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Detecting entanglement in many-body quantum systems is crucial but challenging, typically requiring multiple
measurements. Here, we establish a class of states where measuring connected correlations in just one basis gives
a necessary condition to detect bipartite separability, thus offering a sufficient condition to detect entanglement,
provided the appropriate basis and observables are chosen. This methodology leverages prior information about
the state, which, although insufficient to reveal the complete state or its entanglement, enables our one basis
approach to be effective. We discuss the possibility of one observable entanglement detection in a variety of
systems, including those without conserved charges, such as the transverse Ising model, reaching the appropriate
basis via quantum quench. This provides a much simpler pathway of detection than previous works. It also shows
improved sensitivity from Pearson correlation detection techniques.
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I. INTRODUCTION

Detection of many-body entanglement (bipartite or mul-
tipartite) is an experimentally difficult task insofar only a
handful of experiments [1,2] have been able to successfully
achieve it. The typical methods involve creation of a replica of
the original many-body system to compute purity [1] or using
a series of randomized measurements to detect Renyi entropy
in a trapped ion quantum simulator [2]. Both of the setups
were fine-tuned and, while they can measure the entanglement
of a carefully prepared state in an idealized setting, measuring
or witnessing entanglement of states obtained in many-body
experiments simply and effectively is practically impossible
[3].

That being said, entanglement detection in general many-
body quantum systems is crucial for several reasons. First,
numerous emergent many-body systems in solid-state struc-
tures, such as multiple electrons confined to nanowires, can
be described by at least one of the Hamiltonians discussed in
this paper. Additionally, various other types of Hamiltonians
can be realized in engineered quantum dot arrays. Detecting
entanglement between different parts of such systems is vital
for certifying the genuine quantum nature of these systems.
Moreover, entanglement between two components of a many-
body system has been a subject of study for an extended
period, with quantifications such as von Neumann entropy
and negativity being employed. The motivation behind these
studies was to comprehend the entanglement structure of such
systems, either to facilitate effective variational descriptions
or to assess the natural availability of resources for quantum
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communication. However, one needs to actually verify this
entanglement in experiments, and the above quantifications
are difficult to implement experimentally.

Hence it is of paramount importance to connect entangle-
ment detection in specific classes of many-body states with
quantities requiring less demanding experimental resources to
measure. To begin, let us look at the most general definition
of an entangled state. An entangled state is defined as one
that cannot be separated into individual states belonging in
separate subspaces. In the simplest scenario of bipartitions,
i.e., a system with constituent Hilbert spaces HA and HB,
and the combined space given by H = HA ⊗ HB, a pure state
|ψ〉 ∈ H is separable iff

|ψ〉 = |ψA〉 ⊗ |ψB〉, (1)

where |ψA[B]〉 ∈ HA[B]. On the other hand, a mixed state rep-
resented by density matrix ρ is separable iff

ρ =
∑

i

piρ
A
i ⊗ ρB

i , (2)

where ρ
A[B]
i ∈ HA[B] and

∑
i pi = 1.

Entanglement indicates quantum correlations, and mea-
surement of classical correlations between one set of observ-
ables between the corresponding subsystems is typically not
enough to detect entanglement—classical correlations should
necessarily exist in several different observables. The search
for detection of entanglement with the least number of mea-
surements has taken us in various directions in recent years
[4–13], with specific techniques available for spin systems
[14–19], measuring charge fluctuations [20–23], coherences
[24], or number entropy [25–28] in systems with locally
conserved charge, and measurements of classical correlations
in a set of mutually unbiased bases (MUBs) or observables
[29–35].
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The focus of this paper shall be on the efficient detection of
bipartite entanglement utilizing the aforesaid MUBs. Previous
studies involving MUBs have revealed that at least two mea-
surements are necessary to establish a reliable criterion for
detection. However, considering that bipartite entanglement
typically implies classical correlation in many measurements,
naively we expect the existence of at least one measurement
that exhibits zero correlation for separable states, but nonzero
correlation for entangled states. Then, by measuring this spe-
cific quantity, our problem of entanglement detection should
be resolved. But the challenge lies in the fact that there is no
guarantee of existence of such a quantity that is independent
of the state being examined, thus leading to a wide variety of
state-dependent entanglement witnesses.

In this paper, we find a common observable which can
efficiently detect bipartite entanglement for a wide class of
states. We demonstrate that (i) it is, in fact, possible to de-
tect entanglement of any arbitrary mixed state via measuring
correlations of one observable independently of the measured
state if they are separable to purely real states or states with the
density matrix having purely imaginary of-diagonal elements.
(ii) We also show that in the presence of a locally conserved
charge such as particle number or magnetization, detection of
entanglement in any generic state (i.e., need not be separable
to be purely real or imaginary) is possible by this technique
[36]. (iii) We then test the efficacy of the observable to detect
entanglement in mixed states generated by different Hamilto-
nians via exact numerical simulations.

