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Abstract

Targeted maximum likelihood estimation (TMLE) is increasingly used for doubly robust causal inference, but how missing data should
be handled when using TMLE with data-adaptive approaches is unclear. Based on data (1992-1998) from the Victorian Adolescent Health
Cohort Study, we conducted a simulation study to evaluate 8 missing-data methods in this context: complete-case analysis, extended
TMLE incorporating an outcome-missingness model, the missing covariate missing indicator method, and 5 multiple imputation (MI)
approaches using parametric or machine-learning models. We considered 6 scenarios that varied in terms of exposure/outcome
generation models (presence of confounder-confounder interactions) and missingness mechanisms (whether outcome influenced
missingness in other variables and presence of interaction/nonlinear terms in missingness models). Complete-case analysis and
extended TMLE had small biases when outcome did not influence missingness in other variables. Parametric MI without interactions
had large bias when exposure/outcome generation models included interactions. Parametric MI including interactions performed best
in bias and variance reduction across all settings, except when missingness models included a nonlinear term. When choosing a method
for handling missing data in the context of TMLE, researchers must consider the missingness mechanism and, for MI, compatibility
with the analysis method. In many settings, a parametric MI approach that incorporates interactions and nonlinearities is expected to
perform well.
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Introduction
A key component of epidemiologic research is causal inference
from longitudinal studies, where the objective is often to estimate
the average causal effect (ACE) of an exposure on an outcome.1-5

For a binary exposure (X=1 exposed; X=0 unexposed), the ACE can
be defined as the difference in the average potential outcome if all
participants were exposed versus unexposed.1-5 In the absence of
missing data, under the assumptions of conditional exchangeabil-
ity given a vector of measured confounders Z, consistency, and
positivity, the ACE is identifiable from observable data by the g-
formula E [E (Y|X = 1, Z) − E (Y|X = 0, Z)], where Y is the outcome.6

Several singly robust approaches, including g-computation and
propensity score methods, and doubly robust estimators, includ-
ing targeted maximum likelihood estimation (TMLE), are available
for ACE estimation in the absence of missing data. Here, we focus
on TMLE, which combines models for the outcome and propensity
score.7-9 A detailed description of TMLE is available elsewhere.7-9

Briefly, the first step is the same as in g-computation, where a
model for the expected outcome conditional on exposure and
confounders (Ê [Y|X, Z]) is fitted and used to predict outcomes for
all records under exposure and no exposure. In g-computation

these predictions are directly plugged into the g-formula to esti-
mate the ACE. In TMLE, they are updated using information from
the propensity score (P̂ [X = 1|Z]) (the targeting step) before being
plugged into the g-formula.7 The targeting step in TMLE ensures
that the estimator is doubly robust, where only 1 of the 2 models
(outcome or propensity model) needs to be consistently estimated
to ensure consistent estimation of the ACE. Unlike with singly
robust methods, data-adaptive approaches (eg, machine learning
methods) can be used for the exposure and outcome models
in TMLE as long as the Donsker class condition (requiring that
outcome and propensity score estimators do not heavily overfit
the data) holds.8-10 Given these desirable properties, interest in
the application of TMLE for ACE estimation is growing.

Missing data are ubiquitous in epidemiologic studies and can
lead to biased estimates and loss of precision if handled inappro-
priately.11 Commonly used approaches for handling missing data
in studies using TMLE for ACE estimation include multiple impu-
tation (MI; eg, see Yu et al12), complete-case analysis (CCA; eg, see
Bell-Gorrod et al13), extension of TMLE to handle missing outcome
data (eg, see Rossides et al14), and the missing covariate missing
indicator (MCMI) approach for handling missing confounder data
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(eg, see Ehrlich et al15). To the best of our knowledge, no study has
compared these methods in terms of bias and precision. In addi-
tion, while a requirement for valid inference with MI is that the
imputation model should incorporate all relationships assumed
to hold in the analysis method,11 the optimal implementation
of MI when using TMLE with data-adaptive methods for ACE
estimation is unknown. Answers to these questions are key to
developing guidance for appropriate handling of missing data in
the context of the growing use of TMLE in applied epidemiologic
research.

In the current paper, we seek to address this knowledge
gap using a simulation study based on an illustrative example
from the Victorian Adolescent Health Cohort Study (VAHCS).
Our interest is to compare the performance of readily available
missing-data methods to inform current practice. We begin by
introducing the VAHCS example and then describe methods
for handling missing data with TMLE, present results from the
simulation study we conducted to evaluate and compare the
performance of these approaches, and illustrate the assessed
approaches in the VAHCS example. We conclude with a general
discussion.

