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Abstract

Drug-resistant tuberculosis (DR-TB) threatens progress in the control of TB. Mathematical

models are increasingly being used to guide public health decisions on managing both anti-

microbial resistance (AMR) and TB. It is important to consider bacterial heterogeneity in

models as it can have consequences for predictions of resistance prevalence, which may

affect decision-making. We conducted a systematic review of published mathematical mod-

els to determine the modelling landscape and to explore methods for including bacterial het-

erogeneity. Our first objective was to identify and analyse the general characteristics of

mathematical models of DR-mycobacteria, including M. tuberculosis. The second objective

was to analyse methods of including bacterial heterogeneity in these models. We had differ-

ent definitions of heterogeneity depending on the model level. For between-host models of

mycobacterium, heterogeneity was defined as any model where bacteria of the same resis-

tance level were further differentiated. For bacterial population models, heterogeneity was

defined as having multiple distinct resistant populations. The search was conducted follow-

ing PRISMA guidelines in five databases, with studies included if they were mechanistic or

simulation models of DR-mycobacteria. We identified 195 studies modelling DR-mycobac-

teria, with most being dynamic transmission models of non-treatment intervention impact in

M. tuberculosis (n = 58). Studies were set in a limited number of specific countries, and 44%

of models (n = 85) included only a single level of “multidrug-resistance (MDR)”. Only 23

models (8 between-host) included any bacterial heterogeneity. Most of these also captured

multiple antibiotic-resistant classes (n = 17), but six models included heterogeneity in bacte-

rial populations resistant to a single antibiotic. Heterogeneity was usually represented by dif-

ferent fitness values for bacteria resistant to the same antibiotic (61%, n = 14). A large and

growing body of mathematical models of DR-mycobacterium is being used to explore inter-

vention impact to support policy as well as theoretical explorations of resistance dynamics.
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However, the majority lack bacterial heterogeneity, suggesting that important evolutionary

effects may be missed.

Author summary

The emergence of drug-resistant tuberculosis (DR-TB), where the causative bacterium

Mycobacterium tuberculosis is resistant to key antibiotics such as rifampicin and isoniazid,

poses a significant threat to TB control efforts. To gain a broader understanding of the

challenges surrounding DR-TB, mathematical models are increasingly being employed to

estimate the impact of interventions, effectiveness of treatment, and to predict the evolu-

tion of drug-resistance. However, pragmaticism surrounding model construction often

means that important aspects, such as bacterial heterogeneity, are overlooked. We under-

took a systematic review of the existing DR-mycobacterium modelling literature, with the

specific aim of capturing methods for including bacterial heterogeneity. Our analysis

revealed that most models of drug-resistance in mycobacteria primarily focus on interven-

tion strategies and cost-effectiveness analyses, with minimal attention to bacterial hetero-

geneity. Where heterogeneity is included it mostly consisted of different fitness costs for

resistance.

Introduction

Drug-resistant (DR-) strains of Mycobacterium tuberculosis (M. tuberculosis) are an urgent

threat to the control of tuberculosis disease (TB) globally. For TB, the backbone antibiotics of

standard therapy are rifampicin and isoniazid. In 2021, multidrug-resistant (combined rifam-

picin and isoniazid resistance) or rifampicin-resistant tuberculosis (MDR/RR-TB) caused an

estimated 450,000 cases globally [1].

Routinely collected antimicrobial resistance (AMR) data use microbiological definitions of

resistance, which are guided by threshold cut-offs for phenotypic resistance, resulting in dis-

crete categorisations. For TB, these categorisations are further grouped with strains being clas-

sified as drug-susceptible (DS-), multidrug- or rifampicin-resistant- (MDR/RR-), pre-

extensively-drug (pre-XDR) resistant (MDR plus resistance to a fluoroquinolone) or XDR-

resistant (MDR plus resistance to a fluoroquinolone and a Group A drug) [1]. The MDR/RR

grouping is based on the knowledge that isoniazid resistance is commonly acquired prior to

rifampicin resistance and the wider prevalence of rifampicin-resistance testing through geno-

typic testing, making clinical management of RR- and MDR-TB similar [2,3]. These defini-

tions are sufficient for patient care decision-making that does not need to account for the

spectrum of phenotypic resistance levels (for example, those below the threshold for successful

treatment) or any other bacterial characteristics (such as types of resistance-conferring muta-

tions). However, bacterial populations are often highly diverse with a spectrum of characteris-

tics. Hence, resistance categories will also have a high degree of bacterial heterogeneity, such as

variation in transmission fitness between strains with the same phenotypic resistance, which

affects the rate at which M. tuberculosis spreads between individuals.

