system. The full details of
the G-MCTDH equations of motion are in the literature.44 This par-
titioning reduces the effort by providing sets of lower dimensional
GWPs with associated smaller C-matrices to invert. The cost is that
there are now mean-field operators that need to be built.

Ignoring the second term in Eq. (13) further saves effort by
removing the need for the matrix inversion. If this is done, the GWPs
follow classical trajectories, and the coupling that provides the vari-
ational character of the basis is lost. This has the effect of slowing the
convergence of the method, and energy conservation is no longer
ensured. Following earlier work,45 this is referred to as the classical
multiconfigurational Gaussian (clMCG) approximation.

A major part of the effort is also required to calculate the
Hamiltonian matrix elements ⟨Gi∣H∣Gj⟩. If rectilinear coordinates
are used, then the kinetic energy operator is a sum of one-
dimensional terms. For example, in the mass-frequency scaled
normal modes used in this work,

T =∑
κ
− 1

2
∂2

∂q2
κ

, (23)

the integrals over this operator thus become simple one-dimensional
integrals that can be evaluated analytically. In contrast, integrals
over the potential operator are multi-dimensional integrals over the
GWPs. For these, in vMCG, it is typical to use a local harmonic
approximation (LHA) in which the surfaces are expanded to sec-
ond order around the coordinate at the center of the GWP on the
right-hand side of the matrix element,

V(q) ≈ V(qj) +∑
κ

∂V
∂qκ
∣

qj

(qκ − qκj)

+ 1
2∑κκ′

∂2V
∂qκqκ′

∣
qj

(qκ − qκj)(qκ′ − qκ′j), (24)

where qj is the center coordinate of GWP Gj. This allows the inte-
gral to be calculated analytically. It should be noted that this method
leads to a matrix that needs to be made Hermitian by averaging Hij
and Hji.

The number of second-order terms, however, grows quadrati-
cally with system size and soon becomes a major part of the effort.
A simpler approximation is to take just the zero-order term and
approximate the integral as

⟨Gi∣V ∣Gj⟩ ≈ ⟨Gi∣Gj⟩V(qj). (25)

This saddle point approximation is regularly used in non-adiabatic
simulations.46 It cannot be used in the vMCG approximation, as the
variational coupling would be lost. In the clMCG approximation,
however, this is not the case, and it is merely an approximation to
the matrices used in the expansion coefficient propagation. The use
of this approximation will be referred to as saddleMCG.
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It should be noted that different partitions of a wavefunction
can be treated with different levels of approximation, leading to var-
ious possibilities for “hybrid” calculations, as will be detailed further
in Sec. II F.

C. DD-vMCG: On-the-fly non-adiabatic dynamics
The vMCG method, as described above, has the property that

the potential given in Eq. (24) can be calculated on-the-fly, requiring
only information about the potential around the center of a GWP.
This means that regions of the PES are only calculated if and when
the wavepacket moves into them during the propagation. The three
terms in Eq. (24) are readily obtained from standard quantum chem-
istry packages in the form of the adiabatic potential energies, the
nuclear gradients, and the Hessian matrices, respectively. By also cal-
culating the non-adiabatic coupling vectors, one can now solve the
nuclear and electronic parts of the TDSE and account for the cou-
pling between them, resulting in the DD-vMCG method, which is
well suited for the study of photo-induced processes in systems with
complex PESs.17,47,48

In practice, DD-vMCG makes use of a database containing all
the information from the individual quantum chemistry calcula-
tions.49 Instead of calculating new points of the PES at every time-
step, the database is checked, and a comparison is made between
the previously stored molecular geometries and the new ones. This
comparison is based on the evaluation of the norms of the atomic
difference vectors between the structures.50 If the lowest norm is
higher than a fixed threshold, a new electronic structure calcula-
tion is launched, the result of which is then added to the database.
If, however, the lowest norm is lower than the threshold, a Shepard
interpolation51,52 is done to obtain the LHA parameters at the new
geometry.

In the calculations presented later, rather than using the poten-
tial surfaces from quantum chemistry calculations, the potentials
will be provided by the QMD-FF to be detailed in Sec. II D. Impor-
tantly, the LHA in vMCG simulations requires the Hamiltonian to
be in the diabatic picture to ensure smoothness under each GWP.
The JOYCE QMD-FF is in the diabatic picture, so it can be directly
used without any transformations.

A final point worth mentioning is that it is common prac-
tice when using DD-vMCG to approximate the Hessian at every
point rather than calculating it explicitly. This saves an enormous
amount of computational effort since the full Hessian of every elec-
tronic state only needs to be calculated once at the FC point and is
then updated based on this (so-called Hessian updating).18,53 How-
ever, since the new approach described in this work uses molecular
mechanics rather than quantum chemistry to obtain the necessary
properties, explicitly calculating the Hessian at each new point is
feasible without it becoming a computational bottleneck.

D. Model Hamiltonian
In order to use QMD-FFs for vMCG simulations, it is necessary

to have a reliable protocol to parameterize a FF for every ground and
excited diabatic state involved in the process (diagonal FFs) along
with the diabatic couplings between them (off-diagonal FFs). The
JOYCE methodology developed by some of us intrinsically provides
the diagonal diabatic FFs since it is based on a local expansion of the

adiabatic potentials (for rigid systems). In order to obtain the dia-
batic couplings, in this contribution we propose a protocol to merge
Joyce FFs with a Vibronic Coupling (VC) model. Both Joyce and VC
models can be parameterized at the same level of electronic structure
theory [here density functional theory (DFT) and time-dependent
(TD)-DFT], which will then describe the same potentials.

The Joyce FF has the advantage of providing greater flexibil-
ity than a VC model for the molecular motions and, crucially for
our aims, can be combined with a solvent FF, as we discuss in
the supplementary material, Sec. S4.1. This allows us to exploit the
knowledge acquired in the last few decades in the field of molec-
ular mechanics (MM) to obtain straightforward FFs for systems
embedded in solvents or more complex explicit environments. As
we mentioned in the introduction, we leave this final addition of sol-
vent to a subsequent work, and in the following, we describe how the
intramolecular force-fields for a molecule may be incorporated into
a QD simulation in the gas phase.

