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THE RAINBOW SATURATION NUMBER IS LINEAR\ast 

NATALIE BEHAGUE\dagger , TOM JOHNSTON\ddagger , SHOHAM LETZTER\S ,
NATASHA MORRISON\P , AND SHANNON OGDEN\P 

Abstract. Given a graph H, we say that an edge-colored graph G is H-rainbow saturated if
it does not contain a rainbow copy of H, but the addition of any nonedge in any color creates a
rainbow copy of H. The rainbow saturation number rsat(n,H) is the minimum number of edges
among all H-rainbow saturated edge-colored graphs on n vertices. We prove that for any nonempty
graph H, the rainbow saturation number is linear in n, thus proving a conjecture of Gir\~ao, Lewis,
and Popielarz. In addition, we give an improved upper bound on the rainbow saturation number of
the complete graph, disproving a second conjecture of Gir\~ao, Lewis, and Popielarz.

Key words. saturation, rainbow, edge-coloring

MSC code. 05C35

DOI. 10.1137/23M1566881

1. Introduction. For a fixed graph H, we say that a graph G is H-saturated if it
does not contain H as a subgraph, but adding any extra edge creates a copy of H as a
subgraph. The saturation number ofH, denoted by sat(n,H), is the minimum number
of edges in an H-saturated graph G on n vertices. This can be thought of as a dual to
the classical Tur\'an extremal number ex(n,H) that counts the maximum number of
edges in an H-free graph on n vertices. Since a maximal H-free graph is H-saturated,
ex(n,H) equivalently counts the maximum number of edges in an H-saturated graph
on n vertices. The saturation number in contrast counts the minimum number of
edges among such graphs.

The saturation number was first studied independently by Zykov [18] and Erd\H os,
Hajnal, and Moon [5], who proved that sat(n,Kr) = (r - 2)(n - 1) - ( r - 2

2 ), where as
usual Kr denotes the complete r-vertex graph. Later, K\'aszonyi and Tuza [10] proved
that the saturation number of every graph H is linear in n, that is, sat(n,H) =OH(n).
For more information and many other results related to the saturation number see
the survey of Faudree, Faudree, and Schmitt [6]. In this paper we provide analogous
results to these for the rainbow saturation number: a variant of the saturation number
for edge-colored graphs.

The generalization of saturation to edge-colored graphs was first considered by
Hanson and Toft [9]. Following this, Barrus et al. [2] considered the particular case

\ast Received by the editors April 19, 2023; accepted for publication (in revised form) December 21,
2023; published electronically April 8, 2024.

https://doi.org/10.1137/23M1566881
Funding: The first author's research was supported by a PIMS postdoctoral fellowship. The

third author's research was supported by the Royal Society. The fourth author's research was
supported by NSERC Discovery Grant RGPIN-2021-02511 and NSERC Early Career Supplement
DGECR-2021-00047. The fifth author was supported by NSERC CGS M.

\dagger Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK (natalie.behague@
warwick.ac.uk).

\ddagger School of Mathematics, University of Bristol, Bristol, BS8 1UG, UK, and Heilbronn Institute for
Mathematical Research, Bristol, BS8 1UG, UK (tom.johnston@bristol.ac.uk).

\S Department of Mathematics, University College London, Gower Street, London, WC1E 6BT,
UK (s.letzter@ucl.ac.uk).

\P Department of Mathematics and Statistics, University of Victoria, Victoria V8W 2Y2, BC,
Canada (nmorrison@uvic.ca, sogden@uvic.ca).

© 2024 the authors

1239

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/23M1566881
mailto:natalie.behague@warwick.ac.uk
mailto:natalie.behague@warwick.ac.uk
mailto:tom.johnston@bristol.ac.uk
mailto:s.letzter@ucl.ac.uk
mailto:nmorrison@uvic.ca
mailto:sogden@uvic.ca


1240 BEHAGUE, JOHNSTON, LETZTER, MORRISON, AND OGDEN

of t-rainbow saturation, where there are exactly t colors available. Gir\~ao, Lewis, and
Popielarz [8] initiated the study of the natural generalization to the case where the
palette of colors available is unlimited, rather than bounded by t. This is the focus of
our paper.