Several important insights into the evolution of DR-TB, its emergence and spread, and the

control of resistant bacteria more broadly have been generated by mathematical models. Some

examples are the predominance of primary rather than acquired resistance, the effectiveness of

TB surveillance for controlling DR-TB, and the potential impact of controlling HIV on
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reducing TB transmission [4–7]. Most mathematical models of AMR have typically adopted

binary (e.g. resistant versus susceptible) categorisations. When bacterial heterogeneity is

included in mathematical models, the predicted public health outcomes can be different from

those when bacterial heterogeneity is ignored [8]. We may lose subtlety in model outputs

when modelling antibiotic treatment as a selective pressure if the traits allowing for bacterial

heterogeneity are not included. Models may miss key dynamics, such as competition between

strains and antibiotic effectiveness against strains with varying resistance levels, and be at risk

of incorrectly predicting the effectiveness of a treatment intervention. As Trauer et al. (2018)

point out, strain diversity, virulence and fitness costs have implications for the trajectory of

drug resistance in TB [9]. Decisions as to what to include in a model will depend on the ques-

tions being asked, the selective pressures modelled, and the time-frame studied. Assessing this

balance in model design between detailed and generalised parameters to allow a pragmatic

approach for public health interventions can often prove challenging. Hence, assessing the

extent to which bacterial heterogeneity has been included in existing models that predict inter-

vention impact for DR-TB control is highly important.

Previous systematic reviews have explored the landscape of mathematical models of AMR

[7,10] and TB [11–14], with up to 43 DR-TB transmission and 52 within-host studies being

found prior to 2016. To our knowledge, only one expert review from 2009 focused on mathe-

matical models of DR-TB [4], emphasising the useful insights from modelling but also

highlighting important knowledge gaps in the economics, biological impact of mutations and

ability to control DR-TB. To date, there is little evidence on how bacterial heterogeneity is

incorporated into DR-TB models and little evidence of the effect this would have on model

outcomes.

Mycobacteria predominantly develop antibiotic resistance via mutation [15], resulting in

different patterns of resistance dynamics to other bacterial genera. Mycobacterial species other

than M. tuberculosis can often be used as experimental or theoretical models for M. tuberculo-
sis and are also responsible for a clinical burden [16–18]. They are often used to understand

the resistance dynamics of M. tuberculosis [19,20].

We aimed to support future modelling of interventions against DR-TB by systematically

surveying the characteristics of mathematical models of mycobacteria, of which we expect the

M. tuberculosis species to dominate due to its substantial clinical burden. Our secondary objec-

tive was categorising the amount and type of bacterial heterogeneity included in mathematical

models of DR-mycobacteria. We envisaged two broad settings of papers to be included in this

review, within-host and between-host transmission models. This was noted by Cohen et al.

(2009), a previous review of the DR-TB modelling literature [4], where “between-host” models

refer to models on the human population scale. Since 2009, there has been an increase in mod-

els of bacterial populations set in the laboratory. As the populations captured will be similar to

within-host models, we combined laboratory models and within-host models and collectively

called them “bacterial population” models.

The aims, dynamics and model structure of between-host models differ considerably from

bacterial population models, namely by transmission of the pathogen and populations

included, making them difficult to compare. Therefore, we defined heterogeneity differently

for bacterial populations and between-host models to compare methods within these catego-

ries and gain a clearer picture of bacterial heterogeneity modelling. At the between-host level,

we were interested in capturing those models that went beyond capturing resistance pheno-

types but included any added dimension of bacterial variation, including what may affect sur-

vival, such as fitness effects. Models of bacterial populations that captured any resistance

variation were included; distinct populations of resistant bacteria needed to be modelled,

which differed in their parameter values (e.g. growth rate or mutation rate).
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Methods

Our review consisted of two stages of selection and data analysis. In Stage 1 of the review, our

aim was to identify and analyse the general characteristics of mathematical models pertaining

to drug-resistant (DR-) mycobacteria, such as model type and aim. In Stage 2 of the review,

our focus was to identify mathematical models of DR-mycobacteria that specifically incorpo-

rated the concept of bacterial heterogeneity, as elucidated by the definition in the inclusion

and exclusion criteria section.

