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Standfirst 
Instrumental variable analysis uses naturally occurring variation to estimate the causal 

effects of treatments, interventions and risk factors on outcomes in the population from 

observational data. Under specific assumptions, instrumental variable methods can provide 

unbiased estimates of causal effects. We explain these assumptions and the information 

and tests typically reported in instrumental variable studies, which can assess the credibility 

of the findings of instrumental variable studies.  

 

Summary points 
● Instrumental variable analysis is a research method that uses naturally occurring 

variation (i.e., variation not controlled by the researcher), such as policy decisions, 

clinical preferences, distance, or time to provide evidence about the causal 

relationships between interventions and outcomes from observational data. 

● Instrumental variables can provide credible evidence about the causal effects even if 

other observational techniques suffer from residual confounding, reverse causation 

or other forms of bias. 

● We explain and illustrate how to use and estimate instrumental variables studies 

using commonly available packages.  

● In common with all empirical research methods, instrumental variable analysis 

depends on assumptions readers and reviewers must assess. 

● Multiple sources of evidence, using a range of assumptions, can help inform clinical 

decisions.  

● We provide a critical appraisal checklist to help assess and interpret instrumental 

variable studies.  
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1. Introduction 
In clinical practice, establishing causal relationships is crucial for informed decision-making 

in patient care. Instrumental variable (IV) analysis is increasingly used to provide evidence 

about causal effects in clinical research (see Box 1 for glossary). Instrumental variables are 

variables that are associated with the intervention but not the outcome (other than through 

the intervention). They can be used to overcome measured and unmeasured confounding of 

intervention-outcome associations and provide unbiased estimates of the causal effects of 

an intervention on an outcome using observational data (Figure 1). Instrumental variables 

are defined by three assumptions (see Box 2). 

 

Box 2: The instrumental variable assumptions 

Three key assumptions define instrument variables [1]:  

1. Relevance: [IV1] the instrument must be associated with the intervention. 

2. Independence: [IV2] the instrument and the outcome have no uncontrolled 

common causes.  

3. The exclusion restriction: [IV3] the instrument must only affect the 

outcome through the intervention.  

 

Instrumental variable analysis has a long history (see Supplementary Box 1), with 

applications in many fields, including healthcare and economics; it has increased in 

popularity due to the availability of larger datasets and the recognition of the need to obtain 

reliable estimates when key covariates are not measured, and using different analytical 

assumptions[2,3]. Researchers increasingly use instrumental variables analyses to inform a 

wide range of clinical questions. For example, institutional variation in testing or treatment 

practices have been used as instrumental variables to estimate the effects of perioperatively 

testing for coronary heart disease on postoperative mortality rates[4], the relative safety of 

robotic versus laparoscopic surgery for cholecystectomy[5], and the length of storage of red 

blood cells and patient survival[6]. Physicians’ preferences for treatments have been used to 

investigate the effects of COX-2 versus non-selective NSAIDs on gastric complications[7,8] 

and the effects of conventional versus atypical antipsychotic medication on elderly patients' 

mortality[9]. Allocation to treatment in randomized controlled trials with non-compliance is 
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an instrumental variable previously used to investigate the effects of flexible duty-hour 

conditions for surgeons on patient outcomes and surgeons’ training and well-being[10] and 

the effects of reducing amyloid levels on cognition[11]. Distance from or time to admission 

to a particular type of hospital has been used as an instrument for receiving a specific 

treatment[12,13]. One of the most commonly used applications of instrumental variables is 

Mendelian randomization – the use of genetic variants as instrumental variables. Mendelian 

randomization has been covered in detail in previous papers, and will not be discussed here.  

Nevertheless, the core principles of instrumental variable analysis still apply to that method 

[14,15].  

 

We provide a practical guide for researchers for reading, interpreting and conducting 

instrumental variable studies using non-genetic observational data. We discuss: first, why a 

study should use instruments; second, key concepts and assumptions; third, how to assess 

the validity of instrumental variable assumptions; and fourth, how to interpret results. 

 

2. Clinical and public health implications 
Researchers increasingly use large datasets of electronic medical records, registries, or 

administrative claims data to provide evidence about the relationships between treatments 

and patient outcomes. A significant limitation of these datasets is that while the large 

sample size allows for very precise results, they frequently have inadequate measures of 

critical confounders. Confounders are variables that affect the likelihood of receiving the 

intervention and also affect the outcome (for example, prior neuropsychiatric diagnoses and 

likelihood of being prescribed varenicline rather than nicotine replacement therapy for 

smoking cessation). Patients do not receive most treatments randomly, and key 

confounders, such as morbidity and other indications for treatment, are often challenging or 

impossible to measure with sufficient accuracy from diagnosis/billing codes or are 

unmeasured/unmeasurable; thus, matching treated individuals with sufficiently comparable 

controls is challenging and often impossible. As a result, observational analysis of large-scale 

databases may provide unreliable evidence about different treatment options' comparative 

effectiveness and safety. This issue is challenging for clinicians and patients, as they need 

reliable evidence of the causal effects of different treatment options to make well-informed 
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decisions. Instrumental variables can provide an alternative source of evidence about the 

effects of different treatments and, while less precise than other approaches, may be less 

affected by individual-level biases such as confounding by indication, where the indications 

for treatment also affect the likelihood of an outcome.  