In what follows, since our proposed criterion is based on
MUB, we first define MUBs and discuss a specific entan-
glement witness which utilizes them. Then we elaborate our
criterion and provide examples comparing efficiency of both
approaches.

II. MUTUALLY UNBIASED BASIS (MUB)

A set of bases {α} = {|αi〉} and {α′} = {|α′
j〉}. where i, j ∈

1, . . . , d , in a Hilbert space H = Cd is mutually unbiased iff

|〈αi|α′
j〉|2 = 1/d ∀ i, j. (3)

A. Entanglement witnessing using MUBs

Entanglement detection using MUBs requires measure-
ment of correlations. Among the several different quantifiers
which have been addressed in previous works [29–34], we fo-
cus on the Pearson correlation measurement, as it was shown
to be among the more efficient measures [31].

Consider a system S, subdivided into two subsystems A and
B. Let us denote an observable measured in subsystem A as
OA and for B as OB. Then the Pearson correlation between the
observables is given by the normalized connected correlation,

PO = 〈OA ⊗ OB〉 − 〈OA ⊗ I〉〈I ⊗ OB〉√〈
O2

A ⊗ I
〉 − 〈OA ⊗ I〉2

√〈
I ⊗ O2

B

〉 − 〈I ⊗ OB〉2
,

(4)
where the expectation value is taken with respect to the state
of the system S. For MUB measurement, if we assume that the
set of eigenvectors for OA is {|α〉}, then we can find another
observable O′

A with eigenvectors {|α′〉} fulfilling Eq. (3). A

similar construction can be done for subsystem B. Then

|PO| + |PO′ | > 1 (5)

provides a sufficient but not necessary condition for the two
halves of the system to be entangled [31]. Further improve-
ments on the bound were seen if correlations were measured
in more than two MUBs.

Hereafter, we shall focus in the opposite direction, namely,
we shall establish the case where measurements in two bases
are not needed, i.e., nonzero connected correlations in one
basis immediately indicates entanglement.

B. One measurement entanglement detection

For completeness, we shall discuss the cases of both pure
and mixed states:

(1) Pure states: In the study of many-body physics, we
often work with pure states when we isolate the experimental
setup from interactions with the environment. In this case,

C1 = 〈OA ⊗ OB〉 − 〈OA ⊗ I〉〈I ⊗ OB〉 (6)

= 0 is a necessary but not sufficient condition for zero entan-
glement between the partitions. This indicates a nonzero value
of C1 is a sufficient condition for entanglement.

The proof of necessity directly follows from Eq. (1). The
lack of a sufficiency condition for separability can be seen
from special choices of pure states. For example, if we take
the entangled singlet state 1√

2
(|↑↓〉 − |↓↑〉) and take OA = σz

and OB = σx, we shall get no correlation.
(2) Mixed states: For generic mixed states, C1 = 0 is nei-

ther necessary nor sufficient for separability. To illustrate this,
consider a separable state ρCC given by

ρCC = 1

d

d∑
i=1

|αi〉 〈αi| ⊗ |βi〉 〈βi| , (7)

where {|β〉} is the eigenbasis of OB. In this case, C1 can show
high correlations, but

C2 = 〈O′
A ⊗ O′

B〉 − 〈O′
A ⊗ I〉〈I ⊗ O′

B〉 (8)

will be equal to 0.
For the generic separable mixed state of Eq. (2), correla-

tions may exist in multiple bases, but there is no entanglement
present. This can be seen by choosing appropriate OA and OB

to compute

〈OA ⊗ OB〉 =
∑

i

piTr
[
ρA

i OA
]
Tr

[
ρb

i OB
]
,

〈OA ⊗ I〉〈I ⊗ OB〉 =
∑

i

piTr
[
ρA

i OA
] ∑

j

p jTr
[
ρb

jOB
]
. (9)

If pi = 1, i.e., the system is separable to ρ = ρA ⊗ ρB, then
C1 = C2 = 0, and the condition becomes necessary. For all
other typical cases, it is not. Thus, entanglement witness
bounds usually involve computation of correlations in several
measurements.

To overcome this difficulty, we attempt to construct a com-
mon observable for all density matrices whose measurement
shall provide the necessary criterion. As mentioned before,
a common observable is not guaranteed to exist for arbitrary
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density matrices, so we search for classes of states which
allow us to do so.

