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Abstract

Generalization remains a paramount yet unresolved challenge for open-domain

question answering (ODQA) systems, impeding their capacity to adeptly handle

novel queries and responses beyond the confines of their training data. This thesis

conducts a comprehensive exploration of ODQA generalization.

We commence with a meticulous investigation into the underlying challenges.

Drawing upon studies on systematic generalization, we introduce and annotate

questions according to three categories that measure different levels and kinds of

generalization: training set overlap, compositional generalization and novel-entity

generalization. When evaluating six popular parametric and non-parametric models,

we find non-parametric models demonstrate proficiency with novel entities but

encounter difficulties with compositional generalization. Noteworthy correlations

emerge, such as a positive association between question pattern frequency and test

accuracy, juxtaposed with a strong negative correlation between entity frequency

and test accuracy, attributable to closely related distractors. Factors influencing

generalization include cascading errors originating from the retrieval component,

question pattern frequency, and entity prevalence.

Building on these insights, the focus pivots towards the enhancement of passage

retrieval. We propose a novel contextual clue sampling strategy using language

models to address the vocabulary mismatch challenge in lexical retrieval for ODQA.

This two-step method, comprising filtering and fusion, generates a diverse set of

query expansion terms, yielding retrieval accuracy similar to dense methods while

notably reducing the index size.

The subsequent phase concentrates on refining reader models in ODQA through
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flat minima optimization techniques, incorporating Stochastic Weight Averaging

(SWA) and Sharpness Aware Minimization (SAM). Rigorous benchmarking under-

scores the impact of dataset characteristics and model architecture on optimizer

effectiveness, with SAM particularly excelling in Natural Language Processing tasks.

The combination of SWA and SAM yields additional gains, underscoring the pivotal

role of flatter minimizers in fostering enhanced generalization for reader models in

ODQA.



Impact Statement

Question answering serves as the vital link connecting human curiosity to the vast po-

tential of machines, guiding exploration through the boundless realm of information.

The task of Open Domain Question Answering (ODQA) occupies a prominent posi-

tion in this endeavor, charged with the responsibility of providing precise answers

to textual queries across various domains. The intricacies of ODQA encompass

understanding question semantics, retrieving relevant knowledge, and delivering

precise answers within the nuanced context of extensive information sources.

This thesis introduces a robust benchmarking framework tailored specifically

for evaluating the generalization capabilities of ODQA models. Encompassing dif-

ferent levels of generalization requirements, this framework emerges as an essential

resource within the academic community. Researchers and practitioners can use

this benchmark to thoroughly evaluate the performance of a wide range of ODQA

models, taking into account various dimensions and challenges.

Moreover, the thesis presents innovative strategies to elevate the capabilities

of both the reader and retriever components within the ODQA system. In response

to practical constraints encountered in real-world deployment, the work focuses on

refining the retriever component, resulting in improved accuracy while minimizing

index size. This practical enhancement ensures that ODQA models operate more

efficiently in real-life scenarios. Concurrently, optimization efforts are directed

towards the reader component to strengthen its generalization abilities.
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Chapter 1

Introduction

1.1 Thesis Overview

Question answering acts as the intricate bridge connecting human curiosity with the

immense potential of machines and the limitless expanse of information. At its core,

questions function as a conduit through which humans strive to acquire knowledge

about the world surrounding them. Open Domain Question Answering (ODQA)

is such a task, where the system aims to provide accurate answers to the textual

questions inquiring specific facts across various topics or domains. Considering the

example question, as shown in Figure 1.1, the system needs to first understand the

semantics of the question, retrieve relevant knowledge to support the facts around

the question, then finally decide an answer given all the retrieved contexts.

Comprehending the question itself presents a significant challenge. In the

question, “Who got the first Nobel Prize in physics?”, there are several steps involved

in both linguistic and semantic analysis. The question word “who” indicates that

the answer type is a NAME we are seeking. Traditional QA systems heavily rely

on the surface textual patterns of the question to classify the question and answer

(Mollá et al., 2006; Ravichandran and Hovy, 2002; Voorhees, 2001). The model

also needs to identify named entities in the question, such as “Nobel Prize” and

“physics”, which are relevant to the context of the question. Additionally, it’s crucial

to understand the qualifier “first”, which requires strong reasoning capabilities in

models to grasp this specific requirement.
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Q: Who got the first nobel 
prize in physics?

The first Nobel Prize in Physics was awarded in 
1901 to Wilhelm Conrad Röntgen , of Germany , 
who received 150,782 SEK , which is equal to 
7,731,004 SEK in December 2007 . John Bardeen is 
the only laureate to win the prize twice -- in 1956 
and 1972 . Maria Skłodowska - Curie also won two 
Nobel Prizes , for physics in 1903 and chemistry in 
1911 . William Lawrence Bragg was , until October 
2014 , the youngest ever Nobel laureate ; he won the 
prize in 1915 at the age of 25 . Two women have 
won the prize : Curie and Maria Goeppert - Mayer ( 
1963 ) . As of 2017 , the prize has been awarded to 
206 individuals . There have been six years in which 
the Nobel Prize in Physics was not awarded ( 1916 , 
1931 , 1934 , 1940 -- 1942 ) .

A: Wilhelm Conrad Röntgen

Q: Where do the greasers 
live in the outsiders?

A: Tulsa, Oklahoma

The Outsiders is a coming-of-age novel by S.E. 
Hinton published in 1967 by Viking Press. Hinton 
started writing the novel when she was 15 and wrote 
the bulk of it when she was 16 and a junior in high 
school.[1] Hinton was 18 when the book was 
published.[2] The book details the conflict between 
two rival gangs divided by their socioeconomic 
status: the working-class "Greasers" and the 
upper-class "Socs" (pronounced /ˈsoʊʃɪz/—short for 
Socials). The story is told in first-person perspective 
by teenage protagonist Ponyboy Curtis. The story in 
the book takes place in Tulsa, Oklahoma, in 1965, 
but this is never explicitly stated in the book.

Figure 1.1: An example for the task of open domain question answering, where the question
is from the Natural Question dataset (Kwiatkowski et al., 2019a), and the
document is from Wikipedia titled "List of Nobel laureates in Physics" and "The
Outsiders (novel)".

The system then needs to search the vast knowledge sources (e.g. Wikipedia)

to retrieve supportive facts regarding to the question. Ideally, the document should

exhibit a strong affinity to the question, with the answer seamlessly nestled within

an easily recognizable context. For example, in the upper document in Fig. 1.1, the

context “The first Nobel Prize in Physics was awarded in 1901 to Wilhelm Conrad

Röntgen” is an ideal textual match to the question content “the first Nobel Prize in

Physics”. Conversely, “The story in the book takes place in Tulsa, Oklahoma” in the

lower figure mandates a more profound understanding to establish the connection

between the question’s mention of “greasers” and the context’s reference to the

unfolding “story”.

Finally, with the retrieved knowledge from the previous step and the initial

processed question, the system will output an answer. This step is also known as

Reading Comprehension, where the goal is to identify answers from the paired

document. This step can be challenging due to various factors: 1) Complex question

https://en.wikipedia.org//w/index.php?title=List_of_Nobel_laureates_in_Physics&amp;oldid=838175212
https://en.wikipedia.org//w/index.php?title=The_Outsiders_(novel)&amp;oldid=837955086
https://en.wikipedia.org//w/index.php?title=The_Outsiders_(novel)&amp;oldid=837955086
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structure: sometimes questions are long and complicated, lacking clear question

words; 2) Complex document context: the information within the document may

require careful reasoning to derive the essence of its content. Additionally, the

presence of close but incorrect distractors across different retrieved documents adds

complexity; 3) Models may sometimes offer incorrect answers that belong to the

same entity type as the correct one. For instance, picking the right name, date, or

number among multiple similar mentions in a single document can be difficult.

In this thesis, my focus lies on the enhancement of ODQA generalization.

The primary question at hand is: what exactly does "generalization" mean within

the context of ODQA? To fully grasp the concept of generalization in ODQA, it’s

essential to revisit the broader perspective of generalization in the realm of Machine

Learning. This concept pertains to a trained model’s capacity to perform effectively

on novel or unseen data points that were not part of its training phase. Ultimately, the

goal of any machine learning model is to understand and generalize patterns from

the training data to new, real-world situations. Translating this notion to the specific

domain of ODQA, the challenge of generalization encompasses the subsequent

dimensions:

1. Discrepancy in Model Performance between Memorized and Unseen

Question-Answer pairs: There is a large discrepancy in model performance

between questions and answers observed at train time and novel questions and

answers – even if they are derived from the same distribution (Lewis et al.,

2021b).

2. Over-reliance on Memorization: During training, models may excessively

rely on memorized information, often ignoring pertinent documents even when

provided. This tendency to memorize undermines the anticipated ability of the

system to generate answers coherent with retrieved information. Consequently,

this behavior impairs system interpretability and gives rise to hallucination

issues (Bender et al., 2021; Krishna et al., 2021; Longpre et al., 2021).

3. Temporal and Spatial Generalization: Current language models are typically
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trained on static, overlapping time periods. This likely overestimates their

ability for temporal generalization - to perform well on future data (Kasai et al.,

2022; Lazaridou et al., 2021; Liska et al., 2022). A similar issue arises with

spatial generalization - adapting answers to different geographical contexts

(Zhang and Choi, 2021).

4. Addressing Question Ambiguity: Ambiguity of the questions. When dealing

with ambiguous and unclear questions, it’s important to find a set of distinct,

equally plausible answers to the question, and provide minimal yet unambigu-

ous rewrites of the question that clarify the interpretation which leads to each

answer (Chen et al., 2021a; Keyvan and Huang, 2022; Min et al., 2020)

Subsequently, I will delve into the strategies employed to tackle the challenges

associated with generalization in ODQA. The ensuing contents provide a compre-

hensive breakdown of each chapter’s content and its respective description.

PART I: Challenges in Generalization in ODQA
To start with, we need to delve into the factors that contribute to the challenges

posed by novel questions. To achieve this, the paper introduces a comprehensive

framework that categorizes ODQA generalization into three distinct dimensions:

overlap, compositional generalization (comp-gen), and novel-entity generalization.

Overlap pertains to test questions that exhibit high lexical similarity with training

data, while comp-gen involves questions that creatively combine known facts in

novel ways. Lastly, novel-entity questions encompass those containing entities

unseen during training.

In pursuit of a comprehensive understanding, we embark on a methodical

approach to annotate each question in the current popular datasets. It begins by

decomposing questions into elemental components like question words, verbs, and

entities. Furthermore, we meticulously annotate questions within three established

ODQA datasets — Natural Questions, WebQuestions, and TriviaQA — based on the

three identified categories. This groundwork allows for the rigorous evaluation of
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six diverse ODQA models, ranging from retrieval-based approaches to parametric

models, across the specific subsets associated with each category.

The findings presented within this thesis underscore significant performance

disparities between the overlap subset and the others. For instance, there emerges

a considerable 45.7% performance gap for comp-gen questions within the Natural

Questions dataset. Notably, non-parametric models demonstrate a knack for han-

dling novel entities effectively, yet falter when confronted with comp-gen questions.

Conversely, parametric models exhibit reduced performance on novel entities. In-

triguingly, the accuracy of the models positively correlates with the frequency of

question patterns, but this relationship is counterbalanced by a negative correlation

between entity frequency and accuracy due to the prevalence of closely related

distractors. It also comes to light that, for comp-gen questions, the pertinent context

often remains absent within retrieved passages.

The subsequent phase of the study delves into a comprehensive analysis, prob-

ing various factors to discern the nuances of model behavior. The investigation

encompasses facets like question pattern frequency, passage retrieval, and instances

where context is lacking. The collective insights gleaned from this analysis pave the

way for the identification of key issues. Suggestions for enhancing passage retrieval,

effectively handling missing context, and innovatively combining known facts are

among the proposed solutions. Our main contributions are:

1. Pioneering an in-depth investigation into generalization within open-domain

question answering (ODQA), utilizing distinct categories to gauge various

levels and types of generalization. These categories serve as markers in

annotating three previously established ODQA datasets 1.

2. Unveiling a notable revelation: non-parametric models exhibit a relatively

proficient handling of novel question entities, yet they grapple with the intricate

nuances of compositional generalization.

3. Demonstrate and quantify key factors that impact model generalization perfor-

1https://github.com/likicode/QA-generalize

https://github.com/likicode/QA-generalize
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mance, which we believe will show the direction for future research towards

more robust and generalizable ODQA models.

PART II: Improving Retriever - Query Expansion Using Contextual
Clue Sampling with Language Models

We delve into the task of sparse retrieval approaches, specifically focusing

on the effectiveness of query expansion in addressing the persistent vocabulary

mismatch between queries and documents. Despite the emergence of dense retrieval

techniques like DPR (Karpukhin et al., 2020) based on semantic matching for

open-domain question answering, methods rooted in lexical matching such as BM25

retain significance due to their space efficiency. They also serve as valuable inputs

for hybrid approaches (Formal et al., 2021a; Gao et al., 2021). Central to lexical

retrieval’s challenges is the inherent mismatch in vocabulary between the user’s

query and the content of documents being retrieved. To mitigate this long-standing

issue, query expansion methods, which have a history spanning over half a century

(Salton, 1971), have proven effective. Traditionally, these expansion terms are

derived from relevant corpora using pseudo-relevance feedback techniques. In recent

exploration, the study by GAR (Mao et al., 2021) endeavors to reduce the dependency

of query expansion on external corpora. Instead, it employs a large language model

to generate context as a substitute. However, a pivotal concern arises in the process

of generating expansion terms: achieving a delicate balance between diversity and

relevance. Diversity entails capturing multiple possible reasoning paths or contextual

clues that lead to the accurate answer for a given question. Relevance, on the other

hand, necessitates ensuring that generated contexts align with the semantic context

of the query and do not introduce factual errors or semantic irrelevance. A challenge

emerges when generating multiple contexts to enhance diversity, as it often results

in the generation of incorrect or irrelevant information, a phenomenon known as

"hallucination."

To tackle these challenges, we introduce a two-step approach: filtering and

fusion. Following the sampling of top-k outputs from the decoder of the fine-tuned
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language model, the generated contextual clues are grouped into clusters based on

their lexical similarity. In each cluster, where similarities are high, a single context

with the highest generation probability is retained. This filtration step effectively

eliminates potential factual errors and redundant duplicates. Subsequently, the

query is individually enriched with each filtered contextual clue, leading to separate

document retrievals for every augmented query. In the final step, all retrieved

documents are ranked together using the generation probability from the integral

contextual clue in the augmented query.

The evaluation of this approach occurs on benchmark datasets Natural Ques-

tions (Kwiatkowski et al., 2019a) and TriviaQA (Lee et al., 2019). Comparative

analysis reveals that the proposed method bridges the performance gap between

baseline models like GAR and dense retrieval models such as DPR. This approach

outperforms GAR by 3.1% and 2.9% in terms of Top-5/Top-20 accuracy on the

NQ dataset. Furthermore, when compared with DPR, it attains higher Top-100

accuracy by 0.6 and 1.0 points on the two datasets, while remarkably reducing the

storage space required for indexing by 96%. Additionally, the improved retrieval

performance extends its benefits to downstream question answering tasks, wherein

the proposed method enhances the Exact Match scores by 3.2% and 0.8% compared

to documents retrieved using the DPR and GAR techniques. Our main contributions:

1. Propose a novel method to generate diverse and relevant contextual clues from

a language model to expand queries for lexical retrieval.

2. Filters redundant clues by clustering based on lexical similarity and keeping

top ranked per cluster; Augments original query with each filtered clue and

fuses retrieved results weighted by generation probability.

3. Our lexical matching based approach achieves a similar top5/top-20 retrieval

accuracy and higher top-100 accuracy compared with the well-established

dense retrieval model DPR, while reducing the index size by more than 96%.

PART III: Improving Reader - Training the reader model with Flat
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Minima Optimizers

Previous research has proposed and empirically demonstrated that flat minima

within the loss landscape tend to offer superior generalization capabilities compared

to sharp minima. These flat minima exhibit enhanced resilience against minor pertur-

bations in input data. Recent studies have introduced techniques such as Stochastic

Weight Averaging (SWA) and Sharpness Aware Minimization (SAM), showcasing

their ability to locate flatter minima and enhance generalization performance in tasks

like image classification and language modeling. Despite this progress, a compre-

hensive analysis regarding the specific conditions under which these flat minima

optimizers prove effective remains limited. Our aim is to delve into the efficacy of

two prominent flat minima optimizers—Stochastic Weight Averaging (SWA) and

Sharpness Aware Minimization (SAM)—across a diverse array of deep learning

tasks. The overarching objective is to offer a meticulous comparison that assists

practitioners in selecting the most appropriate optimizer for their specific problem.

Initially, we delve into the geometric characteristics of solutions derived from

SWA and SAM by applying them to representative tasks: image classification

utilizing WideResNet on CIFAR-100 and code summarization employing Graph

Isomorphism Networks on OGB-Code2. Through visual analyses of loss landscapes,

our investigation reveals that solutions obtained through SAM occupy distinct basins

in comparison to non-flat solutions, situating closer to sharper directions. Interest-

ingly, the fusion of the SWA concept with SAM, particularly through the averaging

of SAM iterates, referred to as WASAM, yields the flattest solutions.

Expanding our inquiry, we rigorously benchmark SWA, SAM, and WASAM

across an extensive spectrum of 42 tasks encompassing computer vision, natural

language processing, and graph representation learning. This comprehensive eval-

uation accounts for various model architectures, including Convolutional Neural

Networks (CNNs), Transformers, and Graph Neural Networks. The tasks span

classifications, self-supervised learning, open-domain question answering, natural

language comprehension, and graph property prediction. Hyperparameter tuning is

consistently executed through validation sets.
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Our pivotal findings underscore that the effectiveness of optimizers is influenced

by both dataset characteristics and architecture. SWA excels in graph-related tasks,

while SAM demonstrates greater prowess in Natural Language Processing (NLP)

undertakings. Transformers pose a challenge for SWA, whereas both optimizers

yield balanced enhancements in vision-oriented tasks. Intriguingly, the combination

of SWA and SAM generates the most consistent and robust improvements across

the board. In instances where flat minima optimizers fail to yield improvements, we

observe a lack of correlation between training and test loss contours. Focusing on

ODQA reader models, in the context of Natural Questions, SAM consistently uplifts

performance (+0.33), whereas SWA yields mixed outcomes (-0.20) compared to the

baseline. Impressively, averaging SWA and SAM (WASAM) demonstrates the most

substantial enhancement (+0.48). Similarly, for tasks like TriviaQA, SAM displays

remarkable gains (+0.89), surpassing SWA’s improvements (+0.40). Once again,

combining SWA and SAM (WASAM) garners the most pronounced benefits (+0.92).

The main contributions are:

1. Comprehensive comparison of minima found by SWA and SAM: We visualize

linear interpolations between different models and quantify the minimizers’

flatnesses. This analysis yields 4 insights, e.g., despite SAM finding flatter

solutions than SWA as quantified by Hessian eigenvalues, they can be close to

sharp directions, a phenomenon that has been overlooked in the previous SAM

literature. Averaging SAM iterates leads to the flattest among all minima.

2. Extensive Performance Evaluation of SWA and SAM: The performance of SWA

and SAM is rigorously evaluated across 42 tasks spanning various domains

and model types, such as Computer Vision, Natural Language Processing, and

Graph Representation Learning. Nine crucial findings arise, underscoring the

impact of dataset and architecture on optimizer effectiveness. Notably, SAM

consistently enhances results in NLP tasks, while SWA is more effective for

GRL tasks. The study’s code and hyperparameters 2 are openly accessible,

fostering reproducibility and further research.
2https://github.com/JeanKaddour/WASAM

https://github.com/JeanKaddour/WASAM
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Chapter 2

Background

In this Chapter, I’ll provide an overview of the Open Domain Question Answering

(ODQA) task. In Section 2.1, I’ll delve into the fundamental task definition and

explore its historical context, tracing the evolution of traditional methodologies.

Subsequently, I will explore the latest research trends, focusing on three primary

approach paradigms: Retriever-Reader (Section 2.2), QA-pair retriever (Section 2.3),

and Parametric models (Section 2.4). The first two paradigms are often referred

to as non-parametric methods in certain contexts due to their reliance on external

knowledge for answer prediction, while parametric models operate solely based on

their inherent model parameters. In Sec.2.5, I will introduce the most widely-used

approaches to evaluate the retriever and reader model.