 

3. Why use an instrument? 
Most observational methods like multivariable regression or propensity score analysis 

assume that it is possible to measure a sufficient set of confounders to account for all 

differences in the outcome between individuals given the intervention and control, except 

those caused by the intervention[16,17]. However, the correct set of confounders is not 

always known, and even if they have been identified, measuring and accounting for baseline 

differences is extremely difficult, which can result in multivariable-adjusted and propensity 

score analyses having serious biases and providing misleading results. For example, COX-2 

inhibitors were developed to cause fewer gastrointestinal complications than traditional 

NSAIDs and marketed to patients and physicians. As a result, patients prescribed these 

medications typically were at higher risk of gastrointestinal complications at baseline. Thus, 

in observational datasets, patients prescribed COX-2s tended to have higher rates of 

gastrointestinal complications than patients prescribed NSAIDs, a difference that was not 

fully attenuated after adjustment for measured confounders. This is because the pre-

existing differences in the risk of gastrointestinal complications are very challenging to 

measure sufficiently, especially in electronic medical records, resulting in residual 

confounding by indication. Alternatively, consider patients prescribed nicotine replacement 

therapy for smoking cessation differ from those prescribed pharmaceuticals like varenicline. 

They tend to be sicker, older and have worse mental health[18]. However, these differences 

are often not recorded in electronic medical records or other datasets. For example, 

patients may discuss smoking cessation with their GP when they have pre-clinical symptoms 

of heart disease; these symptoms may not be perfectly recorded in medical records or even 

mentioned to the physician.  
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Instrumental variable analysis offers an approach to addressing these problems. It relies on 

a distinct set of assumptions from other methods, which do not require measuring or even 

knowing all the potential confounders of the intervention and outcome. 

 

4. What is an instrumental variable? 
Instrumental variables are defined by following three assumptions. First, the instrument 

associates with the intervention of interest (relevance), second, it shares no common cause 

with the outcome (independence) and third, it only affects the outcome through the 

intervention (exclusion restriction). Note that instruments only need to be associated with 

the likelihood of receiving the intervention; they do not necessarily need to cause it[1]. 

Instrumental variable analyses exploit naturally occurring variation (the instrument) to 

estimate the impact of the intervention on an outcome. This variation can be due to clinical 

or policy decisions which are not related to the key unmeasured confounders of the 

relationships of interest. Box 2 defines these assumptions, and Figure 2 uses a directed 

acyclic graph to represent these relationships. Assessing the plausibility of these 

assumptions is critical to determining whether a proposed instrumental variable is valid, and 

we discuss this in detail in the following section.  

 

These assumptions can be defined unconditionally, or more frequently, as conditional on 

other important covariates in a dataset; for example, physicians’ prescribing preferences are 

usually conditioned on a patient’s age. If these assumptions are violated, for example, by 

residual confounding of the instrument-outcome association, then the results of an 

instrumental variable analysis can be more biased than other approaches, such as 

multivariable adjustment and propensity score. Thus, a key challenge for authors and 

readers of instrumental variable studies is determining whether the assumptions are 

plausible for the research question. 

 

5. Types of instruments 
 

Numerous natural experiments have been proposed and assessed as potential instruments. 

These commonly include physician preference (for example, a clinician's preference to 
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prescribe one treatment versus another for a given diagnosis), access to intervention (for 

example, distance to a hospital with specific speciality staff or equipment), or randomisation 

(for example, in the context of an RCT with non-compliance); examples of these instruments 

are given below. Other sources of variation, including calendar time, have also been used 

and are covered elsewhere [19–21]. 

 

Physician Preference 
 

Clinicians have preferences for many clinical decisions, such as testing, treatments or 

diagnoses. These pre-existing preferences may be independent of the subsequent patients 

they see. For example, a physician may prefer prescribing nicotine replacement therapy 

over pharmaceutical treatments such as varenicline[18]. Studies generally cannot measure 

physicians’ preferences for one treatment or another, so they measure preferences in other 

ways. For instance, physicians’ prescribing preferences may be captured by looking at 

previous prescriptions for the treatments under consideration or, more rarely, surveys used 

to elicit preferences. Physicians’ prescriptions to their previous patients are often associated 

with the prescriptions they issue to their future patients. If this occurs in a way that is 

unrelated to the patient-level confounders of their current patients, the independence 

assumption may hold. Physicians’ previously demonstrated preferences are consistently 

associated with their prescriptions to their current patients[7,8]. A potential weakness of 

physicians’ prescribing preferences as an instrument is that the physicians' preferences may 

not be specific to the treatment of interest and may be associated with broader differences 

in care.  

 

Access 
 

Examples of access instruments include distance to hospitals [12], travel time to the hospital 

as a proxy for quicker treatment[22], the raising of the school leaving age as a proxy for 

education [23], and date of treatment as a proxy for choice of treatment[24]. Here, for the 

instrumental variable assumptions to hold, access must associate with the likelihood of 

receiving the intervention but not directly affect the outcome or share any unmeasured 
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confounders with the outcome. A potential weakness of studies using access-based 

instruments is that geographic location and distance to healthcare facilities are often highly 

non-random and related to important unmeasured confounders such as socioeconomic 

position. 

 

Random assignment in the presence of non-compliance 
Treatment assignment in a randomised controlled trial with non-compliance or an 

encouragement design can be an instrumental variable[25–27]. By design, random 

assignment should balance confounders between individuals assigned to the intervention 

and those not. Conventional analyses of randomised trials report the intention to treat (ITT) 

estimate, which is the difference in outcomes between participants allocated to the 

intervention and participants assigned to the control. However, if some trial participants do 

not comply with their treatment allocation, the ITT will underestimate the effects of taking 

intervention as it will also reflect the effects of compliance. Instrumental variable analysis 

can be used to estimate the effects of taking the intervention, which can be estimated by 

assuming that the treatment assignment affects the likelihood of receiving the intervention 

in the same direction for everyone (i.e. the instrument has a monotonic effect if it increases 

the likelihood of the exposure for some individuals it does not decrease it for others). Under 

the monotonicity assumption, the instrumental variable estimate will reflect the complier or 

local average treatment effects (LATE) (see Box 4 for definitions). This parameter is the 

effect of the intervention on participants whose treatment status was affected by the 

instrument. A limitation of random assignment is that assignment may alter behaviour in 

other ways, leading to violations of the exclusion restriction (e.g., if people assigned to 

control in an unblinded trial seek treatment via other means). Examples of using allocation 

to treatment as an instrument include a cluster randomized trial of vitamin A 

supplementation with non-compliance [25]. Treatment allocation can be used to estimate 

the effects of an underlying continuous risk factor, for example, the effects of reducing 

amyloid levels on cognition, rather than the effect of being allocated to amyloid-lowering 

medication[11]. If the risk factor is continuous, then it is more challenging to interpret under 

monotonicity, and studies may make other assumptions (e.g. assuming a constant effect of 

the risk factor).  
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The instrumental variable assumptions need to be assessed and considered for each 

application, and just because the assumptions are plausible for one treatment or population 

does not mean that they will be valid in another. 