A specific QMD-FF is separately parameterized, according to
the JOYCE protocol, for the uracil ground state (S0) and each of
the first two excited states, Snπ∗ and Sππ∗, respectively. A brief
description of the protocol will be given below, and full details
of the parameterization procedure can be found in the original
papers.20,21,54 Considering the overall stiffness expected for the
uracil ring, such an intra-molecular force field, Eintra

QMD−FF∣s takes the
simplified expression,

Eintra(rric ,Rric
)

QMD−FF∣s = Es
str(rric) + Es

bnd(rric) + Es
tors(rric), (26)

where, for each state s, the three terms refer to the bond stretching
(Es

str), angle bending (Es
bnd) and dihedral torsion (Es

tors) energies,
which depend on stiff redundant internal coordinates (RICs, rRIC)
of uracil and are all modeled with harmonic potentials,

Es
str =

1
2

Nbonds

∑
i

kss
i(ri − rS

0,i)2,

Es
bnd =

1
2

Nangles

∑
i

kbs
i(θi − θs

0,i)2,

Es
tors =

1
2

Ndihedrals

∑
i

kts
i(ϕi − ϕs

0,i)2.

(27)

The parameters defining Eintra
QMD−FF∣s for each state s are obtained

through the JOYCE code55 by minimizing the difference between
selected QM and FF descriptors through the objective function,

Is =
3N−6

∑
K≤L

2WKL

(3N − 6)(3N − 5)

⎡⎢⎢⎢⎢⎣
Hs

KL −
⎛
⎝
∂2EQMD−FF∣s

intra
∂QK∂QL

⎞
⎠

⎤⎥⎥⎥⎥⎦

2

gs

, (28)

where, for each state s, the (double) sum runs over the 3N − 6 QM
normal modes (N being the number of uracil atoms) obtained at
its own optimized geometry (gs) by diagonalizing the QM Hessian
matrix Hs, and the WKL terms are tunable parameters, which were
set to weight the normalized diagonal elements of the matrix W to
twice the value of the off diagonal ones. In brief, the excited state FFs
of the two lowest electronic excited states are expanded locally at
their optimized geometries in CS symmetry, where they have a pure
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nπ∗ or ππ∗ character. Therefore, the obtained excited state FFs can
be taken as diabatic nπ∗ or ππ∗ FFs.

Up to now, we have defined a diagonal FF for each state. In
order to describe the non-adiabatic transition between nπ∗ and ππ∗,
we need to account for the coupling between the states. The simplest
strategy is to build a quadratic vibronic Hamiltonian (QVC) by tak-
ing as coordinates the normal modes of the S0 state and taking an
LHA of the FFs for the different states.

The Hamiltonian thus takes the following form:

H =∑
i
(T + V(i)(q)∣i⟩⟨i∣) +∑

i,j>i
V(i,j)(q)(∣i⟩⟨ j∣ + ∣ j⟩⟨i∣), (29)

where q = {q1, q2, . . . , qν} are the dimensionless normal mode coor-
dinates. The kinetic energy operator is defined in Eq. (23), and the
potential terms have the form

V(i)(q) = E(i)(t) +
ν
∑

α
κ(i)α (t)qα +

1
2

ωαq2
α +

ν
∑
α,β

γ(i)α,β(t)qαqβ, (30)

V(i,j)(q) =
ν
∑

α
λ(i, j)

α (0)qα, (31)

where ωα are the ground state normal mode frequencies, κ(i)α the
gradient of electronic state i with respect to normal mode α, γ(i)α,β
the bi-linear coupling between normal modes α and β on state i to
account for the fact that each state has different normal modes and
frequencies (Duschinsky rotation), and λ(i, j)

α the vibronic coupling
between states i and j with respect to normal mode α. Notice that
a parenthesis (t) has been added to indicate that the corresponding
terms are updated during the dynamics on the fly .

At time t = 0 of the dynamics, where the wavepacket is cen-
tered at the S0 equilibrium geometry, the only ingredient missing to
fully define the Hamiltonian are the vibronic couplings λ(i, j). They
can be easily computed through a diabatization technique56 and
are not updated further during the dynamics. At later times, the
other parameters of the Hamiltonian are straightforwardly obtained
by computing the gradients and Hessians of the excited state FFs
at the molecular structures visited by the GWPs. This protocol is
able to account for the effect of possible anharmonicities in the FFs
that originate from the redundancies of the set of internal coor-
dinates adopted to parameterize the FFs, which, therefore, are not
strictly speaking harmonic. In more general cases, when dealing with
flexible systems, the QMD-FFs can contain explicitly anharmonic
terms.

Before concluding this section, we note that, in principle, the
diabatic couplings, λ(i, j), make the diabatic and adiabatic Hessians
differ along A′′ non-total symmetric coordinates (the only ones
for which λ(i, j) are non-vanishing). As they are fitted to TD-DFT
data, the Hessians of the FFs are actually adiabatic in nature. They
should thus be corrected by differentiation of the analytical adiabatic
PES arising from the QVC model so as to obtain truly “diabatic”
Hessians.57 Such a refinement has not been taken here due to
the exploratory nature of the current work and the fact that the
FFs’ Hessians feature all positive frequencies and, therefore, do not
introduce any problematic effects into the dynamics (see also the
supplementary material).

In addition, by not updating the parameters of the Hamiltonian
in Eq. (30), i.e., taking their values at the S0 geometry (t = 0), one
obtains a standard QVC model, which is useful since a benchmark
ML-MCTDH calculation can be run to compare to those obtained
with the hierarchy of approximated methods discussed in Sec. II B.
In the following, we refer to this Hamiltonian as QVC0.