2.1 Task Formulation and History
The task of Open Domain Question Answering (ODQA) aims to provide answers to

the input questions of a diverse range of topics, without given any specific relevant

context. It requires the system to first explore relevant knowledge (either externally

or internally) in order to answer the question. The underlying sources of information

that enable question answering encompass various forms, including structured knowl-

edge bases, semi-structured tabular data, and unstructured textual content extracted

from web documents. In this thesis, we will focus on the factoid natural language

questions, expecting the answers to be short and concise, and the knowledge source

to be textual documents from a large corpus such as Wikipedia.
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The exploration of Open Domain Question Answering (ODQA) dates back

to a rich history of research endeavors. One of the earliest and widely recognized

question-answering systems was crafted to address inquiries related to American

baseball games, as documented by Green Jr et al. (1961). This pioneering system

was composed of two core components: linguistic and semantic analyses. The initial

phase, termed the "syntactic routine," undertook a sequential identification of noun

phrases, prepositional phrases, and adverbial phrases, consequently pinpointing the

subject and object linked to each verb. Additionally, it scrutinized words designated

as question words. To illustrate, consider the question, "How many games did the

Yankees play in July?" The syntactic analysis transformed this query into a structured

form, "[How many games] did [the Yankees] play (in [July])?" Each annotation

carried distinct meanings, aiding subsequent stages. Subsequently, the "Content

Analysis" phase harnessed dictionary meanings and the outcomes of the syntactic

analysis to formulate a specification list tailored for the processing program. In

the example mentioned earlier, the phrase "how many games" transformed into the

directive "Game(number of) = ?". Lastly, the processor endeavored to locate matches

for all the specified pairs on the generated spec list. This early work exemplified the

foundational steps towards automating question-answering through linguistic and

semantic analysis, marking a significant milestone in the journey towards more so-

phisticated ODQA systems. However, they heavily depend on manually crafted rules

for linguistic and semantic analysis, struggle with variations in question phrasing

and structure, and specifically tailored to some subsets of English questions (Bobrow

et al., 1964; Kirsch, 1964; Simmons, 1965).

The concept of ODQA emerged within the context of the QA track is initiated

by the Text Retrieval Conference (TREC-8; Voorhees et al., 1999). The goal of the

track is to foster research on systems that retrieve answers rather than documents

in response to a question, with an emphasis on systems that can function in unre-

stricted domains. Each response was evaluated by human assessors, who considered

a response correct if it contained an answer within the snippet. However, the com-

parative effectiveness of different systems was often obscured by the situation where
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two snippets could both contain correct answers, yet one was markedly superior as

a response (Ellen, 2001). To address this issue and encourage systems to exhibit

their capability to precisely locate answers, the TREC 2002 task (Voorhees, 2003)

demanded systems to provide exact answers—complete answer text without any

additional content. Responses that included a correct answer along with extraneous

text were considered "inexact" and did not contribute to a system’s score. Pinpoint-

ing the exact boundary of an answer was a more challenging problem compared

to merely identifying a text portion containing an answer. Additionally, certain

applications of QA technology did not necessitate this additional step. In light of

this, the TREC 2003 track (Voorhees and Buckland, 2003) introduced a "passages"

task to cater to research groups interested in applications that allowed for the return

of text segments containing answers. Simultaneously, the main task continued to

require exact answers. While the passages task’s question set exclusively contained

factoid questions, the main task encompassed a broader range, including list and

definition questions alongside factoid questions. These different question types were

evaluated separately, and the final score for a main task run was a composite of the

scores attained for the three distinct question types. Since TREC 2004 (Voorhees,

2004), factoid and list questions were organized into distinct series, each focused

on a specific target. This format enabled the evaluation of different question types

while simulating a user session. Targets could be people, organizations, or things.

In TREC 2005 and 2006 (Voorhees and Dang, 2005), answers are required to be

temporally accurate within the series’ timeframe, and the distinction between lo-

cally and globally correct answers was reinforced. They also introduce a refined

nugget pyramid evaluation method, in which multiple assessors provide judgments

of whether a nugget was vital or simply okay. In TREC 2007 (Dang et al., 2007),

the series-based question format continued, but the document collection expanded to

include both newswire and blogs. This introduced challenges in handling informal

and less reliable discourse structures and non-well-formed language, crucial for

real-world QA systems. Overall, the progression of the TREC Question Answering

track aims to closely align with real-world challenges, significantly propelling the
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Figure 2.1: An illustration of traditional architecture of the ODQA system (Zhu et al., 2021).

advancement of ODQA.

The traditional ODQA system comprises three steps: Question Analysis, Docu-

ment Retrieval, and Answer Extraction (illustrated in Fig.2.1). I will discuss each of

the step in the follows:

Question Analysis. It plays a crucial role in understanding and preparing the user’s

question for subsequent stages. It usually involves a query formulation module,

where the question is processed into syntactic parse structures, and semantic key

words (Fan et al., 2005; Kwok et al., 2001). The question’s syntactic structure could

better help extract plausible answers from the pages returned by the search engine.

Moreover, this process leans on the question classification module to ascertain the

specific type of question based on a predefined classification system. Questions

generally adhere to predictable linguistic patterns, enabling their classification into

categories like "what," "why," "who," "how," "when," "where," and more. The

determined question type then significantly reduces the pool of possible answers

during the answer extraction stage (Allam and Haggag, 2012). For instance, consider
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the question "Q: Which city has the largest population?" The objective here is

to classify this question within the "city" answer type, which implies that only

responses fulfilling the criteria of being cities need to be considered. Notably, Li and

Roth (2002) define a two-layered taxonomy, which represents a natural semantic

classification for typical answers in the TREC task. The hierarchy contains 6 coarse

classes (ABBREVIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMERIC VALUE) and 50 fine classes (such as "animal", "body", "color" etc.

for ENTITY). They design design a sequence of two simple classifiers to assign

questions into fine classes.

Document Retrieval. This step aims at retrieve relevant documents from large

corpus that are more likely to contain the answer to the question. Traditional retrieval

approaches include Boolean Model, Vector Space model and Probabilistic Models

(Schütze et al., 2008). The Boolean Model is a simple and foundational retrieval

approach. In this model, both the queries and documents are represented as sets of

terms (words). The idea is to express queries using Boolean operators like AND,

OR, and NOT to combine terms and retrieve documents that match the query’s

terms. If a document contains all the terms in the query, it’s considered relevant.

Conversely, documents not containing certain terms are excluded using NOT. The

Vector Space Model represents both queries and documents as vectors in a high-

dimensional space. Each dimension corresponds to a unique term, and the vector’s

value in each dimension represents the term’s importance in the document or query

(Salton, 1972). The similarity between a query vector and a document vector is

computed, often using techniques like cosine similarity. The higher the similarity,

the more relevant the document is to the query. This model is more flexible and

can capture partial relevancy, allowing for a more nuanced approach to retrieval

compared to the Boolean Model. A popular example of Probabilistic Models is the

Okapi BM25 model (Crestani et al., 1998; Roberts et al., 2020; Robertson et al.).

These models integrate probabilistic relationships between terms and documents

into their framework. They consider factors like term frequency, document length,

and collection statistics to estimate relevance more effectively. BM25 has been
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particularly successful in this regard, making it a widely used retrieval model.

Answer Extraction. This step fulfils the ultimate goal of the task of ODQA - re-

turning an accurate answer to the given question. Following the question analysis

step, the anticipated answer’s type is established and aligned with a set of entity

categories. Subsequently, Named Entity Recognition (NER) is employed to isolate

the entity categories found within a text segment. If a given text fragment lacks enti-

ties that match the expected answer’s type, the text is either discarded or subjected

to significant penalties. Mollá et al. (2006) show that employing multiple labels

in NER to enhance the recall of named entities is beneficial for the QA process.

When NER provides multiple potential labels for a string or its part, presenting the

most credible alternatives aids the QA system in finding answers more effectively.

While this approach may introduce noise due to potentially incorrect entities being

included, the increase in recall effectively balances out this drawback, making it

a valuable strategy for improving QA performance. Moreover, another effective

approach explores the potential of surface patterns (Soubbotin and Soubbotin, 2001;

Voorhees, 2001). The main idea is: "The core of our question-answering mechanism

is searching for predefined patterns of textual expressions that may be interpreted

as answers to certain types of questions. The presence of such patterns in analyzed

answer-string candidates may provide evidence of the right answer." (Soubbotin and

Soubbotin, 2001). Specific answer types are often associated with distinct phrases.

For instance, BIRTHDATE questions often yield responses like "Mozart was born in

1756" or "Gandhi (1869–1948). . . ". This implies that regular expressions such as

"<NAME> was born in <BIRTHDATE>" can effectively identify correct answers.

Various work present an approach for automatically learning such regular expressions

(along with determining their precision) from the web, for given types of questions

(Ravichandran and Hovy, 2002).

2.2 Retriever-Reader

The retriever-reader framework includes two modules: a retriever to retrieve the

most relevant documents from an extensive corpus in response to a given input query,
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Dense Sparse

Supervised

DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2020),
PAIR (Ren et al., 2021),
AR2 (Zhang et al., 2021),
RocketQA (Du et al., 2021),
COLBERT (Khattab and Zaharia, 2020)

DeepCT (Dai and Callan, 2020),
DeepImpact (Mallia et al., 2021),
COIL (Gao et al., 2021),
uniCOIL (Lin and Ma, 2021a),
SPLADE (Formal et al., 2021a,b)

Unsupervised
LSI (Atreya and Elkan, 2011),
LDA (Wei and Croft, 2006)

BM25 (Robertson et al.),
tf-idf (Salton et al., 1975)

Table 2.1: A taxonomy of retrieval models (Lin, 2022)
.

and a reader to yield the answer given both the query and the retrieved documents.

In this section, we will delve into each module separately: first, exploring the

retrievers under a unified taxonomy, followed by an in-depth examination of various

approaches to the reader model.

2.2.1 Document Retriever

Information retrieval is commonly defined as follows: When presented with an

information need in the form as a query q, the main goal of information retrieval

is to provide a ranked list of k documents d1,d2, ...,dk from an extensive yet finite

collection of documents D. The task is sometimes also referred to as top-k retrieval

(or ranking), with "k" representing the pre-defined length of the ranked list. The

top-k ranked lists are usually phrased as the ranked list of results (or the "hits").

Lin, 2022; Lin and Ma, 2021b propose a conceptual framework (as shown in

Table 2.1) that unites the traditional sparse retrieval and more recent dense retrieval

approaches. They are categorized along two dimensions: the contrast between dense

vs. sparse vector representations, and the contrast between supervised (learned)

vs. unsupervised approaches. In this section, we will describe the each of retrieval

direction under this framework.

Learnt Dense Representations. Dense retrieval method involves training encoders

(commonly transformer-based) to convert both queries and documents into dense

fixed-width vectors. These dense vectors are designed to capture the semantic

meaning and contextual information of the queries and documents. Then the system

computes the similarity between the query vector and each document vector. Various
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similarity metrics like cosine similarity or dot product can be used to measure how

closely related the query and documents are. With the calculated similarity scores,

the documents are then ranked based on their relevance to the query. The top-k

documents with the highest similarity scores are then returned as the search results.

DPR (Karpukhin et al., 2020) is one of the most popular dense retrieval model.

They train two independent BERT (Devlin et al., 2019) networks to encode query

and document separately, then take the representation at the front CLS token as the

output representation. In this way, each document in the collection and each query

can be indexed into the low-dimensional and continuous space. During training

time, the embedding is designed to optimize the inner product between question and

relevant document vectors, following an objective that involves comparing all pairs

of questions and documents within a batch. They optimize the loss function by using

the negative log likelihood of the positive document:

L(qi,d+
i ,d−i,1, ...,d

−
i,n) =− log

esim(qi,d+
i )

sim(qi,d+
i )+∑

n
j=1 esim(qi,d−i, j)

(2.1)

where d+
i indicates relevant positive document, and d−i indicates irrevelant

negative document. The selection of in-batch negative examples is decisive for

learning a high-quality encoder. Many other research work explores more effective

ways of "hard negative" selection. The approach of ANCE (Xiong et al., 2020)

constructs negatives from an Approximate Nearest Neighbor (ANN) index of the

corpus, which is parallelly updated with the learning process to select more realistic

negative training instances. They use a recent checkpoint to update the representation

of documents in the corpus and once finished, refreshes the ANN index with most up-

to-date encodings. To address the challenge of the existence of unlabeled positives

and limited training data, Du et al., 2021 proprose the denoised hard negatives

technique which allow to filter false negatives from sampled hard negatives, and

data augmentation to increase the amount of training data by adding newly created

synthetic data from existing data. Besides the distance between query and document

embeddings, the distance between positive and negative document embeddings are

also considered (Ren et al., 2021). They learn passage-centric similarity relation
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for enhancing the dual-encoder architecture through a two-stage training procedure:

pre-train the model with combined loss, and fine-tune the model to optimize the

query-centric loss only. Other techniques also leverage adversarial training (Zhang

et al., 2021) to optimize a ranker and a retriever a minimax adversarial objective. The

retriever’s objective is to retrieve negative documents strategically, aiming to deceive

the ranker. Conversely, the ranker’s goal is to rank a set of candidates comprising

both ground-truth and retrieved documents. It also provides constructive feedback

to the dual-encoder retriever in a progressive manner. Pre-training large bi-encoder

models on a corpus of 65 million synthetically generated question-answer pairs from

Wikipedia and a corpus of 220 million post-comment pairs from Reddit has also

been proven effective (Oguz et al., 2022).

The approaches mentioned earlier all revolve around bi-encoder architectures.

However, there exists an alternative design known as cross-encoders, exemplified

by the monoBERT model (Nogueira et al., 2019a). In this paradigm, a query and a

document are inputted jointly into a pretrained transformer using a specific template.

The contextual representation of the [CLS] token is then harnessed for relevance

classification. Comparing bi-encoders and cross-encoders, the former enjoys in-

creased efficiency gains because the representations for candidate documents can be

precomputed. By employing an approximate nearest neighbor search (ANN), rele-

vant documents can be computed for a query with heightened efficiency. However,

cross-encoder approaches consistently outperform bi-encoders due to their adeptness

at capitalizing on the relevance attention signals between the query and candidate

documents in each layer of the Transformer encoder. A significant breakthrough

in this domain is demonstrated by COLBERT (Khattab and Zaharia, 2020), which

showcases that ranking methods reliant on dense representations can reach levels

of effectiveness comparable to cross-encoder designs. COLBERT takes advantage

of the same BERT model for encoding both queries and documents. The relevance

determination takes place through a subsequent interaction step (MaxSim operation),

which captures the nuanced similarity between query and document embeddings.

This permits the offline precomputation of document representations while main-
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taining robust matching capabilities. Empirical evaluations underscore that in terms

of query latency, COLBERT substantially narrows the gap between monoBERT

and pre-BERT neural ranking models, with only modest declines in effectiveness.

However, alongside its strengths, COLBERT introduces a concept termed "space

efficiency" — the storage space required for document representations. Remarkably,

they necessitate 156 GB of storage space for corpus storage, a figure two orders of

magnitude larger than the 2.5 GB demanded by the index of the same collection in

Lucene. Consequently, when evaluating efficiency, factors such as query latency,

computational expenses during the indexing phase, and also storage costs become

pivotal considerations.

Unsupervised Dense Representations. There is little work in this category in gen-

eral. Suggested by Lin, 2022, LSI (Atreya and Elkan, 2011) and LDA (Wei and

Croft, 2006) can be included in this category.

Unsupervised Sparse Representation. In the sparse retrieval approach, the query

and document is represented as separate sparse bag-of-words vector representations

of dimension V (V is the vocabulary size). Each dimension in the sparse vector

corresponds to a term in the vocabulary, and each termis weighted according to the

BM25 scoring function. More details are described in Sec.4.1.

Learnt Sparse Representations. Sparse representation learning for queries and

documents has a long history. This problem can be formulated as a supervised

learning task to determine term weights for vectors of the same size as the vocabulary.

One of the earliest instances of this concept use genetic algorithms on boolean

vectors and a small set of relevance judgments for representational learning (Gordon,

1988). Trotman, 2005 develops better BM25-like scoring functions based on genetic

programming.

With the development of pre-trained language models, DeepCT (Dai and Callan,

2020) first generate the contextualized word representations using BERT (Devlin

et al., 2019), then predict term weights through linear regression. Given the ground

truth term weight for every word in text, DeepCT aims to minimize the mean square

error (MSE) between the predicted weights and the target weights. DeepCT has a
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limitation where it is trained using a per-token regression task, requiring ground truth

term weights for each word, which hinders the individual impact scores from co-

adapting to the objective of identifying relevant documents. In constrast, DeepImpact

(Mallia et al., 2021) addresses this limitation by directly optimizing the sum of query

term impacts to maximize the score difference between relevant and non-relevant

passages for the query. They aim to jointly learn the final term impact across all

query terms occurring in a passage. Additionally, they incorporate the idea from

DocT5Query (Nogueira and Cho, 2019) to enrich the document with potential query

terms, aiming to overcome the vocabulary mismatch problem. Concurrently, SOIL

(Gao et al., 2021) first produce representations for each document token with deep

LLM offline, then build the token’s contextualized inverted list. During inference

time, they use each query token to look up its own inverted list and compute vector

similarity with document vectors stored in the inverted list as matching scores. In

SOIL, the scoring model assigns each term a vector weight, stored in standard

inverted lists. Lin and Ma, 2021a further reduce the token dimension of COIL to one,

and degenerate the model into producing scalar weights. Similarly, SPLADE (Formal

et al., 2021b) and SPLADE (Formal et al., 2021a) produce a sparse vocabulary-level

vector that retains the term-level decomposition of late interaction while simplifying

the storage into one dimension per token.

Retrieve-and-Rerank . After the initial retrieval step, the system has already re-

trieved a set of candidate documents that are potentially relevant to the given query.

However, the retrieved documents might still contain irrelevant or noisy information.

It is common to employ a later-stage document reranker to reevaluate and refine

the ranking of these candidate passages to identify the most relevant ones more

accurately. This stage is crucial because the initial retrieval might have retrieved a

large number of documents. Its primary objective is to prioritize the most relevant

documents, potentially discarding irrelevant ones, and passing only the most promis-

ing ones to the subsequent stages. To enhance the effectiveness of this process, the

system can deploy multiple rerankers, allowing the output of each stage to serve as

the input for the next, leading to a cascade effect. This approach is often referred to
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as "retrieve-and-rerank." To exploit the tradeoff between effectiveness and efficiency,

early reranking stages leverage computational "cheap" features to discard easily

identifiable irrelevant documents. Subsequently, the later stage reranking steps focus

on computing "expensive" features, but this is done on a relatively smaller subset of

candidate documents.

In post-BERT era, Nogueira and Cho, 2019 first propose a two-stage pipeline,

where first using BM25 lexical retrieval to fetch documents candidates, then rerank-

ing the candidates with BERT neural models. The sentence-level (Yilmaz et al.,

2019) and passage-level (Dai and Callan, 2019) relevance scores from BERT are

both separately explored for document reranking. Moving beyond simple passage

score aggregation strategies, Li et al., 2020b extensively compare the previously

proposed approaches for aggregating passage-level signals, and explore strategies

for aggregating relevance signals from a document’s passages into a final ranking

score (PARADE). Other works (Soldaini and Moschitti, 2020) observe that models

such as monoBERT (Nogueira and Cho, 2019) works similarly as a multi-stage rank-

ing architecture if we consider each layer of the transformer encoder as a separate

ranking stage. With Cascade Transformer, they adapt transformer-based models

into a cascade of rankers. Each ranker is used to prune a subset of candidates in a

batch, thus dramatically increasing throughput at inference time. Yet more recent

work explores merging the two-stage pipeline into an end-to-end dense retrieval task,

training a single BERT-based model that is capable of retrieving and rank documents

simultaneously (Karpukhin et al., 2020).

2.2.2 Reader

The reader model aims at inferring the answer from a set of retrieved (and reranked)

documents in response to the given question. The reader models can be broadly

categorized into extractive and generative ones.

Extractive Reader. In brevity, extractive reader extracts a span from the document

as an answer to the input question, with the goal of predicting the span start and

end positions. The encoder of the reader model initially takes the concatenation

of the question and document as the input context, then produces the contextual
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representations h1,h2, ..,hn where hi corresponds to each of the token in the context.

The probability of a token being the start or ending positions of an answer span is

calculated as following:

Pstart,i(s) = softmax(hi ·wstart)

Pend,i(s) = softmax(hi ·wend)
(2.2)

where wstart and wend indicates the separate linear layer on top of the contextual

representations to independently predict the probability of each context token being

start and end positions. The BERT-based extractive readers are widely used in

previous work to locate the answer (Karpukhin et al., 2020; Wu et al., 2020; Yang

et al., 2019).

Generative Reader. The generative reader is typically based on a sequence-to-

sequence model (such as T5; Raffel et al., 2020 and BART; Lewis et al., 2020a).

It takes the question and the document as input, and generate the answer. The

training objective is to optimize the cross-entropy loss between the predicted answer

sequence and the ground-truth answer. For instance, as an initial step, Fusion-in-

Decoder (FiD; Izacard and Grave, 2021) encodes the concatenation of the question,

each retrieved document and its title into separate hidden state. Then the decoder

performs attention over the concatenation of all the resulting representations of all

the retrieved documents. The model only fuses all the supported evidence in the

decoder. Assuming that the attention scores over question-answer pairs in the reader

module effectively indicate the relevance of a passage for answering a question,

they delve deeper into the concept. They propose to use the reader module as the

teacher model and harnessing the knowledge distilled from the question-answer

pairs. Subsequently, they train the retriever to estimate the reader’s attention scores

(Izacard and Grave, 2020). Retrieval-Augmented Generation (RAG; Lewis et al.,

2020b) combine the retriever and the reader in an end-to-end probabilistic model.

For the encoded query, they retrieve the top-K most relevant documents and retreat

the document representations as a latent variable. The reader model then condition

on these latent documents to generate the output. Singh et al., 2021 presents an-
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other end-to-end differentiable training method for retrieval-augmented systems that

combine information from multiple retrieved documents when generating answers.