C. Construction of the observable

Let us consider the case of L qubits, i.e., Hilbert spaces
of dimension 2L. The generalization to qudits is provided in
Appendix B. From the previous discussion of ρCC, choos-
ing an observable whose eigenbasis is mutually unbiased to
{|α〉, |β〉} is clearly necessary (for simplicity, we hereafter
take {|α〉, |β〉} as the computational σz basis of the respec-
tive systems). Additionally, for separable states not of the
form of ρCC, any arbitrary mutually unbiased observable does
not yield C2 = 0. Ideally, since we also want an observable
easily implementable in experiments, the special observable
should be realized by very local (involving on-site or nearest-
neighbor) transformations. While this is not easily realizable
for a collection of qudits, in the L-qubit scenario, a special
observable whose eigenbasis is mutually unbiased to the com-
putational basis can be created by rotating OA[B] via

UA[B] = (
e−iσ xπ/4)⊗LA[B]

, (10)

where LA[B] is the length of subsystem A[B], LA + LB = L.
By explicit construction, we see U has the following

properties:
(1) (UA[B] )p,q = 1√

dA[B]
e−iπ (φp,q )/2, where φp,q ∈

[0, LA[B]] ∩ Z,
(2) U T

A[B] = UA[B] ⇒ φp,q = φq,p,
(3) (UA[B] )p,q(UA[B] )d−p+1,q = 1

dA[B]
e−iπLA[B]/2 ⇒ φp,q +

φd−p+1,q = LA[B],
where dA[B] = 2LA[B] , the dimensions of the subsystem. These
properties can be extracted from the tensor product structure
of UA for any LA by building from the LA = 1 case, which in
the {|0〉 , |1〉} basis is

UA =
( 1√

2
− i√

2

− i√
2

1√
2

)
. (11)

A detailed explanation is provided in Appendix A.
Moving to the Schroedinger picture, we obtain the density

matrix after the evolution;

ρ ′
iA,iB, jA, jB = (UA ⊗ UB)iA,iB,kA,kBρkA,kB,lA,lB

× (UA ⊗ UB)†
lA,lB, jA, jB

. (12)

We see that the connected correlator with respect to ρ ′ is
identically 0 when the following conditions are fulfilled:

1. Condition (i)

(1) ρ is separable [i.e., given by Eq. (2)] to purely real [or
with purely imaginary off-diagonal elements] density matri-
ces, i.e., ρ

A[B]
i ∈ RdA[B]×dA[B] or (ρA[B]

i )k,l,k =l ∈ iRdA[B]×dA[B] .
(2) The observable O is diagonal in the computational

basis [37] with eigenvalues Ej = { f ( j) + c1 � f ( j) =
−[+] f (d − j + 1), j ∈ [1, d] ∩ Z, c1 ∈ R}. Examples of
such observables include total particle number or total
magnetization in many-body systems or the Sz index in large
spin systems, all typically measurable by local measurements.

The [+] is required for imaginary case of the previous
condition.

OR

2. Condition (ii)

ρ is separable with a locally conserved charge, such as
magnetization or particle number, and we perform subsystem
measurements of the conserved charge.

Proof of condition (i). We first show our conjecture is
valid when the first two statements are fulfilled. Dropping the
indices i from Eq. (2) and subscript A from dA for brevity, we
see that

Tr[ρ ′AOA] =
d/2∑
p=1

d∑
q,r

( f (p) + c1)(UA)p,qρqr (UA)∗r,p

+
d/2∑
p=1

d∑
q,r

(− f (p) + c1)(UA)d−p+1,qρq,r

× (UA)∗r,d−p+1. (13)

Then using the properties of UA, we can simplify Eq.(13)
by realizing that

d/2∑
p=1

d∑
q,r

f (p)(UA)d−p+1,qρq,r (U ∗
A )r,d−p+1

= 1

d

d/2∑
p=1

d∑
q,r

f (p)e−iπ/2[(LA−φp,q )−(LA−φr,p)]ρq,r

= 1

d

d/2∑
p=1

d∑
q,r

f (p)e−iπ/2(φp,q−φr,p)ρq,r

=
d/2∑
p=1

d∑
q,r

f (p)(UA)p,qρq,r (U ∗
A )r,p, (14)

where, in the third step, we have used U T
A = UA and ρq,r =

ρr,q, for purely real ρA. For purely imaginary off-diagonal
elements of ρA, we shall have ρq,r = −ρr,q, hence we need
to choose f ( j) = f (d − j + 1). Then, Eq. (13) immediately
simplifies to yield

Tr[ρ ′AOA] =
d∑

p=1

d∑
q,r

c1(UA)p,qρq,r (UA)∗r,p

= c1Tr[ρ ′A] = c1. (15)