Search strategy

The systematic review was designed and conducted following the PRISMA reporting protocol

to search and review mathematical modelling papers of DR-mycobacteria [21]. The search

terms consisted of those relevant to [1] “mycobacteria”, [2] “mathematical modelling”, and [3]

“antibiotic resistance” (S1 Text). The search was conducted in five databases (Medline,

Embase, Global Health, Web of Science and Scopus) initially on January 22nd, 2021, and then

repeated on April 1st, 2022. Duplicates were removed before screening.

Inclusion and exclusion criteria

The screening process of the papers adhered to predefined inclusion and exclusion criteria

(Table 1). Initially, the titles and abstracts of the papers were screened to identify mathematical

models specifically pertaining to DR-mycobacteria, followed by a full-text screening for inclu-

sion in Stage 1. Finally, another round of full-text screening was carried out on the remaining

papers to identify those appropriate for Stage 2 of the study.

Mathematical models were defined as mechanistic models or simulation models reproduc-

ing a mathematically described scenario of DR-mycobacteria or of individuals carrying DR-

mycobacteria. We excluded statistical analyses, such as regression models or risk analysis;

molecular modelling (those focused on molecular structure of chemical compounds) or those

only focused on drug development; models of drug-resistance that only used mycobacteria as

an example or discussion point unless results for DR-mycobacteria were specifically included.

We split models into two groupings: “between-host” and “bacterial population” models,

with the differences in their model scale, structure, and aims, resulting in a different bacterial

heterogeneity definition. A “between-host” model was classed as a heterogenous model when

strains infecting a human population resistant to the same drug varied in another characteris-

tic such as fitness, rates of compensatory mutation evolution or associated treatment recovery

rates. These characteristics were extracted during the full-text extraction stage. “Bacterial

Table 1. Inclusion and exclusion criteria used for title and abstract, stage 1 and stage 2 screening.

Inclusion Criteria Exclusion Criteria

Stage 1 Stage 2

Mathematical model capturing at least one

mycobacterial species

Mathematical model of resistance in

mycobacteria with a heterogeneous bacterial

component

Reviews, opinion pieces, editorials, letters, model

comparison exercises, conference abstracts

Mathematical model with a population of antibiotic-

resistant bacteria or individuals carrying resistant

bacteria

Molecular modelling, drug development, genetic

pathways, genetic evolution models, statistical analysis

only

English language Pharmacokinetics/Pharmacodynamics (PK/PD) model

with no resistant bacterial population

Models that use data but do not produce DR-

mycobacteria results

Animal (non-human) host

https://doi.org/10.1371/journal.ppat.1011574.t001
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population” models included both within-host and models of bacterial populations capturing

dynamics measured in laboratory or experimental conditions. A bacterial population model

was classed as a heterogeneous model when there were distinct resistant strains captured

which had different parameter values such as fitness, mutation rates and metabolic states.

These parameter differences were extracted during the full-text extraction stage.

Selection and extraction: Stage 1

Title and abstract screening were performed for every paper by at least two authors (NMF, GMK,

CFM, MJH and CKW) to determine if the paper likely included a mathematical model of DR-

mycobacteria. High-level data extraction from these screened papers that continued to match the

criteria for Stage 1 upon full-text screening provided a landscape analysis of DR-mycobacteria

models. DR-mycobacteria models can address multiple aims with various methods, but they will

have a common theme, such as parameter estimation or evaluation of the impact of interventions.

We extracted information from the models to categorise and classify them into five categories,

focusing on the main theme of the model. 1) model setting (such as geographic location), 2) model

aims (7 categories of; non-treatment interventions that did not explore antibiotic usage (with and

without cost-effectiveness), treatment interventions (with and without cost-effectiveness), parame-

ter estimation, burden estimation or theoretical), 3) model type (7 categories of; bacterial dynamics,

decision analytic, PK/PD, state transition (with and without a statistical component) or transmis-

sion (with or without an operational or state transition component), 4) mycobacterial species and

5) resistance classifications (such as MDR or XDR) (S2 Text). We extracted resistance classifica-

tions based on what the authors defined in their papers, as current resistance definitions are con-

tinuously updated. A resistance class is defined as a model stratification whereby strains (or the

populations including them) are grouped across multiple antibiotic resistances (i.e. MDR could

here be a single “resistance class” but represents resistance to multiple antibiotic agents). We only

extracted which antibiotics were modelled in papers if their resistance was also considered. This

extraction was performed by NMF and GMK, with discussions to resolve any conflicts.