They approximate the process of marginalizing over retrieved documents with an

expectation-maximization algorithm.

While both extractive and generative reader models are successfully applied to

the question answering task, it naturally raises a question: what are the strengths

and weaknesses of these two category of models? Luo et al., 2022 perform a system

comparison on this issue by exploring nine transformer-based models as backbone

architectures. Several insightful findings emerged from the comparison: i) The choice

of pre-trained language model (T5; Raffel et al., 2020 vs. BART; Lewis et al., 2020a)

affects extractive and generative performance; ii) With the extractive reader built on

T5’s encoder, extractive readers perform better than generative readers on average;

iii) Extractive readers excel in short contexts and demonstrate better generalization

on out-of-domain datasets and rare answers, whereas generative readers perform

better in long contexts; iv) Encoder-decoder models’ encoders are effective extractive

readers. Extractive readers built on top of BART or T5 encoders outperform encoder-

only models such as RoBERTa; v) Longer inference length has a positive effect for

all models.

2.3 QA-pair retriever
The material in this section first appeared in:

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich

Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel.

"Paq: 65 million probably-asked questions and what you can do with

them." Transactions of the Association for Computational Linguistics 9

(2021): 1098-1115.

Besides the retrieve-and-read paradigm where they typically index the whole

corpus, there is another paradigm where models explicitly retrieve (training) QA

pairs (Lewis et al., 2021b; Xiao et al., 2021). These models have a number of use-

ful properties, such as fast inference, interpretable outputs (by inspecting retrieved
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QA-pairs), and the ability to update the model’s knowledge at test time by adding

or removing QA-pairs. However, the traditional QA-pair retriever models are cur-

rently not competitive with retrieve-andread systems in terms of accuracy, largely

because the training QA-pairs they operate on cover substantially less knowledge

than background corpora like Wikipedia.

In Lewis et al., 2021c, we present Probably Asked Questions (PAQ), a semi-

structured Knowledge Base (KB) of 65M natural language QA-pairs, which models

can memorise and/or learn to retrieve from. PAQ differs from traditional KBs in

that questions and answers are stored in natural language, and that questions are

generated such that they are likely to appear in ODQA datasets. PAQ is automatically

constructed using a question generation model and Wikipedia. I will discuss in

details about the generation process below.

2.3.1 Generating Question-Answer Pairs

Given a large background corpus C, the QA-pair generation process consists of the

following components:

1. A passage selection model ps(c), to identify passages which humans are likely

to ask questions about.

2. An answer extraction model pa(a|c), for identifying spans in a passage that

are more likely to be answers to a question.

3. A question generator pq(q|a,c) that, given a passage and an answer, generates

a question.

4. A filtering QA model p f (a|q,C) that generates an answer for a given question.

If an answer generated by p f does not match the answer a question was

generated from, the question is discarded. This ensures generated questions

are consistent.

As shown in Figure 2.2, these models are applied sequentially to generate QA-

pairs, similarly to contextual QA generation (Alberti et al., 2019; Lewis et al., 2019).

First a passage c is selected with a high probability under ps. Next, candidate answers

a are extracted from c using pa, and questions q are generated for each answer using
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Figure 2.2: Top Left: Generation pipeline for QA-pairs in PAQ. Top Right: PAQ used as
training data for CBQA models. Bottom Left: RePAQ retrieves similar QA-pairs
to input questions from PAQ. Bottom right: RePAQ’s confidence is predictive of
accuracy. If confidence is low, we can defer to slower, more accurate systems,
like FiD.

pq. Lastly, p f generates a new answer a′ for the question. If source answer a

matches a′, then (q,a) is deemed consistent and added to PAQ. The pipeline is based

on Alberti et al. (2019), updated to take advantage of recent modelling advances.

Passage selection and our filtering approach are novel contributions to the best of

our knowledge, specifically designed for ODQA QA-pair generation.

Passage Selection. It is used to find passages that are likely to contain information

that humans may ask about, and thus make good candidates to generate questions

from. We learn ps using a similar method to Karpukhin et al. (2020). Concretely,

we assume access to a set of positive passages C+ ⊂ C, obtained from answer-

containing passages from ODQA train sets. As we do not have a set of labelled

negatives, we sample negatives either randomly or using heuristics. We then max-

imize log-likelihood of positive passages relative to negatives. We implement ps

with RoBERTa (Liu et al., 2019) and obtain positive passages from Natural Ques-

tions (NQ, Kwiatkowski et al., 2019a). We sample easy negatives at random from

Wikipedia, and hard negatives from the same Wikipedia article as the positive pas-

sage. Easy negatives help the model to learn topics of interest, and hard negatives

help to differentiate between interesting and non-interesting passages from the same

article.

Answer Extraction. Given a passage, this component identifies spans that are likely

to be answers to questions. We consider two alternatives: an off-the-shelf Named
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Entity Recogniser (NER) or training a BERT (Devlin et al., 2019) answer extraction

model on NQ.

Question Generation. Given a passage and an answer, this model generates likely

questions with that answer. To indicate the answer and its occurrence in the passage,

we prepend the answer to the passage and label the answer span with surrounding

special tokens. We train on a combination of NQ, TriviaQA, and SQuAD, and

perform standard fine-tuning of BART-base (Lewis et al., 2020a) to obtain pq.

Filtering. The filtering model p f improves the quality of generated questions, by

ensuring that they are consistent: that the answer they were generated is likely to

be a valid answer to the question. Previous work (Alberti et al., 2019; Fang et al.,

2020) has employed a machine reading comprehension (MRC) QA model for this

purpose, p f (a|q,c), which produces an answer when supplied with a question and

the passage it was generated from. We refer to this as local filtering. However, local

filtering will not remove questions which are ambiguous (Min et al., 2020), and

can only be answered correctly with access to the source passage. Thus, we use an

ODQA model for filtering, p f (a|q,C), supplied with only the generated question,

and not the source passage. We refer to this as global filtering, and later show it is

vital for strong downstream results. We use FiD-base with 50 passages, trained on

NQ (Izacard and Grave, 2021).

2.3.2 RePAQ Retriever and Reranker

RePAQ Retriever. Our retriever adopts the dense Maximum Inner Product Search

(MIPS) paradigm, that has recently been shown to obtain state-of-the-art results

in a number of settings (Karpukhin et al., 2020; Lee et al., 2021, inter alia). Our

goal is to embed queries q and indexed items d into a representation space via

embedding functions gq and gd , so that the inner product gq(q)⊤gd(d) is maximised

for items relevant to q. In our case, queries are questions and indexed items are

QA-pairs (q′,a′). We make our retriever symmetric by embedding q′ rather than

(q′,a′). As such, only one embedding function gq is required, which maps questions

to embeddings. This applies a useful inductive bias, and we find that it aids stability

during training.
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Learning the embedding function gq is complicated by the lack of labeled

question pair paraphrases in ODQA datasets. We propose a latent variable approach

similar to retrieval-augmented generation (Lewis et al., 2020b). Once the embedder

gq is trained, we build a test-time QA system by embedding and indexing a QA

KB such as PAQ. Answering is achieved by retrieving the most similar stored

question, and returning its answer. The matched QA-pair can be displayed to the

user, providing a mechanism for more interpretable answers than CBQA models and

many retrieve-and-read generators which consume thousands of tokens to generate

an answer. Efficient MIPS libraries such as FAISS (Johnson et al., 2019) enable

RePAQ’s retriever to answer 100s to 1,000s of questions per second. We use a KB

for RePAQ consisting of train set QA-pairs and QA-pairs from PAQ.

RePAQ Reranker. Accuracy can be improved using a reranker on the top-K QA-

pairs from the retriever. The reranker uses cross-encoding, and includes the retrieved

answer in the scoring function for richer featurisation. The model is trained as a

multi-class classifier, attempting to classify a QA-pair which answers a question

correctly against K-1 retrieved QA-pairs which do not. For each QA-pair candidate,

we concatenate the input question q with the QA-pair (q′,a′), and feed it through

ALBERT, and project the CLS representation to a logit score. The model produces a

distribution over the K QA-pairs via softmax, and is trained to minimize the negative

log-likelihood of the correct QA-pair. We obtain training data in the following

manner: for a training QA-pair, we retrieve the top 2K QA-pairs from PAQ using

RePAQ’s retriever. If one of the retrieved QA-pairs has the correct answer, we treat

it as a positive, and randomly sample K-1 of the incorrect retrieved questions as

negatives. We train with K=10, and rerank 50 QA-pairs at test time. The reranker

improves accuracy at the expense of speed. However, as QA-pairs consist of fewer

tokens than passages, the reranker is still faster than retrieve-and-read models, even

for architectures such as ALBERT-xxlarge.

We show that PAQ and RePAQ provide accurate ODQA predictions, at the level

of relatively recent large-scale retrieve-and-read systems such as RAG (Lewis et al.,

2020b) on NaturalQuestions (Kwiatkowski et al., 2019a) and TriviaQA (Joshi et al.,
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2017). PAQ instances are annotated with scores that reflect how likely we expect

questions to appear, which can be used to control the memory footprint of RePAQ

by pruning the KB accordingly. As a result, RePAQ becomes flexible, allowing us to

configure QA systems with near state-of-the-art results, very small memory size, or

inference speeds of over 1,000 questions per second.

PAQ can also be used as a source of training data for CBQA models. BART

models trained on PAQ outperform standard data baselines by 5%. However, these

models struggle to effectively memorise all the knowledge in PAQ, lagging behind

RePAQ by 15%. This demonstrates the effectiveness of RePAQ at leveraging PAQ.

Finally, we show that as RePAQ’s question matching score correlates well with

QA accuracy, it effectively “knows when it doesn’t know”, allowing for selective

question answering (Voorhees and Buckland, 2003) where systems may abstain from

answering. Whilst answer abstaining is important in its own right, it also enables an

elegant “back-off” approach where we can defer to a more accurate but expensive

QA system when the answer confidence is low. This allows us to make use of the

best of both speed and accuracy.

2.4 Parametric Models

The paradigms we previously explored in sections 2.2 and 2.3, namely the retriever-

and-reader approach and the qa-pair retriever approach, can be classified as non-

parametric models. This classification arises from their reliance on external resources

to formulate answers to the provided questions. In contrast, the parametric model

paradigm represents another distinct approach. Parametric models rely exclusively

on the information stored within their parameters to formulate answers. These

models encapsulate their understanding of the given knowledge solely through their

learned parameters, making them self-contained in generating responses. They are

also referred to as "closed-book" models. They are directly trained with QA pairs

without access to an external corpus and thus store the required knowledge in its

entirety in the model parameters. Previous work has analyzed the generative models

such as BART-large and T5-11B (Lewis et al., 2021b). According to the previous
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observations and the experiments in Sec. 3, parametric models with more parameters

are more effective at memorizing knowledge acquired at training time. However,

they struggle to generalize to novel questions, with some model architectures show-

ing no meaningful generalization capabilities at all. Additionally, there exists a

large performance gap between non-parametric and parametric models. Liang et al.

(2022) an extensive assessment of 30 prominent language models, scrutinizing their

capabilities in 26 specific contexts. Among which, the evaluations on the closed-

book NaturalQuestions (Kwiatkowski et al., 2019b) dataset show that InstructGPT

davinci v2 (175B) (Brown et al., 2020) demonstrates superior performance for all

knowledge-intensive evaluations. Further, TNLG v2 (530B) (Smith et al., 2022)

shows strong performance on the NQ dataset, which generally concurs with the

hypothesis that model scale especially contributes to improvements in acquisition of

factual knowledge.

2.5 Evaluation

In assessing the effectiveness of the retriever, we utilize the standard top-K accuracy

metric. This metric gauges the proportion of questions where, among the highest K

retrieved passages, there exists at least one passage containing a sequence of words

that aligns with the human-annotated answer(s) for the given question.

The final predicted answers are evaluated with the standard exact match matric,

determining whether the system’s generated answer exactly matches the human-

annotated correct answer for a given question. If the generated answer is identical to

the correct answer, it is considered a successful exact match. However, if there is any

difference in wording, phrasing, or structure, the match is considered unsuccessful.

This metric provides a stringent evaluation criterion, as even minor discrepancies

between the system’s answer and the correct answer lead to a failure in achieving an

exact match. The exact match metric is valuable for gauging the ODQA system’s

ability to provide highly accurate responses that align precisely with the expected

correct answers.

In comparison, the F1-Score is considered a less stringent metric than Exact
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Match. This metric evaluates the mean overlap between the predicted response and

the ground-truth answer. By treating both the prediction and the correct answer as

collections of tokens, their F1-Score is calculated. For each question, the highest

F1-Score across all correct answers is considered, and then this is averaged across all

questions (Rajpurkar et al., 2016). While the F1-Score is generally a suitable measure

for many span-based QA datasets question-answering datasets, its effectiveness can

vary depending on the nature of the questions and answers. Particularly, in scenarios

where incorrect and correct answers share common n-grams, the F1-Score may face

challenges in accurately determining the quality of responses (Chen et al., 2019).

This suggests a need for caution when applying this metric to different contexts or

types of data.

Exact-match (EM) and F1-score, both lexical matching metrics, have a notable

limitation in their inability to recognize certain valid answers. These metrics often

fail to account for scenarios where a model’s response, although not aligning verba-

tim with the expected answer, is still conceptually correct. This includes instances of

Semantic Equivalence, where model predictions and the standard “gold” answers

convey identical meanings but differ in their phrasing. Similarly, Symbolic Equiva-

lence issues arise when numeric responses are correct but presented differently in text

form. Moreover, Granularity Discrepancies are evident when the predicted answers

differ in detail or scope compared to the gold answers. Additionally, these metrics

struggle to navigate situations involving Incorrect Gold Answers, an issue stemming

from data quality challenges (Kamalloo et al., 2023). These cases highlight the need

for more nuanced evaluation methods that can appreciate the subtleties of language

and meaning beyond mere lexical matching.

To augment lexical-based metrics, employing large language models (LLMs) as

evaluators presents a promising alternative. In evaluation of question-answering mod-

els, Kamalloo et al., 2023 examined the capabilities of both GPT-4 (OpenAI, 2023)

and Instruct-GPT (Ouyang et al., 2022). Their findings revealed that the evaluation

results from GPT-4 were in line with those observed from InstructGPT, with slight

enhancements. Notably, they observed a consistent average increase in accuracy
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for all models when assessed using GPT-4, a level of improvement comparable

to that seen with InstructGPT. Additionally, in a similar trend to InstructGPT, the

accuracy rates from GPT-4 evaluations were found to be marginally lower, around a

small percentage, than those derived from human judgment. The study concludes

that using zero-shot prompting in LLMs as an evaluation method could serve as a

feasible alternative to human assessment, although it cannot detect unattributability

in long-form answers.



Chapter 3

Challenges in Generalization in Open

Domain Question Answering

Recent work on Open Domain Question Answering has shown that there is a large

discrepancy in model performance between questions and answers observed at train

time and novel questions and answers – even if they are derived from the same

distribution (Lewis et al., 2021b). This raises the question: “What are the aspects

of these novel questions that make generalization challenging?” which we seek to

explore in this chapter.

In work on systematic generalization (Bahdanau et al., 2018; Lake and Baroni,

2018; Ruis et al., 2020), it is argued that even though a model has only observed

a very small subset of all possible combinations of facts during training time, a

good model should be able to generalize to all possible combinations of facts at

test time. We draw upon these ideas to study generalization for ODQA and define

the following three categories to support our investigation: training set overlap,

compositional generalization, and novel-entity generalization. See Figure 3.1 for

definitions and examples. Our categorization breakdown is motivated by how they

capture different levels of generalization: overlap requiring no generalization beyond

recognizing paraphrases, comp-gen requiring generalization to novel compositions of

previously observed entities and structures, and novel-entity requiring generalization

to entities not present in the training set. It is worth noting that we explicitly study

in-distribution generalization rather than out-of-distribution generalization (such as
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Train

- who won the first nobel prize in 
physics

- cow is a national animal of 
which country

- when did the first panda come 
to america

- who wrote the song the sound 
of silence

 who got the first nobel prize in physics

Overlap :

panda is a national animal of which country

Compositional Generalization :

who wrote the song the glory of love

Novel Entity Generalization :

Test

Figure 3.1: Questions categorized according to their relation to the training set: 1) Overlap:
there exists a paraphrase of the question in the training set. 2) Compositional:
all individual facts and the structure of the question has been observed across
several questions in the training set – but not the given composition. 3) Novel-
entity: the question contains at least one entity (marked here with yellow) not
present in the training set.

cross-domain generalization (Fisch et al., 2019)), as we will later demonstrate that

even in-distribution generalization poses a major challenge for existing approaches.

We decompose and manually annotate three previously introduced ODQA

datasets (Natural Questions (Lee et al., 2019), TriviaQA (Joshi et al., 2017), and We-

bQuestions (Berant et al., 2013)). Following this, we evaluate six recently proposed

non-parametric and parametric ODQA models and analyze their performance, using

both aggregate metrics and a breakdown according to our proposed categories. Non-

parametric and parametric models differ in their access to information: the former

has no access to any external context or knowledge, whereas the latter is provided

relevant information alongside the question (Roberts et al., 2020). Experimental

results show that the performance of non-parametric models degrades significantly

on the comp-gen subsets across all datasets. We further examine what the underlying

challenge is for these questions.

One potential source of difficulty could be the question structure itself and

as a byproduct of our decomposition approach we are able to derive a high-level

question pattern for each question. We find a strong positive correlation between

the pattern frequency in the training set and test accuracy. We then study how non-
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parametric models handle the comp-gen and novel-entity subsets respectively, since

the performance on them is significantly worse than on the overlap subset. For comp-

gen questions, perhaps surprisingly, we find that the frequency of entities mentioned

in a question is strongly negatively correlated with test accuracy. For novel-entity

questions, when we replace novel entities in the question and its support passages

with entities seen in the training set the performance remains largely unchanged;

we thus hypothesize that specific unseen entities are not the main bottleneck for

model performance but rather a failure of the model to generalise compositionally.

Aside from questions, we further analyze the retrieved passages and find the retrieval

accuracy is equally lacking for the comp-gen and novel-entity subsets, at ∼ 75%

for top-20 accuracy. We also observe that many of the passages that do contain the

correct answer lack sufficiently informative contexts for the question anchor words

for the reader model to be able to locate it, indicating a need to either improve the

reader models ability reason over multiple passages or the retriever model to provide

passages with richer contexts.

To conclude, in this chapter, our key contributions are as follows:

1. We provide the first detailed study on generalization for ODQA, based on

categories that measure different levels and kinds of generalization, that we

use to annotate three previously proposed ODQA datasets.

2. We show that for novel questions, non-parametric models handle novel ques-

tion entities comparatively well, while they struggle to perform compositional

generalization.

3. We demonstrate and quantify key factors that impact model generalization

performance, which we believe will show the direction for future research

towards more robust and generalizable ODQA models.

The material in this chapter first appeared in:

Linqing Liu, Patrick Lewis, Sebastian Riedel, and Pontus Stenetorp.

"Challenges in Generalization in Open Domain Question Answering."
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In Findings of the Association for Computational Linguistics: NAACL

2022, pp. 2014-2029. 2022.

Individual Contributions: The initial idea was proposed by the thesis

author. The dataset annotation pipeline and preparations, results analy-

ses, experiments are conducted by the thesis author. The collaborative

effort of all authors was integral in the human annotations of the three

datasets.
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‘‘who’’ ‘‘main character’’ ‘‘Green eggs and ham’’‘‘is’’

question word other arguments
Semantic role labeling

wiki entities
Entity linking

verb
Semantic role labeling

Figure 3.2: Example decomposition for the question “Who is the main character in Green
eggs and ham?”

3.1 Dataset Construction
In this section, we describe how we process and annotate ODQA datasets to enable

us to investigate generalization.

3.1.1 Question Decomposition

To study the compositional and novel-entity generalization of questions, we follow

Keysers et al. (2019) and propose to view each question as being composed of

primitive elements (atoms). Consider the question “Who got the first Nobel Prize

in Physics?”. The atoms intuitively correspond to the modifier or adjunct of the

predicate “who”, predicate “got” and the entity “first nobel prize in physics”. The

combination of these atoms cover the main semantics of the question.

The way we measure generalization necessarily depends on how we break

down the questions into atoms. Following manual analysis of questions from three

popular ODQA datasets, we developed the following decomposition strategy to

obtain atoms which cover all the desired question semantics. These are: question

words, verbs, Wikipedia named entities (wiki_entities), and finally, other arguments

(other_args) which correspond to other relevant aspects of the question. We explicitly

extract wiki_entities since they leverage crucial semantics in factoid questions and

other_args define essential details surrounding wiki_entities.

In order to automatically decompose questions, we first use an off-the-shelf

semantic role labeling (SRL) model (Shi and Lin, 2019) to produce predicate-

argument structures for each question. This provides us with the verb (i.e. the

predicate), and semantic arguments. The question word is trivially obtained by

identifying WH-words. We apply an off-the-shelf entity linking model (Li et al.,
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2020a) to obtain the wiki_entities in the question. Finally, other_args are the SRL

arguments which remain after we filter out arguments corresponding to wiki_entities.