 

6. How can the core instrumental variable 
assumptions be assessed? 

Directed acyclic graphs (DAG) provide a convenient and transparent way to depict and 

explain the assumptions required for an applied instrumental variable analysis[28–30]. 

Researchers can adapt the structure used in Figure 2 for specific research questions. Studies 

can then use empirical data to assess whether the three core instrumental variable 

assumptions hold.  

 

The first instrumental variable assumption, relevance, states that the instrument must be 

strongly associated with likelihood of taking the intervention. The strength of the 

instrument-intervention association is easily testable. For example, in the study of smoking 

cessation medications, we found that physicians who had previously prescribed varenicline 

were 24 percentage points (95% CI: 23 to 25) more likely to prescribe varenicline to their 

subsequent patients than physicians who had previously prescribed nicotine replacement 

therapy. However, a difference in treatment rates across instrument values is insufficient to 

measure instrument strength because it does not reflect the sample size. In a small study of 

a few hundred patients, even a very large difference in treatment rates across the 

instrument's value will provide very little information about the effects of treatment. This is 

why many instrumental variable studies report the partial F-statistic of the regression of the 

intervention on the instrument, which reflects both the strength of the association and the 

total sample size. The partial F-statistic in an instrumental variable analysis is analogous to 

the sample size in a randomized controlled trial. Most instrumental variable estimation 

packages in Stata and R, such as ivreg2 or AER respectively[31,32], will report this F-statistic 

by default. A value above ten is typically considered ‘strong’ and unlikely to lead to weak 

instrument bias[33]. However, an F-statistic above ten does not guarantee that an 
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instrumental variable study will have sufficient statistical power to detect an effect size of 

interest.  

  

The remaining assumptions are untestable, so they cannot be proven to hold, but they are 

falsifiable[34,35]. An assumption is falsifiable if it is possible to use empirical data to 

disprove it. The independence assumption can be falsified by testing the instrument-

baseline covariates association using covariate balance and bias component plots[19,20], or 

randomization tests[36]. If the instrumental variable assumptions hold, there should be no 

detectable associations between the instrument and alternative pathways or other baseline 

covariates that predict the outcome[37]. The exclusion restriction is falsifiable by 

demonstrating that other variables are affected by the instrument, which also affect the 

outcome. For example, consider a study of ACE inhibitors for cardiovascular disease. If 

physicians who are more likely to prescribe ACE inhibitors are also more likely to prescribe 

statins, which also affect cardiovascular disease, the exclusion restriction assumption would 

be violated. An alternative way to falsify the independence and exclusion restriction 

assumptions is to investigate whether the instrument predicts the outcome in subgroups of 

the population for which the instrument does not affect the likelihood of receiving the 

intervention. Suppose there is evidence that the instrument affects the outcome, even in 

subgroups where the instrument does not affect the likelihood of receiving the intervention. 

In that case, the instrumental variable assumptions are unlikely to be plausible. For 

example, if other non-hypertensive patients (e.g. children) who were treated by physicians 

who preferred ACE inhibitors also had better outcomes. Falsification tests are useful 

indicators of how plausible the assumptions are likely to be however, failure to falsify an 

assumption does not mean the assumption can be assumed to be satisfied. For example, if 

the instrument was associated with an unmeasured confounder of the intervention and the 

outcome, this would not be evident in a covariate plot that only included measured 

covariates. 

 

A further way to assess the plausibility of assumptions is to investigate if there are any 

differences (heterogeneity) in the effect sizes implied by different instruments. This requires 

more than one instrument (which, when there are more instruments than interventions, is 
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technically known as being “over-identified”). If there is more than one instrument affecting 

the likelihood of receiving the intervention, e.g. physicians’ preferences and distance to the 

healthcare facility, the heterogeneity in the effects of the intervention implied by each 

instrument may indicate violations of the instrumental variable assumptions. Bonet’s 

instrumental variable inequality tests can also falsify binary interventions’ exclusion 

restriction and independence assumptions[38].  

 

7. How to generate instrumental variable estimates  
Instrumental variables can test whether an intervention affects an outcome and estimate 

the magnitude of that effect. The simplest estimator is the instrument-outcome association 

(reduced-form, Box 1), which can be estimated using regression methods, e.g. linear or 

logistic regression methods. Importantly, this estimator does not estimate the magnitude of 

the effect of the intervention on the outcome. However, under the instrumental variable 

assumptions, it is a valid test of the null hypothesis that the intervention does not affect the 

outcome. An advantage of this test is that it is simple, requires the fewest and weakest 

assumptions, and can indicate the direction of effect. A disadvantage of this test is that it 

does not provide a scale for the effect of the intervention on the outcome, limiting the 

interpretation of the results. Ideally, we want to know the average effect of the intervention 

(also known as the average treatment effect or ATE), not just the effects of the instrument. 

For example, researchers and readers may be more interested in the effect of prescribing 

varenicline or nicotine replacement therapy (the intervention) on their current patient than 

the effect of physicians’ previous prescriptions for smoking cessation treatment (the 

instrument) on smoking cessation rates (the outcome).  