E. Workflow
The workflow of the proposed FF-QD approach is illustrated

in Fig. 2. The first two steps (Vibronic Coupling Model and Generate
Force Field) generate the force field for each electronic state i. This
will provide the terms contained in Eqs. (30) and (31) during the
propagation. In our implementation, we have generated these intra-
molecular force fields via the JOYCE protocol, outlined above. Since
these QMD-FFs are diabatic, the vibronic couplings λ(i, j) between the
states are a separate component, and we have evaluated them using
the diabatization scheme implemented in the Overdia code.56,58,59 In
principle, any diabatization scheme could be employed, and these
vibronic coupling terms are set at the beginning of the calculation
based on the reference geometry of the molecule and not updated.

With this in place, one can set up a calculation using the QUAN-
TICS program, setting the desired initial conditions and simulation
parameters. As illustrated by Fig. 2, the initial geometry is used by
GROMACS to calculate the single point potential energies, atomic
forces, and second derivatives (Hessian) for each electronic state
(i.e., using the appropriate QMD-FF for each state). These data are
stored in a database and provides the information necessary to prop-
agate the GWPs in QUANTICS. When necessary, a new dataset is
generated using GROMACS and stored in the database. This is the
standard on-the-fly direct dynamics procedure, but instead of using
electronic structure calculations, the energies, forces, and Hessians
are generated by molecular mechanics calculations using the QMD-
FFs. The output of the quantum dynamics simulations using this
method is, however, identical to any other calculation using the DD-
vMCG method and can be analyzed in the same way (e.g., diabatic
state populations, PESs, and wavepacket trajectories).19

F. Details of calculations
1. Note on nomenclature

This work will compare a number of different QD calcu-
lations and, hence, it is important to define a general nomen-
clature to ensure clarity in the reported results. The following
convention provides a general way to describe each calculation:
M//(T1 f1/N1, T2 f2/N2, . . . , Tn fn/Nn), where

● M = QD method (vMCG or DD-vMCG),
● T = Type of GWP trajectory (V = variational, C = classical,

and S = classical and using the saddle point approximation),
● f = Number of DoFs (normal modes),
● N = Size of the Gaussian basis (nr. of GWPs),
● n = Number of sets of combined DoFs in a partitioned

calculation.

2. Benchmarking of the QMD-FF derived operator
To test the validity of using a Gaussian basis in simulations

with the QMD-FF, different vMCG calculations were benchmarked
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FIG. 2. Flowchart outlining the steps needed to set up the calculations, as well as a schematic representation of the propagation using a database. (FF = Force Field,
MM = Molecular Mechanics, and NM = Normal Mode).

against a Multi-Layer (ML)-MCTDH result using the QVC0 Hamil-
tonian. This was obtained by generating a Hamiltonian operator
[Eq. (29)] at the initial time (i.e., before any on-the-fly updating takes
place). As this Hamiltonian only includes terms up to second-order,
ML-MCTDH and vMCG calculations converge to the same result
when the LHA is used.18 The linear parameters for this Hamiltonian
are given in the supplementary material, and the quadratic para-
meters are given in the available datasets in the form of a QUANTICS
operator file.

Since convergence depends on the size of the basis used, it is
important to consider the computational effort of the simulations.
Uracil has 30 normal modes, all of which will be included in the
calculations, and this can become computationally expensive since
the scaling is strongly dependent on the number of DoFs. While
this number of modes is on the limit of what the standard MCTDH
method is able to handle, ML-MCTDH potentially offers a signifi-
cant reduction in the central processing unit (CPU) time for systems
of this size. In this approach, the system is partitioned into branches
and layers, leading to a contraction of the representation of the wave-
function.40 For efficiency, it is important that modes that are strongly
coupled are kept close in the branching scheme to treat the correla-
tion as directly as possible. If this is not done, many basis functions
may be required.

As described in Sec. II B, a similar approach can be taken with
vMCG calculations, combining normal modes into a single mode,
described by a set of GWPs. Three vMCG calculations will be com-
pared to the ML-MCTDH benchmark in Sec. III, each of which has
been partitioned differently.

The choice of which modes to combine into a set when parti-
tioning the system will affect the speed and convergence of a calcu-
lation significantly. It is advisable to group together the modes that
lead to large vibronic coupling (so-called coupling modes, character-
ized by large λ parameters) and the modes that cause a large shift in
the minimum of the excited states away from the Franck–Condon
point (called tuning modes, characterized by large κ parameters).
These modes will be the most important during the dynamics. The
remaining modes (spectator modes) can then be grouped together.

From an analysis of the parameters of the QVC0 Hamilto-
nian, ten modes were identified as the strongest coupling and tuning
modes (see the supplementary material, Sec. S3.2, for details). These
modes were grouped together in the first partition. The remaining 20
spectator modes were either divided into two groups of 10 or taken
together. Three calculations were thus carried out:
● vMCG//(V30/61): No partitioning, 61 30-dimensional

GWPs.
● vMCG//(V10/61, V10/61, V10/61): Partition into three sets

of 61 10-dimensional GWPs.
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● vMCG//(V10/61, V20/41): Partition into two sets: 61 10-
dimensional and 41 20-dimensional GWPs.

This partition is analogous to the separation of modes into
different branches of the ML-MCTDH tree, and indeed, the par-
titioning in this calculation aimed to mimic the structure of the
ML-MCTDH tree, which puts the key modes on one branch (see Fig.
S1 in the supplementary material). One can think of this type of par-
tition as a separation between the “system,” consisting of the modes
that are important during the propagation, and a “bath,” which con-
tains the modes that have a weaker effect on the dynamics and,
hence, need fewer basis functions. To check that the key ten modes
were the correct choice, a final vMCG calculation was run, but only
including these modes:

● vMCG//(V10/61): No partition, 61 10-dimensional GWPs.