A t-edge-colored graph is an ordered pair (G,c), where c is a (not necessarily
proper) edge-coloring of the graph G using colors from [t] = \{ 1,2, . . . , t\} . An edge-
coloring of a graph is said to be rainbow if every edge is assigned a distinct color.
We say that a t-edge-colored graph (G,c) is (H, t)-rainbow saturated if (G,c) does not
contain a rainbow copy of H, but the addition of any nonedge in any color from [t]
creates a rainbow copy of H in G. Note that this requires t\geq | E(H)| . The t-rainbow
saturation number of H, denoted by rsatt(n,H), is the minimum number of edges in
an (H, t)-rainbow-saturated graph on n vertices.

When the number of possible edge colors is infinite (say, the set of colors is \BbbN ), an
edge-colored graph (G,c) is H-rainbow saturated if (G,c) does not contain a rainbow
copy of H, but the addition of any nonedge in any color from \BbbN creates a rainbow copy
of H. The rainbow saturation number of H, denoted by rsat(n,H), is the minimum
number of edges in an H-rainbow saturated graph on n vertices.

In [8], Gir\~ao, Lewis, and Popielarz conjectured that, like ordinary saturation
numbers, the rainbow saturation number of any nonempty graph H is at most linear
in n, and they proved this for graphs with some particular properties.

Theorem 1.1 (Gir\~ao, Lewis, and Popielarz; Theorem 2 (4) in [8]). Let H be a
graph with a nonpendant edge that is not contained in a triangle. Then rsat(n,H) =
O(n).

In fact, Theorem 1.1 is a consequence of a stronger result that proves rsatt(n,H) =
O(n) for any such H and any t\geq e(H).

Our main result proves that the rainbow saturation number of every graph is
linear, thus confirming the conjecture of Gir\~ao, Lewis, and Popielarz [8].

Theorem 1.2. Every nonempty graph H satisfies rsat(n,H) =O(n).

Interestingly, when t is fixed the t-rainbow saturation number is not in general
linear in n. Barrus et al. [2] proved in particular that for all t\geq | E(H)| , rsatt(n,H)\geq 
c1

n logn
log logn whenever H is a complete graph, and rsatt(n,H)\geq c2n

2 if H is a star, where
c1 and c2 are constants depending only on t and the size of H.

The lower bound on the t-rainbow saturation number for complete graphs was
improved independently by Ferrara et al. [7], by Kor\'andi [11], and by Gir\~ao, Lewis,
and Popielarz [8] to rsatt(n,Kr)\geq c1n logn, which is tight up to a constant factor.

Gir\~ao, Lewis, and Popielarz also conjectured that for any complete graph Kr

where r \geq 3, the rainbow saturation number satisfies rsat(n,Kr) = 2(r  - 2)n+O(1)
when n \geq 2(r  - 2). We prove that rsat(n,Kr) is in fact significantly less than this
conjectured value.

Theorem 1.3. Let r \geq 3. Then rsat(n,Kr) \leq (r + 2
\surd 
2r)n + cr, where cr is a

constant depending only on r.

In section 2, we establish some useful basic results regarding rainbow saturation,
including Propositions 2.2 and 2.3, which allow us to assume that any counterexample
to Theorem 1.2 is connected and has no pendant edges. We describe the construction
used to prove Theorem 1.2 in section 3: given a graph H, we construct an edge-colored
graph on n vertices with O(n) edges such that the addition of (almost) any nonedge
creates a rainbow copy of H. In section 4, we show that if e is an edge contained in
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THE RAINBOW SATURATION NUMBER IS LINEAR 1241

a triangle, then the graph produced by this construction does not contain a rainbow
copy of H. Together with Theorem 1.1, this completes the proof of Theorem 1.2.
Finally, we prove Theorem 1.3 in section 5.

2. Preliminaries. In this section we provide preliminary results that deal with
some easy classes of graphs. We begin by establishing that the existence of an
edge-colored graph G on n vertices with O(n) edges that is ``almost"" H-rainbow-
saturated (save for at most linearly many problematic nonedges) is enough to prove
that rsat(n,H) =O(n). For a color c, we say that a nonedge e \in E(G) is c-bad for G
if the addition of e in color c to G does not create a rainbow copy of H. We say that
a nonedge is bad if there exists a color c such that e is c-bad for G.

Proposition 2.1. Let H be a graph, and let G be an n-vertex edge-colored graph.
Suppose that G has m bad nonedges and does not contain a rainbow copy of H. Then
rsat(n,H)\leq | E(G)| +m.