Methods
Illustrative example
Our example was based on a previous investigation using data
from VAHCS, a longitudinal cohort study of 1943 participants
(1000 females) recruited in 1992-1993 at ages 14-15 years.16

Data were collected during participants’ adolescence (waves 1-
6) and in young adulthood (1998, wave 7). Investigators aimed to
estimate the ACE of frequent cannabis use in adolescent females
on mental health in young adulthood, measured using the
Clinical Interview Schedule–Revised.17 We revisited this analysis
using TMLE with data-adaptive approaches, using the same
confounders as those considered in the original investigation:
parental divorce, antisocial behavior, depression and anxiety,
alcohol use, and parental education, all measured across waves
2-6.18 Table 1 shows descriptive statistics for analysis variables,
as well as age at wave 2, which is useful as an auxiliary variable in
MI (a predictor of missing values but not included in the analysis
method11). All variables had some degree of missingness, ranging
from 0.1% to 30.8%.

Methods for handling missing data in TMLE
Approaches proposed for handling missing data when estimating
the ACE using TMLE in studies like our example are described
below.

Non-MI approaches
Complete-case analysis. In CCA, only records with complete

data for target analysis variables are used.19 This approach gener-
ally leads to loss of precision20 and, depending on the missingness
mechanism, may inflict bias.19

Extended TMLE in a sample with complete exposure
and confounders. In extended TMLE in a sample with complete
exposure and confounders (Ext-TMLE+CEC), records with missing
data for Z and X are deleted. From records with complete data
on Y, E [Y|X, Z] is estimated. In the targeting step, the predictions
of the outcome are updated using information from models for
P[X = 1|Z] and P[MY=0|X, Z], where MY is the missingness indicator
for the outcome.21 Updated predictions for the outcome under
exposure and no exposure are obtained for all records, regardless

of whether they have missing outcome.21 The model for MY can
also be fitted using data-adaptive approaches. With missingness
only in the outcome, the extended TMLE method is unbiased
under an extended exchangeability assumption (Yx ∐

MY | X, Z
and Yx ∐

X | Z for x = 0, 1, where Yx is the potential outcome
when X = x, and

∐
denotes independence).22

Extended TMLE plus MCMI. In the extended TMLE plus
MCMI (Ext-TMLE+MCMI) approach, missing outcome data are
handled using the extended TMLE approach, and missing con-
founder data by including missingness indicators for the incom-
plete confounders in the confounding adjustment set. Records
with missing exposure data are excluded. In settings with com-
plete exposure and outcome data, the MCMI approach can be
expected to yield an unbiased ACE estimate under an extended
exchangeability assumption (Yx ∐

X | Z, MZ for x = 0, 1, where
MZ is the vector of missingness indicators for the incomplete
confounders), and the assumption that the exposure or out-
come depends on the confounder only when the confounder is
observed.23,24 This assumption is plausible in some settings, such
as when using electronic health record data, where the decision
to prescribe a medication might be influenced by family history
of disease only when the clinician has the relevant informa-
tion.

MI approaches
The MI fully conditional specification (FCS) framework25 enables
simultaneous handling of missing exposure, confounder, and out-
come data. Under this approach, univariate imputation models
are specified for each incomplete variable conditional on other
variables, and imputations are drawn sequentially until con-
vergence.25 The process is repeated multiple times to generate
multiple completed data sets. Analysis is performed within each
completed data set, and the results are pooled using Rubin’s rules
to obtain the final estimate and its SE.25 For valid inference with
MI, each univariate imputation model should be tailored to be
compatible with the analysis method. To achieve this, all analysis
variables and complexities such as interaction terms in the tar-
get analysis should be included as predictors in each univariate
imputation model.25 There are various possible implementations
of MI within the FCS framework.

Parametric MI with no interaction. In parametric MI with
no interaction (MI-no int), each univariate imputation model is
based on a regression model with main-effects terms only—the
default model in most MI software. In the example and sim-
ulations, we considered main-effects logistic regression for the
binary variables and predictive mean matching (PMM) for the
continuous outcome based on a main-effects linear regression.
In PMM, imputed values are drawn using the nearest observed
value after fitting the regression,25 which makes it robust to
misspecification of the latter—for example, in the presence of
nonlinear associations.26

Parametric MI with 2-way interactions. In parametric
MI with 2-way interactions (MI-2-way int), each univariate
imputation model is based on a regression model as above,
but 2-way exposure-outcome, exposure-confounder, confounder-
outcome, and confounder-confounder interactions are included.
Interaction terms are generated within each cycle of the MI
algorithm from current values of relevant variables involved in
the interaction term (the so-called “passive” approach in mice
in R).27
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Table 1. Variables used in the case study, their distributions, and proportions with missing data among female participants (n = 1000),
Victorian Adolescent Health Cohort Study, 1992-1998.