An example question decomposition is illustrated in Figure 3.2.

Below is a random selection of question decomposition examples from the NQ

dataset. In each question, xqw denotes the question_word, y
verb

denotes the verb,

and the spans of other_args and wiki_ents spans are denoted by brackets. Note that

these structure slots are not always fully present in the question (e.g, Q3, Q4, Q6,

Q7, Q10).

As we rely on automated systems as a part of our decomposition process, this

leads to the following limitations. At times, the ELQ model fails to label wiki_ents,

such as for Q8 where every light in the house is marked as other_args. Furthermore,

as seen in Q9 there is the possibility of multiple question words being present

although our approach only extracts a single question_word. Limitations such as

these is one motivation for why we elected to perform manual verification for each

question (Section 3.1.3).

1. Whoqw isverb the [other_args: owner] of [wiki_entities: Reading Football

Club]?

2. Whoqw diedverb in the [other_args: plane crash] [wiki_entities: Grey’s

Anatomy]?

3. [other_args: Cast] of [wiki_entities: Law & Order Special Victim Unit]?

4. Whenqw did [wiki_entities: United States] enterverb [wiki_entities: World War

I]?

5. Whereqw are most [wiki_entities: nutrients] absorbedverb in the [wiki_entities:

human digestive tract]?

6. Whenqw did the [other_args: government] change
verb

the [other_args: retire-

ment age]?

7. Whatqw isverb the [other_args: name] of the [other_args: gap] between

[other_args: two front teeth]?
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Group Test question Paired training question for annotator Label

Overlap
who got the first nobel prize in physics who won the first nobel prize in physics T
whens the last time the patriots played the eagles when did the philadelphia eagles last win the super bowl F

Comp-gen
when is the next scandal episode coming out when is next fairy tail episode coming out T
what is the corporate tax rate in great britain what is the rate of corporation tax in uk F

Novel-entity
who wrote the song the glory of love who sang guilty of love in the first degree T
who sings too much time on my hands lyrics who sings i’ve got too much time on my hands F

Table 3.1: Example of questions from Natural Questions (see Appendix A.2 for examples
from the other two datasets) for human verification and their respective annotated
labels (T for True and F for False).

8. Whoqw sings
verb

[other_args: every light in the house is on]?

9. Whereqw areverb the [wiki_entities: Winter Olympics] and when do they start?

10. [wiki_entities: Swan Lake] [wiki_entities: the Sleeping Beauty] and

[wiki_entities: the Nutcracker] areverb [other_args: three famous ballets]

by?

3.1.2 Generalization Category Definitions

Based on the question decomposition, we define three generalization categories for

ODQA datasets. We denote Sq as the set of the decomposed atoms of question q and

CQ as the complete set of decomposed atoms for all the questions in dataset Q. Our

category subsets are then defined as:

• Qoverlap ≜ {q ∈ Qtest | ∃q′ ∈ Qtrain,Sq ⊆ Sq′}

• Qcomp_gen ≜ {q ∈ Qtest | ∃q′1,q
′
2, ...,q

′
k ∈ Qtrain, Sq ⊆

⋃k
i=1 Sq′i

, Sq ̸⊆ Sq′i
}

• Qnovel_entity ≜ {q ∈ Qtest | ∃s ∈ Sq,s /∈Ctrain}

For overlap test question, there exists a training question where they have the

same decomposed atoms or are subset of them; for comp_gen test question, its

decomposed atoms are fully covered by the training set (a subset of the union of

multiple training questions atoms), but not in one particular training question; and

for novel-entity test question, there exist wiki_entities not present in the training set.

3.1.3 Question Categorization and Human Verification

With the decomposed atoms for all questions, we first categorize the test questions

into overlap, comp-gen, and novel-entity categories based on the definitions of each
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Group Natural Questions WebQ TriviaQA

Overlap 837 501 458
Comp-gen 1,105 512 475
Novel-entity 597 640 456

Table 3.2: Number of questions for each generalization subset for the three datasets’ test
sets

generalization category. We optimize the selection criteria to cover as many eligible

candidates for each category as possible.

We use the following selection criteria to collect candidate questions for human

verification. For the overlap subset, as a first step, each q is paired with each train

question that shares the same answer or have answers which are a sub-sequence of

q’s answer. As a second step, we then require that the train question’s similarity

measurement score to q is over a pre-defined threshold and that they have the same

wiki_entities as q. For the remaining test questions, we consider q as a candidate

for comp-gen if all of its parsed elements are covered by the collection of all parsed

elements in the training set. Lastly, if there exists any novel wiki_entities in q which

are not present in the training set, q is considered as a novel-entity candidate.

As our test set subsets are obtained automatically, we need to perform manual

human verification to ensure that they are of high enough quality to draw empirical

conclusions. To do this, we employ four expert annotators and use the following

annotation process for each of the respective categories. Overlap: Annotators are

shown qtest and the training questions with the highest degree of character-level

overlap. If any of these questions are a paraphrase of q, the annotator will mark

qtest as an overlap question. Comp-gen: qtest is presented to the annotators along

with the training questions with the highest degree of word overlap. Annotators

then verify that the test question is truly a compositional generalization and not a

paraphrase of any of the given training questions. Novel-entity: Annotators need to:

1) Verify that the wiki_entities identified by the entity-linking model are indeed wiki

entities. 2) Verify that the entities in qtest are not present among a set of questions

from the training set whose entities have a high degree of character-level overlap
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with the entities in qtest. Statistics for the annotated category subsets are summarized

in Table 3.2, examples are shown in Table 3.1.

As guidelines for the human annotators, we provide the following to resolve am-

biguous or potentially problematic cases: 1) For overlap, we only consider questions

that are superficial paraphrases and exclude those that require more complex forms

of reasoning (e.g. Who played Mark on the show The Rifleman? / Who played the

boy on the show The Rifleman?). 2) For comp-gen, all other_args in the test question

must be covered in the collection of training set entities and all question_word atoms

alongside with the verb must be present in the training set. However, there are ques-

tions where other_args are not covered in the training set (e.g. Animation Resort) or

are highly specific due to the decomposition processing and thus not covered (e.g.

fourth movie compared to movie or three different types compared to types) and are

thus excluded from comp-gen. 3) For novel-entity, there are cases when ELQ fails to

extract wiki_ents in questions because of words variation, such as Who sang It Going

to Take a Miracle? compared to the correct wiki_ents It’s Gonna Take a Miracle. 4)

There are also intrinsic problems in the datasets, some test questions are exactly the

same as train questions but paired with different answers: (Where did Dolly Parton

grow up? with the answer Tennessee and Where did Dolly Parton grew up with

the answer Sevierville). Following this manual verification, for Natural Questions,

WebQuestions, and TriviaQA, 70.3%, 81.3%, and 69.5% of their test questions are

covered in the generalization subsets respectively.

3.2 Experiment

3.2.1 Datasets

We analyse three widely used ODQA datasets, each one is briefly introduced as

follows:

Open Natural Questions (NQ) is an open-domain variant of Natural Ques-

tions (Kwiatkowski et al., 2019a) introduced by Lee et al. (2019). This dataset

consists of questions mined from Google search logs, with answers annotated as

short spans of text in Wikipedia articles by crowd-workers. The NQ questions are
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generally simple, short, and information-seeking, as the questioner is unlikely to

have known the question’s answer when they formulated it. It consists of 79,168

train, 8,757 dev, and 3,610 test question answer pairs.

TriviaQA (Joshi et al., 2017) consists of questions and answers which were obtained

by scraping trivia websites. TriviaQA questions are generally less information-

seeking than those in NQ, and exhibit substantial syntactic and lexical variability. We

use the open domain splits which contains 78,785 train, 8,837 dev, and 11,313 test

question answer pairs (Lee et al., 2019). Answers in TriviaQA are Wikipedia entities,

and any alias of the answer entity is considered a correct answer. We randomly

sampled and annotated 2,000 questions from the test set for our analyses.

WebQuestions (Berant et al., 2013) consists of questions that were collected by

performing a breadth-first search using the Google Suggest API. The questions in

WebQuestions resemble those in NQ, but are generally shorter and simpler and

demonstrate less variability. WebQuestions’ answers are Freebase (Bollacker et al.,

2008) entities, annotated by crowdworkers. It contains 3,778 train and 2,032 test

questions.

3.2.2 Baseline Models

Non-parametric models mostly adopt a retrieve-and-read framework, retrieving

relevant Wikipedia documents for the given question, and then produce the final

answer conditioned on these documents. We consider two generative reader mod-

els: Retrieval-Augmented Generation (RAG, Lewis et al., 2020b), and Fusion-

In-Decoder (FiD, Izacard and Grave, 2021). RAG combines a DPR (Karpukhin

et al., 2020) dense retriever with a BART (Lewis et al., 2020a) generator, which

are jointly fine-tuned end to end. FiD is a pipeline approach which uses DPR to

retrieve a set of documents, and the decoder attends over all encoded document

representations to generate the final answer. As an extractive reader model we use

the reader component from DPR (Karpukhin et al., 2020). It extracts answer span

from the highest-scoring document ranked from a passage selection model. We also

include RePAQ (Lewis et al., 2021c), a QA-pair retriever which does not follow

the retrieve-and-read paradigm. It retrieves QA-pairs from PAQ, a large resource of
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Model
Natural Questions TriviaQA WebQuestions

Total Overlap
Comp
-gen

Novel
-entity Total Overlap

Comp
-gen

Novel
-entity Total Overlap

Comp
-gen

Novel
-entity

Non-parametric

RAG 44.49 75.75 30.41 37.69 56.83 87.12 47.58 47.81 45.52 80.64 33.40 31.88
FiD 53.13 78.85 40.00 47.74 67.69 90.39 58.10 66.23 - - - -
DPR 41.27 71.33 25.88 33.84 57.91 82.31 46.11 58.99 42.42 73.45 31.05 31.25
RePAQ 47.26 78.61 34.21 36.85 52.06 89.08 42.95 38.38 - - - -

Parametric
T5-11B+SSM 36.59 81.48 17.47 12.56 - - - - 44.69 81.24 35.35 25.78
BART 26.54 76.34 5.88 3.35 26.78 78.38 11.37 10.09 27.41 70.46 13.28 8.75

Table 3.3: Exact Match scores for each model. “Total” refers to the overall performance on
the full test set. “Overlap”, “Comp-gen”, and “Novel-entity” refers to the model
performance on the respective subset.

65M automatically-generated QA-pairs, returning the answer of the most relevant

QA-pair.

Parametric models are directly trained with QA pairs without access to an external

corpus and thus store the required knowledge in its entirety in the model parameters.

For our analyses, we include a BART-large model (Lewis et al., 2020a) and a more

powerful T5-11B model (Roberts et al., 2020). They are both trained with questions

as input and output question-answer pairs.

3.2.3 Model Category Analysis

Table 4.3 shows the Exact Match scores for models on our test set splits.

Non-parametric models on novel-entity questions For the non-parametric models,

EM scores on novel-entity questions are relatively close to their overall total scores,

with an average drop by 6.5% and 3.1% on NQ and TriviaQA respectively, with the

exception of WebQuestions. The questions in WebQuestions only contain a single

entity, which also tend to be high frequency entities. However, due to the very small

size of the WebQuestions training set, many of these questions are considered to

be in the novel-entity subset, despite containing relatively frequent entities, which,

with a larger training set, would likely be classified as comp-gen questions, querying

various relations regarding known entities.

Non-parametric models on comp-gen questions Surprisingly, the performance of

all non-parametric models degrades significantly on the comp-gen subset (drop by

14.2% on NQ, 10.2% on TriviaQA and 11.7% on WebQuestions). This finding sug-

gests that non-parametric models struggle to perform compositional generalization,
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whereas they handle novel question entities comparatively well. We investigate this

finding in greater detail in Section 3.3.

Parametric models on novel-entity and comp-gen questions parametric model

performance drops significantly on both comp-gen and novel-entity subsets, but

they achieve relatively higher EM scores on comp-gen questions. This indicates

that novel-entity questions are more challenging for parametric models. This makes

intuitive sense, since, for entities not seen during training, parametric models will

struggle to “know" enough about the entity to generate a correct answer. In such

cases, we find evidence that parametric models often resort to generating answers

from superficially similar training questions, with 63.2% and 53.3% of answer

predictions also occurring in the training data for T5-11B+SSM on NQ for comp-

gen and novel-entity questions respectively.

Implications for modeling Among the non-parametric models, FiD achieves the

highest EM scores for both comp-gen and novel-entity questions. FiD aggregates

multiple passages together when generating answers. In contrast, the extractive DPR

reader only uses the highest-scoring passage to extract the final answer. We take

a step further and are interested in understanding if FiD’s improved performance

is due to leveraging a greater amount of contextual evidence provided by multiple

passages, or whether it simply generates the most frequently-mentioned plausible

answer. We perform a simple experiment, by first collecting 544 questions answered

incorrectly by FiD, where the gold answers occur less frequently than FiD’s predicted

answer in the retrieved passages. We then adjust the retrieved passages so that

the original predicted answer and gold answer are mentioned an equal number of

times, by masking out some of the original prediction mentions. After adjusting

the frequencies, we regenerate the answer predictions, and observe that FiD only

produces 44 correct answers out of 544. This suggests that answer mention frequency

is not the governing feature for FiD when generating answers on NQ. It suggests the

NQ FiD model adopts a strategy similar to a reranker, and extracts an answer from

the highest latently-relevant document.

Although without access to external knowledge but only automatically-



3.3. How do Non-parametric Models Generalize? 62

NQ Total Overlap Comp-gen Novel-entity

Top-20 80.1 89.5 74.7 75.4
Top-100 86.1 92.0 82.4 83.1

Table 3.4: Top 20 and Top 100 retrieval accuracy on NQ test set for the DPR retriever.

generated QA-pairs in advance when answering questions, RePAQ still achieves

higher or comparable performance as retrieve-and-read model RAG and DPR. It

indicates that generating, storing and retrieving questions is a valid path in terms of

model generalization.

Parametric models perform significantly worse compared to non-parametric

models. BART struggles to answer any novel questions correctly, while

T5-11B+SSM performs better due to much larger capacity. Petroni et al. (2019)

demonstrate that language models are able to recall factual knowledge without any

fine-tuning and can somewhat function as an unsupervised ODQA system. However,

our experiments suggest that, large-scale language models (when fine-tuned to di-

rectly answer questions using a set of training QA pairs) struggle to answer questions

about low frequency entities and relations, similar to the findings of Kassner et al.

(2020) and Dufter et al. (2021).

Additional observations All models perform significantly higher on overlap ques-

tions, consistent with the findings of Lewis et al. (2021b). Parametric models with

more parameters are the most effective at rote-memorizing training questions, and

T5-11B+SSM even outperforms the non-parametric models on NQ and WebQues-

tions.

3.3 How do Non-parametric Models Generalize?
Experimental results show that the performance of non-parametric models degrades

significantly on the comp-gen subsets across all datasets. In this section, we would

like to examine what the underlying challenge is for these questions. We focus on

the NQ dataset as it has the largest annotated test set among three datasets.

Table 3.4 shows the top-k retrieval accuracy – which is the number of questions
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Exact Match

[ent] be [ent]
 that emphas

where be [ent]
 held/base/locat

when be [ent]
 built/creat/made

who sing
 song [ent]

who play
 [ent] on [ent]

comp_gen
novel_entity

Figure 3.3: Examples of question patterns and EM scores for their corresponding questions.
For each question pattern, we sample the same number of comp-gen and novel-
entity questions. The two uppermost patterns are the most frequent (thousands
of occurrences), the following two are of medium frequency (hundreds of
occurrences), and the last is a novel pattern.

for which at least one passage of the top-k retrieved passages contains the gold

answer. The difference in retrieval accuracy between comp-gen and novel-entity

splits is relatively small (< 1%), but is significantly lower than the overlap subset

results. This indicates that the retriever performance is a confounding factor for the

overall performance of comp-gen and novel-entity questions. Solely improving the

retriever would benefit the model greatly for the subsets requiring generalization.

Allowing us to study the reader model in isolation, for the remainder of our analysis

we will only use the subset of questions for which there is at least one support

passage that contains the gold answer.

3.3.1 Effects of Question Pattern Frequency

One might ask questions such as “Who plays the doctor in Sons of Anarchy?” and

“Who plays Stacey’s mum in Gavin and Stacey?”. Although semantically different,

they share the structure “who plays [entity] in [entity]”, which we refer to as a

question pattern. To study if the frequency of these patterns affect model performance,
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Figure 3.4: Influence of question pattern frequency, where test questions are binned based
on the frequency of their question pattern in the training set.

we collect question patterns by replacing all wiki_entities in a question with the

token [entity], unifying the prepositions, and stemming each word.

We group test questions for each category by the frequency of their patterns

in the training set. In Figure 3.4, we analyze FiD as an example since it achieves

the highest EM score on unseen questions (results for other models can be found in

Figure A.1 in the Appendix). In the upper figure, the EM scores show that the model

is more likely to make correct predictions for more common patterns. Given this

observation, we would like to investigate if the significant performance edge of the

overlap category is due to a larger percentage of more frequent patterns. According
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to the lower figure, which shows the proportion of questions for each frequency

bin, the frequency distribution for each category is largely similar. Therefore the

performance gap between overlap and the other two categories can not simply be

explained by a difference in pattern distribution.

In Figure 3.4, we also note that as the pattern frequency increases, the perfor-

mance between comp-gen and novel-entity diverges. This gap has a significant effect

on overall model performance, since common patterns make up a majority of the test

set. In order to understand this gap, we sample the same number of comp-gen and

novel-entity questions for each example pattern, and display the results in Figure 3.3.

We checked several instances for the pattern “who play [ent] on [ent]”, and find

that the model fails more on comp-gen questions partially because the retrieved pas-

sages do not provide enough information to locate the answer. For example, for the

question “Who played Mary in Christmas with the Kranks?” none of the retrieved

passages contain both Mary and the movie name. The model produces the answer

Julie Gonzalo from the passage Julie Gonzalo Julieta [...] is an [...] actress. [She]

is also known for her roles “Christmas with the Kranks”, whereas the gold answer

is Felicity Huffman from the passage She also starred in [...] “Christmas with the

Kranks”. Since “Mary” is not mentioned in either passage, it is impossible to infer

that the correct answer is Felicity Huffman. The support passages for novel-entity

questions, on the contrary, more often cover both of the anchor entities (e.g. context

Little Boy Blue is an ITV drama series ... Stephen Graham was cast as Detective ...

for the question “Who played the detective in Little Boy Blue”).

Based on the above error analysis, we hypothesise that in the retrieved passages

for comp-gen questions, answers do not always co-locate with the question anchor

words. This indicates future research should encourage the retriever to fetch passages

that cover all aspects of the question in order for it to be answerable. Under the

assumption that the model could answer all patterns of questions equally well,

regardless of frequency, the overall performance would be improved by ∼ 11%.
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Figure 3.5: Plot showing the influence of the wiki_entities frequency in the question. The
x-axis represents the wiki_entities frequency in the training set and we use the
most frequent wiki_entities in each comp_gen question.

3.3.2 How do Non-parametric Models Handle Comp-gen Ques-

tions?

We use the decomposed atoms as the basis for our analyses on comp-gen questions.

Following the previous subsection 3.1.1, we know that wiki_entities leverage crucial

semantics for factoid questions and Wikipedia is the most widely used source of

knowledge in current ODQA datasets (Hewlett et al., 2016; Rogers et al., 2021;

Yang et al., 2015). Therefore, we would like to carefully study if the training set

wiki_entities frequency affects model performance. Figure 3.5 plots the EM score

as a function of how often a test question’s wiki entity appears in a training question.

We see that test accuracy is anti-correlated with the training-set frequency of test

questions’ entities. At first glance, this result seems surprising, and inconsistent with

the well-known difficulty of modeling long-tail phenomena. However, the following

interpretation helps to explain this apparent contradiction.

We manually inspect the questions with the most frequent wiki_entities, and

find most of them are questions about countries, which is a frequent question topic

in the NQ training set. For example, for the question “How many farmers are there

in the USA”, almost all the retrieved passages are highly relevant. The gold answer

is “3.2 million” with the context “There were 3.2 million farmers”. The model,

however, generates the answer “2.2 million”, taken from the context “There were

2.2 million farms. . . ”. Both passages come from an article titled “Agriculture in
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the United States”, and the model is failing to draw a distinction between farms

and farmers. While it is easier to retrieve relevant documents for questions with

more frequent wiki_entities (Chen et al., 2021a), the passages retrieved for high-

frequency entities are much more likely to contain type-consistent close-negatives

and distractors, making it more difficult for the model to select the correct answer.

In other cases, questions are highly ambiguous, such as, “What is the average salary

for a US congressman”, the gold answer $174,000 applies for the year 2012, while

predicted answer $169,300 applies for the year 2008. For NQ, the existence of

high-frequency entities could be indicative of an ambiguous question. If we conduct

an analysis using the NQ dev set annotations provided by Min et al. (2020), we note

that 50% of questions with the entity “US” and 64% of questions with the entity

“NBA” are ambiguous. To quantify the impact, using FiD as an example, we note that

if we match the performance of comp-gen questions with common wiki_entities to

those with the unpopular wiki_entities, the accuracy could be improved with ∼ 4%

points.