Proof. Let \{ e1, . . . , em\} be the set of bad nonedges of G. We construct an n-vertex
graph Gm and coloring \chi of E(Gm) as follows: set G0 := G, where each edge of G0

is colored as it is in G. Consider each i \in [m] in turn. If there is a color c such that
ei is c-bad for Gi - 1, then we define Gi to be Gi - 1 \cup \{ ei\} , set \chi (ei) = c (that is, ei
receives color c), and keep the colors of the other edges as in Gi - 1. Note that there
may be multiple such c, in which case we pick one arbitrarily. Otherwise, if ei is not
bad for Gi - 1, set Gi := Gi - 1. Observe that Gm is H-rainbow-saturated, and since
we added at most m edges during this process, Gm has at most | E(G)| +m edges.
Hence, rsat(n,H)\leq | E(G)| +m as required.

A direct result of Proposition 2.1 shows that in order to prove Theorem 1.2 it
suffices to consider connected graphs H.

Proposition 2.2. Let H be a disconnected graph and let H \prime be a component of H
that has the most vertices and, subject to this, the most edges. If rsat(n,H \prime ) =O(n),
then rsat(n,H) =O(n).

Proof. Let s be the number of components of H which are isomorphic to H \prime .
As rsat(n,H \prime ) = O(n), we have rsat(n  - m,H \prime ) = O(n), where m is given by m :=
2 (| V (H)|  - | V (H \prime )| ) - (s - 1). Let (G,\chi ) be an H \prime -rainbow-saturated graph on n - m
vertices with as few edges as possible.

Define a graph G\ast on n vertices as follows. Let H2 be obtained from H \prime by gluing
two disjoint copies of H \prime together at an arbitrary vertex. Let G\ast be the disjoint union
of G with s - 1 disjoint copies of H2 and two disjoint copies of each component of H
that is not isomorphic to H \prime . See Figure 1 for an example. Let \chi \ast be an edge-coloring
of E(G\ast ) where \chi \ast (e) = \chi (e) for every edge e \in G, and G\ast \setminus V (G) is rainbow with
colors not used in \chi .

Observe that G\ast contains no rainbow copy of H (by our choice of H \prime , there are
at most s  - 1 disjoint copies of H \prime in G\ast \setminus G and G contains no rainbow copy of
H \prime ). Moreover, the addition of any nonedge (in any color) within G creates a rainbow
copy of H in G\ast , since G\ast \setminus V (G) contains a rainbow copy of H \setminus V (H \prime ) avoiding any
given color. As there are at most m(n - m) + (m2 ) =O(n) other nonedges in G\ast , by
Proposition 2.1 we have rsat(n,H) =O(n), as required.

Therefore, in what follows we may (and will) assume that H is a connected graph.
Our next result shows that if H contains a vertex of degree 1, then rsat(n,H) =O(n).
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1242 BEHAGUE, JOHNSTON, LETZTER, MORRISON, AND OGDEN

H ′

H H2

G

G∗

Fig. 1. An example of the graph G\ast created via the construction described in Proposition 2.2.
Here s= 3.

Proposition 2.3. Let H be a connected graph with \delta (H) = 1. Then rsat(n,H) =
O(n).

Proof. Write k= | V (H)| and n= q(k - 1)+r, where 0\leq r < k - 1. Define an edge-
colored graph G on n vertices as follows: take q disjoint copies of Kk - 1 and let \chi be a
rainbow coloring of them. Finally, add r isolated vertices. Note that G has n vertices
and q( k - 1

2 ) = (n - r)(k - 2
2 ) =O(n) edges. Clearly G does not contain a rainbow copy

of H. Moreover, since \delta (H) = 1, if any nonedge in any color is added between two
distinct copies of Kk - 1 in G, then a rainbow copy of H is created. Therefore, since
G has at most q(k  - 1)r + ( r2 ) = (n - r)r + ( r2 ) = O(n) other nonedges, Proposition
2.1 implies that rsat(n,H) =O(n).

3. The construction. In this section, we give the construction that lies at the
heart of our proof of Theorem 1.2. Given a graph H and an edge e \in E(H), we
create an edge-colored graph on n vertices with O(n) edges such that the addition
of (almost) any edge creates a rainbow copy of H. The main work in the proof of
Theorem 1.2 will be to show that this graph does not contain a rainbow copy of H,
which will be done in section 4.

Construction 3.1. Let H be a connected graph on at least three vertices, and let
xy \in E(H). Write S :=NH(x) \cap NH(y) and let T be the set of edges in H with one
endpoint in S and the other in \{ x, y\} . Define H \prime to be the graph obtained from H by
contracting the edge xy and replacing any multiedges by single edges. We label the
vertices of H \prime as in H, with the single vertex obtained from contracting xy labeled
by x| y. Let T \prime be the set of edges in H \prime between x| y and S, and write H \prime \prime :=H \prime \setminus T \prime .