Component Variable Variable type Grouping/unit Notation
No. (%a) coded
1 or
mean (SD)

% with
missing data

Confounder Parental divorce Binary 0 = Not divorced/separated by
wave 6

1 = Divorced/separated by
wave 6

Z1 221 (22.1) 0.1

Antisocial
behavior

Binary 0 = No across all waves 2-6
1 = Yes at any wave 2-6

Z2 106 (14.6) 27.4

Depression and
anxiety

Binary 0 = CIS-R score <12 across all
waves 2-6

1 = CIS-R score ≥12 at any
wave 2-6

Z3 516 (59.9) 13.8

Alcohol use Binary 0 = No across all waves 2-6
1 = Yes at any wave 2-6

Z4 294 (37.2) 21.0

Parental
education

Binary 0 = Did not complete high
school by wave 6

1 = Completed high school by
wave 6

Z5 364 (37.7) 3.4

Exposure Frequent
cannabis use

Binary 0 = Less than weekly use
across all waves 2-6

1 = At least weekly use at any
wave 2-6

X 86 (12.4) 30.8

Outcome CIS-R total score Continuous z score, measured at wave 7 Y 0 (1) 13.4
Auxiliary variable Age Continuous Years, measured at wave 2 A 15.4 (0.4) 9.3
With any missing

data
40.3

Abbreviation: CIS-R, Clinical Interview Schedule–Revised.
aProportions are reported among persons with observed data for the variable.

Parametric MI with 2-, 3-, and 4-way interactions. Para-
metric MI with 2-, 3-, and 4-way interactions (MI-higher int) is
conducted as above, but all univariate imputation models addi-
tionally include 3- and 4-way confounder-confounder interactions
as predictors.

MI using classification and regression trees. In MI using
classification and regression trees (MI-CART), instead of regres-
sion, for each variable with missing data a tree is fitted using
a recursive partitioning technique, with all other variables as
predictors. Each record belongs to a donor leaf, from which a
randomly selected value for the variable is taken as the imputed
value.28 MI-CART (and MI using random forest; see below) have
been proposed to enable imputation that can more flexibly allow
for interactions and nonlinearities.28

MI using random forest. In MI using random forest (MI-
RF), for each variable with missing data, multiple bootstrap sam-
ples are drawn, and for each a separate tree is fitted. Each tree
contributes a donor leaf, and a randomly selected value for the
variable from all of these donors is taken as the imputed value.28

All MI approaches can be implemented with the mice package
in R.27

Simulation study
To compare the performance of the described methods for han-
dling missing data, we conducted a simulation study based on the
VAHCS example (Figure 1). We considered 6 scenarios. For each
scenario, we generated 2000 data sets of 2000 records.

Generating the complete data
We used parametric regression models to generate the variables.
The values of parameters in the models were determined by
fitting similar models to the available data in VAHCS (unless
stated otherwise). We considered 2 data-generating scenarios—
simple and complex—differing in the confounder-confounder
interaction terms used in the data-generation models. No
exposure-confounder interaction terms were included (no effect
modification). Table S1 provides the parameter values used for
simulating the data, and Table S2 gives descriptive statistics for
the variables in the simulated data.

For both scenarios, we generated a continuous auxiliary vari-
able A (age at wave 2) and a set of confounders Z = (Z1 (parental
divorce), Z2 (antisocial behavior), Z3 (depression and anxiety), Z4

(alcohol use), Z5 (parental education)). The models for generating
these variables (all binary variables coded 0/1 and logit−1

(·) =
exp (·) / [1 + exp (·)]) were:

A ∼ N (0, 1)

Z1 ∼ Binomial
(
1, logit−1

(α0)
)

Z2 ∼ Binomial
(
1, logit−1

(β0 + β1A)
)

Z3 ∼ Binomial
(
1, logit−1

(γ0 + γ1A)
)

Z4 ∼ Binomial
(
1, logit−1

(δ0 + δ1A)
)