In Sec. II B, the clMCG and saddleMCG approximations were
introduced. With these approximations, instead of following the
variational trajectories of vMCG, the GWPs follow classical trajec-
tories, and in the saddleMCG approximation, the integrals are only
done to zeroth order (i.e., considering only the potential energies).
It is also possible that different partitions of the total wavepacket
can be treated at different levels of approximation. Thus, it is pos-
sible to treat the key modes with a variational vMCG basis, and the
less important modes can be treated with the clMCG or saddleMCG
approximations. The use of different approximations for different
sets of normal modes gives rise to a hybrid between a full quantum
vMCG and a (zeroth order) classical propagation aiming to retain
the accuracy of the full vMCG picture with increased efficiency.

The effect of using different approximations for the prop-
agation of the GWPs was thus investigated with the following
simulations, performed using the two set partition:

● vMCG//(C10/61, C20/41): All GWPs propagated on classi-
cal trajectories.

● vMCG//(S10/61, S20/41): All GWPs propagated on clas-
sical trajectories using, additionally, the saddle point
approximation.

● vMCG//(V10/61, C20/41): A set of 10-D GWPs following
variational trajectories and a set of 20-D GWPs following
classical trajectories.

● vMCG//(V10/61, S20/41): A set of 10-D GWPs following
variational trajectories and a set of 20-D GWPs follow-
ing classical trajectories and employing the saddle point
approximation.

3. DD-vMCG calculations using Quantics–Gromacs
interface

The new interface between QUANTICS and GROMACS was
tested by benchmarking the results against the most converged
vMCG calculation [i.e., vMCG//(V10, V20), see Sec. III in the fol-
lowing]. However, it is not expected that the DD-vMCG results
should converge to the vMCG result since the propagation of the
GWPs includes the on-the-fly calculation of the diabatic poten-
tials, the atomic gradients, and the excited state Hessian matrices.
Essentially, this allows for anharmonicity to be introduced in the
calculations thanks to the FFs being expressed in a redundant set of
curvilinear coordinates (see Sec. II D). Several different DD-vMCG

calculations were run, using the same types of variations as the
previously described vMCG calculations:

● DD-vMCG//(V10/61, V20/41).
● DD-vMCG//(C10/61, C20/41).
● DD-vMCG//(S10/61, S20/41).
● DD-vMCG//(V10/61, C20/41).
● DD-vMCG//(V10/61, S20/41).

Importantly, the wavepackets in these simulations are all prop-
agated on the exact same potential surfaces, with the same gradients
and Hessians at every point to ensure a proper comparison. This is
achieved by first performing the different calculations in a typical
on-the-fly manner (meaning the data defining the potentials is gen-
erated during the propagation itself) and, subsequently, collecting
these data in one database. Ultimately, the calculations are run with-
out generating any more points but solely using this single database,
which contains just under 10 000 points, which defines the potential
energy landscape.

III. RESULTS AND DISCUSSION
A. Force field

To validate the parameterized QMD-FF intra-molecular terms,
a number of tests were devised. First, the QMD-FF Hessian matrix,
Hs

QMD−FF =
∂2EQMD−FF∣s

intra
∂q2 , can be exploited for each state s to perform a

MM geometry optimization.
In the top panel of Fig. 3, the optimized geometries obtained at

the QM and MM levels for each state s are compared, and it is evident
that the QM and MM structures overlap well. The visual analysis
was confirmed by computing the standard deviation between QM
and MM optimized structures, which amounts for all states to less
than 10−3 Å and less than 0.1○ for bond lengths and bond angles,
or dihedrals, respectively. Next, the QMD-FF normal modes can be
computed together with the associated vibrational frequencies, and
the results are eventually compared to the QM parent data employed
in the JOYCE procedure. The comparison is displayed in the bottom
panels of Fig. 3 for the three states. Again, the FF can reproduce the
QM data with only minor deviations for the low frequency modes.
The complete set of intra-molecular parameters defining the FF (i.e.,
bond-stretching, angle-bending, and torsional parameters) can be
found in the supplementary material.

B. Benchmarking vMCG
1. Effect of partitioning

Simulations using ML-MCTDH and vMCG with different
partitionings were run as a benchmark to validate the proposed
approach, i.e., using parameterized FFs in combination with the
vMCG method. The comparison will be done based on the electronic
state population transfer from the initially excited ππ∗ state to the
nπ∗ state of uracil (note: only the decay of the population of the ππ∗
state will be plotted, with all the transfer going to the nπ∗ state, as
the S0 state is not included in the dynamics). All simulations were
run for 100 fs, using the exact same Hamiltonian operator derived
from the FF (QVC0). The results of this 2-state system are summa-
rized below. Figure 4 compares the ML-MCTDH calculation and
the four vMCG calculations using different partitions, as outlined
in Sec. II F 2.
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FIG. 3. Top panels: overlap of the QM (solid colored spheres) and QMD-FF (transparent blue, red, and green spheres for S0, S1, and S2) optimized geometries. Middle
panels: overlap of QM and MM normal modes. Bottom panels: correlation plot between QM and MM vibrational frequencies computed by JOYCE. From left to right, results
are displayed for S0 (blue), S1 (red), and S2 (green), respectively.

FIG. 4. Calculated population transfer for uracil: ML-MCTDH benchmark (black,
dashed), vMCG with 61 GWPs (green), vMCG with three sets of GWPs (ten modes
and 61 GWPs in each) (blue), vMCG with two sets of GWPs (ten modes with 61
GWPs and 20 modes with 41 GWPs) (purple), and vMCG with only the ten most
important normal modes included (magenta).

Using the population transfer as a measure of convergence, we
conclude that the vMCG calculations are not fully converged but
approach the ML-MCTDH result as the number of basis functions
increases, as expected. By comparing an unconverged ML-MCTDH
calculation with the fully converged result, we confirmed that the
lack of convergence in a simulation does indeed lead to a slower
population transfer (see the supplementary material, Fig. S2). The
QVC0 operator does not have very strong non-adiabatic coupling,
and the coupling is spread over five modes (Q1, Q10, Q11, Q13,
and Q15) (see parameters in the supplementary material). This
makes it a system that is hard to converge as there is no domi-
nant set of modes with a strong conical intersection, but rather a
number of modes need to be described well to capture the weak
coupling.