 

Several instrumental variable estimators can estimate the ATE parameter; we cover some of 

the most used below. It should be noted, however, that these methods were largely 

developed to estimate ATE for normally distributed instruments, exposures, and outcomes 

with linear relationships. While, in practice, these methods are widely used for binary 

outcomes and/or non-linear relationships (sometimes with the same name, sometimes 

under a different name), the interpretation can be difficult and more advanced methods 

might be required. We note several instances of this below. 
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If only one instrument is available, then the average effect of the intervention on an 

outcome can be estimated using instrumental variable estimators, such as the “Wald 

estimator”. The Wald estimator is the ratio of the instrument-outcome association divided 

by the instrument-intervention association. This estimator rescales the instrument-outcome 

association to the intervention scale and indicates the effect of a unit change in the 

intervention on the outcome. For example, if patients prescribed smoking cessation 

treatments by physicians who previously prescribed varenicline were 1 percentage point 

more likely to cease smoking (the instrument-outcome association) and 10 percentage 

points more likely to be prescribed varenicline (the instrument-intervention association), 

then the Wald estimate would be -0.01/0.1=-0.1. This would imply that prescribing 

varenicline increases the absolute probability of stopping smoking by 10 percentage points. 

 

When a study has one or more instruments available, for example, if a study used the 

physicians' preferences and distance to healthcare facility as instruments, then the effects 

of the intervention on the outcome can be estimated using a two-stage least squares (2SLS) 

estimator. This estimator comprises two regressions or “stages”. The “first stage” is a 

regression of the intervention on the instruments, which can predict the intervention value 

based on the instrument values. The “second stage” is a regression of the predicted 

intervention status on the outcome. The estimated coefficient on the predicted value is the 

instrumental variable estimate of the effect of the intervention on the outcome. The 

interested reader can work through a simulated example and the formulae in the 

Supplementary Materials. This analysis can be conducted via two separate regressions, as 

described above. It is usually essential that both stages of instrumental variable analysis 

contain the same covariates[39]. However, this will not account for the estimation error 

from the first stage and is likely to give incorrect standard errors and confidence intervals. 

Typically, most analyses use a package like ivreg2 in Stata or AER package in R[31,32]. These 

packages compute the instrumental variable estimates in a single step and integrate all the 

estimation errors from both stages.  
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Different types of outcomes require different instrumental variable estimators, which rely 

on logic similar to the 2SLS estimator described above. Commonly used estimators include:  

1. Continuous outcome: Mean differences, for example, the effects of smoking 

cessation treatment on body mass index using physicians' prescribing 

preferences[18], can be estimated using additive structural mean models[40].  

2. Binary outcomes: Causal risk differences, odds-ratio and risk ratios, for example, 

estimating the effects of coronary bypass surgery on mortality[12], can be estimated 

using additive, logistic and multiplicative structural mean models and control 

function approaches[41–43].  

3. Survival outcomes: There are methods for using instrumental variables with survival 

outcomes, which use a similar approach to two-stage-least squares, or the control 

function approach[44], and have been developed to allow for covariate and 

outcome-dependent censoring[45]. For example, estimating the effects of screening 

frequency on colorectal cancer diagnoses using international differences in screening 

policies[46].  

4. Quantile instrumental variable regression: Non-linear effects of the intervention can 

be estimated using instrumental variable quantile regression[47–49]. These can 

estimate non-linear dose-response relationships. For example, investigating whether 

the effects of a unit increase in body mass index on healthcare costs differ for those 

underweight versus those who are overweight[50].  

 

Methods for instrumental variable estimation is an area of active methodological 

development, spanning statistics, econometrics and computer science. See, for example, 

estimators combining instrumental variable analysis and matching[51] and estimators using 

machine learning[52–54]. 

 

8. How should instrumental variable estimates be 
interpreted? 

The interpretation of instrumental variable estimates depends on a further fourth “point-

identifying assumption”, which can be used to interpret the instrumental variable estimates 

as an average treatment effect. Without this assumption, the three core instrumental 
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variable assumptions are only sufficient to identify the “bounds” of a causal 

effect[38,55,56]. However, instrumental variable “bounds” are typically very wide, so 

interpretation of most instrumental variable studies requires a further fourth “point 

identifying” assumption. The interpretation of instrumental variable estimates, including 

those produced by all of the above methods, depends on the point-identifying assumption 

made (see Box 4: The fourth instrumental variable assumption).  

 

The interpretation of the estimates from instrumental variable estimation depends on 

assumptions about the relationships between the instrument, intervention, and outcome. 

Several assumptions can be made, each leading to a different interpretation. Four 

assumptions and the resulting interpretation are outlined below, using an exemplar study of 

the effect of statins on the risk of myocardial infarction (MI) in which statin prescriptions 

was instrumented using prescriber preference: 

1. Constant treatment effect: The intervention has the same effect on everyone. This 

allows the estimate to be interpreted as the average effect of the intervention for 

the entire population. For example, this could hold if receiving a prescription for 

statins has the same effect on the risk MI for everyone. However, this assumption is 

often implausible, especially for binary outcomes, as it could only hold if the 

treatment entirely cured or caused the outcome. 

2. No effect modification: The intervention has variable effects on the outcome across 

individuals, but the instrument does not affect the effect of the intervention on the 

outcome. This allows the estimate to be interpreted as the average effect of the 

intervention on individuals who received it. For example, this could hold if 

physicians’ preference for statins or not does not affect the effects of being 

prescribed a statin on risk of MI. This could be interpreted as the average effect of 

prescribing statins on the risk of MI for those prescribed statins. 