Selection and extraction: Stage 2

For Stage 2, full-text screening of the Stage 1 papers was performed by three authors (NMF,

GMK, CFM) to determine the models with bacterial heterogeneity, with subsequent discus-

sions and consensus to resolve any discrepancies. NMF performed full-text extraction and

data analysis of the extracted data from these papers (S2 Table). Stage 2 extracted data on the

methods used to model heterogeneity, types of heterogeneity included, data sources and the

effect of resistance inclusion (such as resistance effects on disease progression) (S3 Text).

Results

After the removal of duplicates, 3,180 papers were identified (Fig 1). Following a title and

abstract screening, 372 papers remained for full-text screening. 195 papers were found to fulfil

our Stage 1 criteria having a model of DR-mycobacteria strains (S1 Table). Of these papers,

only 23 were found to meet the requirements of bacterial heterogeneity in mathematical mod-

els of DR-mycobacteria (S2 Table).

Stage 1 Results: DR-mycobacteria model landscape

Most models of mycobacteria were of M. tuberculosis (190 papers/97%) with HIV (59 papers)

and diabetes mellitus (5 papers) often included. There was a rapid increase in the number of

papers published on DR-mycobacterium from 2005 onwards (S1 Fig).
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Settings captured

119 papers aimed to model a specific geographical location, typically at the national level

(Fig 2A and S3 Table). This reflects the settings with the highest MDR-TB incidence but also

highlights some countries that are not being focused on (Fig 2B). Of the 117 papers, 82 covered

a single national analysis and 35 covered different countries. Other geographical locations

included 7 models with a global focus, whilst 6 models covered regions with 4 models of

Southeast Asia [22–24], and 1 of Eastern Europe [25] and 1 of the Asia-Pacific [26].

Model aims and types

Of the seven distinct categories of study aim found (Fig 3), non-treatment interventions with-

out cost-effectiveness considered (n = 45, 23%) was the most common. Transmission models

(n = 129, 67%) were the most common model type used for all model aims, except for “treat-

ment interventions with cost-effectiveness”, which mostly used state transition models (Fig 3).

As would be expected, PK/PD models were used almost exclusively for “treatment interven-

tions”, with one model being used for parameter estimation. Six models used a combination of

Fig 1. PRISMA flow diagram outlining the systematic selection of studies to include in the analysis.

https://doi.org/10.1371/journal.ppat.1011574.g001

PLOS PATHOGENS Models of drug resistant tuberculosis lack bacterial heterogeneity

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011574 April 10, 2024 6 / 19

https://doi.org/10.1371/journal.ppat.1011574.g001
https://doi.org/10.1371/journal.ppat.1011574


methods: transmission and state transition [27,28], transmission and operational [29]and state

transition and statistical [30–32]. “Bacterial dynamics” type models were used for “treatment

interventions”, “theoretical” and “parameter estimation” aims only. “Decision analytic” type

models were used for all aims other than “theoretical” and “parameter estimation”.

Resistance categories

Most models of DR-mycobacteria capture resistance to fewer than three antibiotics. Six models

considered all possible combinations of resistance to several antibiotics (‘*’, Fig 4). Of 16 mod-

els to capture four or more resistances at once, 11 of these models included antibiotic resis-

tance as stepwise accumulation of resistance [22,30,33–41] and 5 models only included mono-

resistance of resistance to multiple antibiotics [20,42–45].

Overall, for stage 1, most models included a resistance class of MDR/RR-TB (129 papers/

67%, Fig 4) with 85 models that chose to model only a single resistance class of MDR/RR-TB

alongside DS-TB (Fig 4). 40/195 models included isoniazid resistance (Fig 4) with 27/40 also

including MDR/RR-TB. 21/195 models included rifampicin resistance separate from MDR

with 15/21 including isoniazid and rifampicin resistance as mono-resistances that developed

into MDR with 6/15 models including the development of XDR-TB. Of 18 models that mod-

elled XDR, 16 included MDR/RR, while two did not [46,47]. Out of the first-line antibiotics

used to treat TB, isoniazid (n = 40) and rifampicin (n = 27) resistance were modelled the most,

followed by pyrazinamide (n = 8) and then ethambutol (n = 5) resistance. Pyrazinamide

Fig 2. Uneven geographical distribution of mathematical models of DR-mycobacteria (a) and correspondence

with MDR/RR-TB incidence (b). (a) Countries captured in models of DR-mycobacteria. Note: some models include

outputs for multiple countries, therefore this image represents all countries modelled, not the total number of models.