Z5 ∼ Binomial
(
1, logit−1

(ζ0)
)

The scenarios differed in the exposure and outcome generation
models.
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Frequent  
Cannabis Use 

(X)

Age (A) 

Parental Divorce (Z1)

Antisocial Behavior (Z2)
Depression and Anxiety (Z3)

Alcohol Use (Z4)

Parental Education (Z5) 

CIS-R Total 
Score (Y)

Wave 2 Waves 2-6 Wave 7

Auxiliary Variable 
(Continuous) Confounders (Binary) Exposure (Binary) Outcome (Continuous) 

Figure 1. Directed acyclic graph used in data generation for the simulation study, Victorian Adolescent Health Cohort Study, 1992-1998. CIS-R, Clinical
Interview Schedule–Revised.

Simple scenario. In the simple scenario, we used main-
effects regression models to generate a binary exposure X
(frequent cannabis use) and a continuous outcome Y (log-
transformed, standardized Clinical Interview Schedule–Revised
total score):

Xsimple ∼ Binomial
(
1, logit−1(

η0 + η1Z1 + η2Z2 + η3Z3 + η4Z4

+ η5Z5 + η6A
))

Ysimple ∼ N (θ0 + θ1X + θ2Z1 + θ3Z2 + θ4Z3 + θ5Z4 + θ6Z5, SD = 1)

Complex scenario. In the complex scenario, we used regres-
sion models that included confounder-confounder interactions
(excluding interactions with Z2 because of the low prevalence
(15%)) to generate the exposure and outcome:

Xcomplex ∼ Binomial
(
1, logit−1(

η∗
0 + η1Z1 + η2Z2 + η3Z3 + η4Z4

+ η5Z5 + η6A + η7Z1Z3 + η8Z1Z4 + η9Z1Z5 + η10Z3Z4

+ η11Z3Z5 + η12Z4Z5
))

Ycomplex ∼ N
(
θ∗

0 + θ1X + θ2Z1 + θ3Z2 + θ4Z3 + θ5Z4 + θ6Z5 + θ7Z1Z3

+ θ8Z1Z4 + θ9Z1Z5 + θ10Z3Z4 + θ11Z3Z5 + θ12Z4Z5

+ θ13Z1Z3Z4 + θ14Z1Z3Z5 + θ15Z1Z4Z5 + θ16Z3Z4Z5

+ θ17Z1Z3Z4Z5, SD = 1
)

We inflated the coefficients for the interaction terms, approxi-
mately 4 times larger than values estimated in the VAHCS data.
Under both outcome generation models, we set the coefficients
for X (θ1)—that is, the true value of the ACE—to 0.2. For this
effect and 2000 records, the null hypothesis of no causal effect is
formally rejected (P <.05) in approximately 80% of the simulated
data sets.

Imposing missing data
We considered missingness scenarios depicted by missingness
directed acyclic graphs (m-DAGs) A and B (Figure 2).20,29 These
were selected because they represent scenarios under which our

expectations of the performance of methods were quite distinct
(see Discussion section).

We imposed missingness on Z2, Z3, Z4, X, Y through generation
of missingness indicators, MZ2 , MZ3 , MZ4 , MX, MY, coded 0 if the
variable was observed and 1 if it was missing. We considered vari-
ables A, Z1, Z5, which had fewer than 10% missing within VAHCS
(Table 1), as fully observed in the simulation study.

For the simple scenario, the models used for generating the
missingness indicators according to each m-DAG were:

MZ2 ∼ Binomial
(
1, logit−1

(ι0 + ι1Z1 + ι2Z5 + ι3Z2 + ι4X + ι5Y)
)

MZ3 ∼ Binomial
(
1, logit−1(

κ0 + κ1Z1 + κ2Z5 + κ3Z3 + κ4X

+ κ5Y + κ6MZ2

))

MZ4 ∼ Binomial
(
1, logit−1(

λ0 + λ1Z1 + λ2Z5 + λ3Z4 + λ4X + λ5Y

+ λ6MZ2 + λ7MZ3

))

MX ∼ Binomial
(
1, logit−1(

ν0 + ν1Z1 + ν2Z5 + ν3Z2 + ν4Z3 + ν5Z4

+ ν6X + ν7Y + ν8MZ2 + ν9MZ3 + ν10MZ4

))

MY ∼ Binomial
(
1, logit−1(

ξ0 + ξ1Z1 + ξ2Z5 + ξ3Z2 + ξ4Z3 + ξ5Z4

+ ξ6X + ξ7Y + ξ8MZ2 + ξ9MZ3 + ξ10MZ4 + ξ11MX
))

For each missingness indicator, we set the coefficients for all
confounders and the exposure to 0.9. We set the coefficient for
the outcome to 0 for m-DAG A and to 0.1 for m-DAG B.