3. No simultaneous heterogeneity: The intervention has variable effects on the 

outcome across individuals, and the instrument has variable effects on the likelihood 

of receiving the intervention, but this variation in effects is independent. This allows 

the estimate to be interpreted as the average effects of the intervention across the 

population. For example, this could hold if physicians who prefer prescribing statins 
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are more likely to prescribe statins to men than women, but these differences in the 

effects of physicians' preferences are not related to any differences in the effects of 

statins. This could be interpreted as the average effect of prescribing statins on the 

risk of MI in the population. 

4. Monotonicity: The instrument affects the likelihood of receiving the intervention in 

the same way for everyone, i.e. increases or has no effect on, and never decreases 

the likelihood of receiving the intervention, or vice versa. This allows the estimate to 

be interpreted as the effect of the intervention on the outcome among patients who 

received the intervention or not due to the instrument. For example, this could hold 

if patients who were prescribed a statin by physicians who generally preferred not to 

prescribe statins, would also have been prescribed statin by physicians who 

preferred to prescribe statins (and vice versa). This could be interpreted as the effect 

of prescribing statins on the risk of MI among patients who would have received a 

different treatment (statins or not) if they had attended physicians with different 

preferences. This is known as a Local Average Treatment Effect (LATE) or Complier 

Average Causal Effect (CACE). A weakness of this assumption is that it is impossible 

to know which individuals are in this group.[57,58].  

 

9. Data for instrumental variable studies 
 

Instrumental variable studies typically require measures of the instrument, the intervention, 

and the outcome for individual-level data analysis using the same sample of people. This 

straightforward approach allows the most flexibility to test and evaluate the instrumental 

variable assumptions. However, integrating additional external datasets can improve the 

power and precision of instrumental variable analyses using an approach known as two-

sample instrumental variable analysis[59]. This approach estimates the instrument-

intervention association in one sample and the instrument-outcome association in another, 

from which the Wald estimator can be calculated. For example, a study could estimate the 

effects of policy reform on educational attainment using census data from the entire 

population but estimate the effects on health outcomes in a cohort study sub-sampled from 

the same underlying population[60]. A significant advantage of two-sample instrumental 
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variable analysis is that it does not need measures of the intervention or the outcome in all 

samples; this can significantly increase power, particularly when the outcome is rare or 

difficult to measure. 

 

5. Summary 
Instrumental variable analysis can provide reliable evidence about the causal effects of an 

intervention, even if the intervention-outcome association is affected by unmeasured 

confounding. Key to conducting and reading instrumental variable studies is assessing the 

plausibility of the three core instrumental variable assumptions. Does the instrument 

strongly associate with the intervention? Is there a rationale for why the instrument-

outcome association is less likely to suffer from confounding than the intervention-outcome 

association? Is there evidence that measured covariates are less strongly associated? Are 

there alternative pathways that could mediate the effects of the instrument?  

 

Instrumental variable analysis can provide a valuable complement to other forms of 

observational analysis. It depends on distinct assumptions to other approaches, and 

combined with other sources of evidence can strengthen inferences. The increasing size of 

data available for clinical research means there is a growing opportunity to use these 

methods to improve patient care.   
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Box 1: Glossary of terms used in instrumental 
variable studies 

 

Concepts  

Natural experiment: A source of variation in the likelihood of receiving an intervention in 

the real world that can be used to investigate the causal impact of an intervention. 

Instrumental variable: A specific variable in a dataset that 1) is associated with an 

intervention, 2) only affects the outcome via its effect on the intervention, and 3) has no 

common cause with the outcome.  

Fourth point identifying assumption: The assumption used to estimate the mean effect of 

the intervention on the outcome, without which it is only possible to estimate bounds for 

the effect of the intervention on the outcome. 

Local average treatment effect/Complier Average Causal Effect: The effect of an 

intervention on individuals whose intervention status is affected by the instrument.  

Counterfactual values: the outcomes that the patients would have had, had they been 

allocated to intervention or control. 

 

Statistical methods 

Reduced form: The instrument-outcome association, which, under the instrumental variable 

assumptions, is a valid test of the null hypothesis that the intervention affects the outcome.  

Wald estimator: The ratio of the instrument-outcome association and the instrument-

intervention association[61].  

Two-stage least squares: An instrumental variable estimator. The first stage estimates the 

instrument(s)-intervention association(s) and uses these associations to predict the 

intervention values[40]. The second stage uses the predicted interventions in a regression to 

estimate the effect of the intervention on the outcome.  
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Box 3: A critical appraisal checklist for evaluating 
instrumental variable studies 
Readers of instrumental variable studies could consider the following questions: 

Core instrumental variable assumptions 

Is there evidence that the instruments are associated with the intervention of interest? 

Does the study report a partial F-statistic? 

Are the instruments associated with measured potential confounders of the intervention-

outcome relationship?  

Are there likely to be confounders of the instrument-outcome relationship that do not 

confound the intervention-outcome relationship?  

Is the proposed instrument likely to affect the outcome via mechanisms other than the 

intervention of interest?  

Do the authors use negative control outcomes to investigate the plausibility of the 

instrumental variable assumptions?  

Fourth instrumental variable assumption 

Do the authors report the fourth instrumental variable assumption? 

Do the authors describe their estimand, and how it relates to clinical practice?  

Methods reporting 

All studies 

Does the study clearly state the instrumental variable estimator used in the analysis?  

For two-stage least squares, are the same covariates included in both stages of the analysis?  

Data presentation 

Do the authors present the instrument-outcome association, an instrumental variable 

estimate, or both? 
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If they provide an instrumental variable estimate, do they compare it with the multivariable-

adjusted estimate?  

Was the definition of the instrument pre-specified, or was the definition of the instrument 

chosen based on the data under analysis?  

Do the authors provide the code they used to allow researchers to reproduce their findings? 

Interpretation 

If the instrumental variable estimate is similar to the multivariable-adjusted estimate and 

provides evidence consistent with a causal effect, could it be due to weak instrument bias in 

a single study or confounding of the instrument-outcome association? 