(b) From the WHO Global Tuberculosis Report 2022 [1], the 10 countries with the highest estimated MDR/RR-TB

incidence are given with number of models in brackets. The colours in the table match the corresponding colours of

the country in part (a). Map layer made with Natural Earth, free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.ppat.1011574.g002
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resistance was often found to be modelled alongside rifampicin and/or isoniazid resistance

with only 3 models including resistance to all 4 first-line antibiotics, 2 with mono-resistances

and 1 with a combination of all 4 resistances [33,37,42] (Fig 4).

41 theoretical models included resistance to a non-named antibiotic (S1 Table). One of

these explored differences in drug action (bacteriostatic or bactericidal [48], and two explored

antibiotic persistence [49,50] (S1 Fig). There were 38 theoretical modelling studies (S1 Fig)

capturing “drug resistance”, with four of these models exploring firstly hypothetical and then

antibiotic-specific resistance (S1 Table).

Stage 2 Results: Heterogeneous models

We found 23 models with bacterial heterogeneity—15 bacterial population and 8 between-

host models (S2 Table) [8,20,33,34,37,43–45,48,49,51–63]. The distribution of model aims that

these papers fall into were different from Stage 1 with 13 “parameter estimation”, 8 “treatment

interventions”, 1 “theoretical”, and 1 “non-treatment intervention”. 12 of the 23 models mod-

elled the immune system.

Fig 3. Model aims broken down by model types (colours) highlights transmission models are the most used for

DR-mycobacteria modelling. The model type (colours) definitions can be summarised as follows: [1] Bacterial

dynamics: Capture bacterial populations without considering between-host transmission. [2]; Decision analytic: Track

cohorts of human individuals through treatment or diagnostic pathways without ongoing transmission. [3]

Pharmacokinetic/pharmacodynamic (PK/PD): Focus on drug concentrations and their effects in vivo, incorporating

parameters related to bacterial populations. [4] State Transition: Involve individuals or populations transitioning

between different disease states, with the force of infection as a static input parameter. [5] Statistical: inference-based

models of collected or population data. [6] Transmission: Dynamically account for the spread of bacteria between

individuals or populations. [7] Operational models: simulation of patient pathways and treatment or diagnostic

procedures. The model aim (x axis) definitions can be summarised as follows: (1) Non-treatment Interventions: Model

the impact of interventions not related to changes in antibiotic usage or treatment without considering economic

aspects. (2) Non-treatment Interventions + cost-effectiveness: Model the impact of interventions not related to changes

in antibiotic usage or treatment while considering their economic impact. (3) Treatment interventions: Model

interventions related to changes in antibiotic usage. (4) Treatment interventions + cost-effectiveness: Model

interventions related to changes in antibiotic usage while considering their economic impact. (5) Parameter

estimation: Estimate parameters by comparing to data, trends, or varying model structures or components. (6) Burden

estimation models: Quantify the number of individuals potentially infected with DR-mycobacteria. (7) Theoretical

models: Theoretically explore interactions between susceptible and resistant strains. Note: "CE" stands for cost-

effectiveness. For full details of aim and model type see S2 Text.

https://doi.org/10.1371/journal.ppat.1011574.g003
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Bacterial population models

The fifteen bacterial population models mostly captured multiple resistance classes (n = 13)

(Fig 5 and S2 Table). One other considered a single resistance class of isoniazid only in an M.

tuberculosis population and explored deterministically the impact of antibiotic exposure on

resistance dominance with or without heterogeneity in fitness and mutation distributions [52].

Including heterogeneity in fitness and mutation distributions was also the most common

method for exploring variation in models with multiple resistance classes. This was true both

for stochastic and deterministic model structures [33,43,51,57,59,62], though one determin-

istic model only explored differences in mutation rates [43]. Four models additionally explored

the impact of variation in growth rates induced by different metabolic states [20,34,45,60],

with one model including fitness variation too [45].