Thus, we have proven that for any real (or with imagi-
nary off diagonal elements) density matrix 〈O′

A ⊗ I〉 gives a
constant value c1, depending on parameters of the operator
chosen. If we perform the same unitary evolution on partition
B, we will obtain a similar result for 〈I ⊗ O′

B〉, say c2. Then
invoking the separability condition, ρ = ∑

i piρ
A
i ⊗ ρB

i we
can compute 〈O′

A ⊗ O′
B〉 to obtain c1c2. Note that since the

expectation values now depends on the operator being used
and not the density matrix, for all values of index i we shall
obtain the same values.
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Hence. the connected correlator becomes

〈O′
A ⊗ O′

B〉 − 〈O′
A ⊗ I〉〈I ⊗ O′

B〉

=
d∑

i=1

pic1c2 −
(

d∑
i=1

pic1

)⎛
⎝ d∑

j=1

p jc2

⎞
⎠

= 0. (16)

Equation (16) thus defines a necessary condition for sep-
arability when the two conditions are fulfilled. Note that
practically we can choose OA = OB to ensure that we measure
only one observable. Hence,

for a class of states, which, if separable, are only sep-
arable into purely real states (or with purely imaginary
off-diagonal elements in ρ), a single measurement of the
connected correlation in special mutually unbiased bases
(MUBs) to the basis of the bipartite system is sufficient to
detect entanglement.

Thus, with no prior knowledge of the state, a nonzero value
in our test would indicate it is not separable to completely
real (or having completely imaginary off-diagonal elements)
states. This condition then immediately becomes useful to
detect entanglement of rebits [38–40] which involves qubits
in real Hilbert space. Previous experimental detection of en-
tanglement of rebits [41] needed measures to ensure that the
detection was truly in real space, but our method automati-
cally ensures that entanglement, if detected, is true real-space
entanglement and thus simplifies the experimental setup con-
siderably. In fact, it has been seen before that for classes of
states, bipartite entanglement and quantum simulation in qubit
systems can also be achieved via system of rebits with an
additional ancilla rebit [42–44]. Here our method will be quite
useful, but a complete mapping of our results for mixed states
with the ancilla rebit method is beyond the scope of this paper.

However, we can explicitly construct classes of density
matrices (states) for which our result will hold for two qubits
as follows.

The density matrix for a single qubit can be written in the
most general form as 1

2 (I + v jσ
j ) where the index j = 1, 2, 3,

σ j denotes the Pauli matrices and �v = v j denotes a vector
on the Bloch sphere. To ensure reality, we need to restrict
ourselves to the XZ plane, i.e., choose v2 = 0. This then
allows us to express one class of real separable two qubit
density matrices as

ρS =
m∑

i=1

pi

⎡
⎣

⎛
⎝ 1

2 +
√

1−r2
i

2
ri
2

ri
2

1
2 −

√
1−r2

i

2

⎞
⎠

⊗
⎛
⎝ 1

2 +
√

1−s2
i

2
si
2

si
2

1
2 −

√
1−s2

i

2

⎞
⎠

⎤
⎦, (17)

where ri, si ∈ [−1, 1] and
∑m

i=1 pi = 1. ri and si correspond
to the v1 element of the ith density matrix in subsystems
A and B, respectively. For simplicity, let us choose m = 2.
We can then create another class of states by mixing in en-
tangling states with strength ε in the {|00〉 , |11〉} plane of

the form |ψ〉 = c |00〉 + √
1 − c2 |11〉. Subsequently, entan-

glement can be detected via C2 for the class of two qubit
density matrices ρ = (1 − ε)ρS + ε |ψ〉 〈ψ | [45]. generated
in this manner with the elements

ρ11 = 1 − ε

8
(a+

1 b+
1 + a+

2 b+
2 ) + c2ε,

ρ22 = 1 − ε

8
(a+

1 b−
1 + a+

2 b−
2 ),

ρ33 = 1 − ε

8
(a−

1 b+
1 + a−

2 b+
2 ),

ρ44 = 1 − ε

8
(a−

1 b−
1 + a−

2 b−
2 ) + (1 − c2)ε,

ρ12 = ρ21 = 1 − ε

8

∑
i=1,2

sia
+
i , (18)