For the vMCG calculations, the aim is to provide the largest
basis set at the lowest computational cost. Here, various factors play
off against each other: low dimensional GWPs are cheap, but if
many partitions are used, the need to calculate mean-field opera-
tors becomes expensive. The vMCG//V30 calculation with only 61
basis functions is the smallest. It has no mean-fields, but the 30-
dimensional basis functions are expensive and restrict the basis size.
The vMCG//V10/V10/V10 calculation has small (10-dimensional)
GWPs and a large basis with 613 configurations, making it the largest
calculation but also the most expensive due to the many mean-fields.
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The vMCG//V10/V20 calculation is a compromise with 61 × 41
configurations but larger 20-dimensional GWPs to propagate.

It is noteworthy that even though the calculation with three
sets of 61 10-dimensional GWPs [vMCG//(V10, V10, V10)] con-
tains many more functions than the one with only two sets of GWPs
[vMCG//(V10, V20)], the results are essentially the same. It is, of
course, desirable to use as few basis functions as possible since the
computational effort will be reduced. In this case, the smaller num-
ber of basis functions in the 2-set calculation compared to the 3-set
calculation led to a massive reduction in simulation time (Table I).
The single partition V30 calculation is also seen to be much slower
than the V10/V20 calculation, despite the smaller basis due to the
large GWPs. Evidently, this makes it clear that partitioning the sys-
tem in an optimal way can achieve the accuracy of a much larger
set of basis functions but at a significantly lower computational cost.
The fact that the vMCG//(V10, V10, V10) simulation is very similar
to the vMCG(V10, V20) calculation shows that the latter basis set
describes the 20 bath modes well. The vMCG(V10, V20) will now be
taken as the benchmark to test other (DD)-vMCG results.

Another obvious way to reduce the cost of calculations is to
reduce the dimensionality of the system that is being simulated.
When only the ten most important normal modes were included
(i.e., a threefold reduction in dimensionality from 30-D to 10-D),
the CPU time was reduced by a factor of around 7, compared to the
vMCG//(V10, V20) calculation as shown in Table I. However, while
the state populations of this simulation agree well with the bench-
mark in the first ∼40 fs, the agreement subsequently worsens. This
deviation has to be attributed to the missing 20 normal modes in
the calculation, hence providing evidence that these do indeed play

TABLE I. Computational effort of the reported quantum dynamics simulations in terms
of CPU time.

Calculation type CPU time (h)

ML-MCTDH 12.7

vMCG calculations (vMCG//):

(V30) 494
(V10, V10, V10) >1000
(V10, V20) 30
(V10) 4.5

vMCG with classical approx., compare to (V10, V20):

(C10, C20) 11
(S10, S20) 10
(V10, C20) 18
(V10, S20) 16

Direct dynamics calculations (DD-vMCG//):

(V10, V20) 140
(C10, C20) 57
(S10, S20) 24
(V10, C20) 88
(V10, S20) 36

some role in the dynamics and, if possible, should be included in all
calculations.

In summary, these results establish that the FFs used to describe
the excited states of uracil are suitable for use in the vMCG method
and that, even though the calculations are not fully converged, they
can reproduce the accuracy of the ML-MCTDH results reasonably
well. It can be seen that the full-dimensionality vMCG calculations
are all slower than ML-MCTDH. This is due to the difference in
scaling between the two methods, but a significant computational
advantage is expected when using vMCG-based methods on larger
systems due to the more realistic description of the potential.18

2. Effect of classical approximations
Next, the effect of using different levels of approximation (out-

lined in Sec. II F 2) during the propagation is investigated. The
simulations, benchmarked against the vMCG//(V10, V20) result
in terms of state population transfer, are plotted in Fig. 5. Using
only classical GWPs results in slower and reduced population trans-
fer than variational GWPs. This is due to the slower convergence
compared to the variational GWPs of vMCG. The saddle point
approximation clearly reduces the quality of the description further.
The reduction in accuracy is, however, balanced out by a speed-
up of the calculations, requiring fewer computational resources (see
Table I).

Figure 5 also shows that the hybrid calculations vMCG//(V10,
C20) and vMCG//(V10, S20) reproduce the full vMCG//(V10, V20)
simulation, indicating that although the role of the 20 spectator
modes is not marginal, they can be properly described on a classi-
cal GWP basis. Table I clearly shows how the computational cost
decreases when using the more approximate approaches, with the
vMCG//(V10, S20) taking half the time of the full vMCG calculation.
This finding provides a justification for the use of this approach to
significantly speed up calculations. This procedure can, therefore, be

FIG. 5. Calculated population transfer for uracil: vMCG benchmark (purple,
dashed), vMCG with classical trajectories (blue), vMCG with classical trajecto-
ries and using the saddle point approximation (green), hybrid calculations: vMCG
with 61 GWPs following variational trajectories and 41 GWPs following classical
ones (magenta), and vMCG with 61 GWPs following variational trajectories and 41
GWPs following classical ones and using the saddle point approximation (orange).
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applied to much larger molecular systems, although it is clear that
the accuracy of the results will require a good choice of partitioning
of the normal modes.

C. Benchmarking direct dynamics
Here, the benchmarking of the on-the-fly vMCG results (i.e.,

DD-vMCG) is presented. The population transfer over 100 fs
is again compared to the vMCG//(V10, V20) result. A trivial
error-checking comparison for the implementation of the QUAN-
TICS/GROMACS interface between this previously presented vMCG
result and a DD-vMCG simulation where the database contains
information only on the FC point and is not subsequently updated
on-the-fly is shown in the supplementary material (Fig. S4). As
expected, these calculations are identical since the QVC0 parameters
are derived from this single-point database. Now we move on to
discuss the effect of updating the PES.