Besides wiki_entities, it’s prudent to consider the remaining atoms as well. The

results are illustrated in Figure 3.6 and some findings are observed in the following:

1) For question word, all models achieve better performance for questions asking

about WHO and WHICH, while performing worse on questions without any question

word. Although EM scores drop significantly for WHY questions, it is hard to draw

conclusions as there are only limited number of them in the test set. 2) There is

no clear correlation between model performance and verb frequency. Some of the

“best performing” verbs are: sing, sang, wrote, and play, which closely correlate

with the most frequent question patterns such as “who sing song [ent]”. 3) Since

there is no clear correlation between model performance and other_args frequency

either, we group test questions based on the number of other_args in each of the

questions. It shows that models achieve higher EM scores on questions with fewer

other_args. Interestingly, the most performing other_args are closely related to WHO

and WHICH questions, such as “’s wife”, “main character”, and “tv show”, while the

“worse performed” other_args are mostly the comparative and superlative adjectives
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Figure 3.6: Influence of question word, verb, and other_args in the question (from left
to right). In the two top figures, the test questions are binned based on the
individual atom frequency in the training set, “-” indicates test questions whose
question word or verb is not covered in the training set. In the bottom figure,
the x-axis shows the number of other_args in each test question. All models are
evaluated on the NQ test set.
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such as “biggest house” and “second largest” (also observed in Dua et al., 2019).

To summarize, the remaining atoms are codependent on each other, especially

for limited-length factoid questions. They should preferably be treated as a single unit

(e.g. question pattern) to arrive the meaning of the question. In essence, their compo-

sitionality cannot be ensured and isolated (Dankers et al., 2021). Wiki_entities on the

other hands are independent of the context. The question is meaning-preserving even

under wiki_entities substitution. The subpart for ODQA compositionality should

focus on wiki_entities and question patterns. As discussed above, their individual

frequency have different impacts on the various components of ODQA models.

3.3.3 How do Non-parametric Models Handle Novel-entity Ques-

tions?

Although we explicitly categorize unseen questions into comp-gen and novel-entity,

broadly speaking, questions with novel entities also require the model to generalize to

novel compositions and thus could be considered to belong to the comp-gen category.

We seek to understand if the novel entities are the main bottleneck for ODQA models,

or the model can handle them well enough to process the questions appropriately.

To explore this issue further, we run an ablation study, where, at inference time, we

replace the novel entities in the question and the support passages with an entity

that has been seen from the training set. Our experimental setup is working under

the following constraints: 1) There can be only one wiki_entity mentioned in the

test question, so that replacing it will not risk altering the semantics of the original

question. 2) The replacement entity must not be present in the original test question

or its retrieved passages.

We run the inference for FiD model on 100 eligible questions, and find the

model rarely changes its predicted answers, despite the modification, with 73% of

the predicted answers remaining unchanged. We manually verified the remaining

questions and observe that some differences are due to inherent limitations of our

entity-swapping process, such as errors in entity-linking. For instance, for the

question Who sings So Come and Dance with Me Jai Ho? we swap the entity span

“So Come and Dance with Me Jai Ho”, however, this span is too wide as an entity
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as the correct entity would be “Jai Ho”. Therefore the model is unable to match the

correct song name in the passage; thus giving a different answer. Interestingly, we

find that three altered questions give the right answers, despite originally generating

incorrect ones. Given these observations, we suggest that the model learns relatively

good contextual embeddings for the novel entities by exploiting the context provided

by the passages. Thus, specific unseen entities are not the main bottleneck for the

model to locate the desired answers.

3.4 Related Work

Retrieving relevant passages is an essential component for open-book ODQA models.

A broad spectrum of recent work apply transformer (Vaswani et al., 2017b) models

such as BERT (Devlin et al., 2019) for information retrieval (Yates et al., 2021).

Following the success of using pretrained language models (Craswell et al., 2020),

studies have been made regarding their properties. Luan et al. (2021) compare the

lexical-matching abilities of these models to traditional methods such as BM25.

Ma et al. (2021b) and Wang et al. (2021) study reproducibility, and demonstrate

improvements by combining lexical-matching and dense retrievers. Thakur et al.

(2021) introduce the BEIR benchmark to study zero-shot generalization for multiple

neural retrieval approaches. Their conclusion is consistent with our findings that there

is considerable room for improving the generalization of dense-retrieval models.

To infer answers from retrieved documents, models generally use a reader

component implemented as a neural Machine Reading Comprehension (MRC)

model. Previous work has analyzed the MRC model by crafting adversarial attacks

(Jia and Liang, 2017; Mudrakarta et al., 2018), studying the difficulty of popular

benchmarks (Kaushik and Lipton, 2018), and demonstrating annotation bias (Chen

and Durrett, 2019; Gururangan et al., 2018; Sugawara et al., 2018). Despite the

success for various datasets, there is little work analyzing the whole pipeline of

question answering systems. Lewis et al. (2021b) showed that current ODQA

models competently memorize their training question answer pairs, but struggle to

generalize to novel questions, with some model architectures showing no meaningful
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generalization capabilities at all.

Krishna et al. (2021) found that long-form question answering (LFQA) systems

do not ground their answers in the retrieved passages, but rather generate the same an-

swer regardless of which retrieved passages it is presented with for a given question.

In contrast, for ODQA, we observe that when we replace retrieved passages with

randomly-sampled passages at inference time, the model FiD (Izacard and Grave,

2021) largely fails to correctly answer any questions (see Appendix A.1 for experi-

mental details). Gu et al. (2021) define similar generalization levels based on schemas

for Knowledge Base Question Answering. However, our setting works without a

schema and our generalization categories are derived from question decomposition

atoms.

3.5 Conclusion
We study ODQA model generalization and categorize unseen questions into three

subsets: overlap, comp-gen, novel-entity. Treating questions as being compositional,

we decompose them into atomic elements based on their semantics. We believe

that this decomposition strategy can help future work related to question structure

and unification. We evaluated several recent ODQA models on these three subsets

for three popular datasets. Our experimental findings both pinpoint the specific

problems when handling different categories of novel questions and shed light on

how to compositionally approach the factoid questions in ODQA task.



Chapter 4

Query Expansion Using Contextual

Clue Sampling with Language Models

Despite the advent of dense retrieval approaches based on semantic matching for

open-domain question answering such as DPR (Karpukhin et al., 2020), approaches

based on lexical matching (e.g., BM25) remain important due to their space-efficiency

and can serve as input to hybrid methods (Formal et al., 2021b; Gao et al., 2021; Lin

and Ma, 2021b). A core challenge for lexical retrieval is the vocabulary mismatch

between the query and documents. Query expansion techniques dating back over

half a century have proven effective in overcoming this issue (Salton, 1971). The

expansion terms are traditionally precomputed from relevant corpora using pseudo-

relevance feedback techniques (Abdul-Jaleel et al., 2004; Robertson and Jones, 1976;

Salton, 1971). In recent work, GAR (Mao et al., 2021) explored removing the query

expansion’s reliance on an external corpus and instead used a large language model

to generate a context.

We argue that expansion needs to balance two key factors: (1) Diversity: Given

the question, there can be multiple different reasoning paths (referred to as contextual

clues) to reach the correct answer. (2) Relevance: Simply relying on a single

generated context increases the risk of query drift, as the generated context could

be semantically irrelevant or contain factual errors (Schütze et al., 2008). However,

simply generating multiple contexts is prone to the hallucination problem – they can

be unfaithful to the input or include false information (Dziri et al., 2021; Maynez
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When is the new jurassic world game coming out?Q

 the game was released 
worldwide on june 12, 2018.

 the game was released 
on august 21, 2018.
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published by universal 
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Figure 4.1: Given the query, we first sample various contextual clues from the language
model. These outputs are then grouped together based on their lexical similarity
and the one with the highest generation probability is retained (Filtering). We
then perform retrieval for each augmented query individually. All the retrieved
documents are ranked together in the final fusion step.

et al., 2020; Tian et al., 2019). Thus, in this work, we wish to explore the question:

How can we best generate a sufficiently rich set of contextual clues to answer a

query?

Our proposed solution (Figure 4.1) overcomes these problems with two simple

and efficient steps: Filtering and fusion. After sampling top-k outputs from the

decoder of the fine-tuned language model, we cluster these generated contextual

clues based on their lexical distance. In each cluster, where highly similar contex-

tual clues are grouped together, only the single output with the highest generation

probability is kept. This filtering step effectively reduces potential factual errors and

eliminates redundant close duplicates. Next, the query is individually augmented

with each filtered contextual clue. We then retrieve documents separately for every

single augmented query. Finally, as the last step, all the documents are ranked

together (fusion) with the generation probability from the integral contextual clue in

the augmented query.

We evaluate our approach on two established benchmarks: Natural Ques-

tions (Kwiatkowski et al., 2019a) and TriviaQA (Lee et al., 2019). Our base-
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line model GAR (Mao et al., 2021) trails behind its dense retrieval counterpart

DPR (Karpukhin et al., 2020) by a large margin when retrieving a small number of

passages. We bridge this gap and outperform GAR by 3.1% and 2.9% on Top-5/Top-

20 accuracy on the NQ dataset. Additionally, compared with DPR, our approach

outperforms it by 0.6 and 1.0 points on Top-100 accuracy on the two datasets, while

also requiring 96% less index storage space. This accuracy can be further improved

by 3.4% when fusing the documents retrieved from DPR and our method together.

Furthermore, our retrieval performance also successfully transfers to downstream

question answering tasks, where our methods increase by 3.2% and 0.8% Exact

Match score compared to the DPR and GAR retrieved documents.

The material in this chapter first appeared in:

Linqing Liu, Minghan Li, Jimmy Lin, Sebastian Riedel, and Pontus

Stenetorp. "Query Expansion Using Contextual Clue Sampling with

Language Models." arXiv preprint arXiv:2210.07093 (2022).

Individual Contributions: The original idea was proposed by the thesis

author. In the retrieval pipeline, the thesis author works on the contex-

tual clue sampling and filtering, while the second author is responsible

for document retrieval and fusion. The majority of the experiments and

result analyses are performed by the thesis author. The major portion of

the experiments and result analyses is conducted by the thesis author. In

terms of paper composition, the second author primarily concentrates

on introducing the retrieval and fusion methods, with the remaining

sections authored by the thesis author.
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4.1 Background and Related Work

The task of information retrieval is to retrieve an ordered list of documents from a

large corpus in order to respond to a specific query. As apposed to the neural network

models where represent each query and document with learnt vectors, traditional

approach uses exact term matching, comparing the exact words in the query to those

in the document. With techniques based on exact term matching, the relationship

between a query q and a document d can be scored as (Lin et al., 2022):

S(q,d) = ∑
t∈q∩d

f (t) (4.1)

where f is a certain weight scheme and statistics on the terms. One of the most

important weighting scheme is term frequency-inverse document frequency (tf-idf;

Salton et al., 1975). tf calculates how many times a term occurs in a document,

and idf is calculated by taking the logarithm of the ratio of the total number of

documents in the corpus to the number of documents containing at least one instance

of the term. Once both TF and IDF are calculated, the TF-IDF score for a term in a

document is obtained by multiplying its TF and IDF values. The higher the TF-IDF

score for a term in a document, the more important and relevant that term is to the

document compared to other documents in the corpus. Terms that appear frequently

in a specific document but are rare in the overall corpus tend to have higher TF-IDF

scores, indicating their significance in that particular document.

After the proposal of TF-IDF, extensive research has been conducted to ex-

plore various term weighting schemes in the vector space model. Among these

approaches, BM25 (Crestani et al., 1998; Robertson and Zaragoza, 2009; Robertson

et al.) emerged as a prominent and enduring method used in numerous text ranking

applications to this day. The calculation of BM25 is as follows:

BM25(q,d) = ∑
t∈q∩d

log
N−df(t)+0.5

df(t)+0.5
× tf(t,d)× (k1 +1)

tf(t,d)+ k1×
(

1−b+b× len(d)
avg_len

)
(4.2)

In the above equation, the left component is the idf, where N is the total number
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of documents in the corpus, and df(t) is the number of documents that contains the

term t. In the right component of the equation, the expression in the denominator,

which includes b, serves the purpose of conducting length normalization. This is

necessary because collections typically consist of documents with varying lengths:

len(d) stands for the length of document, while avg_len represents the average

document length across all documents in the corpus. Addtionally, k1 and b are

tunable parameters in controlling the impact of term frequency and document length

normalization, respectively.

BM25 offers several strengths, including its simplicity, ease of implementation,

and robust retrieval performance across diverse domains and datasets. However,

it is limited by the reliance on exact matching, which can lead to the "vocabulary

mismatch problem" when queries and documents use different terminology. This

becomes particularly pronounced in natural language queries and documents, where

various words or phrases may convey the same meaning. For instance, if a user

searches for "automobile," and a relevant document uses the term "car," BM25’s

exact matching approach may not recognize their semantic similarity, potentially

resulting in a lower ranking score or even excluding the document from top results.

Furthermore, BM25’s lack of semantic understanding can make it sensitive to vari-

ations in linguistic phenomena, such as synonymy and paraphrase. Consequently,

slight differences in wording between the query and the document may lead to

reduced relevance scores, even when the essential content matches perfectly.

There are two directions of approach to tackle the above mentioned challenge

for exact matching based retrieval: expand query to better match with the document

representations, and enrich document to better match query representations. For the

first direction, it is worth noting that query expansion techniques can be classified

as pre-retrieval or post-retrieval techniques based on whether expansion terms are

computed before or after examining documents from the collection (Lin et al., 2022).

Relevance feedback (Robertson and Jones, 1976; Salton, 1971) and pseudo-relevance

feedback (Croft and Harper, 1979) aim to improve the retrieval performance by incor-

porating user feedback or simulated feedback based on the assumption of relevance in
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the retrieval process. Other work also try to augment the query with lexical-semantic

relations from WordNet (Miller, 1995) and preprocess the corpus to identify word

relations as possible expansion terms (Xu and Croft, 2000). The expanded terms

can also come from Domain knowledge source (Bouchoucha et al., 2013; Xiong and

Callan, 2015), or selected from a Reinforcement Learning framework to maximiz the

document recall reward (Nogueira and Cho, 2017). The second direction, document

expansion, has been proven effective for noisy transcriptions of speech (Singhal and

Pereira, 1999) and short texts such as tweets (Efron et al., 2012). Brauen et al., 1968

dynamically update the document representation after each retrieval run. Kwok, 1975

uses the citation metadata to enrich each document. Nogueira et al., 2019b firstly

successfully apply neural networks to document expansion, naming their approach

doc2query. They train a sequence-to-sequence model to produce possible relevant

queries given an input document. In this work, we focus on improving the approach

of query augmentation to enhance exact matching based information retrieval.
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Methods
Natural Questions TriviaQA

Top-5 Top-20 Top-100 Top-5 Top-20 Top-100

Ours-single (unfiltered) 61.1 73.7 84.1 70.9 78.7 84.3
Ours-single 63.0 75.2 84.8 71.7 79.1 84.6

Table 4.1: Top-5/20/100 retrieval accuracy (%) on Natural Questions and TriviaQA test
sets. Filtering strategy effectively increases the retrieval accuracy and reduces the
search space for the retrieval fusion step.

4.2 Methods

4.2.1 Contextual Clue Sampling and Filtering

We employ a sequence-to-sequence model BART-large (Lewis et al., 2020a) as our

generator that takes the question as input and generates the contextual clues for

the answer as target. It is worth noting that the generator can be replaced with any

other sequence-to-sequence models. Contextual clues are the sentences in a passage

that contains the ground-truth answer to the question. These sentences are either

extracted from the passage provided by the dataset (when available), or from the

matching passage used as a reference for the retriever.

At inference time, we first sample a diverse set of contextual clues from the fine-

tuned model. Generally speaking, a single contextual clue can be broken into two

main components; relational facts (“august 21, 2018”) and contextual description (

“the game was released on”). Interestingly, we notice that many generations are

identical in contextual descriptions, but inconsistent with the fact words (various

dates, numbers or named entities). Previous works try to solve this inconsistency

issue with an additional training loss (Elazar et al., 2021), adding a reasoning

module (Nye et al., 2021), or through majority vote (Wang et al., 2022). Instead,

we first cluster the contextual clues based on their edit distance. In most cases,

the generated outputs with the same contextual descriptions but varying relational

facts are grouped together in the same cluster. Then, we employ a simple filtering

strategy for each cluster by keeping the top-ranked output with maximum generation

probability, while discarding the rest outputs in the cluster. This allows us to gather

all possible reasoning paths to the answer, while reducing potential factual errors.

Directly augmenting question with the full set of sampled contextual clues
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is a sub-optimal solution due to the following reasons: 1) Retrieval efficiency:

After filtering, for each query, we only need to perform 70% less times of the

retrieval. As a result, it’s also saves the search space for the retrieval fusion step. 2)

Retrieval accuracy: As shown in Table 4.1, the accuracy for the unfiltered contexts is

consistently lower than that on the filtered contexts. We suppose it’s due to removal

of hallucinated facts contained in the contextual clues during filtering. Therefore this

filtering strategy is crucial for the following retrieval step in terms of both retrieval

efficiency (saves 70% for the retrieval process) and accuracy (consistently better than

using full contextual clues).

4.2.2 Document Retrieval and Fusion

Defining the n generated and filtered contextual clues as {ci}n
i=1, we augment the

question q into {[CLS]q [SEP] ci}n
i=1 by appending each individual context to it.

Following GAR, we use BM25 as the retrieval backend where it could be considered

as a logical scoring model using a query encoder ηq and passage encoder ηd (Lin,

2022):

s(q,d) = φ(ηq(q),ηd(d)) (4.3)

In this equation, φ is a similarity function such as dot product or L2 distance. Note

that we use c to denote the generated contexts and d to denote real passages in the

corpus. To aggregate the retrieval results of different augmented queries, we perform

retrieval individually for each augmented query and use the likelihood p(ci | q) of

the generated context ci as the fusion weights. Therefore, the final retrieval score

s f (q,d) for each question-passage pair is calculated as:

s f (q,d) =
n

∑
i=1

p(ci | q) · s([CLS]q [SEP] ci,d) (4.4)

We finally re-sort the candidates according to the fusion scores and return the top-k

passages for the next stage of question answering.
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4.3 Experiment

4.3.1 Datasets

We conduct the experiments on two widely used ODQA datasets: Natural Ques-

tions (NQ) (Kwiatkowski et al., 2019a) and TriviaQA (Joshi et al., 2017). NQ

consists of 79,168 train, 8,757 dev, and 3,610 test question-answer pairs. We use the

open-domain splits of TriviaQA which contains 78,785 train, 8,837 dev, and 11,313

test QA pairs (Lee et al., 2019).

4.3.2 Experiment Setup

We finetune BART-large model (Lewis et al., 2020a) for contextual clue generation.

For Natural Questions dataset, we extract the sentence containing the ground-truth

answer from the provided positive passage. For TriviaQA dataset, since only pairs

of questions and answers are provided in the original dataset, we extract the answer

context sentence from the highest ranked passage retrieved by BM25. We train the

model using Adam optimizer (Kingma and Ba, 2015b) with a learning rate of 3e−5,

linear scheduling with warm-up rate 0.01, and training batch size of 256 on 4 V100

GPUs.

Given the question, we generate 100 candidate outputs from BART using beam

search with beam size 100. We first group similar candidates using fuzzy string

matching with the built-in difflib python module. The similarity cutoff is set to 0.8

and any string pairs scoring less than the cutoff are not kept in the same group. On

average, for each question there are 24 contextual clues for NQ and 33 for TriviaQA

after filtering.

For each contextual clue augmented query, we use the Pyserini (Lin et al., 2021)

BM25 to retrieve top-1000 candidate passages. All the retrieved documents are

then re-ranked according to Eq. equation 4.4. We put all the passages belonging

to the same question but different augmentation into a public pool after filtering

duplicates. We then average the retrieval score for each passage in the pool according

to Eq. equation 4.4 and re-sort the order of the fused passages. For fair comparison

with GAR (Mao et al., 2021), we additionally fine-tune an answer generation model
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# Context ROUGE-1 ROUGE-2 ROUGE-L Ans Cover

Top-1 35.27 22.82 31.84 29.02
Full 48.32 32.43 42.64 46.01
Filtered 47.14 31.44 41.80 43.17

Table 4.2: Evaluation of generated answer contexts on the validation set of the NQ dataset.

and a title generation model. We perform the same fusion steps above for all three

generation models, and we linearly interpolate their fusion results by searching the

best weighting on the development set using Bayesian Optimization (Frazier, 2018).

4.3.3 Baselines

Retriever Retrieval in open-domain QA is traditionally implemented with sparse

vector space model BM25 (Robertson and Zaragoza, 2009), based on exact term

matching. DPR (Karpukhin et al., 2020) implements retrieval by representing

questions and passages as dense vectors. GAR (Mao et al., 2021) proposes to expand

the query by adding relevant answers, the title of a passage and the sentence where

the answer belongs. It also fuse the results from its own and from DPR (GAR+DPR).

To make a fair comparison, we extend our generation target from the answer context

only (Ours-single) to include both the answer and the passage title (Ours-multi). We

also report the fusion results with DPR. SEAL (Bevilacqua et al., 2022) use BART

model to generate ngrams then map to full passage with FM index.