ρ13 = ρ31 = 1 − ε

8

∑
i=1,2

rib
+
i ,

ρ14 = ρ41 = 1 − ε

8

∑
i=1,2

risi + c
√

1 − c2ε,

ρ23 = ρ32 = 1 − ε

8

∑
i=1,2

risi,

ρ24 = ρ42 = 1 − ε

8

∑
i=1,2

rib
−
i ,

ρ34 = ρ43 = 1 − ε

8

∑
i=1,2

sia
−
i ,

where a±
i = (1 ±

√
1 − r2

i ), b±
i = (1 ±

√
1 − s2

i ) and ε, |c| ∈
[0, 1] and c ∈ R. One can verify this using exact diagonal-
ization by comparing with the known entanglement measure
obtained from the positive partial transpose criterion, negativ-
ity N , defined as

N = ||ρ
A ||1 − 1

2
, (19)

which returns values greater than 0 iff ε > 0, c = 0, 1. Here,
ρ
A represents the partial transpose with respect to subsystem
A, and ||X ||1 denotes the trace norm of operator X . This
condition can be intuitively understood since the entangling
perturbations are of strength ε, and we have also verified
this numerically (data not shown) [46]. C2 with the choice of
operator OA,B = σ z gives

C2 = −2εc
√

1 − c2, (20)

which agrees with N as an entanglement detection

criterion. On the other hand, Cε=0
1 = 1

4 (
√

1 − r2
1

√
1 − s2

1 −√
1 − r2

1

√
1 − s2

2 −
√

1 − r2
2

√
1 − s2

1 +
√

1 − r2
2

√
1 − s2

2) =
0, which clearly does not correspond to the correct
entanglement detection. This method can be immediately
generalized to perturbations in other directions of the Hilbert
space. Generalizations to more numbers of qubits will involve
higher dimensional representations of the Bloch sphere.

But one drawback of such a stringent condition lies in the
uncertainty of state preparations, thus, in practice, the value
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of zero for separable states becomes a strong lower bound
instead of an exact result. However, in this framework we
can also make an estimate of the maximal lower bound for
separable states due to a result of slight imperfections in state
preparation. The result depends on choice of the observable.

Let us assume the separated density matrix of the sub-
system has both real and imaginary parts ρq,r = ρR

q,r + iρI
q,r .

Then we should recompute the derivation from the second
step of Eq. (14) as

1

d

d/2∑
p=1

d∑
q,r

f (p)e−iπ/2[(LA−φp,q )−(LA−φr,p)]
(
ρR

q,r + iρI
q,r

)

= 1

d

d/2∑
p=1

d∑
q,r

f (p)e−iπ/2(φp,q−φr,p)ρR
q,r

+ 1

d

d/2∑
p=1

d∑
q,r
q =r

f (p)ieiπ/2(φp,q−φr,p)ρI
q,r . (21)

We are going to try to find an upper bound of the value given
by the extra contribution from the imaginary part. Noting
that a similar term will also contribute from the first term of
Eq. (13), we can bound its contribution as

∣∣∣∣ − 2

d

d/2∑
p=1

d∑
q,r

f (p) sin(π/2(φp,q − φr,p))ρI
q,r

∣∣∣∣
=

∣∣∣∣ − 4

d

d/2∑
p=1

f (p)
d∑

q,r
q<r

sin(π/2(φp,q − φr,p))ρI
q,r

∣∣∣∣. (22)

Clearly, the bound is strongly dependent on the distribution
of the imaginary elements of the density matrix and only
terms for which (φp,q − φr,p) = 2k + 1, k ∈ Z contribute to
the sum. Furthermore, since sin((2k + 1)π/2) = (−1)k , this
sum contains terms of opposite signs. If |ρI

q,r | ∼ O(ε), as a
rough estimate, we can approximate the sum as the expected
deviation from the starting point of a one-dimensional classi-
cal random walk with step size ε. Then we can define an upper
bound by counting terms contributing to the sum

∣∣∣∣ − 4

d

d/2∑
p=1

f (p)
d∑

q,r
q<r

sin(π/2(φp,q − φr,p))ρI
q,r

∣∣∣∣

� 4

d

d/2∑
p=1

| f (p)|
d∑

q,r
q<r

∣∣ sin(π/2(φp,q − φr,p))ρI
q,r

∣∣

∼ 4ε

d

√
d2

4

d/2∑
p=1

| f (p)| =
∣∣∣∣2ε

d/2∑
p=1

f (p)

∣∣∣∣,
ignoring some prefactors, since only d2/4 terms from d (d−1)

2
terms will contribute. For large d , typically ε ∼ O(1/d ) for
random states, then the bound becomes

2

d

d/2∑
p=1

| f (p)|. (23)

In fact, later in Example II, where the purely real (imaginary)
conditions are not satisfied and we have to define a cutoff
based on numerical results, we show in Appendix D that the
cutoff actually becomes smaller with system size.