If the instrumental variable estimate differs from the observational estimate and provides 

little evidence of a causal effect, could this be due to weak instrument bias or confounding? 

Are the 95% confidence intervals of the estimate sufficiently precise to test for differences 

with the multivariable-adjusted estimate and detect a clinically meaningful difference? 

Clinical implications 

Do the results triangulate with other forms of evidence? 

If a randomised clinical trial is not feasible or unlikely to be conducted in the short term, and 

there is existing evidence from multiple instrumental variable studies, and other robust 

study designs converge on consistent results, this information may help guide patient care; 

for example, informing clinical guidelines or regulatory decisions.  
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Box 4: The fourth “point identifying assumption” 
assumption.  
The three core instrumental variable assumptions are only sufficient to estimate the 

“bounds” of a causal effect, which are the largest and smallest values consistent with the 

observed data. However, instrumental variable “bounds” are typically very wide, so most 

instrumental variable studies require a further fourth “point identifying” assumption. 

Options for the fourth assumption include the constant treatment effect [IV4h], no effect 

modification (IV4n), no simultaneous heterogeneity (NOSH) [IV4nosh], and monotonicity 

[IV4m] [40,62,63].  

 

1. The constant treatment effect assumption requires that the effect of the intervention 

on the outcome is the same for everyone. For example, suppose the intervention of 

interest was an anti-hypertensive medication such as ACE inhibitors. In that case, 

ACE inhibitors should give the same reduction in systolic blood pressure for 

everyone, regardless of any other characteristics.  

2. The no-effect modification assumption requires that the intervention has the same 

effect on the outcome irrespective of the instrument's value. For example, if the 

effects of ACE inhibitors are the same irrespective of physicians’ preference.  

3. The no simultaneous heterogeneity (NOSH) assumption requires that any 

heterogeneity in the effects of the instrument on the intervention is independent of 

heterogeneity in the effects of the intervention on the outcome. This assumption 

would hold if the variation in the effect of physician preferences on prescribing were 

not related to the treatment's expected efficacy- i.e., the instrument implicitly 

samples a representative sample of causal effects from the population.  

4. The monotonicity assumption requires that the effect of the instrument on the 

likelihood of receiving the intervention is always in the same direction, e.g. the 

instrument only increases or decreases the likelihood of receiving the intervention. 

For example, a patient who attends a physician who prefers ACE inhibitors to other 

anti-hypertensives will be more likely to receive an ACE inhibitor than a patient who 

attends a physician who prefers another anti-hypertensive.  
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Assessing the point-identifying assumptions 

 These point-identifying assumptions are untestable but falsifiable. The constant treatment 

effect assumption is falsifiable by checking for differences in instrument strength across 

covariates. For binary interventions with causal binary proposed instruments and binary 

outcomes, monotonicity inequalities can falsify the monotonicity assumption[64]. 

Cumulative distribution graphs for continuous interventions can assess this assumption[40]. 

If the proposed instrument is a preference, assessing the plausibility of the monotonicity 

assumption is possible by conducting a preference survey[34]. These surveys suggest that a 

strict definition of monotonicity is unlikely to be plausible, as there is substantial 

heterogeneity in clinical treatment decisions. However, Small and colleagues (2017) 

proposed more plausible assumption: stochastic monotonicity, which requires monotonicity 

to hold on average[65]. Finally, suppose the monotonicity assumption holds, and the 

instrument causally affects the interventions. In that case, the counterfactual values (the 

outcomes that the patients would have had, had they been allocated to intervention or 

control) among always-takers, compliers, and never-takers can falsify the constant 

treatment effect assumption. 

 

Interpreting instrumental variable estimates 

Instrumental variable estimates can be interpreted as the ATE under any of the constant 

treatment effects, the no-effect modification or the No Simultaneous Heterogeneity (NOSH) 

assumptions. The constant treatment effect assumption identifies the ATE by assuming the 

intervention has the same effect on everyone. This assumption is most commonly used to 

identify the effects on continuous outcomes. However, this assumption can be implausible. 

For example, an intervention could only have a constant effect on a binary outcome if it 

entirely determined the outcome or did not affect it. In the example of statin use, it is 

implausible to assume that statins have the same effect on every individual in the 

population. The no-effect modification assumption identifies the intervention's effect on 

those exposed by assuming that the effect of the intervention is independent of the 

instrument's value. For example, in a randomised controlled trial (RCT) with an 

encouragement design where the intervention is an encouragement to take a treatment, 

allocation to the intervention or control arm does not change the effect of the treatment. 



 

22 

This assumption can identify interventions’ effects on binary outcomes regarding causal risk 

and odds ratios. Finally, the NOSH assumption requires that heterogeneity in the effects of 

the instrument on the likelihood of receiving the intervention must be independent of 

heterogeneity in the effect of the intervention on the outcome to be interpreted as the 

ATE[63].  

 

Instrumental variable estimates can be interpreted as reflecting a LATE using the 

monotonicity assumption. The monotonicity assumption identifies the effects of the 

intervention on those whose intervention status was affected by the instrument. This 

assumption is typically, but not exclusively, applied to binary instruments and 

interventions[42]. Individuals who are always exposed (e.g. those with very strong 

indications) or who never receive the intervention (e.g. those with very strong 

contraindications) will not be affected by the instrument. There are two remaining groups of 

individuals: those for whom the instrument increases (or decreases) their likelihood of 

receiving the intervention, known as compliers, and those who do the opposite to their 

allocation, known as defiers. The monotonicity assumption assumes that there are no 

defiers in the sample. For example, physicians’ prescribing preferences could have a 

monotonic effect if patients prescribed nicotine replacement therapy who attended a 

physician who previously prescribed varenicline would also have been prescribed nicotine 

replacement therapy by a physician who previously prescribed nicotine replacement 

therapy (and vice versa). 
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Figure 1: Similarities and differences between 
instrumental variable analysis and randomized 
controlled trials. 
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Figure 2: Assumptions of multivariable-adjusted 
and instrumental variable studies 

 

Notes: Physicians' prescribing preferences are typically unmeasured; thus, typically, studies 

use prescriptions issued to the physicians’ previous patients to proxy for their preferences. 