For an integer m \geq 2, define F = F (m) to be the graph obtained from H \prime by
replacing the vertex x| y with m duplicates of itself, denoted v1, v2, . . . , vm. Write
M := \{ v1, v2, . . . , vm\} and label the vertices in M by x| y. Label the remaining vertices
as in H. This means F has m vertices labeled x| y and one vertex labeled v for every
v \in V (H) \setminus \{ x, y\} .

Given any integers m \geq 2 and r \geq max\{ | E(H \prime \prime )| + 1,2\} , define the graph G :=
GH

xy(m,r) as follows. Start with | E(H \prime \prime )| disjoint copies of F (m), indexed by the
edges in H \prime \prime as Fe1 , . . . , Fe| E(H\prime \prime )| . To these we add r  - | E(H \prime \prime )| copies of F (m),
which we index as F1, . . . , Fr - | E(H\prime \prime )| . Finally, we obtain G by identifying the vertices
corresponding to vi for each i in turn. That is, for each i = 1, . . . ,m, we replace the

© 2024 the authors

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



THE RAINBOW SATURATION NUMBER IS LINEAR 1243

r vertices u1, . . . , ur corresponding to vi with one vertex and connect this vertex to
the vertices in

\bigcup r
j=1N(uj). Note that the graph G has r copies of each vertex in

V (H \prime ) \setminus \{ x| y\} and m copies of the vertex x| y, and that the labeling of the vertices
naturally defines a labeling of the edges, where an edge in G whose vertices are labeled
u and v is labeled uv. By construction, uv is an edge in H \prime .

We now define a coloring \chi of G, which we will later show does not contain a
rainbow copy of H. Let \chi 0 be a rainbow coloring of H \prime \prime and fix a color that is not in
\chi 0, say, black. We extend \chi 0 to a coloring of H \prime by coloring the edges in T \prime with a
color  \star . Let an edge uv in G be colored by \chi 0(e), where e is the color of the edge in
H \prime matching the label of uv. For each edge e in H \prime \prime , recolor the edge corresponding to
e in Fe with the color black, and finally recolor each edge colored with  \star with unique
colors that are not used elsewhere in G.

Construction 3.1 was inspired by the construction used in [8] to prove Theorem
1.1. In fact, when the edge xy is not contained in a triangle, NH(x)\cap NH(y) = \emptyset , and
the graph described in Construction 3.1 is equivalent to the construction in [8].

See Figure 2 for an example of how Construction 3.1 works. In what follows,
we will use GH

xy(n) to refer to the edge-colored graph (GH
xy(m,r), \chi ), where m =

n - r(| V (H)|  - 2) and r = max\{ | E(H \prime \prime )| + 1,2\} ; so GH
xy(n) has n vertices. Observe

that the addition of any nonedge in any color within M creates a rainbow copy of H.

x y

e1
e2

e3

e4 e5

H

x|y

H ′

M · · ·

Fe1

· · ·

Fe2

· · ·

Fe5

· · ·

F1

· · ·

· · ·

Fe1 Fe2 Fe3 Fe4 Fe5 F1 Fr−5

M

Fig. 2. An example of the construction of the graph GH
xy(m,r). The dashed edge represents

edges which are originally colored  \star and will be colored with unique colors by \chi . The color black can
be seen replacing other colors according to the index of the copy of F .
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1244 BEHAGUE, JOHNSTON, LETZTER, MORRISON, AND OGDEN

Since r = O(1) and m = n - O(1), there are at most O(n) bad nonedges in GH
xy(n).

Therefore, if GH
xy(n) contains no rainbow copy of H, then Proposition 2.1 will yield

rsat(n,H) =O(n), as required.

4. Completing the proof of Theorem 1.2. The goal of this section is to show
that GH

xy contains no rainbow copy of H.

Proposition 4.1. Let H be a nonempty connected graph. For any edge xy \in 
E(H) that is contained in a triangle and all integers m and r for which it is defined,
the graph GH

xy(m,r) does not contain a rainbow copy of H.

Before proving this, we show why it implies Theorem 1.2 (restated here for con-
venience).

Theorem 1.2. Every nonempty graph H satisfies rsat(n,H) =O(n).