Reader DPR (Karpukhin et al., 2020) employs a BERT-based (Devlin et al., 2019)

extractive reader model and predicts the answer span. RAG (Lewis et al., 2020b)

combines the DPR dense retriever together with a BART answer generator, and

jointly trains the two models end-to-end. FiD (Izacard and Grave, 2021) also uses

DPR to retrieve relevant passages and the decoder attends over all the encoded

passages to generate the final answer. To make fair comparison of different retrievers,

we use the same reader model, FiD-large, to evaluate the retrieved documents from

FiD, GAR, and SEAL.
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Methods Index Size
Natural Questions TriviaQA

Top-5 Top-20 Top-100 Top-5 Top-20 Top-100

Dense Retrieval
DPR 61GB 68.3 80.1 86.1 72.7 80.2 84.8

Lexical Retrieval
BM25 2.4GB 43.8 62.9 78.3 67.7 77.3 83.9
GAR 2.4GB 60.8 73.9 84.7 71.8 79.5 85.3
SEAL 8.8GB 61.3 76.2 86.3 - - -
Ours-single 2.4GB 63.0 75.2 84.8 71.7 79.1 84.6
Ours-multi 2.4GB 63.9 76.8 86.7 72.3 80.1 85.8

Fusion Retrieval
BM25+DPR 63.4GB 69.7 81.2 88.2 71.5 79.7 85.0
GAR+DPR 63.4GB 72.3 83.1 88.9 75.7 82.2 86.3
Ours-single + DPR 63.4GB 72.7 82.6 88.1 76.0 82.6 86.4
Ours-multi + DPR 63.4GB 72.7 83.0 89.1 76.1 82.5 86.4

Table 4.3: Top-5/20/100 retrieval accuracy (%) and index size (GB) of different models
on Natural Questions and TriviaQA test sets. Each score in the right column
represents the percentage of the top 20/100 retrieved passages that contain the
answers. The DPR and BM25 indexes are downloaded from the Pyserini toolkit1.

4.4 Results

4.4.1 Contextual Clues Evaluation

We are interested in understanding the quality of the generated contextual clues.

In Table 4.2, Top-1 refers to the top-ranked sequence with the highest probability

during beam search, while Full contains all top-100 outputs. Filtered consists of

the final contextual clues after being processed by the filtering step. We report the

ROUGE F-measure scores between the ground-truth and generated contextual clues

on the NQ validation set. We also report the answer coverage rate, measured as the

percentage of contextual clues that contain the answer.

As shown in Table 4.2, rigorously increasing the number of generated candidates

increases the ROUGE scores by at least 10% compared with only generating the top

sequence, indicating it’s more probable to capture the potential ground-truth answer

context. The filtering strategy effectively reduces the size of candidate contexts while

maintaining high coverage and diversity (less than 1% difference in ROUGE scores).

Moreover, Full significantly increases the answer coverage rate by ∼ 17% compared

with Top-1, suggesting that not only more semantics but also more fact words are

captured in a larger sizes of candidates.

1https://github.com/castorini/pyserini/blob/master/docs/prebuilt-indexes.md
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Methods Index Size
Natural Questions TriviaQA

Top-20 Top-100 Top-20 Top-100

DPR 61GB 80.1 86.1 80.2 84.8
DPR + PCA-256 21GB 77.2 85.5 76.5 83.4
DPR + PCA-256 + PQ 1.3GB 74.8 84.1 74.5 82.6
BPR 2.0GB 77.9 85.7 77.9 84.5
DrBoost 13.5GB 80.9 87.6 - -

Ours-single 2.4GB 75.2 84.8 79.1 84.6
Ours-multi 2.4GB 76.8 86.7 80.1 85.8

Table 4.4: Comparison with other memory efficient neural retrieval models on index size.

4.4.2 Main Retrieval Results

In Table 4.3, we show both the retrieval accuracy and index size. Note that the index

size should be considered with a pinch of salt since it largely depends on the system

implementation. The baseline models are reported in their open-sourced versions.

Compared with other lexical retrieval models, our method significantly outperforms

both GAR and SEAL, showing the effectiveness of extensively sampled contextual

clues. We also find that Ours-multi consistently improves over Ours-single. We

surmise that ground-truth answers serve as useful signals during retrieval and they

are more likely to be covered when directly sampling answers. Most of the traditional

lexical retrieval methods always trail behind dense retrieval by a large margin, as

illustrated in Table 4.3. Surprisingly, our method even outperforms the DPR model

by 0.6 and 1.0 points in terms of top-100 accuracy on two datasets, while requiring

96% less index storage space. For the purpose of pushing the limit of retrieval

performance, we also show the accuracy of different lexical-based methods fused

with DPR. Overall, our method fused with DPR achieves the highest accuracy across

all baseline methods on both datasets.

We additionally compare our approach with other memory efficient neural

retrieval models in Table 4.4. Ma et al. (2021a) show that the DPR could be furthered

compressed to trade accuracy off against speed and storage. However, the accuracy

of DPR could drop significantly if compressed to the same storage level of the lexical

index. BPR (Yamada et al., 2021) integrates a learning-to-hash technique into DPR

to represent the passage index using compact binary codes. The index size of BPR

is slightly smaller than ours approach, but we achieve higher retrieval accuracy on
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Methods Latency
Natural Questions
Top-20 Top-100

DPR 7570ms 80.1 86.1
DPR + PCA-256 2540ms 77.2 85.5
DPR + PCA-256 + PQ 765ms 74.8 84.1

BM25 318ms 62.9 78.3
GAR (ours) 962ms 73.9 84.7
Ours-single 1545ms 75.2 84.8
Ours-multi 2732ms 76.8 86.7

Table 4.5: Comparison on retrieval time latency, which is tested using 1 Intel Xeon CPU
E5-2699 v4 @ 2.20GHz.

both two datasets. We also include DrBoost (Lewis et al., 2021a), a dense retrieval

ensemble trained in stages. DrBoost outperforms ours approach on NQ dataset,

while taking 6× times larger index size. Furthermore, we list the latency time in

Table 4.5. It is notable that the latency listed in the table is tested on CPU, since we

use BM25 as our retrieval backend and it only requires CPU to run. Dense retrieval

methods (e.g. DPR) normally is running on GPU devices, which only takes 456.9ms

(Lewis et al., 2021a) per query without other device specific speed-up techniques.

4.4.3 End-to-end QA results

As shown in Table 4.6, Ours-multi achieves the highest exact-match scores compared

with other baseline methods on both datasets. We have an interesting observation

on TriviaQA dataset. The only difference between FiD and Ours is that FiD uses

the dense retrieval model DPR, while Ours retrieves from BM25. Considering the

Top-100 retrieval accuracy in table 4.3, Ours-single is 0.2 points lower than that

of DPR. However, Ours-single increases the EM score on reader by ∼ 2 points

compared to FiD. It shows that given similar retrieval accuracy, our approach could

retrieve qualitatively better passages that are easier for the reader model to answer.

4.5 Conclusion
We propose to narrow the lexical gap between the query and the documents by

augmenting the query with extensively sampled contextual clues. To make sure the

generated contextual clues are both diverse and relevant, we propose the strategy of



4.5. Conclusion 85

Methods Natural Questions TriviaQA

DPR 41.5 57.9
RAG 44.5 56.1
FiD 51.4 67.6
GAR 50.6 70.0
SEAL 50.7 -

Ours-single 50.6 69.7
Ours-multi 51.7 70.8

Table 4.6: End-to-end exact-match results on the test sets.

context filtering and retrieval fusion. Our approach outperforms both the previous

generation-based query expansion method and the dense retrieval counterpart with a

much smaller index requirement.



Chapter 5

Apply Flat Minima Optimizers on the

Reader Model

The success of modern machine learning in achieving higher performance across

diverse tasks can be attributed, in a significant manner, to the increasing complexity

of models through overparameterization. This complexity is coupled with the con-

tinuous advancement of more potent training algorithms that excel in identifying

parameters leading to robust generalization. Ensuring that these models not only

perform well on training data but also exhibit generalization beyond this set is of

paramount importance. Previous research (Dziugaite and Roy, 2017a; Foret et al.,

2021; Izmailov et al., 2018; Jiang et al., 2020; Keskar et al., 2017) extensively

explores the interplay between the flatness of minima within the landscape of loss

functions and the ability of models to generalize effectively. In light of the potential

to enhance generalization by focusing on flatter minima, this chapter aims to con-

centrate on refining the reader model within the Open-Domain Question Answering

(ODQA) pipeline. This refinement is achieved by training the model using optimizers

that facilitate the discovery of flatter minima.

Stochastic gradient descent (SGD) methods are central to neural network op-

timization (Bottou et al., 2018). Recently, one class of algorithms has focused on

biasing SGD methods towards so-called ‘flat’ minima, which are located in large

weight space regions with very similar low loss values (Hochreiter and Schmidhuber,

1997). Theoretical and empirical studies (Bisla et al., 2022; Chaudhari et al., 2017;



87

Chen et al., 2021b; Dziugaite and Roy, 2017a; Jiang et al., 2020; Keskar et al.,

2017; Petzka et al., 2021) postulate that such flatter regions generalize better than

sharper minima, e.g., due to the flat minimizer’s robustness against loss function

shifts between train and test data, as illustrated in Fig 5.1. Two popular flat-minima

optimization approaches are: 1. Stochastic Weight Averaging (SWA) (Izmailov et al.,

2018), and 2. Sharpness-Aware Minimization (SAM; Foret et al., 2021).

While both strategies aim to find flatter minima, they operate much differently.

On the one hand, SWA is based on the intuition that, near a flat minimum, gradients

are smaller, leaving many iterates in that flat region. Therefore, averaging iterates

will produce a solution that is pulled towards these flatter regions, see 5.1, top. On

the other hand, SAM minimizes the maximum loss around a neighborhood of the

current iterate. This way, a region around the iterate is designed to have uniformly

low loss; see 5.1, bottom. Crucially, SAM requires an additional forward/backward

pass for each parameter update, making it more expensive than SWA.

Despite the successes of SWA and SAM in some domains (Athiwaratkun et al.,

2019; Bahri et al., 2021; Chen et al., 2021b; Kaddour, 2022; Nikishin et al., 2018), we

are unaware of a systematic comparison between them that would help practitioners

to choose the right optimizer for their problem and researchers to develop better

optimizers. The SWA (Izmailov et al., 2018) paper was published in 2018, and

the SAM (Foret et al., 2021) paper in 2021; however, the SAM paper, and its most

noticeable follow-ups (Chen et al., 2021b; Kwon et al., 2021; Zhuang et al., 2022),

do not compare against SWA. Further, there is very limited overlap in terms of the

model architecture and dataset used in the experiments among both papers, which

are likely further confounded by other differences in the training procedures (e.g.

data augmentations, hyper-parameters, etc.).

The contributions of this chapter are summarized in the following:

1. In-depth comparison of minima found by SWA and SAM: We visualize

linear interpolations between different models and quantify the minimizers’

flatnesses. This analysis yields 4 insights, e.g., despite SAM finding flatter

solutions than SWA as quantified by Hessian eigenvalues, they can be close to
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Figure 5.1: The mechanics behind SWA and SAM, whose solution is denoted by+++ and ×××,
respectively. SWA produces a solution θ that is pulled towards flatter regions,
while SAM approximates sharpness within the parameters’ neighborhood (ar-
rows).

sharp directions, a phenomenon that has been overlooked in the previous SAM

literature. Averaging SAM iterates leads to the flattest among all minima.

2. Rigorous comparison of SWA and SAM’s performance over 42 tasks: We

empirically compare the optimizers with a rigorous model selection procedure

on a broad range of tasks across different domains (CV, NLP, and GRL), model

types (MLPs, CNNs, Transformers) and tasks (classification, self-supervised

learning, open-domain question answering, natural language understanding,

and node/graph/link property prediction). We discuss 8 findings, e.g., that

both dataset and architecture impact their effectiveness, that for NLP tasks,

SAM improves over SWA in most cases, and that the converse holds for GRL

tasks. When flat-minima optimizers do not help, we notice clear discrepancies

between the shapes of loss and accuracy curves. To assist future work, we
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open-source the code for all pipelines and hyper-parameters to reproduce the

results.

The material in this chapter first appeared in:

*Jean Kaddour, *Linqing Liu, Ricardo Silva, and Matt J. Kusner.

"When do flat minima optimizers work?." Advances in Neural Informa-

tion Processing Systems 35 (2022): 16577-16595. (*Equal Contribution)

Individual contributions: The genesis of the analysis pertaining to flat

minima optimizers stems from the initiative of the first author of this

paper. In the experiments, the thesis author conduct all the NLP experi-

ments and subsequent analysis, including part of the CV experiments.

The process of paper writing was a collective endeavor undertaken by

all contributing authors.
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5.1 Background and Related Work

5.1.1 Stochastic Gradient Descent (SGD)

The classic optimization framework of machine learning is empirical risk minimiza-

tion

L (θθθ) =
1
N

N

∑
i=1

ℓ(xxxi;θθθ) (5.1)

where θθθ ∈ Rd is a vector of parameters, {xxx1, . . . ,xxxN} is a training set of inputs

xxxn ∈ RD, and ℓ(xxx;θθθ) is a loss function quantifying the performance of parameters θθθ

on xxx. SGD samples a minibatch S ⊂ {1, . . . ,N} of size |S | ≪ N from the training

set and updates the parameters through

θθθ
SGD
t+1 = θθθ t−ηggg(θθθ t) , where ggg(θθθ) =

1
|B| ∑i∈B

∇ℓ(θθθ ;xxxi) , (5.2)

for a length specified by η , the learning rate.

5.1.2 Stochastic Weight Averaging (SWA)

The idea of averaging weights dates back to accelerating the convergence speed of

SGD (Kaddour, 2022; Polyak and Juditsky, 1992). SWA’s motivation is based on the

following observation about SGD’s behavior when training neural networks: it often

traverses regions of the weight space that correspond to high-performing models, but

rarely reaches the central points of this optimal set. Averaging the parameter values

over iterations moves the solution closer to the centroid of this space of points.

The SWA update rule is the cumulative moving average

θθθ
SWA
t+1 ←

θθθ
SWA
t · l +θθθ

SGD
t

l +1
, (5.3)

where l is the number of distinct parameters averaged so far and t is the SGD iteration

number.1

SWA has two hyper-parameters: the update frequency ν and starting epoch E.

1SWA parameters are constant between averaging steps.
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Algorithm 1 Stochastic Weight Averaging ((Izmailov et al., 2018))
Input: Loss function L , training budget in number of iterations
b, training dataset D :=∪n

i=1{xxxi}, mini-batch size |B|, averaging
start epoch E, averaging frequency ν , (scheduled) learning rate
η , initial weights θθθ 0.
for k← 1, . . . ,b do

Sample a mini-batch B from D
Compute gradient ggg← ∇L (θθθ t)
Update parameters θθθ t+1← θθθ t−ηggg
if k ≥ E and mod (k,ν) = 0 then

θθθ
SWA
t+1 =

(
θθθ

SWA
t · l +θθθ t+1

)
/(l +1)

end if
end for
return θθθ

SWA

Algorithm 2 Sharpness-Aware Minimization ((Foret et al., 2021))
Input: Loss function L , training budget in number of iterations
b, training dataset D := ∪n

i=1{xxxi}, mini-batch size |B|, neighbor-
hood radius ρ , (scheduled) learning rate η , initial weights θθθ 0.
for k← 1, . . . ,b do

Sample a mini-batch B from D

Compute worst-case perturbation ε̂εε ← ρ
∇L (θθθ)
∥∇L (θθθ)∥2

Compute gradient ggg← ∇L
(

θθθ
SAM
t +ε̂εε

)
Update parameters θθθ

SAM
t+1 ← θθθ

SAM
t −ηggg

end for
return θθθ

SAM

When using a constant learning rate, (Izmailov et al., 2018) suggests updating the

parameters once after each epoch, i.e. ν ≈ N
|B| , and starting at E ≈ 0.75T , where T

is the training budget required to train the model until convergence with conventional

SGD training.

He et al., 2019 argue that SWA may always improve generalization, regardless

of the loss function’s geometry. Kaddour, 2022 show that averaging a specific range

of weights can speed up training convergence. Cha et al., 2021 argue that tuning ν

and E carefully is necessary to make it work effectively in domain generalization

(DG) tasks. Besides DG tasks, a list of tuned hyper-parameters based on a fair

model selection procedure across different architectures and tasks has been missing
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in the literature. To the best of our knowledge, Cha et al., 2021 is the only study

that compares SWA and SAM over the same experiments, but it focuses on domain

generalization tasks which we, therefore, leave out in this work.

5.1.3 Sharpness-Aware Minimization (SAM)

While SWA is implicitly biased towards flat minima, SAM explicitly approximates

the flatness around parameters θθθ to guide the parameter update. It first computes the

worst-case perturbation εεε that maximizes the loss within a given neighborhood ρ ,

and then minimizes the loss w.r.t. the perturbed weights θθθ +εεε . Formally, SAM finds

θθθ by solving the minimax problem:

min
θθθ

max
||εεε||2≤ρ

L (θθθ + εεε), (5.4)

where ρ ≥ 0 is a hyperparameter.

To find the worst-case perturbation εεε∗ efficiently in practice, Foret et al., 2021

approximates Eq.5.4 via a first-order Taylor expansion of L (θθθ + εεε) w.r.t. εεε around

000, obtaining

εεε
∗ ≈ argmax

∥εεε∥2≤ρ

εεε
⊤

∇θθθL (θθθ)≈ ρ · ∇θθθL (θθθ)

∥∇θθθL (θθθ)∥︸ ︷︷ ︸
=:ε̂εε

. (5.5)

In words, ε̂εε is simply the scaled gradient of the loss function w.r.t to the current

parameters θθθ . Given ε̂εε , the altered gradient used to update the current θθθ t (in place

of ggg(θθθ t)) is

∇θθθ max
||εεε||2≤ρ

L (θθθ + εεε)≈ ∇θθθL (θθθ)|θθθ+ε̂εε .

Due to Eq.5.5, SAM’s computational overhead consists of an additional for-

ward and backward pass per parameter update step compared to SWA and non-flat

optimizers.

SAM’s performance strongly depends on the neighborhood radius ρ . For

example, (Chen et al., 2021b; Wu et al., 2022) show that ρ should be set to values

outside the originally considered ranges by (Foret et al., 2021). Analogously to
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Sec.5.1.2, this lack of coherence among hyper-parameter tuning protocols in the

SAM literature makes it tricky to determine SAM’s comparative effectiveness.

5.1.4 Other Flat-Minima Optimizers

There are several extensions of SWA (Cha et al., 2021; Guo et al., 2022) and SAM

(Kwon et al., 2021; Zhao et al., 2022; Zhuang et al., 2022). For simplicity, we do not

consider them in this work. Besides SWA and SAM, other flat-minima optimizers

include e.g. Chaudhari et al., 2017; Dziugaite and Roy, 2017b; Sankar et al., 2020.

However, due to their computational cost and/or lack of performance gains, we do

not include them in this work. Dziugaite and Roy, 2017b add a regularising term that

encourages flat minima based on the PAC-Bayes bound for generalisation (Pérez-

Ortiz et al., 2021). Chaudhari et al., 2017 requires [5,20] forward and backward

passes per parameter update. Sankar et al., 2020 similarly requires [5,10] forward

and backward passes to estimate the Hessian trace and 6 of 7 experiments yield

minimal improvement of ≤ 0.27%, see Table 1 in (Sankar et al., 2020). In contrast,

SWA and SAM have been shown to increase performance by multiple percentage

points in some cases (Cha et al., 2021; Chen et al., 2021b), while requiring many

fewer computational resources.

5.2 How do minima found by SWA and SAM differ?
In this section, we investigate SWA and SAM solutions for two prototypical deep

learning tasks, where these optimizers improve over the baseline. Our goal is to

better understand their geometric properties.

First, we investigate the behavior of the loss landscape along the line between

non-flat and flat solutions (Sec.5.2.1). Previous studies successfully used such

linear interpolations to gain novel insights, e.g., for training dynamics (Frankle,

2020; Goodfellow and Vinyals, 2015), regularization (Geiping et al., 2021; Li et al.,

2018), and network pruning (Frankle et al., 2020). Second, motivated by findings in

Sec.5.2.1, we average SAM iterates and visualize interpolations between averaged

and non-averaged solutions (Sec.5.2.2). Interestingly, the averaged SAM solution is

less susceptible to asymmetric directions. Third, we compare quantitative measure-
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ments of all solutions’ flatnesses (Sec.5.2.3). Here, we compute dominant Hessian

eigenvalues, as commonly used in the flat minima literature (Chaudhari et al., 2017;

Chen et al., 2021b; Foret et al., 2021; Yao et al., 2020).

We choose the following two disparate learning settings: (i) a well-known image

classification task, widely used for evaluation in flat-minima optimizer papers, and

(ii) a novel, challenging Python code summarization task, on which state-of-the-art

models achieve only around 16% F1 score on the test set (which is higher than its

commonly achieved accuracy on the more challenging training set), and that has not

been explored yet in the flat-minima literature. Specifically, for (i), we investigate

the loss/accuracy surfaces of a WideResNet28-10 (Zagoruyko and Komodakis, 2016)

model on CIFAR-100 (Krizhevsky, 2009) (baseline non-flat optimizer: SGD with

momentum (SGD-M)) (Rumelhart et al., 1988). For (ii), we use the theoretically-

grounded Graph Isomorphism Network (Xu et al., 2019) model on OGB-Code2 (Hu

et al., 2020) (baseline optimizer: Adam (Kingma and Ba, 2015a)).