Multivariable adjustment assumes that a sufficient set of confounders can be measured to 

control for all open paths between the intervention and the outcome. In contrast, 

instrumental variable analysis assumes that there is an instrument that associates with the 

intervention (relevance, IV1), has no uncontrolled common cause with the outcome 

(independence, IV2), and only affects the outcome via its association with the intervention 

(exclusion restriction, IV3). 
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Supplement  

 
Supplementary Box 1: A Brief History of Instrumental 
Variables 
 

Instrumental variable (IV) analysis has a rich history in econometrics and has expanded to 

various fields, including medicine and social sciences. This statistical technique emerged as a 

powerful tool for addressing endogeneity and establishing causal relationships. Sewall 

Wright and Philip Wright originally proposed instrumental variables in 1926[66]. Here are 

some key examples: 

 

Angrist and Krueger (1991): In their influential study, Angrist and Krueger used changes in 

compulsory schooling laws as an instrumental variable to estimate the causal effect of 

education on labour market outcomes, such as earnings[67]. This work demonstrated the 

power of instrumental variables in social sciences and economics. 

 

Newhouse and McClellan (1993): Newhouse and McClellan conducted a seminal study using 

geographic variation in healthcare spending as an instrumental variable to examine the 

causal impact of healthcare expenditures on patient outcomes[12]. This study shed light on 

the effectiveness and efficiency of healthcare spending, contributing to health policy 

discussions. 

 

Brookhart et al. (2006): A significant contribution to pharmacoepidemiology, Brookhart et 

al. used prescribing preferences of physicians as an instrumental variable to assess the 

causal effects of medications on patient outcomes[7]. This study highlighted the applicability 

of instrumental variable analysis in addressing confounding bias in observational studies. 

 

Hernán and Robins (2006): Hernán and Robins provided an exposition of the assumptions 

required for instrumental variable analysis[1]. They highlighted the approach's potential 

value in epidemiological and clinical research, particularly in the absence of randomised 

controlled trials. 
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Supplementary Box 2: Instrumental variable 
estimation  

 

The two most common instrumental variable estimators are the Wald estimator and the 

‘two-stage least squares’ (2SLS) estimator. The Wald estimator can only be used with a 

single instrument. In contrast, two-stage least squares can use multiple instruments.  

 

With a binary instrument (Z) and binary or continuous intervention (X) and outcome (Y) the 

Wald estimator is: 

 𝛽𝐼�̂�

=
𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0)

𝐸(𝑋|𝑍 = 1) − 𝐸(𝑋|𝑍 = 0)
 

(i) 

 

This is the difference between the outcome when the instrument takes the value 1 and 

when the instrument takes the value 0 divided by the difference in the intervention when 

the instrument takes the value 1 and the value 0.  

 

If the instrument is continuous, the Wald estimator is the ratio of the instrument-outcome 

(𝛽𝑍�̂�) and instrument-intervention (𝛽𝑍�̂�) associations estimated using linear regression. 

 

 
𝛽𝐼�̂� =

𝛽𝑍�̂�

𝛽𝑍�̂�

 
(ii) 

 

Where 𝛽𝑍𝑌  is obtained from the estimation of the regression: 

 

 𝑌 = 𝛼𝑌 + 𝛽𝑍𝑌𝑍 + 𝑢𝑌 (iii) 
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Where 𝑌 is a vector containing the outcome for each individual, 𝑍 is a vector containing the 

instrument for each individual and 𝑢𝑌 is a random error term. And 𝛽𝑍𝑋 is obtained from the 

estimation of the regression 

 

 𝑋 = 𝛼𝑋 + 𝛽𝑍𝑋𝑍 + 𝑢𝑋 (iv) 

Where 𝑋 is a vector containing the outcome for each individual, 𝑍 is a vector containing the 

instrument for each individual and 𝑢𝑋 is a random error term. The two-stage least squares 

estimator can be estimated by predicting the value of the intervention using the observed 

values of the instrument. This is obtained by estimating equation (iv) and predicting X, 

indicated X from the estimated values of �̂�𝑋and �̂�𝑍𝑋. 

  

 �̂� = �̂�𝑋 + �̂�𝑍𝑋 𝑍 (v) 

 

The instrumental variable estimate of the effect of receiving the intervention is then 

obtained by replacing the intervention with the predicted intervention status in the ‘second 

stage’ regression of the intervention on the outcome.  

 

 𝑌 = 𝛼𝑌𝑖𝑣
+ 𝛽𝐼𝑉�̂� + 𝑢𝑌𝑖𝑣

 (vi) 

 

This second stage regression can be estimated using linear regression for continuous 

outcomes or logistic regression for a binary outcome. In each case, the standard errors must 

account for the uncertainty in the prediction of intervention X in the second stage. This 

correction is done automatically in instrumental variable regression packages such as ivreg2 

in Stata or ivreg in the AER R package.  
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Supplementary Box 3: Instrumental variable analysis of COX-2s vs traditional NSAIDs 
using physicians' prescribing preferences 

 

This example uses a simulated random sample from the population. It simulates a study 

investigating the effects of two types of anti-inflammatory drugs, traditional NSAIDs (e.g. 

ibuprofen) vs. COX-2 selective inhibitors (COX-2s, e.g. celecoxib). The dataset contains data 

from 100,000 patients, and it is a patient-level file, i.e. each patient has a single row. In the 

dataset, the intervention is indicated by the variable ‘prescribed_cox_2’. It equals one if the 

patient had a COX-2 and zero if they had a traditional NSAID. The outcome of interest is 

whether the patient subsequently had a gastrointestinal complication (variable 

‘has_gi_event’) equal to one or did not have a complication when the outcome is equal to 

zero. The dataset is called iv_example.csv. There are 100,000 observations with variables on 

treatment, physician who prescribed the treatment, age, and sex. We will use the 

information on the physician who prescribed the treatment to create an instrument and 

estimate the effects of prescribing COX-2s versus traditional NSAIDs. 