Proof. First, note that by Proposition 2.2, it suffices to prove that every connected
graph H satisfies rsat(n,H) = O(n). Let H be a nonempty connected graph. If H
has a triangle, let xy be an edge contained in a triangle, and write G :=GH

xy(n). Then
| E(G)| = O(n), and G has no rainbow copies of H by Proposition 4.1. Moreover, as
described at the end of section 3, for all but at most O(n) nonedges e, the addition
of e in any color creates a rainbow copy of H. In particular, rsat(n,H) = O(n),
as required. Otherwise, if H is triangle-free, then rsat(n,H) = O(n), using either
Proposition 2.3 if H has a pendant edge or Theorem 1.1 if H has a nonpendant
edge.

Proof of Proposition 4.1. Suppose for contradiction that there exists a connected
graphH and an edge xy \in E(H) contained in a triangle such that GH

xy(m,r) contains a
rainbow copyHR ofH for some integersm,r withm\geq 2 and r\geq max\{ | E(H \prime \prime )| +1,2\} .
Take H to have the minimal number of vertices with respect to these properties, and
fix appropriate m and r such that G := GH

xy(m,r) has a rainbow copy of H. Recall
that the vertices of G are labeled by vertices in H \prime (the graph obtained from H by
contracting xy), M is the set of vertices labeled x| y, and the edges of G are labeled
by edges in H \prime .

Since HR is connected it must contain at least one vertex in M , else it would
be contained entirely within a copy of H \setminus \{ x, y\} , which is impossible as | V (HR)| =
| V (H)| .

Claim 4.2. For every v \in V (H) \setminus \{ x, y\} , the rainbow copy HR uses at least one
vertex labeled v.

Proof of claim. Suppose for contradiction that v is a vertex in V (H)\setminus \{ x, y\} such
that HR uses no vertex labeled v.

Suppose first that v is the unique common neighbor of x and y in H. Then, since
HR uses no vertex labeled v, it uses at most | E(H)|  - 2 colors: at most | E(H \prime \prime )| =
| E(H)|  - | T |  - 1 colors used by \chi 0, and possibly also black. This is a contradiction,
as a rainbow copy of H requires | E(H)| colors.

Next, suppose that the graph Hv := H \setminus \{ v\} is connected. By the previous
paragraph, we may (and will) assume that v is not the unique common neighbor of
x and y. Consider the edge-colored graph G\ast obtained from G = GH

xy(m,r) by the
deletion of every vertex labeled v. As HR contains no vertex labeled v, it is present
in G\ast , and, in particular, G\ast contains a rainbow copy of Hv. Observe that G\ast =
(GHv

xy (m,r), \chi \prime 
0), where \chi \prime 

0 is the restriction of \chi 0 to (Hv)\prime \prime and r \geq max\{ | E(Hv)| +
1,2\} . Since v is not the unique common neighbor of x and y, the edge xy is in a
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THE RAINBOW SATURATION NUMBER IS LINEAR 1245

triangle in Hv. Therefore, since Hv is connected, by minimality of H we know that
GHv

xy (m,r) contains no rainbow copy of Hv. Hence, we obtain a contradiction.
Therefore, we may (and will) assume that, for every non-cut vertex u in H, the

rainbow copy HR contains a vertex labeled u. In particular, v is a cut vertex in
H. Note that x and y are in the same component of Hv since xy \in E(H) and
v \in V (H) \setminus \{ x, y\} . Let C be a component of Hv not containing \{ x, y\} . Take u \in C
of maximum distance from v. Note that u is not a cut vertex of H, and thus, by
assumption, there is a vertex u\prime in HR labeled u. Since HR is connected and contains
at least one vertex in M , there is a path in HR from M to u\prime . However, by our choice
of C, any such path passes through a vertex labeled v, which is a contradiction.

Recall that T is the set of edges in H with one endpoint in S =NH(x) \cap NH(y)
and the other in \{ x, y\} , and that T \prime is the set of edges in H \prime between x| y and S. Note

that | S| = | T \prime | = | T | 
2 \geq 1 since xy is contained in a triangle. By Claim 4.2, we see that

| HR \cap M | \leq 2. We will obtain a contradiction by counting the edges in HR (via two
cases).

First, consider the case where | HR \cap M | = 2. By Claim 4.2, HR contains exactly
one vertex labeled v for each v \in V (H)\setminus \{ x, y\} . Hence there are at most 2| T \prime | edges in
HR with a label in T \prime . Now, consider an edge uv \in E(H \prime )\setminus T \prime , where u \not = x| y without
loss of generality. Since there is exactly one vertex labeled u, all edges labeled uv
belong to the same copy of F , and thus have the same color. It follows that the edges
of HR are colored using at most | E(H \prime )|  - | T \prime | + 2| T \prime | \leq | E(H)|  - 1 colors, which
contradicts the assumption that HR is a rainbow copy of H.