Different clearance rates were used in 2 models, a PK/PD model and a bacterial dynamics

model to differentiate between two resistant bacterial strains with the aim of determining the

most effective treatment combination [48,58].

One model did not include AMR as a direct resistance to an antibiotic, but instead as persis-

tence [49]. This was modelled as non-replicating bacterial populations and antibiotics had little

to no effect on these bacterial populations. The model implemented heterogeneity by including

fast and slow-growing bacteria.

Between-host models

All eight between-host models were compartmental models. Six of these models explored the

impact of including a distribution of fitness costs affecting transmission resulting from resis-

tance-conferring mutations to prevalence of either a single [8,53,55,56] or multiple resistance

classes [54,63]. Four of these six models were deterministic [53,55,56,63], with Knight et al.

(2015) exploring a stochastic version in the supplementary materials [8]. Blower et al. (2004)

explored a stochastic model that included heterogeneity by modelling strains of M. tuberculosis
with different fitness rates but also cure, treatment, detection, and resistance mutation rates.

The model aimed to estimate MDR-TB prevalence [54].

Two stochastic models were classified as heterogeneous as they included resistance com-

partments stratified with different resistant genotypes [44,61]. These papers had different

aims: Kendall et al. [44] explored the impact of high and low levels of moxifloxacin resistance

on treatment regimens and drug susceptibility testing. Pecerska et al. [61] estimated the fitness

cost of MDR-TB with and without pyrazinamide resistance from a genetic data set.

Use of data derived from the literature

All Stage 2 papers used at least one parameter sourced from existing literature, so no models

were entirely theoretical. Some models used a primary data set that was collected from

Fig 4. Treemap of specific resistance classes included in models in stage 1 shows that the majority of models

included MDR/RR and few included more than two resistance classes. Each coloured cell represents a specific

combination of resistances included in a model, with the size of the cell representing how many models included this

combination of resistances. “Single” and “Multiple” sections refer to the number of antibiotic resistances included in a

model, with “Multiple” referring to models that captured resistance to more than one antibiotic. "*" indicates the

model included all possible combinations of antibiotic resistance listed. A = INH, RIF, MDR/RR, MOX, PZA, BDQ,

PA, RIF + MOX, RIF + PZA, B = INH, RIF, MDR/RR, AMI, MOX, BDQ, RIF + MOX, RIF + AMI, RIF + BDQ,

C = INH, RIF, MDR/RR, XDR, MDR + FQ, MDR + SLInject, D = INH, RIF, MDR/RR, XDR, Pre-XDR. Antibiotic

abbreviations as follows: AMI = amikacin, BDQ = bedaquiline, CLR = clarithromycin, ETM = ethambutol,

FQ = undefined fluoroquinolone, MOX = moxifloxacin, PA = pretomanid, PZA = pyrazinamide, STR = streptomycin,

INH = isoniazid, RIF = rifampicin, MDR/RR = multidrug resistant/rifampicin resistant, XDR = extensively drug-

resistant, SLInject = second line injectable antibiotic (from WHO guidelines 2014). S1 Fig shows all resistance

categories per 195 models.

https://doi.org/10.1371/journal.ppat.1011574.g004
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experiments or a population study [20,49,52,58,59,61]. Data types used were experimental

(83%), epidemiological (26%), clinical (4%), genetic (4%) and WHO data (30%). All bacterial

population models used experimental data, with one paper also including clinical data [37].

Between-host models used a combination of experimental, epidemiological, and WHO data,

with one using only genetic data.

Acquired or primary resistance and discrete resistance

All models with heterogeneity represented resistance as discrete categories, such as MDR/

RR-TB, with no models including resistance as a spectrum. 6/8 between-host heterogenous

Fig 5. Classifications of models including heterogeneity in their bacterial population (Stage 2) were split into

bacterial population and between-host models and then stratified by whether they considered single or multiple

resistance classes.

https://doi.org/10.1371/journal.ppat.1011574.g005

PLOS PATHOGENS Models of drug resistant tuberculosis lack bacterial heterogeneity

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011574 April 10, 2024 11 / 19

https://doi.org/10.1371/journal.ppat.1011574.g005
https://doi.org/10.1371/journal.ppat.1011574


models modelled resistance as both primary and acquired and two models had no primary

resistance, with acquired resistance only [44,63].