For the complex scenario, we considered 2 sets of models for
generating missingness according to each m-DAG. The first set,
hereafter called complex scenario 1, used the same models as
for the simple scenario, detailed above. The second set, hereafter
called complex scenario 2, used the following models:

MZ2 ∼ Binomial
(
1, logit−1(

ι0 + ι1Z1 + ι2Z5 + ι3Z2 + ι4X + ι5Y

+ ι6XZ2 + ι7Y2))

MZ3 ∼ Binomial
(
1, logit−1(

κ0 + κ1Z1 + κ2Z5 + κ3Z3 + κ4X + κ5Y

+ κ6MZ2 + κ7XZ3 + κ8Y2))
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B)

X YA

Z1,Z5

Z2,Z3,Z4

MYMX
MZA)

X YA

Z1,Z5

Z2,Z3,Z4

MYMX
MZ

Figure 2. Missingness directed acyclic graphs illustrating the missingness scenarios considered in the simulation study, Victorian Adolescent Health
Cohort Study, 1992-1998. The figure was adapted from Moreno-Betancur et al.20 For simplicity of exposition, confounders without missing data (Z1 and
Z5) are presented on a single node and confounders with missing data (Z2, Z3, Z4) on another single node. In addition, only 1 missingness indicator has
been included for confounders with missing data (MZ), coded as 1 when any of the variables Z2, Z3, Z4 have missing data and as 0 when none have
missing data.

MZ4 ∼ Binomial
(
1, logit−1(

λ0 + λ1Z1 + λ2Z5 + λ3Z4 + λ4X + λ5Y

+ λ6MZ2 + λ7MZ3 + λ8XZ4 + λ9Y2))

MX ∼ Binomial
(
1, logit−1(

ν0 + ν1Z1 + ν2Z5 + ν3Z2 + ν4Z3 + ν5Z4

+ ν6X + ν7Y + ν8MZ2 + ν9MZ3 + ν10MZ4 + ν11XZ2 + ν12XZ3

+ ν13XZ4 + ν14Y2))

MY ∼ Binomial
(
1, logit−1(

ξ0 + ξ1Z1 + ξ2Z5 + ξ3Z2 + ξ4Z3 + ξ5Z4

+ ξ6X + ξ7Y + ξ8MZ2 + ξ9MZ3 + ξ10MZ4 + ξ11MX + ξ12XZ2

+ ξ13XZ3 + ξ14XZ4
))

For complex scenario 2, we set the coefficients for all confounders,
the exposure, and the outcome at the same values as those used
for the simple scenario, detailed above. We set the coefficients for
exposure-confounder interactions (XZ2, XZ3, XZ4) to 0.9, and for Y2

to 0 for m-DAG A and 0.08 for m-DAG B.
This led to 6 scenarios overall (2 m-DAGs × 3 data-generating

scenarios). The missingness proportions were the same in all
missingness scenarios and approximately the same as in the real

VAHCS data set, except for the outcome, which was increased to
20% (13% in VAHCS).

The overlaps between missingness proportions were adjusted
so that the proportions of records excluded were 50% for CCA, 40%
for Ext-TMLE+CEC, and 30% for Ext-TMLE+MCMI (Table S2).

Analysis of the simulated data
The target analysis aimed to estimate the ACE of X on Y using
TMLE with data-adaptive methods adjusting for Z1, Z2, Z3, Z4, Z5

as confounders. We used the TMLE package in R.21 We fitted the
exposure and outcome models using a SuperLearner library that
included a range of parametric, semiparametric, and nonpara-
metric methods.30,31 The SE for TMLE was obtained using the
variance of the influence function.9 The analysis was applied
to each simulated incomplete data set alongside each of the
previously described missing-data methods. For Ext-TMLE+CEC
and Ext-TMLE+MCMI, we used the same SuperLearner library
for the outcome missingness model. We used the mice package
in R to implement MI.27 Due to computational constraints, for
each MI approach, we generated 5 imputed data sets (see Dis-
cussion).25 Tables S3 and S4 show the variables and interaction
terms included in each imputation model for MI-2-way int and
MI-higher int. We used the default settings of the mice package for

Table 2. Estimated average causal effect of frequent cannabis use during adolescence on CIS-R
score (standardized z score), derived using a TMLE approach under different missing-data
methods, Victorian Adolescent Health Cohort Study, 1992-1998.