Now, consider the case where | HR \cap M | = 1. In this case, by Claim 4.2 there is
exactly one v \in V (H) \setminus \{ x, y\} that labels two vertices in HR, and every other vertex
in V (H \prime ) appears once as a label. We claim that for every edge e \in E(H \prime ), except
possibly for vx| y (if this is an edge), all edges labeled e have the same color. Indeed,
if e does not contain v, then the claim clearly follows, as there is at most one edge
labeled e. Otherwise, e = uv with u \not = x| y, and thus, since e \in E(H \prime ) \setminus T \prime and all
edges labeled e are in the same copy of F , they all receive the same color. Note that
if vx| y is an edge in H \prime , then there are at most two edges in HR with this label.
Altogether, the edges of HR see at most | E(H \prime )| +1= | E(H)|  - | T \prime | < | E(H)| colors,
which contradicts HR being a rainbow copy of H.

5. Rainbow saturation for cliques. The purpose of this section is to prove
Theorem 1.3, restated here for convenience.

Theorem 1.3. Let r \geq 3. Then rsat(n,Kr) \leq (r + 2
\surd 
2r)n + cr, where cr is a

constant depending only on r.

We begin by proving the following lemma.

Lemma 5.1. For every s \geq 3, there is an edge-colored graph (H,\chi H) on ( s2 ) + s
vertices with the following properties:

(1) the largest rainbow clique in H has ( s2 ) + 1 vertices,
(2) for every v \in V (H), there is a rainbow clique in H \setminus \{ v\} on ( s2 ) + 1 vertices,
(3) for every color c, there is a rainbow clique with ( s2 )+1 vertices containing no

edge colored c.

Proof. Let S be a set of size s. Let H be a complete graph on vertices S \cup S(2),
where S(2) = \{ \{ x, y\} \subseteq S : x \not = y\} is the set of pairs of distinct elements from S.
For each pair \{ x, y\} \in S(2), color the edges (x,\{ x, y\} ) and (y,\{ x, y\} ) with the same
color, picking a different color for each pair. The remaining edges receive a rainbow
coloring, with colors distinct from those used so far.
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1246 BEHAGUE, JOHNSTON, LETZTER, MORRISON, AND OGDEN

We first show that the largest rainbow clique inH has size ( s2 )+1. Suppose that T
is a rainbow clique, and write t := | T \cap S| . For every two distinct vertices x, y \in T \cap S,
the pair \{ x, y\} is not in T , since the edges (x,\{ x, y\} ) and (y,\{ x, y\} ) have the same
color. It follows that | T | \leq t + ( s2 )  - ( t

2 ) \leq ( s2 ) + 1, using the fact that ( t
2 ) \geq t  - 1

for t \geq 0. This shows that H has no rainbow cliques of size at least ( s2 ) + 2. Given
distinct vertices x, y \in S, let T (x, y) := \{ x, y\} \cup (S(2) \setminus \{ \{ x, y\} \} ). It is not difficult to
see that T (x, y) is a rainbow clique of size ( s2 ) + 1, and hence a maximum rainbow
clique. This proves (1).

For (2), let v \in V (H). If v \in S, then for any x, y \in S \setminus \{ v\} , the clique T (x, y)
avoids v (using s \geq 3). If v \in S(2), then v = \{ x, y\} for some x \not = y \in S, and thus the
clique T (x, y) avoids v. This proves (2).

For (3), let c be a color that is used on H (if c does not appear on H, then (3)
holds trivially). Since every color class is either an edge or a path of length 2, there
is a vertex v which is incident with all edges of color c. By (2), there is a maximum
rainbow clique avoiding v and thus c. This proves (3).

We now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Given r \geq 10, let s be the largest integer such that r \geq 
( s2 ) + 1 (so r \leq ( s+1

2 )). Write t := r  - ( s2 )  - 1. Notice that we may take n to be
sufficiently large.

Let (H,\chi H) be an edge colored graph as in Lemma 5.1 (applied with s), and let
T1, T2, and U be pairwise disjoint sets of sizes t, t, and n - 2t - | V (H)| , respectively,
which are disjoint from V (H). Let G be a graph on vertex set V (H) \cup U \cup T1 \cup T2

with edge set E(G) := \{ uv : \{ u, v\} \not \subseteq U and uv /\in T1 \times T2\} . We define a coloring \chi 
on E(G) such that \chi (e) = \chi H(e) for each e \in E(H), and the edges of E(G) \setminus E(H)
receive a rainbow coloring with colors distinct from those used by \chi H . Note that the
vertices of each Ti induce a rainbow clique of size t.