Resistance effects in models

Resistance affected the ability of M. tuberculosis to transmit in 6/8 between-host heterogenous

models, with resistant strains usually having a lower value for the transmission coefficient or

fitness parameter than the susceptible strain.

Resistance affected disease progression in all models except Knight et al. (2015) [8]. For bac-

terial population models, this was defined as different growth rates. For between-host models,

this was included as a separate disease progression parameter for resistant strains [54,55,63],

different relapse rates for patients with resistant bacteria [44], different associated mortality

rates for each resistant strain [61], variance in cross-immunity by resistant strain [53], or dif-

ferent natural history pathways for resistant strains [56].

13/23 models assumed resistance affected operational parameters. In nine, resistance

reduced treatment efficacy [8,44,45,53–56,61,63], with one also including different diagnostic

(GeneXpert rapid nucleic acid amplification test for M. tuberculosis) sensitivity parameters for

each resistant strain [44]. Four bacterial population models had a different antibiotic kill rate

[48,49,58,60], with one including different clinical conversion factors [49].

Discussion

Our review of the mathematical modelling landscape of drug resistance in mycobacteria has

revealed a growing body of work mostly using transmission dynamic models to explore inter-

vention impact. We found that a minority (33%) explore resistances other than MDR/RR-TB.

Few models account for the known heterogeneity that exists in bacterial populations. Where

heterogeneity was captured in both bacterial population and between-host models, it was

mostly through a variation in the model-specific fitness parameter (with the definition of fit-

ness varying broadly from being related to transmission, ability to cause disease or speed of

bacterial growth).

Our Stage 1 landscape analysis found that several high MDR-TB burden countries (e.g.

Pakistan, Nigeria, Ukraine, and Myanmar) are underrepresented in the English DR-TB litera-

ture. Increasing modelling of DR-TB in specific countries may aid understanding of epidemi-

ology in the specific country and increase the global understanding of DR-TB, as well as

improve estimates of intervention efficacy and hence design of context-specific interventions.

This is highly relevant when considering that, as has been found for models of M. tuberculosis
in general [11,64], most models aimed to estimate the impact of public health interventions.

Transmission models were used more than any other type of model across all categories,

except for the category of "treatment interventions + cost-effectiveness”, where state transition

models were most used. This indicates that most modellers are interested in modelling M.

tuberculosis at a between-human host population scale.

MDR-TB was the most common category of resistance modelled (67% of DR-mycobacte-

rium models)—an expected result linked to the historical importance of this as a clinical treat-

ment threshold and reflected in most data collection [1,3]. Mono-isoniazid resistance was

more commonly modelled than explicit mono-rifampicin resistance, with 27 models capturing

the pathway from isoniazid resistance developing into MDR-TB. XDR-TB was not considered

without MDR-TB other than by two papers by Basu et al. (2008, 2009), who were interested in

the burden and interventions specific to XDR-TB [46,47]. XDR-TB was often treated as a final

state of resistance in modelling systems, with no further resistance being acquired. This reflects

the historic clinical decision-making pathway (susceptible or MDR or XDR) and that XDR-TB
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is resistant to a large number of anti-TB antibiotics. However, there is a great variation in

DR-TB and the pathways that may lead to each level of it. Understanding this variation in

DR-TB will drive improvements in treatment success by identifying which antibiotics will be

most effective and, therefore improve patient outcomes.

Rifampicin and isoniazid resistance were the most modelled mono-resistances, followed by

pyrazinamide and ethambutol, reflecting first-line treatments and prophylaxis for TB and data

availability. Testing for pyrazinamide and ethambutol resistance is typically reserved for refer-

ence settings, and there is widespread use of GeneXpert (Cepheid 6/10-colour instrument),

which tests for rifampicin resistance. Only 21% of models (n = 41) captured resistances beyond

these four drugs. This will need to be expanded as we move into a period with many more

treatment options–constructing, parameterising, and exploring mathematical models of other

antibiotic resistances is vitally needed to optimise future treatment and TB control interven-

tions, as well as to explore evolutionary pathways. For example, we found only two papers

which explicitly modelled resistance to bedaquiline [44,45], whilst two new treatment regi-

mens containing bedaquiline were approved by the WHO in 2022 [65].