Missing-data methoda ACE (difference in
mean values)b

SE 95% CI
Time needed
to run

Complete-case 0.09 0.12 −0.14 to 0.32 16.4 s
Ext-TMLE 0.12 0.11 −0.09 to 0.33 11.2 s
Ext-TMLE+MCMI 0.13 0.13 −0.13 to 0.39 21.7 s
MI-no int 0.20 0.16 −0.11 to 0.50 4.6 min
MI-2-way int 0.16 0.17 −0.17 to 0.49 5.8 min
MI-higher int 0.18 0.16 −0.13 to 0.49 5.8 min
MI-CART 0.15 0.16 −0.16 to 0.45 11.8 min
MI-RF 0.13 0.18 −0.21 to 0.48 14.1 min

Abbreviations: ACE, average causal effect; CART, classification and regression trees; CIS-R, Clinical Interview
Schedule–Revised; MCMI, missing covariate missing indicator; MI, multiple imputation; RF, random forest; TMLE,
targeted maximum likelihood estimation.
aExt-TMLE, extended TMLE; Ext-TMLE+MCMI, extended TMLE plus the MCMI approach; MI no int, parametric MI

with no interaction (predictive mean matching used to impute missing outcome); MI-2-way int, parametric MI
with 2-way interactions; MI-higher int, parametric MI with 2-, 3-, and 4-way interactions; MI-CART, MI using CART;
MI-RF, MI using RF.
bThe ACE was estimated as the difference in the mean potential outcome under exposure and under no exposure.
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the donor pool for PMM in parametric MI approaches and for the
hyperparameters for MI-CART and MI-RF.27

Evaluation criteria
We compared the performance of the approaches for handling
missing data by calculating the percent relative bias, the empirical
SEs, and the percent error in average model-based SE relative
to the empirical SE. For all, Monte-Carlo SEs (MC-SEs) were
obtained.32

Analyses were performed in R, version 3.6.1.33

Results
Simulation study results
Relative bias
In the simple scenario, under m-DAG A, CCA and Ext-TMLE+CEC
yielded small biases (≤3%). Ext-TMLE+MCMI was more biased
(10%) (Figure 3). These 3 approaches led to larger biases under
m-DAG B (−13% to −16%). The 3 parametric MI approaches per-
formed similarly to each other under both m-DAGs, yielding small
biases (<7%). MI-CART performed similarly to the parametric MI
approaches under m-DAG A (relative bias −8%), but it had larger
bias under m-DAG B (−20%). Of all the approaches, MI-RF had
the larger bias under both m-DAGs (−32% under m-DAG A; −42%
under m-DAG B).

Biases in complex scenario 1, for both m-DAGs, were similar
to those in the simple scenario, except that MI-no int had larger
bias than in the simple scenario (33% under m-DAG A; 23% under
m-DAG B).

In complex scenario 2, for m-DAG A, biases for non-MI methods
(<|15%|), MI-CART (−24%), and MI-RF (−58%) were larger than in
prior scenarios, while the 3 parametric MI approaches performed
similarly to complex scenario 1. For m-DAG B, all of the non-MI
and parametric MI approaches and MI-RF had larger bias than in
prior scenarios (−42% to −43% for non-MI approaches, 35%-43%
for parametric MI approaches, and −64% for MI-RF), while MI-
CART had bias similar to that in the simple scenario and complex
scenario 1.

The MC-SE for relative bias ranged from 0.81% to 1.98% across
scenarios and m-DAGs.

Empirical SE and relative error in model-based SE
Across scenarios and m-DAGs, the empirical SEs using CCA and
Ext-TMLE+CEC were similar (0.13-0.16) and larger than those for
Ext-TMLE+MCMI (0.12-0.14) (Figure 4). The SEs obtained from the
parametric MI approaches were similar to each other (0.10-0.14),
to Ext-TMLE+MCMI, and MI-CART, except for complex scenario 2
under m-DAG B, where the parametric MI approaches exhibited
larger SEs (0.16-0.18). The empirical SEs were similar across sce-
narios and m-DAGs for MI-CART (0.10-0.13) and MI-RF (0.07-0.09).
MI-RF had the lowest empirical SE in all scenarios and m-DAGs
(0.7-0.8). The MC-SE for empirical SEs ranged from 0.001 to 0.003.