We claim that G contains no rainbow copy of Kr+2. Indeed, suppose W is a
rainbow clique in G. Then W contains at most one vertex from U (as U is an
independent set), at most t vertices from T1 \cup T2 (as no edges exist between T1 and
T2), and at most ( s2 ) + 1 vertices from H (by the choice of \chi H). Thus, | W | \leq 
( s2 ) + 1+ t+ 1= r+ 1, as claimed.

Next, we show that the addition of any nonedge xy in U in any color creates a
rainbow copy of Kr+2. Suppose that xy is colored red, and denote by G\prime the graph
obtained from G by adding xy in red. Then exactly one of the following holds: no
edge in G[V (H)\cup \{ x, y\} ] is red; exactly one of the edges from \{ x, y\} to V (H) is red;
red is used in H. Hence, by the properties of H given by Lemma 5.1 and by definition
of G, there is a maximum rainbow clique W in H such that G[W \cup \{ x, y\} ] does not
contain any red edges. Thus W \cup \{ x, y\} is a rainbow clique of size ( s2 )+3= r - t+2 in
G\prime . Since either T1 or T2 is not incident to any red edge, there is i \in \{ 1,2\} for which
W \cup Ti \cup \{ x, y\} is a rainbow clique of size r+ 2, as required.

Now, as r \leq ( s+1
2 ), we have t \leq ( s+1

2 ) - ( s2 ) - 1 = s - 1. Also, since r \geq ( s2 ), we
have s - 1\leq 

\surd 
2r. Thus, thinking of r as fixed, we have

| E(G)| = (| V (H)| + 2t)(n - | V (H)|  - 2t) + | E(H)| + 2

\biggl( 
t

2

\biggr) 
+ 2t| V (H)| 

= (| V (H)| + 2t)(n - | V (H)|  - 2t) +O(1)

=

\biggl( \biggl( 
s

2

\biggr) 
+ s+ 2t

\biggr) 
\cdot n+O(1)
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THE RAINBOW SATURATION NUMBER IS LINEAR 1247

= (r+ s+ t - 1) \cdot n+O(1)

\leq (r+ 2s - 2) \cdot n+O(1)

\leq (r+ 2
\surd 
2r) \cdot n+O(1).

Observe that G has at most t2 = O(1) bad nonedges, namely the edges uv such
that u \in T1 and v \in T2, so applying Proposition 2.1 yields that rsat(n,Kr+2) \leq 
(r+ 2

\surd 
2r)n+O(1).

6. Conclusion and open problems. Our main theorem shows that for any
graph H the rainbow saturation number rsat(n,H) is linear in n. Given this, it is
natural to ask the following.

Question 6.1. For every graph H, does there exist a constant c= c(H) such that

rsat(n,H) = (c(H) + o(1))n?

Analogous questions have been considered for saturation and the related notion
of weak saturation. The limit limn\rightarrow \infty 

sat(n,H)
n was conjectured to exist by Tuza;

see [16, 17]. Although some progress has been made toward Tuza's conjecture (see
[13, 15]), it remains open.

Another natural direction would be to generalize the notion of weak saturation
to edge-colored graphs. A subgraph G of F is said to be weakly (F,H)-saturated if
the edges of E(F ) \setminus E(G) can be added to G, one edge at a time, in such a way
that every added edge creates a new copy of H. The minimum number of edges in a
weakly (F,H)-saturated graph is known as the weak saturation number and is denoted
wsat(F,H). When F =Kn, we write wsat(n,H) instead of wsat(Kn,H).

We say an edge-colored subgraph (G,\chi ) of F is weakly H-rainbow saturated if
there exists an ordering e1, . . . , em of E(F ) \setminus E(G) such that, for any list c1, . . . , cm
of distinct colors from \BbbN , the nonedges ei in color ci can be added to G, one at a
time, so that every added edge creates a new rainbow copy of H. The weak rainbow
saturation number of H, denoted by rwsat(F,H), is the minimum number of edges in
a weakly H-rainbow saturated graph. When F = Kn, we write rwsat(n,H) instead
of rwsat(Kn,H).

Note that we require the collection of added edges to receive distinct colors. In
particular, we wish to exclude the possibility that all added edges have the same color,
in which case the previously added edges do not contribute to making new rainbow
copies and the problem reduces to the standard rainbow saturation number.