It is also worth noting that the observable O′
A, obtained via

unitarily transforming OA by UA that satisfies our purpose, is
not unique. However, UA, which also serves as the eigenbasis
to the new observable O′

A, cannot be any arbitrary complete
set of MUBs to the computational basis. Only certain special
rotations (unitary evolutions) serve to generate the correct
eigenbasis mutually unbiased to the original basis to satisfy
Eq. (13). We have not been able to find a general way to con-
struct all such bases, but in Appendix B we provide another
explicit example of UA, which although is not as local as the
current example, also works for a collection of qudits. Further
note that if we were able to obtain UA[B] of the above form but
with the additional property,

φp,q − φp,r = 2m, m ∈ Z, (24)

this technique would be applicable without the first condition.
Unfortunately, this renders the matrix nonunitary and thus is
an invalid choice. However, with conserved local magneti-
zation (the alternative condition), only specific elements of
UA are responsible for the rotation. In this setup, Eq. (24) is
fulfilled, leading to applicability for generic density matrices.
We explain this aspect in details in the following.

Proof of condition (ii). First note that if indeed we obtain
separable states with fixed total magnetization, then the mag-
netization of ρA

i and ρB
i needs to be fixed. However, this does

not imply the subsystems have fixed magnetization, but just
that the distribution of magnetization between the two sub-
systems becomes explicit. For example, if we have a separable
state with 〈∑L

j=1 σ z
j 〉 = 1, it could be written as

ρ = p1ρ
A
1,�A=1 ⊗ ρB

1,�B=0

+p2ρ
A
2,�A=−1 ⊗ ρB

2,�B=2 + . . .

+pNρA
N,�A=l ⊗ ρB

N,�B=1−l ,

where
∑N

i=1 pi = 1, �A[B] = 〈∑LA[B]

j=1 σ z
j 〉, the subscripts de-

note the magnetization sector of each ρi of the corresponding
subsystem, and the values it can take are limited by the total
number of sites in the subsystem (l and 1 − l are some al-
lowed values within these limits). It can easily be seen that if
each such ρ

A[B]
i did not have a fixed magnetization, we would

no longer be confined to the 〈∑L
j=1 σ z

j 〉 = 1 magnetization
sector of ρ of the full system.

Let us revisit Eq. (14) for such a situation. Because now
nonzero elements of ρ

A[B]
i are confined to a particular 〈∑ σ z〉,

only certain indices q, r contributes to the sum—the indices
corresponding to the basis states with that particular 〈∑ σ z〉.
For example, if we have three sites and 〈∑3

j=1 σ z
j 〉 = 1. the

relevant basis states would be |011〉 , |101〉 , |110〉, since in all
three cases 〈∑3

j=1 σ z
j 〉 = 〈∑3

j=1(2n j − 1)〉 = 1, n j being the
number of particles at site j. We shall again drop the subscript
i rom ρA in what follows.

Since nonzero elements of ρA are confined to certain in-
dices, when we multiply by UA, the column indices which are
relevant will also be confined to those indices. Let us assume
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we have an element Up,qM where qM denotes particular column
indices corresponding to the conserved magnetization M. A
similar situation will arise for the indices of U ∗

A of Eq. (14)
where the row (or column, due to U T = U ) index r can take
limited values rM .

Now we shall show that under these restrictions (φp,qM −
φrM ,p) = (φp,qM − φp,rM ) = 2m. If we explicitly write the
computational basis, we realize that only two kinds of op-
erations are possible to go from any qM to any rM . (i) The
trivial case of keeping the spin at a site constant. (ii) The
nontrivial case of switching positions of spins between two
sites. From the properties of U , it is easy to show that the
second case introduces a factor of aa−1 = 1 or a±2 (where
a = e−iπ/2) (ignoring prefactors) since it involves two spin
flips, while the first introduces a trivial 1. Due to the tensor
product structure of U , this means any of the relevant indices
are always connected by factors of the form a2m as a±2 and 1
are the only operations allowed.

To take a concrete example, consider the case where
L = 3, p = 4, Sz = −1. The allowed values of qM and
rM are 2,3,5 which denotes the computational states
|001〉 , |010〉 , |100〉. Since p ∈ [1, d/2] ∩ Z, we have cho-
sen p = 4 whose computational state is |011〉, for gen-
erality. Ignoring the unimportant prefactors, element (4,2)
is then given by 〈0|UL=1 |0〉 〈1|UL=1 |0〉 〈1|UL=1 |1〉 = 1 ×
a × 1 = a, where we have used Eq. (11). Element (4,5)
is found as 〈0|UL=1 |1〉 〈1|UL=1 |0〉 〈1|UL=1 |0〉 = a × a ×
a = a3. The factor of a2 coming from the double
spin flip is apparent. And, finally, element (4,3) is
〈0|UL=1 |0〉 〈1|UL=1 |1〉 〈1|UL=1 |0〉 = 1 × 1 × a = a. In this
case, the flips in the first two sites from the previous ele-
ment gives a ratio of 〈0|UL=1|0〉〈1|UL=1|1〉

〈0|UL=1|1〉〈1|UL=1|0〉 = a−2. Since a = eiπ/2,

and the change ei(φp,qM −φp,rM ) is by a factor of a2m = eimπ =
ei(2m)π/2 for m = 1 or m = 0, Eq. (24) is satisfied.