The model SEs were underestimated using non-MI methods
and overestimated using MI methods across all scenarios and m-
DAGs (Figure 5). The errors were smallest under the simple sce-
nario and largest under complex scenario 2. Within each scenario,
the performance among non-MI approaches was similar. The per-
formance of the MI approaches was similar within each scenario,
except MI-RF, which produced model SEs with considerably larger
error. The MC-SE for relative percent error in model-based SEs
ranged from 1.15% to 3.02%.

Illustrative example results
We analyzed the VAHCS example using the tmle package in R21

and applied the 8 missing-data methods described. Unlike in
the simulations, a small proportion of participants had missing
data for parental divorce and parental education (Table 1), which
were handled in the same way as missing data for the other
confounders. Additionally, the auxiliary variable age had 9.3%
missing data, which was multiply imputed in the MI approaches.
For the MI approaches, 100 imputations were performed.

The obtained effect sizes were small, with MI-no int yielding
a somewhat larger effect size and non-MI methods and MI-RF
yielding smaller effect sizes (Table 2). The SEs for MI approaches
were larger than those for the non-MI methods, which could be
explained by the downward and upward biases in model SEs for
non-MI and MI approaches, respectively, observed in our simula-
tion study (Figure 5). For example, using the relative percent error
in model SEs averaged over the 6 scenarios in the simulations, the
corrected SEs in the case study would be 0.13 for CCA, 0.13 for
MI-no int, and 0.11 for MI-RF.

In the VAHCS example, the outcome (mental health in young
adulthood) might well have influenced its own missingness, in
which case neither of the considered m-DAGs in the simulation
study are plausible for our example and we would expect all of
the considered missing-data methods to be biased.20

Discussion
We compared methods for handling missing data when esti-
mating the ACE using TMLE with data-adaptive approaches. We
considered 6 scenarios with different exposure and outcome
generation models (presence/absence of confounder-confounder
interaction terms) and missingness mechanisms (whether
the outcome influenced missingness in other variables and
presence/absence of interaction/nonlinear terms in missingness
models). CCA and Ext-TMLE+CEC had small bias under m-DAG
A (where the outcome did not influence missingness in other
variables), and large bias otherwise. MI-no int—the default model
in most MI software—had large bias in complex scenarios 1 and 2
(when the exposure/outcome generation models included inter-
actions) and small bias otherwise (regardless of m-DAG). MI-2-way
int and MI-higher int performed best in terms of bias and variance
across all settings, except for m-DAG B in complex scenario 2
(where a nonlinear outcome term influenced missingness in
other variables). MI-RF had consistently large bias across the 6
scenarios. MI-CART had small bias under m-DAG A in the simple
scenario and complex scenario 1, and large bias otherwise.

Based on previous investigations in a setting without effect
modification, we determined that for m-DAG A, where the out-
come did not influence missingness in any variable, the ACE was
identifiable (or “recoverable”).20 Further, because auxiliary vari-
ables did not influence missingness in any variable, we expected
both CCA and an appropriate implementation of MI to yield low
bias.34 Indeed, CCA (and Ext-TMLE+CEC) produced estimates with
small bias for m-DAG A across all data-generation scenarios. In
addition, implementations of parametric MI that were approxi-
mately compatible with the analysis method (ie, all parametric MI
procedures in the simple scenario, and MI including interaction
terms in complex scenarios) returned estimates with little bias,
while an inappropriate MI method (eg, MI-no int in our complex
scenarios) was considerably more biased.

Contrary to CCA and Ext-TMLE+CEC, the Ext-TMLE+MCMI
approach had higher bias under m-DAG A. A key assumption
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under which the MCMI approach has been shown to be unbiased
is when the exposure or outcome only depends on the confounder
when the confounder is observed.23,24 We did not consider miss-
ingness scenarios where this held, because this assumption is
implausible in a prospective cohort study, like VAHCS, where the
data are not used for medical decision-making.

For m-DAG B, the ACE was determined to be nonrecoverable,
but since the outcome did not influence its own missingness,
based on a previous simulation study,20 we speculated that an
implementation of MI that was tailored to the analysis method
may offer some bias reduction in comparison with CCA. We
observed that parametric MI approaches including interactions
performed better than all other approaches in terms of bias for
the simple scenario and complex scenario 1. For complex scenario
2, where the missingness models included exposure-confounder
interactions and a quadratic term for the outcome, all parametric
MI approaches were highly biased. MI-CART outperformed para-
metric MI approaches in this scenario, but it was still moderately
biased.