The study of weak saturation numbers was introduced by Bollob\'as [3] in 1968,
where he proved that sat(n,Km) =wsat(n,Km) for all 3\leq m\leq 7 and conjectured that
this equality holds for all m. This conjecture was first proved by Lov\'asz [12] using a
beautiful generalization of the Bollob\'as two families theorem. It would be interesting
to determine whether a similar phenomenon holds for the rainbow saturation number.

Question 6.2. Let r\geq 3. Is rwsat(n,Kr) = rsat(n,Kr)?

It would be interesting to see if upper bounds on rwsat(n,Kr) can be found
that are much stronger than those provided by Theorem 1.3 (note that rsat(n,Kr)\geq 
rwsat(n,Kr)).

Question 6.3. Let r \geq 3. Is it the case that rwsat(n,Kr) \leq rn + O(1) for n
sufficiently large?

Alon [1] proved in 1985 that wsat(n,H) = (c(H) + o(1))n for all graphs H. The
natural generalization of this to hypergraphs was recently proved by Shapira and
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Tyomkin [14]. An analogous question can be considered regarding the weak rainbow
saturation number.

Question 6.4. For every graph H, does there exist a constant c= c(H) such that

rwsat(n,H) = (c(H) + o(1))n?

In the above definition of weak rainbow saturation we do not require (G,\chi ) to be
rainbow H-free. Note, however, that one could alternatively consider the minimum
number of edges in a weakly H-rainbow saturated, rainbow H-free graph. Unlike
with weak saturation numbers, it is not clear whether this gives the same value as
the weak rainbow saturation number of H. Indeed, a graph may contain a rainbow
copy of H and still be a minimal (with respect to edge removal) weakly H-rainbow
saturated graph. For example, a rainbow Kn is weakly Kn-saturated but removing
any edge does not leave a weakly Kn-rainbow saturated graph, due to the stipulation
that adding the edge back in any color must create a rainbow Kn.

6.1. Proper rainbow saturation. As our construction does not give a proper
coloring, it is natural to ask what happens if we restrict our attention to properly
edge-colored graphs. We make the following definition: A properly edge-colored graph
(G,c) is properly H-rainbow saturated if (G,c) does not contain a rainbow copy of H,
but the addition of any nonedge, in any color from \BbbN which preserves the proper
coloring, creates a rainbow copy of H. The proper rainbow saturation number of H,
denoted by prsat(n,H), is the minimum number of edges in a properly H-rainbow
saturated edge-colored graph on n vertices.

Question 6.5. Is prsat(n,H)\leq rsat(n,H) for all H?

It is worth noting that the phrase ``rainbow saturation"" has appeared in the
literature in a different context. Recently, Bushaw, Johnston, and Rombach [4] defined
a different form of rainbow saturation which also requires the coloring to be proper.
We will refer to this concept as BJR proper rainbow saturation to distinguish it from
the definition above.

A graph G is BJR properly H-rainbow saturated if there is a proper coloring of G
that does not contain a rainbow copy of H, but if any nonedge is added to G, then any
proper coloring contains a rainbow copy of H. The BJR proper rainbow saturation
number of H, denoted by prsat\prime (n,H), is the minimum number of edges in a properly
H-rainbow saturated graph on n vertices.

Note that the two definitions are subtly different. Any graph G that is BJR
properly H-rainbow saturated gives rise to a properly H-rainbow saturated edge-
colored graph (G,c) by taking c to be the proper coloring of G that does not contain
a rainbow copy of H. This observation tells us that prsat(n,H) \leq prsat\prime (n,H) for
all n and H. However, the converse might not hold: if (G,c) is properly H-rainbow
saturated, there is no guarantee that every recoloring of G plus a nonedge contains a
rainbow H.

Bushaw, Johnston, and Rombach [4] proved that, for any graph H that does not
include an induced even cycle, the BJR proper rainbow saturation number of H is
linear in n, that is, prsat\prime (n,H) =O(n). They also showed that prsat\prime (n,C4) is again
linear in n and conjecture that, analogously to the classical saturation numbers, the
proper rainbow saturation number is linear in n for every H. Private correspondence
with Bushaw, Johnston, and Rombach and independently with Barnab\'as Janzer in-
forms us that this can be shown by a straightforward application of a result of K\'azsonyi
and Tuza [10]. It follows that prsat(n,H) must also be linear in n for all H. It would
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be interesting to know if there are any graphs H where prsat(n,H) and prsat\prime (n,H)
differ considerably.

Acknowledgment. We would like to thank the anonymous referees for their
helpful comments.
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