1. Non-updated vs updated potential surfaces
Thanks to the way the FF is set up (i.e., redundant, curvilin-

ear coordinates), anharmonicity is included in the potentials. As the
surfaces are updated, normal modes can deviate from their initial
harmonicity as the energies, gradients, and Hessians are calculated
at different points during the propagation of the GWPs. This is
shown in Fig. 6, where cuts along the PESs of two normal modes
are compared before and after updating, as well as a comparison of
the Minimum Energy Conical Intersection (MECI). This intersec-
tion is presented here as a cut along the multidimensional potential
energy landscape, from the FC point (at zero) in a direction that can
be characterized by a combination of the following modes: in-plane
N1–HN1 and C5/6–H5/6 wagging modes, the ring breathing mode,
and the C5–C6 stretching mode (see the supplementary material

FIG. 6. Potentials of the nπ∗ (solid) and ππ∗ (dashed) states of uracil after DD-
vMCG simulations both with and without on-the-fly updating, FC point located at
Q = 0. Top: cut showing the MECI (marked by a purple dot). Bottom: non totally
symmetric modes 4 and 15 (see the supplementary material for description).

for full description and coordinates). It is also worth pointing out
that the MECI is located at a significant distance away from the FC
point, resulting in an initially slow rate of population transfer in the
first 10 fs.

Looking now at the shape of the surfaces in Fig. 6, a general
trend is observed: the potential wells become steeper when updat-
ing is used. For example, the crossings of the surfaces along mode
15 are shifted up in energy. Figure 6 also shows the MECI being
shifted slightly higher in energy by about 0.05 eV when updating
the potential. As intersections between states become energetically
less accessible, it is of course expected that the population transfer
between these states will become less efficient. A second notable dif-
ference between the non-updated and updated surfaces can be seen
in the shape of the potentials along mode 4, for example. The wells
have become more quartic in nature, hinting at the importance of
bi-linear vibronic coupling terms (γ(i)α,β in Sec. II D).

2. Effect of updated surfaces and classical
approximations on dynamics

We now examine how the FF-QD method proposed in this
work performs. By again looking at the state population dynam-
ics, the effect of updating the surfaces will be apparent, and more
importantly, the relative performance of the different hierarchies of
approximations will be compared (as was done for the vMCG cal-
culations, Sec. III B 2). The data are plotted in Fig. 7. A comparison
with the reference vMCG//(V10, V20) computations in the upper
panel shows that including anharmonicities through the updating of
the surfaces leads to a lower population transfer within the simula-
tion time. This result was expected since, as previously stated, the
points of intersection between the ππ∗ and nπ∗ states are shifted
higher in energy.

The bottom panel in Fig. 7 compares the performance of the
different classical approximations. In this case, the reference result
is the fully variational computation, DD-vMCG//(V10, V20). As for
vMCG, pure classical trajectories perform poorly and underestimate
the population transfer, especially when the saddle-point approxi-
mation is also used. Hybrid methods work much better, with (V10,
C20) being practically equivalent to (V10, V20). When the dynamics
of the 20 bath modes use the saddle-point approximation (V10, S20),
however, the agreement is worse, predicting, in this case, a slightly
accelerated population transfer. Compared to the vMCG results,
this indicates an increased sensitivity to this approximation when
surfaces are updated. Interestingly, the observation that the hybrid
calculations overestimate the population transfer indicates that the
20 bath modes are, at least partly, responsible for the slower rate
of transfer of the fully variational result, once again hinting at their
relative importance for accurately describing the dynamics of uracil.

The CPU times for the simulations are given in Table I. The
updating procedure means that the full DD-vMCG//(V10, V20) cal-
culation takes four times as long as the comparable calculation on
the analytic QVC0 potential. This is the overhead due to the use
of the Shepard interpolation of the database points. The speed up
using the classical GWPs is also clear, with the DD-vMCG//(V10,
S20) calculation taking 25% of the time of the full calculation.

In summary, the various DD-vMCG results presented here
show the validity of the described FF-QD methodology, with on-the-
fly calculations showing the effect of updating the PESs and also the
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FIG. 7. Calculated population transfer for uracil: Top: vMCG benchmark (purple,
dashed) and full variational DD-vMCG (blue). Bottom: classical approximations,
compared to the full variational DD-vMCG benchmark (blue, dashed), all classical
(green), all classical and using the saddle point approximation (magenta), hybrid
variational + classical (orange), and hybrid variational + classical and using the
saddle point approximation (brown).

performance of using different classical approximations is evaluated.
Applied to the population transfer dynamics of a simple two-state
model of uracil, all results obtained by the FF-QD approach can
be rationalized both in terms of the chemistry of the molecule as
well as the computational performance of the calculations. The qual-
ity of the state populations along with savings in computer time
demonstrates the potential utility of hybrid simulations.

IV. CONCLUSION AND OUTLOOK
This work is a proof of principle for a route to the quantum

dynamics simulation of large and solvated photo-excited molecules,
and we have introduced two new developments to achieve this aim.
First, we have addressed the problem of providing excited state
PESs that can be interfaced with the treatment of solvent via QMD-
FFs. The JOYCE parameterized QMD-FF is shown to reproduce the
ab initio parameterized vibronic coupling model potential, allowing
FF-QD simulations to have the accuracy of quantum chemistry.

This opens up a route to QD simulations in such scenarios
going beyond the present state-of-the-art, in which the effect of the
environment is usually added to a QD simulation through simple
baths of harmonic oscillators.1 The extension to adding a solvent
is straightforward. However, the choice of solvent potentials is cru-
cial. For instance, it is known that standard water models, such as
TIP3P, do not provide a good description of the solvent for quantum
dynamics simulations.60 This exploration is for future work.