Within the FCS framework, recursive partitioning techniques,
such as CART and RF, have been suggested as alternative
approaches that could automatically incorporate interactions and
nonlinearities in the imputation process.28 Previous simulation
studies have shown that MI using CART performs better than
parametric MI without interaction terms.28,35 However, in these
studies, the target analysis was a correctly specified outcome
regression model with interactions, and biases in estimates of
the main effects were not that different following MI using
CART or parametric MI without interaction. These studies
imposed missingness in the outcome only28 or outcome and
covariates.35 In both, missingness depended on fully observed
variables. In the present study, the only setting where MI-CART
outperformed parametric MI approaches was for m-DAG B in
complex scenario 2. In all scenarios, bias in the ACE estimates
following MI-RF was larger than MI-CART, consistent with Doove
et al’s results.28 We speculate that this might have been because
in the implementation of MI-RF, we used a small number of
randomly preselected predictor variables to split the sample
at each node, which might have negatively affected prediction
accuracy.36 Specifically, the ranger package used within R’s mice
package for implementing RF uses, as the default number of
preselected variables to split at each node, the square root of the
total number of variables in the imputation model, which was 2
in our simulation.28 CART, on the other hand, does not involve
variable preselection.36

In this study, non-MI approaches underestimated the model
SE, which was not surprising. If both the exposure and outcome
models are correctly specified and the Donsker class condition
is satisfied, TMLE is an asymptotically linear estimator and
its variance can be obtained based on the variance of the
influence curve.9,10 It is unclear, however, whether the Donsker
class condition is met when data-adaptive approaches are used
for the exposure and outcome models.37 This leads to bias in
variance estimation, as has been observed here and in other
simulation studies.31,37,38 It is an ongoing area of research
to develop approaches to tackle it, such as cross-validated
TMLE, which allows asymptotic linearity to be established
without the Donsker class condition.10 Additionally, Rubin’s MI
variance estimator is expected to perform poorly in the presence
of incompatibility,39 which might explain the overestimation
of model SEs for the MI approaches. Incompatibility is the
key challenge for using MI with TMLE with data-adaptive
approaches, in terms of bias of point estimates as discussed

previously, but even more so for bias in variance estimates. A
promising alternative approach for obtaining SEs for MI in the
presence of incompatibility was recently proposed using the
bootstrap,39 but we did not explore this because of computational
constraints. Incompatibility between the models used in MI and
TMLE may also compromise the double-robustness property
of TMLE.40 Other approaches, such as the Ext-TMLE approach
considered in this paper to handle missing outcome data, and
an alternative likelihood parameterization to construct doubly
robust estimators in adjusting for confounding and missing data
in the presence of missing confounder data,40 guarantee double
robustness under extended assumptions.

Our simulation study was broadly based on VAHCS. We eval-
uated the performance of missing-data methods under various
missingness mechanisms. To describe what variables influenced
missingness, we used m-DAGs because the standard classifica-
tion of data being missing completely at random, missing at
random (MAR), or missing not at random is difficult to com-
prehend and substantively assess when there is missingness in
multiple variables. In addition, although it is possible to estimate
key parameters unbiasedly if the MAR assumption holds, MAR
is not necessary for unbiased estimation.20,34 We did not con-
sider missingness mechanisms where the outcome influenced its
own missingness, under which none of the approaches could be
expected to perform well. For each MI approach, due to compu-
tational constraints we generated 5 completed data sets in the
simulation study, which is fewer than we would do in practice.25

We do not expect this to have affected the comparison between
MI approaches, but it could have affected comparison of non-MI
methods with MI methods. Our simulated data had a relatively
simple structure across the assessed scenarios. Extensions of our
study could investigate the performance of these missing-data
methods for data sets with high-dimensional confounders, binary
outcomes, and more complex m-DAGs including longitudinal aux-
iliary variables.

Conclusion
We evaluated the performance of 8 available approaches to
handling missing data when estimating the ACE using TMLE
with data-adaptive approaches under various data-generation
scenarios and missingness mechanisms. Our results highlight
the importance of considering the missingness mechanism and
compatibility with the analysis method when choosing a method
for handling missing data. In many settings, a parametric MI
approach that incorporates interactions and nonlinearities is
expected to perform well in the context of TMLE with data-
adaptive approaches.
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