 

1. Create the instrument: the physician’s previous prescription. The variable visit order 

indicates the order in which the patients visited their GP. Create a variable equal to 

one if the physician previously prescribed a COX-2 and equal to zero if they 

previously prescribed a traditional NSAID. 

2. Test the relevance assumption (IV1). Are the physicians’ previous prescriptions 

associated with their subsequent prescriptions? 

 

Supplementary Table 1: Association of instrument and likelihood of treatment 

  Confidence intervals   

 Risk 
difference per 

100 

Lower Upper R2 F-statistic 

Prior Rx 
Cox-2 

10.7 10.1 11.4 1.1% 1156 
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R2 is the proportion of variability explained in the outcome variable of a regression by the 

covariates. The R2 value for the prior prescription instrument is 1.1%. Since the R2 statistic is 

small, we know that the resulting IV estimates will be imprecise and have wide confidence 

intervals. 

  

The F statistics for the (first stage) regression of prescribed COX-2 on prior prescription is 

1156. Economists often refer to an instrument with a first-stage F statistic less than 10 as a 

“weak instrument”, i.e. an instrument which will give an IV estimate with a relatively large 

finite sample bias. However, it is essential not to just select instruments, or search through 

different definitions of the instrument with F statistics greater than 10 in the dataset under 

analysis as this can lead to bias via winner’s curse. 

 

The linear probability model estimates the association between the instrument and the 

likelihood of receiving the intervention on the absolute probability scale, i.e. risk 

differences. 

  

3. Evaluate the independence assumption: Investigate the plausibility of the third 

instrumental variable assumption, independence. Do the instruments associate with 

the measured confounders? 

  

Supplementary Table 2: Association of instrument, prior prescription and 

measured confounders 

Outcome:  Confidence intervals  

 Mean/Risk 
difference per 100 

Lower Upper p-value 

Age -6.1 -12.3 0.00 0.05 

Female -0.4 -1.0 0.2 0.22 
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There was little evidence of association between any of the instruments and age or sex. Of 

course, we cannot check for associations with unmeasured confounders. The simulated 

dataset includes unmeasured confounders. 

  

4.  Estimate multivariable-adjusted regression: Are prescriptions of COX-2s 

associated with a higher or lower risk of gastrointestinal events? What happens 

when you adjust for the observed covariates? 

 

Supplementary Table 3: Association of prescriptions of COX-2s and gastrointestinal 

complications, unadjusted and adjusted for age and sex 

Outcome:  Confidence intervals  

 Risk difference 
per 100 

Lower Upper p-value 

Unadjusted 5.1 4.9 5.4 <0.001 

Adjusted 0.2 0.0 0.5 0.14 

 

The unadjusted linear regression estimates show that patients prescribed COX-2s are 5.1 

(95% CI: 4.9, 5.4) percentage points more likely to have a gastrointestinal adverse event 

compared to those prescribed traditional NSAIDs. This observational estimate attenuates 

after adjustment for age and sex to 0.2 (95% CI: 0.0, 0.5). The true effect of COX-2s on the 

gastrointestinal events was simulated in this dataset as -8.3 per 100 patients treated (i.e. 

fewer events in those prescribed COX-2s), so we can see that this analysis is still biased by 

an unmeasured confounder. 

 

4. Estimate the Wald estimator: The instrumental variable ratio estimator (Wald type) 

is the instrument outcome association divided by the instrument-intervention 

association.  

 

The instrument-outcome association is -0.006. The instrument-exposure association is 0.11. 

Putting these values into the Wald estimator results in the following estimate = -

0.006/0.11=-0.06, or 6.0 fewer events per 100 patients treated. Since this dataset was 
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simulated under the instrumental variable assumptions, this IV estimate is close to the true 

effect of -8. Of course, it is not possible to know the “true” effect in real datasets. 

6. Estimate two-stage least squares estimator: again using the prior prescription as 

the instrumental variable. Compare this with the ratio estimate above. 

  

Supplementary Table 4: Two-stage least squares estimates of the effect of COX-2s 

on gastrointestinal complications, unadjusted and adjusted for age and sex 

Outcome:  Confidence intervals  

 Risk difference 
per 100 

Lower Upper p-value 

2SLS -6.0 -8.7 -3.3 <0.001 

2SLS 3 prior Rx -6.6 -8.3 -4.9 <0.001 

 

We can see that with a single instrument, two-stage least squares gives the same estimate 

as the ratio estimator. We can increase the precision of the instrumental variable estimator 

by including multiple instruments, in this case, prior prescriptions.  

 

7. Specification tests. Investigate the endogeneity test and overidentification test 

using -ivregress- postestimation commands. 

 

We can test whether there is any evidence of differences between the multivariable-

adjusted and instrumental variable results using an endogeneity test, which gives a 

chi2(1)=198, p-value<0.001. This test rejects the null hypothesis that there are no 

differences between the two estimates. One explanation is if the multivariable-adjusted 

regression suffers from residual confounding. 

 

Because we have multiple instruments, we can use the over-identification tests to 

investigate if there is any heterogeneity in the effects implied by each instrument. Here, we 

have three instruments, and the test gives chi2(2)=2.2, p-value=0.34. This test means we 

cannot reject the null hypothesis that the effects of COX-2s on gastrointestinal 

complications implied by each of the three instruments are the same. 