Second, we have introduced a hierarchy of approximations to
the vMCG method to allow efficient partitioning of the wavefunc-
tion and permit different dynamical treatments for portions that
have greater or lesser influence on the dynamics. The nuclear wave-
function partitioning and approximation hierarchy are also shown
to be able to speed up calculations. Recognizing the key modes for
the quantum process of internal conversion and treating them using
variationally coupled GWPs keeps the basis set small and keeps the
system in the correct parts of phase space so that the less impor-
tant “bath” modes can follow classical trajectories with little loss of
accuracy and with a saving of effort. When moving to larger sys-
tems, the saddle-point approximation will also prove useful. While
it is clear that using the saddle-point approximation leads to a loss
of accuracy, it results in a speed up of the calculations, which will
be even more significant in the context of extending this approach
to much larger systems. The fact that Hessians are not required for
the modes treated in this way is important, as requiring full Hessians
for hundreds of atoms would be prohibitive. As a result, the loss of
accuracy will be potentially justified as the correct qualitative behav-
ior is retained. A 100 fs full quantum dynamics simulation for a 30
mode molecule with flexible potentials that are sampled on-the-fly
in 36 h with a single-core computation is a good starting point for
future developments.

In the context of other approaches to including solvent effects
in dynamics, it is interesting to note that very recently, in the frame-
work of trajectory surface hopping simulations, it has been proposed
to couple a linear vibronic coupling (LVC) Hamiltonian with a
MM description of the solvent.61 In that work, the solute/solvent
electrostatic interactions were described with multipole expansions,
beyond simple point charge models. The surface hopping ansatz
allows for very efficient simulation, and although a much smaller
system was considered in that work than this (single state, six
normal modes), nanosecond simulation time was reached. As we
have highlighted in this work, however, a quantum treatment of
important normal modes can be significant in the accuracy of the
simulations.

Our simulations confirm that for uracil in the gas phase, the
population transfer from the bright Sππ∗ to the dark Snπ∗ state is
fast and efficient. Within 100 fs, the population on Snπ∗ is ≥0.4.
Changing the conical intersection by including anharmonic effects
appears to significantly modulate the population of Snπ∗, provid-
ing another hint of the importance of proper treatment of quantum
nuclear effects. The fast population transfer to Snπ∗ is consistent
with that provided by a recent surface hopping study based on
extended multi-state (XMS)-CASPT2 calculations.32 We note, how-
ever, that since the possible decay to S0 is not considered in our
study, it cannot provide a complete picture of the uracil photo-
physics in the gas phase. In future studies, it will thus be important
to explore how the population dynamics of uracil depend on the
description of the coupled potential energy surfaces as well as the
dynamical method used.

A property of the uracil system that becomes clear when one
analyzes the surfaces from the simulations presented here is that
there is no obvious single coordinate that leads to efficient popu-
lation transfer between the Sππ∗ and Snπ∗ states. The intersection
is instead an extended seam, with different possible paths contribut-
ing to the overall transfer, depending on their energetic accessibility
and the strength of the non-adiabatic coupling. Since many of the
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intersections are high in energy (see, for example, the crossing point
along mode 15 in Fig. 6) and the coupling between the states is gener-
ally not very strong, the mechanism of population transfer proceeds
via many different routes. It is this fact that makes uracil a rather
hard system to model since a full dimensional description of the
potential is desirable to correctly capture the long time dynamics
as well as the accurate inclusion of coupling terms. This example
hence emphasizes the need for efficient and flexible non-adiabatic
QD methods that can deal with the subtle interplay between the
interactions that govern the overall dynamics of the system.

In summary, we believe that the advances in this work set
the stage for the treatment of solvent effects in quantum dynam-
ics simulations, with work ongoing that will be detailed in a future
publication. We also believe in the importance of including nuclear
vibrational quantum effects to give an accurate picture of the pho-
toactivated dynamics, and that by pairing this with classical approx-
imations for less important modes, we can open up the route to
accurate simulation of large molecules in realistic environments.

SUPPLEMENTARY MATERIAL

Information supporting the work presented is available in
the form of the supplementary material, which includes the ML-
MCTDH tree structures along with a convergence study, the QMD-
FF parameters, LVC Hamiltonian parameters, and a section on how
solvents will be included in future studies.

ACKNOWLEDGMENTS
The research in this paper was a result of an exchange pro-

gram funded by the Royal Society (Grant No. IEC/R2/202236) and
the CNR (Bilaterale Grant No. CNR-RSC 2021). R.I., G.P., and F.S.
also thank the CNR program “Progetti di Ricerca @ cnr,” Project
No. UCATG4, and R.I. also acknowledges the financial support
through Grant No. NUTRAGE FOE-2021 DBA.AD005.225. F.S.
and G.P. also thank the ICSC - Centro Nazionale di Richercha
in High Performance Computing, Big Data and Quantum Com-
puting, funded by the Next Generation EU - PNRR, Missione 4
Componente 2 Investimento 1.4. S.G. acknowledges the María Zam-
brano grant (NextGenEU funds), the USAL grant “Programa Propio
C1,” and the funding by the Spanish Ministry of Science and Inno-
vation (MCIN/AEI/10.13039/501100011033), Grant No. PID2020-
113147GA-I00. The work has also been supported in the UK by the
EPSRC under Grant No. EP/V026690/1. J.A.G. gratefully acknowl-
edges the current funding of a research fellowship by the Alexander
von Humboldt Foundation.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

L. L. E. Cigrang: Investigation (equal); Methodology (equal); Soft-
ware (equal); Writing – original draft (equal); Writing – review
& editing (equal). J. A. Green: Conceptualization (equal); Fund-
ing acquisition (equal); Investigation (equal); Methodology (equal);

Resources (equal); Software (equal); Supervision (equal); Writing –
original draft (equal); Writing – review & editing (equal). S. Gómez:
Conceptualization (equal); Funding acquisition (equal); Investiga-
tion (equal); Methodology (equal); Project administration (equal);
Resources (equal); Software (equal); Supervision (equal); Writing –
original draft (equal); Writing – review & editing (equal). J. Cerezo:
Investigation (equal); Methodology (equal); Software (equal); Writ-
ing – original draft (equal); Writing – review & editing (equal).
R. Improta: Investigation (equal); Methodology (equal); Writing –
original draft (equal); Writing – review & editing (equal). G. Pram-
polini: Investigation (equal); Methodology (equal); Software (equal);
Writing – original draft (equal); Writing – review & editing (equal).
F. Santoro: Conceptualization (equal); Funding acquisition (equal);
Investigation (equal); Methodology (equal); Resources (equal); Soft-
ware (equal); Supervision (equal); Writing – original draft (equal);
Writing – review & editing (equal). G. A. Worth: Conceptual-
ization (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Project administration (equal); Resources
(equal); Software (equal); Supervision (equal); Writing – original
draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data from the simulations in the form of Quantics input

and output files are available as zipped tar files from the UCL
Research Data Repository at http://doi.org/10.5522/04/25236955.