To complete the proof, notice that in this case we
can write e−iπ/2(φpq−φr p) = e−imπ = eimπ = e−iπ/2(φr p−φpq ) =
e−iπ/2[(L−φpq )−(L−φr p)]. Then Eq. (14) follows without any as-
sumption on ρ. Similar arguments can be provided for other
locally conserved charges.

It is worthy to note that an additional intuitive argument
exists to prove the requirement of only one set of measure-
ments to detect entanglement in generic density matrices with
locally conserved charges. If a locally conserved charge is
removed from a subsystem of a bipartite system, it has to
necessarily appear in the other subsystem, i.e., the two halves
are always correlated if one measures the conserved charge.
Then we borrow the result from Eq. (5) and choose OA[B] to
be the conserved local charge, say, for example, the magneti-
zation, i.e..

∑LA
i=1〈σ z

i 〉 + ∑L
i=LA+1〈σ z

i 〉 = M, then by choosing

OA = ∑LA
i=1 σ z

i and OB = ∑L
i=LA+1 σ z

i , |PO| = 1 as the two
observables are always completely linearly correlated (an an-
alytic proof of this statement is provided in Appendix C). This
reduces Eq. (5) to

|PO′ | > 0. (25)

Since PO′ is just the rescaled connected correlation, a nonzero
connected correlation in any MUB to the computational ba-
sis will indicate entanglement. Since the unitary evolution
in Eq. (10) generates such a basis, we shall be able to

detect entanglement between A and B by measuring correla-
tion between the total magnetization of the subsystems after
the evolution. Thus we have,

in the presence of a locally conserved charge, a single mea-
surement of connected correlation in mutually unbiased
bases (MUBs) to the basis of the of the bipartite system
is sufficient to detect entanglement of arbitrary states.

D. Numerical tests

To test the efficacy of this technique in experimentally
detecting entanglement of mixed states generated by generic
Hamiltonians, we numerically compare C2 with a quantity
originating from the PPT criterion [47,48], entanglement
negativity [49–53] N .We provide two examples below, (i)
Heisenberg models, which conserves magnetization, (ii) Ising
models, which do not conserve magnetization. A third ex-
ample of PXP model, a constrained model which does not
conserve magnetization, is provided in Appendix E. In these
examples, the quantum state whose entanglement we intend to
measure is typically in thermal equilibrium with a correspond-
ing initial Hamiltonian. Then, to measure C2, which requires
a specific time evolution of the state, we need to perform a
quantum quench, where we unitarily evolve the equilibrium
state with a different effective Hamiltonian having a totally
different eigenbasis which in our case is simply

∑
j σ

x
j .

Let us take a brief detour to elaborate a bit more about
quantum quench. When we evolve a quantum state by a
Hamiltonian, we can take two extreme approaches. In one
case. we slowly change the Hamiltonian parameter such that
during the evolution the state always remains the ground state
of the changing Hamiltonian. This is adiabatic evolution and
is typically utilized in quantum annealing [54]. However, the
other scenario is starting from the ground (eigen)state of a
Hamiltonian, where we suddenly change the parameters of the
Hamiltonian and then allow the system to relax with the new
parameters. Clearly, this induces nonadiabaticity in the system
and results in a completely different nontrivial evolution of the
state. For example, if |ψ (0)〉 is the initial pure state we start
from, since it is not an eigenstate of the new Hamiltonian, the
time evolution can be expressed as

|ψ (t )〉 = e−iHt |ψ (0)〉 =
d∑

j=1

e−iE jt |Ej〉 〈Ej |ψ (0)〉,

where Ej and |Ej〉 are the eigenvalues and corresponding
eigenvectors of the new Hamiltonian H . This nontrivial dy-
namics allows us to reach our desired MUB to measure C2.
We shall see that while for the Heisenberg model it imme-
diately detects entanglement, for the Ising models, additional
information about the state is needed to detect entanglement.