All optimizers start from the same initialization. We denote the minimizer

produced by the non-flat methods (SGD-M and Adam) by θθθ
NF and the flat ones by

θθθ
SWA and θθθ

SAM.

5.2.1 What is between non-flat and flat solutions?

We start by comparing the similarity of flat and non-flat minimizers through linear

interpolations. This analysis allows us to understand if they are in the same basin,

and how close they are to a region of sharply-increasing loss, where we expect

loss/accuracy to differ widely between train and test. Further, for each of our 4

observations, we recommend a future work direction.

To linearly interpolate between two sets of parameters θθθ and θθθ
′, we parame-

terize the line connecting these two by choosing a scalar parameter α , and defining

the weighted average θθθ(α) = (1−α)θθθ +αθθθ
′. If there exists no high-loss barrier

between two networks θθθ ,θθθ ′ along the linear interpolation, we say that they are

located in the same basin, i.e., {θθθ ,θθθ ′} ∈ ΩΩΩ. (Neyshabur et al., 2020; Zhou et al.,

2020). A basin is an area in the parameter space where the loss function has relatively

low values. Due to NN non-linearities, the linear combination of the weights of two
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accurate models does not necessarily define an accurate model. Hence, we generally

expect high-loss barriers along the linear interpolation path.

While there are alternative distance measures that could be used to compare

two networks, they typically either (a) do not offer clear interpretations, as pointed

out by (Frankle et al., 2020), or (b) yield trivial network connectivity results, such

as non-linear low-loss paths, which can be found for any two network minimizers

(Draxler et al., 2018; Fort and Jastrzebski, 2019; Garipov et al., 2018; Gotmare et al.,

2019).
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Figure 5.2: Training (blue) and test (red) losses (—) and accuracies of linear interpolations
θθθ(α) = (1−α)θθθ +αθθθ

′ (for α ∈ [−1,1.5]) between SWA (+++) and SAM (×××)
solutions (α = 0.0) and non-flat baseline solutions (•,α = 1.0).

Obs. 1: {θθθ SWA,θθθ NF} ∈ΩΩΩ
NF. θθθ

SWA and θθθ
NF are in the same basin, as can be

seen in Figures 5.2a and 5.2e. Additionally, θθθ
NF is near the periphery of a sharp

increase in loss, as can be seen when moving in the direction from θθθ
SWA to θθθ

NF

(i.e., α > 1). Conversely, θθθ
SWA finds flat regions that change slowly in the loss.

This bias of SWA to flatter loss beneficially transfers to the accuracy landscape too:

Figures 5.2b and 5.2f show the accuracy/F1 score rapidly dropping off approaching

and beyond θθθ
NF. Interestingly, in Figures 5.2e and 5.2f, we see that for Code2,

for α < 0, there exist solutions with even better training loss/accuracy but worse

test loss/accuracy. However, θθθ
SWA
GIN is close to the test accuracy maximizer along

this interpolation. Future work may inspect why the cross entropy loss function

used for GIN/Code2 seems less well correlated with its accuracy compared to

WRN/CIFAR100.

Obs. 2: θθθ
SAM ∈ ΩΩΩ

SAM ̸= ΩΩΩ
NF. θθθ

SAM and θθθ
NF are not in the same basin:
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Figures 5.2c and 5.2g show that there is a high loss barrier between them, respectively.

Figures 5.2d and 5.2h show that θθθ
SAM and even nearby points in parameter space

achieve higher accuracies/F1 scores (i.e. generalize better) than θθθ
NF and points

around it. This is an interesting result because we expect different basins to produce

qualitatively different predictions, one of the motivations behind combining models,

even if they exhibit different performances (Huang et al., 2017; Lakshminarayanan

et al., 2017). Grewal and Bui, 2021 successfully combine models yielded by different

optimizers, and we think future work should study ensembling SAM and non-SAM

solutions.

Obs. 3: SAM finds a saddle point. Figure 5.2g shows θθθ
SAM
GIN being located in

a sharp training loss minimum whose loss is much higher than θθθ
NF. Yet, its test loss

is only slightly higher, and its F1 score is better. We visualize 2D plots moving along

random directions (not shown here due to space) to confirm that θθθ
SAM
GIN is a saddle

point. A common pathology among curvature-based methods is that they attract

saddle points (Dauphin et al., 2014). Since SAM takes some form of curvature into

account, too, we believe that future work should investigate SAM’s propensity to

find saddle points and potential remedies.

Obs. 4: θθθ
SAM is closer to sharper directions than θθθ

SWA, as can be

seen by Ltr/te(θθθ
SAM(0.1)) ≈ 2 ·Ltr/te(θθθ

SAM(−0.1)), while Ltr/te(θθθ
SWA(0.1)) ≈

Ltr/te(θθθ
SWA(−0.1)), where L (·)tr/te refers to both training and test loss functions.

A possible explanation for SAM being closer to sharp sides is that while it finds

different basins than SGD/SWA by smoothing the loss surface (as illustrated in

Fig.5.1), within a local basin, it may oscillate around the minimizer similarly as SGD.

One cause for this can be that ΩΩΩ
SAM’s hypersphere is larger than SAM’s radius ρ . If

that holds, then given a small enough learning rate, we expect it to oscillate around

θθθ
∗ ∈ ΩΩΩ

SAM (the smaller the learning rate, the less likely it escapes the basin due

to that stochasticity). Two possible remedies for that are: (1) adapt/schedule ρ , or

(2) average SAM iterates to bias its solution towards the flatter side. (1) has been

explored by (Zhao et al., 2022; Zhuang et al., 2022). We try (2) in the next subsection.

Future work may study SAM’s basin escape time, e.g., using convolutions (Kleinberg
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et al., 2018) or stochastic differential equations (Zhou et al., 2020).

5.2.2 What happens if we average SAM iterates?

Based on observation 4: “θθθ
SAM is closer to sharper directions than θθθ

SWA”, averag-

ing SAM iterates may further improve generalization, referred to as Weight-Averaged

Sharpness-Aware Minimization (WASAM). The reason is that while SAM finds

better-performing basins, within the basin, its final iterate may still be near a side

that increases sharply in the loss.
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Figure 5.3: Training (blue) / test (red) losses (—) and accuracies between non-flat baseline
(•)↔ SWA (+++), SAM (×××)↔WASAM (⋆). α = 0.0 refers to SAM solutions,
α = 1.0 refers to non-flat baseline solutions.

Starting with the first of the two previously analyzed settings (WRN/CIFAR100),

Figures 5.3a, and 5.3b show that θθθ
WASAM
WRN (marker: ⋆) achieves the lowest test loss

and highest test accuracy, respectively. What stands out in comparison to the previous

plots is θθθ
SAM
WRN’s (×××) proximity to sharp sides, surprisingly similar to θθθ

NF
WRN (•) here

and in Figures 5.2c and 5.2e. As we hoped, θθθ
WASAM
WRN is indeed closer to a flatter

region, as can be seen by Ltr/te(θθθ
WASAM
WRN (−0.2))≈Ltr/te(θθθ

WASAM
WRN (0.2)).

In GIN/OGB-Code2, one unanticipated finding is that θθθ
WASAM
GIN escapes the

(previously discussed) saddle point of θθθ
SAM
GIN , appearing here as a maximum in

Figure 5.3c. A likely reason for that is that SAM traversed nearby flatter regions

before arriving at the saddle point, especially if it is a non-strict saddle. In terms of

F1 score, Figure 5.3d shows that while θθθ
SWA
GIN (+++) and θθθ

SAM
GIN perform about equally

well, the flatter region found by θθθ
WASAM
GIN improves over both.

5.2.3 How “flat” are the found minima?

We now quantify the flatnesses of all four optimizers over both tasks by computing

the median of the dominant Hessian eigenvalue across all training set batches using



5.3. How do SWA and SAM perform on the NLP tasks? 98

Task Baseline SWA SAM WASAM
WRN on CIFAR100 673 265 237 117

GIN on Code2 16.65 16.79 11.31 9.96

Table 5.1: Median λλλ max of Hessian over all training set batches.

the Power Iteration algorithm (Mises and Pollaczek-Geiringer, 1929; Yao et al.,

2020). This metric measures the worst-case loss landscape curvature. We choose this

metric as it is very commonly used in the minima flatness literature, e.g., (Chaudhari

et al., 2017; Chen et al., 2021b; Dong et al., 2019; Foret et al., 2021; Krishnapriyan

et al., 2021; Stutz et al., 2021; Yao et al., 2019).

Table 5.1 shows that SAM leads to flatter minima than SWA in both cases.

Interestingly λλλ max(θθθ
NF
WRN) ≈ 2.5 · λλλ max({θθθ SWA,θθθ SAM}), while λλλ max(θθθ

NF
WRN) ≈

5.75λλλ max(θθθ
WASAM
WRN ), indicating room for improvement in terms of flatness for both

SWA and SAM. The relative differences are less dramatic for GIN/Code2, although

surprisingly λλλ max(θθθ
NF
GIN)≈ λλλ max(θθθ

SWA
GIN ). In sum, averaging SAM iterates leads to

the flattest minima and best-performing minima in both cases (see Sec.5.3).

5.3 How do SWA and SAM perform on the NLP

tasks?
As we point out in the introduction, there is almost no overlap and consistency

regarding reported SWA and SAM results in the literature. This section addresses

this gap. For example, Bahri et al., 2021; Chen et al., 2021b illustrate that the

flat minima found by SAM improve generalization on Transformer (Vaswani et al.,

2017a) architectures compared to non-flat optimizers, but they do not compare

against SWA. Hence, it is unclear if the computationally cheaper SWA may provide

better or similar performance.

5.3.1 Experiment Setup

We compare flat minimizers SWA, SAM, and averaged SAM iterates (WASAM) over

the non-flat minimizers across a range of different tasks in the domains of computer

vision, natural language processing, and graph representation learning. We average
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all runs at least three times across random seeds. We bold the best-performing

approach and any approach whose average performance plus standard error overlaps

it. In this thesis, we will focus on the task of Open Domain Question Answering.

For all architectures and datasets, we set hyperparameters shared by all methods

(e.g., learning rate) mostly to values cited in prior work 2 As explained in Sec.5.1.2

and Sec.5.1.3, the effectiveness of flat-minima optimizers is highly sensitive to their

additional hyper-parameters. We select hyper-parameters using a grid search over

a held-out validation set. Specifically, for SWA we follow Izmailov et al., 2018

and hold the update frequency ν constant to once per epoch and tune the start

time E ∈ {0.5T,0.6T,0.75T,0.9T} (T is the number of baseline training epochs).

Izmailov et al., 2018 argue that a cyclical learning rate starting from E helps to

encourage exploration of the basin. For the sake of simplicity, we average the iterates

of the baseline directly but include even earlier starting times (i.e., 0.5T,0.6T ). For

SAM, we tune its neighborhood size ρ ∈ {0.01,0.02,0.05,0.1,0.2}, as in previous

work (Bahri et al., 2021; Foret et al., 2021).

For the task of Open Domain Question Answering, we adapt the hyper-

parameter values and the top-25 retrieved passages for each question from Izacard

and Grave, 2021. We report the Exact Match score of FiD-base model on Natural

Questions (NQ) (Kwiatkowski et al., 2019a) and TriviaQA (Joshi et al., 2017) test

sets.

For GLUE benchmark, we report Matthew’s Corr for CoLA, Pearson correlation

coefficient for STSB, and accuracy for the the rest of the datasets. Results are all

evaluated on the dev set of GLUE benchmark. We use the RoBERTa-base as our

backbone language model, implemented with Huggingface Transformers (Wolf

et al., 2020). Most of the task-specific hyper-parameter values are adapted from

Aghajanyan et al., 2020.

2Sometimes with minor modifications, e.g., adjusting per-device batch sizes to be compatible with
our GPU infrastructure.
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Task Model Baseline SWA SAM WASAM

NQ FiD 49.35±0.44 −0.20±0.33 + 0.33±0.19 + 0.48±0.21

TriviaQA FiD 67.74±0.29 + 0.40±0.24 + 0.89±0.03 + 0.92±0.10

COLA RoBERTa 60.41±0.22 + 0.09±0.08 + 1.57±1.20 + 1.41±1.14

SST RoBERTa 94.95±0.13 −0.30±0.27 −0.23±0.40 + 0.19±0.14

MRPC RoBERTa 89.14±0.57 + 0.08±0.49 +0.73±0.43 + 0.81±0.38

STSB RoBERTa 90.40±0.02 +0.00±0.05 +0.38±0.17 + 0.35±0.16

QQP RoBERTa 91.36±0.07 +0.01±0.06 +0.08±0.07 +0.06±0.08

MNLI RoBERTa 87.41±0.09 +0.08±0.11 +0.39±0.02 +0.35±0.03

QNLI RoBERTa 92.96±0.06 −0.08±0.11 +0.09±0.01 +0.11±0.06

RTE RoBERTa 80.09±0.23 −0.23±0.20 +0.70±0.65 −0.46±0.12

Table 5.2: Experiment results on the test sets of NQ and TriviaQA datasets, dev sets of the
GLUE benchmark.

5.3.2 Results

The experiments results are included in Table 5.2. We observe that across different

tasks, the baseline non-flat optimizer and SWA are never among the most accurate.

SWA often does not improve and sometimes hurts performances. Both SAM and

WASAM are the best in all but two (different) cases, only one of which is worse than

the baseline. Averaging SAM iterates (WASAM) often improves over SWA or SAM

alone. We hypothesize that asymmetric payoffs are the reason: when either SWA

or SAM does not improve over the baseline (as discussed above), it does not hurt

(much) either, hence WASAM is more robust across all tasks.

5.3.3 Why does SWA not work well on NLP tasks?

In Table 5.2, we saw that SWA had only a mild effect on the generalization perfor-

mance of NLP tasks, and sometimes even decreases it. Here, we seek to investigate

why that is.

We consider two tasks: (i) the RTE task, for which SWA decreases the per-

formance by around −0.23±0.20 compared to Adam, (ii) the QNLI task, for which

SWA decreases the performance by −0.08±0.11. In both cases, SAM improved the

performance statistically significantly over the baseline optimizer Adam.
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Figure 5.4: Training (blue) and test (red) losses (—) and accuracies of linear interpolations
θθθ(α)= (1−α)θθθ +αθθθ

′ between Adam solutions (•,α = 0.0) and SWA (+++,α =
1.0).

For the QNLI task in upper Fig. 5.4, we observe that SWA finds a lower/higher

training loss/accuracy than Adam, respectively. However, the test loss/accuracy is

higher/lower at the SWA solutions and the loss functions seem less well correlated

in between both solutions (i.e, for α ∈ [0,1]).

For the RTE task in lower Fig. 5.4, we note that SWA finds a solution that is

closer to a sharply increasing side. This may happen if the baseline optimizer skips

or goes around sharper solutions (e.g., due to large step sizes) and the average pulls

it towards these suboptimal regions.

Furthurmore, we compute the Centered Kernel Alignment Similarities (CKA;

Kornblith et al., 2019; Yang et al., 2021) and cosine similarities of network out-
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put logits on train and test set, respectively. Table 5.3 shows the results. CKA

is a similarity index that measures the similarities between deep neural network

representations.

Table 5.3: Pairwise CKA (Kornblith et al., 2019) and cosine similarities between non-flat
(NF) and SWA/SAM solutions. SWA solutions produce predictions more similar
to NF ones than SAM.

Task sCKA(θθθ
NF,θθθ SWA) scosine(θθθ

NF,θθθ SWA) sCKA(θθθ
NF,θθθ SAM) scosine(θθθ

NF,θθθ SAM)

RoBERTa-QNLI (Train) 0.9997 0.9991 0.9790 0.9510
RoBERTa-QNLI (Valid) 0.9830 0.9959 0.9550 0.9530

RoBERTa-RTE (Train) 0.9931 0.9891 0.9831 0.9628
RoBERTa-RTE (Test) 0.9314 0.9567 0.8808 0.8927

The results show that the SAM solutions produce predictions that are less

similar to the non-flat baseline than SWA solutions, as indicated by lower CKA and

cosine similarities. This result is in line with Observation 1 and 2 from Sec. 5.2.1.

5.4 Limitations and Future Work
First, some of the fixed, shared hyperparameter values we used from previous works

may harm the effect of flat optimizers. The ideal experimental design includes tuning

all hyperparameters independently for the non-flat optimizer, SWA, SAM, and

WASAM. However, this forces the number of required runs to grow exponentially in

unique hyperparameters and quickly renders this benchmark infeasible.

Second, despite our best efforts to evaluate the optimizers on a broad range of

benchmark tasks, there are still plenty of unexplored domains; especially some of

which are known to be sensitive to careful optimization, such as generative modeling

(Heusel et al., 2017), deep reinforcement learning (Arulkumaran et al., 2017), or

causal machine learning (Kaddour et al., 2022).

Third, in general, we believe fruitful directions of research include (a) optimizers

that explicitly find basins where training loss flatness more directly corresponds to

higher hold-out accuracy, (b) post-processing methods for existing optimization runs

to move into flatter regions of these basins, (c) loss functions whose contours more

tightly align with accuracy contours, (d) the study of flat-minima hyperparameter

interactions (e.g., learning rate and neighborhood radius in SAM), (e) analyses of
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flat minima optimization on convergence speed (Kaddour, 2022).

Our benchmark results point to which tasks would most benefit from improving

these future work directions: graph learning tasks would clearly benefit from im-

provements in (a), as SAM is never among the best performing method, and language

tasks would benefit if (b) is improved, as SWA is never among the best performing

method.

5.5 Conclusion
We investigated when flat minimia optimizers work by conducting a fair comparison

of two popular flat-minima optimizers. We examined the behavior of SWA/SAM

by analyzing their loss landscapes on two representative deep learning tasks. Our

next step was to evaluate their generalization performance on a broad and diverse

set of tasks (in data, learning settings, and model architectures). Based on this

benchmarking, our findings directly guide future work directions. Finally, when

SWA/SAM did not improve over baselines, common assumptions seemed broken

(i.e., train-to-test loss minimizers were not correlated).



Chapter 6

Conclusions and Future Work

6.1 Main Contributions

In this thesis, our investigation revolves around enhancing the generalization capa-

bility of Open Domain Question Answering (ODQA) systems. These systems are

designed to tackle novel questions that lie beyond their training data. In Chapter 1,

we lay the foundation by presenting fundamental definitions of the ODQA task. We

delve into the essential steps required to address input questions and delineate the

various dimensions that encompass generalization within the ODQA context.

Moving forward to Chapter 2, we delve into the contextual backdrop and related

research. We embark on a historical journey, tracing the evolution of methodologies

in ODQA. We extensively explore three primary approach paradigms: Retriever-

Reader, QA-pair retriever, and Parametric models. Additionally, we delve into the

metrics employed for evaluating these approaches.

The intricacies of the challenges plaguing the model’s suboptimal performance

on novel questions take center stage in Chapter 3. Through an innovative dataset

annotation methodology, we classify questions based on their degree of generaliza-

tion. This categorization facilitates the identification and quantification of key factors

influencing the model’s generalization prowess.

Guided by insights derived from Chapter 4, we propose a novel enhancement

for the document retrieval phase by incorporating contextual clue sampling via

Language Models. This augmentation not only enhances retrieval accuracy but also
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substantially reduces the requisite index size and retrieval latency.

Furthermore, our focus shifts to refining the reader module in Chapter 5. Build-

ing on prior research that underscores the interplay between the topographical

landscape of loss functions and a model’s generalization capacity, we endeavor to

train our model using optimizers conducive to discovering flatter minima. Empirical

evidence is marshaled to corroborate the efficacy of training models with flat minima

optimizers in boosting reader model performance.

We specify the major contributions and findings below:

Novel Dataset Annotation Methods: We propose to annotate the existing ODQA

dataset in order to understand which aspects of novel questions make them challeng-

ing for the model to answer. Drawing upon studies on systematic generalization, we

introduce and annotate questions according to three categories that measure different

levels and kinds of generalization: training set overlap, compositional generalization

(comp-gen), and novel-entity generalization (novel-entity). Our categorization break-

down is motivated by how they capture different levels of generalization: overlap

requiring no generalization beyond recognizing paraphrases, comp-gen requiring

generalization to novel compositions of previously observed entities and structures,

and novel-entity requiring generalization to entities not present in the training set.