REFERENCES
1F. Santoro, J. A. Green, L. Martinez-Fernandez, J. Cerezo, and R. Improta, Phys.
Chem. Chem. Phys. 23, 8181 (2021).
2M. Beck, A. Jäckle, G. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).
3Multidimensional Quantum Dynamics: MCTDH Theory and Applications, edited
by H.-D. Meyer, F. Gatti, and G. A. Worth (Wiley-VCH, Weinheim, 2009).
4H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
5H. Wang, J. Phys. Chem. A 119, 7951 (2015).
6G. Worth, Comput. Phys. Commun. 248, 107040 (2020).
7J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
8T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen, S.
Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, and S. Tretiak, Chem. Rev. 120,
2215 (2020).
9S. Mai, P. Marquetand, and L. González, Wiley Interdiscip. Rev.: Comput. Mol.
Sci. 8, e1370 (2018).
10R. Crespo-Otero and M. Barbatti, Chem. Rev. 118, 7026 (2018).
11M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci, M. Persico, and
H. Lischka, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 26 (2014).
12M. Ben-Nun, J. Quenneville, and T. J. Martínez, J. Phys. Chem. A 104, 5161
(2000).
13B. F. E. Curchod and T. J. Martínez, Chem. Rev. 118, 3305 (2018).
14D. V. Shalashilin and M. S. Child, Chem. Phys. 304, 103 (2004).
15J. A. Green, A. Grigolo, M. Ronto, and D. V. Shalashilin, J. Chem. Phys. 144,
024111 (2016).
16D. V. Makhov, C. Symonds, S. Fernandez-Alberti, and D. V. Shalashilin, Chem.
Phys. 493, 200 (2017).
17G. A. Worth, M. A. Robb, and I. Burghardt, Faraday Discuss. 127, 307 (2004).
18G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt, and B.
Lasorne, Int. Rev. Phys. Chem. 34, 269 (2015).
19S. Gómez, E. Spinlove, and G. A. Worth, Phys. Chem. Chem. Phys. 26, 1829
(2024).
20I. Cacelli and G. Prampolini, J. Chem. Theory Comput. 3, 1803 (2007).

J. Chem. Phys. 160, 174120 (2024); doi: 10.1063/5.0204911 160, 174120-13

© Author(s) 2024

 13 M
ay 2024 21:34:00

https://pubs.aip.org/aip/jcp
http://doi.org/10.5522/04/25236955
https://doi.org/10.1039/d0cp05907b
https://doi.org/10.1039/d0cp05907b
https://doi.org/10.1016/S0370-1573(99)00047-2
https://doi.org/10.1063/1.1580111
https://doi.org/10.1021/acs.jpca.5b03256
https://doi.org/10.1016/j.cpc.2019.107040
https://doi.org/10.1063/1.459170
https://doi.org/10.1021/acs.chemrev.9b00447
https://doi.org/10.1002/wcms.1370
https://doi.org/10.1002/wcms.1370
https://doi.org/10.1021/acs.chemrev.7b00577
https://doi.org/10.1002/wcms.1158
https://doi.org/10.1021/jp994174i
https://doi.org/10.1021/acs.chemrev.7b00423
https://doi.org/10.1016/j.chemphys.2004.06.013
https://doi.org/10.1063/1.4939205
https://doi.org/10.1016/j.chemphys.2017.04.003
https://doi.org/10.1016/j.chemphys.2017.04.003
https://doi.org/10.1039/b314253a
https://doi.org/10.1080/0144235x.2015.1051354
https://doi.org/10.1039/d3cp03964a
https://doi.org/10.1021/ct700113h


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

21J. Cerezo, G. Prampolini, and I. Cacelli, Theor. Chem. Acc. 137, 80 (2018).
22N. De Mitri, S. Monti, G. Prampolini, and V. Barone, J. Chem. Theory Comput.
9, 4507 (2013).
23G. Prampolini, F. Ingrosso, A. Segalina, S. Caramori, P. Foggi, and M. Pastore,
J. Chem. Theory Comput. 15, 529 (2019).
24M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,
SoftwareX 1–2, 19 (2015).
25R. Improta and T. Douki, DNA Photodamage: From Light Absorption to Cellular
Responses and Skin Cancer (Royal Society of Chemistry, 2021).
26M. Barbatti, C. A. Borin, and S. Ullrich, Photoinduced Phenomena in Nucleic
Acids I: Nucleobases in the Gas Phase and in Solvents, Topics in Current Chemistry
Vol. 355 (Springer International Publishing, Cham, Switzerland, 2015).
27C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and
B. Kohler, Annu. Rev. Phys. Chem. 60, 217 (2009).
28R. Improta, F. Santoro, and L. Blancafort, Chem. Rev. 116, 3540 (2016).
29L. Martínez Fernández, F. Santoro, and R. Improta, Acc. Chem. Res. 55, 2077
(2022).
30M. M. Brister and C. E. Crespo-Hernández, J. Phys. Chem. Lett. 10, 2156 (2019).
31R. Borrego-Varillas, A. Nenov, P. Kabaciński, I. Conti, L. Ganzer, A. Oriana,
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