Models that capture non-specific DR-TB can be useful in the absence of data or to explore

broad trends. We found 45 models in this category and found that these theoretical or non-

specific systems were used to understand under what constraints DR-TB would dominate over

DS-TB or explored the efficacy of a theoretical intervention.

When designing a model to answer a specific question such as the impact of a public health

intervention, a balance needs to be struck between designing a detailed or generalised model

to allow for a pragmatic approach. This pragmatism is likely the reason for our stage 2 results

that revealed few models including bacterial heterogeneity. This is despite several models

showing how heterogeneity in transmission fitness can affect DR-TB prevalence estimates

[8,54–56]. Or how including multiple levels of resistance to one antibiotic can affect treatment

outcomes [44,61]. Authors cannot capture all the subtlety of antibiotics as a selection pressure

without including the related resistance dynamics and from this the population diversity it fos-

ters. Mathematically, it can be difficult to include complexities in all aspects, for example, pop-

ulation mixing, and often there is little context-specific data on bacterial heterogeneity to

inform models. However, if authors want to understand the risk of antibiotic resistance devel-

oping under a new treatment regimen it should follow that those resistances are then included

in predictions. Some nuance may be beneficial in results that are only achievable with models

that include bacterial heterogeneity, such as in Basu et al. (2008) where their conclusions sug-

gested that a weaker immune response to a DR-TB infection with high fitness levels leads to

higher DR-TB prevalence in HIV-positive and -negative populations [53].

Interestingly, we found that all models included resistance in a small number of discrete

compartments, with no near-continuous distributions of resistance. Biologically speaking,

resistance exists across a spectrum with strains having a range of minimum inhibitory concen-

trations, but for therapeutic and diagnostic uses they are classified with discrete values. Model-

ling resistance at multiple possible sub-levels would enable new research questions to be posed

about pathways to evolution and competition due to multiple resistant levels. To our knowl-

edge, such a question has not yet been asked regarding M. tuberculosis.
We found that transmission fitness levels, by contrast to resistance levels, were commonly

allowed to vary across a distribution within resistant populations, likely reflecting the available

historical data pointing to fitness differences between TB strains [66]. This contrasts with the

lack of data linking resistant strain variation with treatment outcomes such as failure or recov-

ery. Including such fitness effects is a relatively easy single-parameter effect within standard

transmission dynamic or bacterial dynamics models and is commonly included in models of

drug resistance outside of M. tuberculosis [7].
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In this review, we identified 190 published papers which included drug-resistant strains of

M. tuberculosis, a further 5 with a drug-resistant non-tuberculosis mycobacteria species, and 1

including both M. tuberculosis and M. marinum. Our update on the literature shows an

increasing trend to model DR-TB.

The limitations of our review included that we conducted the search for English language

articles when a substantial burden of DR-TB is found in non-English speaking settings such as

Eastern Europe [1]. We did not capture which antibiotics were explored in the models as our

focus was on the resistance captured nor time horizons for each model. Our stage 1 analysis

only extracted high-level information as our main interest was the bacterial heterogeneity in

stage 2. Future work could use this baseline set of literature to explore how resistance is mod-

elled in the natural history of tuberculosis.

We encourage future modellers to consider if the bacterial component of their research

question would benefit from the inclusion of bacterial heterogeneity. By not including it, mod-

els miss key features of bacterial populations, such as competition or treatment efficacy differ-

ences between strains and may, for example, under or overestimate the degree by which an

intervention might increase resistance or prevalence of DR-TB.

We were unable to provide a comprehensive review of how resistance was included in Stage

1 models due to the lack of model information provided in many papers such as parameter

tables, model diagrams or equations. Future mathematical models should aim for clear model

reporting as suggested by the WHO [67] and Bennett et al. (2012) for transparency and to

enable reproducible research [68].

In this review, we identified 195 drug-resistant mycobacteria mathematical models, with

190 DR-TB models and 23 models including bacterial heterogeneity. This has provided us

with an understanding of how resistant mycobacterial species have been modelled, in terms of

geographical settings, model aims and types, resistances modelled and further insights into the

inclusion of bacterial heterogeneity. However, we found that bacterial heterogeneity was often

ignored despite evidence of its importance at the population level. Balancing pragmaticism

with biological reality when building mathematical models is vital within the fundamental evo-

lutionary dynamics of AMR.
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