Identifying Factors Influencing Model Generalization: We demonstrate and

quantify key factors that impact model generalization performance: cascading errors

from the retrieval component, frequency of question pattern, and frequency of

the entity. Notably, we uncover that the inherent structure of questions itself can

pose challenges, enabling us to deduce overarching question patterns through our

decomposition approach. We find a strong positive correlation between the pattern

frequency in the training set and test accuracy. Our investigation extends to the

behavior of non-parametric models in handling distinct question subsets comp-gen

and novel-entity cases. Surprisingly, for comp-gen questions, we identify a strong

negative correlation between the frequency of mentioned entities within a question

and test accuracy. For novel-entity questions, substituting novel entities with those

from the training set maintains performance, suggesting that specific unseen entities
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aren’t the primary performance bottleneck. Instead, it suggests a potential limitation

in the model’s compositional generalization. Moving beyond questions, our analysis

delves into retrieved passages. We observe a shared deficiency in retrieval accuracy

for both the comp-gen and novel-entity subsets, hovering around 75% for top-20

accuracy. Intriguingly, many passages containing correct answers lack sufficiently

informative context for the reader model to precisely locate them. This underscores

the need to enhance the reader’s capacity to reason across multiple passages or for

the retriever model to furnish passages with richer contextual information.

Query Expansion Using Language Models: Query expansion is an effective

approach for mitigating vocabulary mismatch between queries and documents in

information retrieval. One recent line of research uses language models to generate

query-related contexts for expansion. Along this line, we argue that expansion terms

from these contexts should balance two key aspects: diversity and relevance. The

obvious way to increase diversity is to sample multiple contexts from the language

model. However, this comes at the cost of relevance, because there is a well-known

tendency of models to hallucinate incorrect or irrelevant contexts. To balance these

two considerations, we propose a combination of an effective filtering strategy

and fusion of the retrieved documents based on the generation probability of each

context. Our lexical matching based approach achieves a similar top5/top-20 retrieval

accuracy and higher top-100 accuracy compared with the well-established dense

retrieval model DPR, while reducing the index size by more than 96%. For end-to-

end QA, the reader model also benefits from our method and achieves the highest

Exact-Match score against several competitive baselines.

Understanding Flat Minima Optimizers: Recently, flat-minima optimizers, which

seek to find parameters in low-loss neighborhoods, have been shown to improve a

neural network’s generalization performance over stochastic and adaptive gradient-

based optimizers. Two methods have received significant attention due to their

scalability: 1. Stochastic Weight Averaging (SWA), and 2. Sharpness-Aware Mini-

mization (SAM). However, there has been limited investigation into their properties

and no systematic benchmarking of them across different domains. We fill this gap
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here by comparing the loss surfaces of the models trained with each method and

through broad benchmarking across computer vision, natural language processing,

and graph representation learning tasks. We discover several surprising findings from

these results, which we hope will help researchers further improve deep learning

optimizers, and practitioners identify the right optimizer for their problem.

Training Reader model with Flat Minima Optimizers: The existing literature

presents a notable scarcity of both overlap and consistency in the reported outcomes

of SWA and SAM, the two most widely used flat minima optimizers. In response,

we undertake a comprehensive array of experiments spanning diverse NLP tasks,

encompassing ODQA and the GLUE benchmark. Ensuring the robustness of our

findings, we meticulously average the results from multiple runs conducted with

varying random seeds. Drawing from the outcomes of these experiments, intriguing

patterns emerge. Across the spectrum of tasks, neither the conventional non-flat

optimizer nor SWA manages to consistently claim the mantle of highest accuracy.

SWA, in particular, exhibits a propensity to underdeliver in terms of performance

improvements, and at times, it even leads to performance deterioration. In stark con-

trast, both SAM and WASAM consistently shine, outperforming their counterparts

in all but two distinct cases. Impressively, the practice of iteratively averaging SAM,

exemplified by WASAM, frequently surpasses the performance of standalone SWA

or SAM. A noteworthy highlight pertains to the reader module FiD model (Izacard

and Grave, 2021), exclusively trained using SAM. This model achieves competitive

performance compared to its counterpart trained with baseline optimizers, all while

requiring just 20 retrieved documents as input, as opposed to the 100 documents

needed by the baseline model. Furthermore, our inquiry extends to unraveling the

reasons behind SWA’s suboptimal performance in NLP tasks.

6.2 Limitations and Future Work

6.2.1 Exploring recent released large language models

The experiments conducted in this thesis is built on the relatively early and small-

scale language models, such as BART-large (400M paramters) and T5-large (770M
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parameters). However, a very recent surge of remarkable endeavors has led to the

creation of colossal models, boasting tens to hundreds of billions of parameters.

These monumental models have taken the spotlight in the realm of newly established

products, including but not limited to ChatGPT by OpenAI1, Claude by Anthropic2,

Github Copilot3, and Character chatbots4. These models have demonstrated un-

precedented levels of performance across a myriad of downstream tasks, marking a

significant advancement. As we delve into the context of Open-Domain Question

Answering (ODQA), it becomes imperative to thoroughly evaluate and comprehend

their performance within this domain.

Many efforts have already been made to measure the large language models.

Liang et al. (2022) propose the Holistic Evaluation of Language Models (HELM)

across 30 prominent language models on all 42 scenarios, including 21 scenarios

that were not previously used in mainstream LM evaluation. In the realm of 9 core

question answering situations, InstructGPT davinci v2 (175B) stands as the most

precise model across all 9 scenarios. Intriguingly, among the top 3 models in terms of

accuracy for 6 out of the 9 scenarios, there isn’t a publicly available model. The rank-

ing of accuracy generally features InstructGPT davinci v2 (175B) at the forefront,

succeeded by Anthropic-LM v4-s3 (52B) and TNLG v2 (530B) in a descending hier-

archy. Liu et al. (2023a) analyze language model performance on tasks that require

identifying relevant information within their input contexts (multi-document question

answering and key-value retrieval). Their findings reveal that optimal performance

frequently emerges when pertinent information is located at the outset or conclusion

of the input context. Conversely, the effectiveness notably diminishes when mod-

els are required to retrieve relevant details from the middle of extensive contexts.

Moreover, as the input context extends in length, there is a significant decline in

performance, even among models explicitly designed for handling lengthy contexts.

In contrast to the assessment of a model’s capacity to effectively utilize context-based

information, an alternative avenue of research proposes the integration of language

1https://openai.com/chatgpt
2https://www.anthropic.com/index/introducing-claude
3https://github.com/features/copilot
4https://beta.character.ai/

https://openai.com/chatgpt
https://www.anthropic.com/index/introducing-claude
https://github.com/features/copilot
https://beta.character.ai/
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models that furnish references to substantiate their generated content. Generative

search engines embody this approach by producing responses to input queries while

also providing inline citations. Notably, Bing Chat from Microsoft served 45 million

chats in the first month of its public review (Mehdi, 2023). Additional commercial

generative search engines, such as Perplexity.ai5, YouChat6, and NeevaAI7 are also

in the landscape. In a recent study by Liu et al. (2023b), a comprehensive human

evaluation was conducted to scrutinize these four prominent products across diverse

queries from various sources. Initially, the responses generated by current generative

search engines exhibit fluency and an appearance of informativeness. However, they

frequently contain unsupported assertions and inaccurately cited information. On

average, only 51.5% of the generated sentences possess adequate citation support,

and a mere 74.5% of the citations effectively corroborate their associated sentences.

This discrepancy raises substantial concerns, especially for users who rely on these

systems as their primary information-seeking resources. The existing commercial

systems thus exhibit considerable room for improvement.

6.2.2 Multi-Modality Question Answering

The content presented within this section encompasses the material from

this paper:

*Raphael Tang, *Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei

Yang, Karun Kumar, Jimmy Lin, and Ferhan Ture. "What the daam:

Interpreting stable diffusion using cross attention." ACL 2023 (*Equal

Contribution)

The entirety of the research discussed in this thesis rests upon the conventional

notion of Open-Domain Question Answering (ODQA), where the answering process

is executed based on textual sources of information. Expanding on this, it’s worth

noting that questions can also extend to other modalities, such as images, leading

to what is termed Visual Question Answering (VQA). In congruence with ODQA’s

5Perplexity.ai
6https://web.youchat.com/
7https://neeva.com/blog/introducing-neevaai

https://www.perplexity.ai/
https://you.com/search?q=who+are+you&tbm=youchat&cfr=chat
https://neeva.com/blog/introducing-neevaai
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approach of reasoning over a diverse array of documents, a novel VQA dataset called

SlideVQA has been introduced (Tanaka et al., 2023). This dataset aims to address

scenarios where a system, presented with a slide deck containing multiple slide

images and a corresponding question, must select pertinent evidence images and

provide answers.

Pushing the envelope further, the task of MULTIMODALQA (Talmor et al.,

2020) involves answering questions that span across free-form text, semi-structured

tables, and images. The process to tackle such questions begins with breaking them

down into a sequence of simpler inquiries. Subsequently, it’s crucial to determine the

suitable modalities for these simplified questions and provide answers accordingly.

For example, image information might be stored in visual formats, specific entity

details could reside in textual content, and structured data could be embedded within

tables. Ultimately, the information garnered from these simplified questions must be

synthesized to formulate a comprehensive answer.

Within the realm of computer vision, endeavors have been undertaken to en-

hance VQA datasets, overcoming limitations posed by the scarcity and expense of

image collection. A recent study by Kim et al. (2023) leverages the diffusion model

(Ho et al., 2020; Sohl-Dickstein et al., 2015) to generate images with a dual purpose.

The primary objective is to preserve essential answer-related information, while

concurrently broadening the spectrum of image diversity. Additionally, this approach

serves to infuse prior knowledge into the VQA model, enhancing its overall perfor-

mance. Diverging from basic image augmentation methods like flipping and rotation,

which only alter specific elements of images, the images produced by the Diffusion

model exhibit varying appearances. These generated images are equipped to handle

abstract descriptions present in textual prompts. Consequently, VQA models trained

on such augmented datasets exhibit remarkable performance in VQA tasks.

In a recent work, we propose an attribution method to provide insight into

the workings of large diffusion models. With a focus on text-to-image attribution,

our central research question is, “How does an input word influence parts of a

generated image?” To this, we propose to produce two-dimensional attribution
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Figure 6.1: The original synthesized image and three DAAM maps for “monkey,” “hat,” and
“walking,” from the prompt, “monkey with hat walking.”

maps for each word by combining cross-attention maps in the model. We name

our method diffusion attentive attribution maps, or DAAM for short — see Figure

6.1 for an example. We study how relationships in the syntactic space of prompts

relate to those in the pixel space of images. The findings are illustrated in Figure

6.2. We assess head–dependent DAAM interactions across ten common syntactic

relations (enhanced Universal Dependencies; Schuster and Manning, 2016), finding

that, for some, the heat map of the dependent strongly subsumes the head’s, while

the opposite is true for others.

Finally, we form hypotheses to further our syntactic findings, studying semantic

phenomena using DAAM, particularly those affecting image quality. We demonstrate

that, in constructed prompts with two distinct nouns, cohyponyms have worse quality

(9% worse than non-cohyponyms), e.g., “a giraffe and a zebra” generates a giraffe

or a zebra, but not both (shown in Figure 6.3). Cohyponym status and generation

incorrectness each increases the amount of heat map overlap, advancing DAAM’s

utility toward improving diffusion models. We also show that descriptive adjectives

attend too broadly across the image, far beyond their nouns. As shown in Figure

6.4, the DAAM map for “rusty” attends broadly, and the back-ground for “rusty” is

surely not clean. When we change the adjective to “metallic” and “wooden,” the

shed changes along with it, becoming grey and wooden, indicating entanglement.

Similar observa- tions apply to our second case, “a bumpy, smooth, spiky ball rolling

down a hill,” where “bumpy” produces rugged ground, “smooth” flatter ground, and

“spiky” blades of grass. If we fix the scene layout (Hertz et al., 2022) and vary only

the adjective, the entire image changes, not just the noun. These two phenomena

suggest feature entanglement, where objects are entangled with both the scene and

other objects. In our third case, we study color adjectives using “a {blue, green,
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Figure 6.2: Twelve example pairs of DAAM maps, with the dominant word in bold, if
present for the relation. Note that the visualization scale is normalized for each
image since our purpose is to study the spatial locality of attribution conditioned
on the word. For example, the absolute magnitude for the comma above is weak.

red} car driving down the streets,” presented in Figure 6.5. We discover the same

phenomena, with the difference that these prompts lead to quantifiable notions of

adjectival entanglement. For, say, “green,” we can conceivably measure the amount

of additional green hue in the background, with the car cropped out—see bottom row.

A caveat is that entanglement is not necessarily unwanted; for instance, rusty shovels

likely belong in rusted areas. It strongly depends on the use case of the model.

Overall, we study visuolinguistic phenomena in diffusion models by interpreting

word–pixel cross-attention maps. We prove the correctness of our attribution method,

DAAM, through a quantitative semantic segmentation task and a qualitative general-

ized attribution study. We apply DAAM to assess how syntactic relations translate to

visual interactions, finding that certain maps of heads inappropriately subsume their

dependents’. We use these findings to form hypotheses about feature entanglement,
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Figure 6.3: Rows starting from the top: generated images for cohyponyms “a giraffe and a
zebra,” heat maps for the first two images, and heat maps for non-cohyponymic
zebra–fridge and giraffe–fridge prompts.

Figure 6.4: First row: a DAAM map for “rusty” and three generated images for “a <adj>
shovel sitting in a clean shed;” second row: a map for “bumpy” and images for
“a <adj> ball rolling down a hill.”

showing that cohyponyms are jumbled and adjectives attend too broadly. These

findings have significant implications. Notably, they can contribute to the refinement

of pipeline design when integrating the Diffusion model into question-answering

tasks that involve multiple modalities. In essence, our research sheds light on the

intricate relationship between language and visuals, offering valuable guidance for

enhancing the fusion of these elements in complex tasks.
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Figure 6.5: A DAAM map and generated images for “a <adj> car driving down the streets,”
above images of the cropped background, oversaturated for visualization.

6.2.3 Combating Hallucinations in Language Models

While large language models, comprising billions of parameters and trained on vast

datasets, have showcased remarkable advancements across various tasks, they exhibit

a susceptibility to generating text that appears linguistically coherent but deviates

from the fidelity of the provided source input or strays from established factual

knowledge (Bubeck et al., 2023; Vinyals and Le, 2015). This susceptibility leads to

the phenomenon known as "hallucinations" (Maynez et al., 2020), wherein generated

content lacks factual accuracy.

An illustrative case of both open-domain and closed-domain hallucinations

involving the state-of-the-art GPT-4 model is depicted in Figure 6.6. These halluci-

nations can be broadly classified into two categories: 1) Open-domain hallucinations

(shown in upper Fig. 6.6): These occur when the model produces incorrect or

unsupported information in response to open-ended prompts. This can be likened to

closed-book question answering, as discussed earlier in this thesis. The knowledge

generated is solely derived from the model’s internal parameters unless additional

background research is conducted. Previous research (Kandpal et al., 2023) has

demonstrated that a language model’s proficiency in answering factual questions is

tied to its exposure to relevant documents during pre-training. Strong correlations

and causal connections have been observed between accuracy and the number of

pertinent documents associated with a range of question-answering datasets, pre-

training datasets, and model sizes. 2) Closed-domain hallucinations (shown in lower

Fig. 6.6) refer to mistakes or inaccuracies that occur within a specific context, where

there are existing content or constraints that can be used to validate or verify the
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Figure 6.6: Illustrations of hallucination occur in both open-domain and closed-domain
scenarios. In the closed-domain context, it becomes evident that GPT-4 can
serve as a tool for recognizing hallucinations. However, its proficiency is not
flawless. For instance, GPT-4 may rationalize providing the Body Mass Index
(BMI) by deducing it from height and weight, even if the weight value is not
explicitly provided. The example is from Bubeck et al. (2023).

accuracy of the generated information. These hallucinations are typically errors that

arise when generating content that should be consistent with the provided context,

data, or guidelines. For example, consider a scenario where an AI language model

(LLM) is tasked with summarizing a news article. A closed-domain hallucination

might occur if the summary includes details or information that are not present in the
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original article or misrepresents the facts stated in the article. In this case, the context

of the original article serves as a basis for verifying the accuracy of the generated

summary. Addressing closed-domain hallucinations involves techniques aimed at

maintaining consistency and alignment within the given context. One approach

is to employ methods that check for consistency, such as using the same LLMs

to identify discrepancies or fabricated information that goes beyond the provided

facts or content. This can help identify instances where the AI model is generating

information that is not supported by the provided data or constraints, allowing for

better control over the quality and accuracy of generated content in specific contexts.



Appendix A

Appendix for Annotated Question

Answer pairs based on Compositional

Generalization

A.1 Answer Grounding in Retrieved Passages
We noted in Section 3.3 that we find evidence the FiD (Izacard and Grave, 2021)

ODQA model does ground its answers in the retrieved passages. This observation

can be contrasted to that of Krishna et al. (2021), who found that answers to long-

form questions were not grounded in the passage, in that models would provide the

same answer regardless of the context provided. A complete picture of the results

from our experiment can be seen in Table A.1. We note that when the models is fed

solely random passages it fails to answer nearly all questions (3.6%). However, but

Passage Processing Total Overlap Comp-gen Novel-entity

Original retrieved 53.1 78.9 40.0 47.7
50% random 53.2 78.3 39.9 48.3
99% random 55.5 74.3 46.1 54.0
100% random 3.6 5.1 2.0 3.0

Table A.1: Comparison of FiD’s predictions for the NQ test set, conditioned on the origi-
nally retrieved passages and a gradually increasing number of randomly chosen
passages. x% means the percentage of retrieved passages are replaced with
random ones. For 99% random, the rest passage is gold passage which contains
the gold answer span.
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Group Test question Train question

Overlap

Where does patience is a virtue come from Where did the saying patience is a virtue come from
Who was the killer in the movie I Know What You did Last Summer Who was the murderer in I Know What You did Last Summer
When was the last time Arsenal win Premier League When was the last time Arsenal won the Premier League title
Where does blood go when it leaves the pulmonary artery Where does blood go after the pulmonary artery

Comp-gen

What is the most popular religion in Sweden What is the most popular religion in Ukraine
What are the main functions of the stem What are the main functions of the control bus
Who is in charge of ratifying treaties in the US Who is in charge if president is impeached
Cast of the Have and Have Nots play The last episode of the Haves and Have Nots

Novel-entity

Where does wild caught sockeye salmon come from When was Sony walkman first sold in stores
The probability of making a Type I Error when retaining .. is When was tower of terror built in Disneyland
Who was the Pinkerton Detective Agency ’s first female detective Who played detective Green on Law & Order
Where was the world economic forum held this year Who holds the world record for 100 meters

Table A.2: Example questions from NQ test set.

Group Test question Train question

Overlap

Which is the highest waterfall in the world What is the tallest waterfall in the world
In the cartoon series, what kind of dog is Scooby Doo What breed of dog is Scooby-Doo
Who directed the film “Gladiator”, starring Russell Crowe Who directed the film Gladiator
Which is the largest island in Canada What is Canada’s largest island

Comp-gen
- What nationality was the painter Vincent Van Gogh - What nationality was painter Piet Mondrian
- What post was held by Winston Churchill during
the 1926 general strike in the UK

- What role was played by Arthur Cook
In the general strike of 1926

- By population, which is the second biggest city in France
- In terms of population, which is the
second largest city in Finland 1926

- In humans, the medical condition prepatellar bursitis
affects which part of the body

- The medical condition aerotitis affects
which part of the human body

Novel-entity

- In ‘follow that camel’, the fourteenth carry on film,
sid james was replaced by which us actor

- What was the cause of death of carmen
in the opera of that name

- Who has recently overtaken brian o’driscoll
to become ireland’s most capped player

- In the 2005 remake of king kong,
who played the writer jack driscoll

- Shining Tor is the highest point in which county - Shinto is the main religion in which country

- Who had a Too Legit to Quit tour
- Which sweets were advertised as
the Too Good to Hurry Mints

Table A.3: Example questions from TriviaQA test set.

provided with half gold and half random passages, it performs on par with its original

performance. Lastly, we note that when presented with a single gold passage and

otherwise only random passages, the model is still able to determine which passage

is the gold passage and answer the question correctly – in fact, the performance even

improves upon the original performance with more than more than 5% for comp-gen

and novel-entity questions.

A.2 Additional Examples for three generalization sub-

sets
Additional examples from Natural Questions are provided in Table A.2, WebQues-

tions in Table A.3, and TriviaQA datasets in Table A.4.
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Group Test question Train question

Overlap

What is the currency of Puerto Rico called What type of currency is used in Puerto Rico
Which countries speak German officially What countries speak German as a first language
What language is spoken in Haiti today What language do Haitian speak
What team is Hank Baskett on 2010 What team is Hank Baskett playing for in 2010

Comp-gen

What year was George W Bush elected What is George W Bush’s middle name
What year did the Seahawks win the Superbowl In what Super Bowl did the Seahawks face the Steelers
Where did Queensland get its name from From where did the Guillotine get its name
Where was Theodore Roosevelt buried Where is George v1 buried

Novel-entity

Where did Andy Murray started playing tennis When did Sean Murray first appear on NCIS
What time in Hilo Hawaii Who was Phil Harris married to
Where did Bristol Palin go to school What team is Chris Paul on
What time does American Horror Story air Who made the American Red Cross

Table A.4: Example questions from WebQ test set.

A.3 Influence of question pattern frequency
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Figure A.1: Influence of question pattern frequency. Each figure is associated with one
non-parametric model, which is DPR, RAG and RePAQ from left to right. The
test questions are binned based on the frequency of their question pattern in the
training set. The y-axis shows the Exact Match score on the NQ test set.
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