1. Example I—Heisenberg model with quasiperiodic disorder

The Heisenberg model with on-site quasiperiodic disorder
is described by the following Hamiltonian [55]:

H = −J
∑

k

σk · σk+1 +
∑

k

hkσ
z
k . (26)
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In this equation, σ = (σ x, σ y, σ z ) represents a vector of
Pauli matrices. The term hk is the quasiperiodic component
given by hk = W cos(2πηk), where η =

√
5−1
2 and W repre-

sent the strength of the disorder. We take J = 1. The inclusion
of the quasiperiodic term allows for the study of a more
general model, while eliminating the need for averaging over
realizations that would be required with random disorder.

We consider computing the entanglement in the following
two cases: (i) for the equilibrium density matrix at any tem-
perature T = 1/β, given by the Gibbs state,

ρ =
d2∑

i=1

e−βεi∑d2

i=1 e−βεi

|Ei〉 〈Ei| , (27)

where εi denotes the eigenenergies and |Ei〉 denotes the cor-
responding eigenvectors; (ii) a time evolution in an open
quantum system where the unitary evolution is governed via
the Hamiltonian in Eq. (26) and the influence of the envi-
ronment is effectively included via the Lindblad equation of
motion [56],

dρ

dt
= i[H, ρ] +

∑
k

([Lkρ, L†
k ] + [Lk, ρL†

k ]), (28)

where ρ represents the density matrix describing the system,
and H is the Hamiltonian from Eq. (26). The Lindblad op-
erators Lk capture the interactions between the system and
the environment. We consider only on-site dephasing terms of

strength γ , Lk =
√

γ

2 σ z
k , which cause the system to eventually

evolve to the maximally mixed state and ensures conservation
of magnetization. We choose the initial state to be the Néel
state [57,58]. We have selected these specific cases to examine
and analyze mixed states, thereby avoiding the trivial scenario
of pure state entanglement detection. We restrict our system
to the

∑L
k=1 σ z

k = 0 sector.
In Fig. 1(a), we present the results for case (i). Notably,

C2 [Eq. (8)] with observables OA[B] = ∑LA[B]

i=1 σ z
i , and unitary

transformations UA[B] [Eq. (10)], successfully detects entan-
glement in the same parameter regimes where N is greater
than 0. This correspondence demonstrates that our criterion
of nonzero C2 aligns with the violation of the positive partial
transpose (PPT) criterion for both instances of disorder con-
sidered. Additionally, it is worth noting that C2 exhibits a value
of 0 at β = 1, consistent with separability according to the
PPT criterion. Moreover, the qualitative agreement between
C2 and N becomes more pronounced at higher β values,
corresponding to purer states.

In Fig. 1(b), where we examine case (ii), there is no
separability during the time evolution. However, C2 exhibits
the entanglement barrier feature previously observed in other
measures of entanglement and also in N [59]. For larger
disorder, we observe that the barrier shifts to lower timescales
due to the earlier decay of long-range correlations in such
systems. Furthermore, the entanglement decay slows down
on addition of disorder, i.e., disorder helps protect coherence
during the transient dynamics [60]. Thus, the measurement
of C2 provides a reliable technique to detect entanglement.
It is worth noting that in the presence of locally conserved
charge, one can adjust the quench procedure to suit the
experiment as long as an observable is generated whose
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FIG. 1. Comparison of behavior of C2 [Eq. (8)] with N [Eq. (19)]
for top, different values of β for states defined in Eq. (27) of the
model defined in Eq. (26) for two different W and bottom, for dissi-
pative evolution via Eq. (28) starting from Néel state. OA = ∑LA

i=1 σ z
i

and OB = ∑LB
i=LA+1 σ z

i , UA[B] is given by Eq. (10).

eigenbasis is mutually unbiased with respect to the compu-
tational basis.

E. Example II. Anisotropic next-nearest-neighbor
transverse Ising model

Next, consider the model Hamiltonian

H = −J
∑

k

σ z
k σ z

k+1 + κ
∑

k

σ z
k σ z

k+2 − h
∑

k

σ x
k . (29)

This is the nonintegrable anisotropic next-nearest-neighbor
transverse Ising (ANNNI) model, which reduces to the in-
tegrable transverse Ising (TI) model when κ = 0. Note that
this model does not have a simple locally conserved charge
such as magnetization, so quantities such as number entropy
or particle fluctuations cannot detect entanglement.

In the limit of β → ∞, the TI model undergoes a
second-order phase transition at h = hc = 1 for L → ∞. This
phase transition is also observed in the anisotropic next-
nearest-neighbor TI (ANNNI) model, but within a limited
parameter range. As we gradually increase the parameter
κ in the ANNNI model, hc decreases, and at κ = 0.5,
the critical value becomes hc = 0. [61–63]. Once again,
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FIG. 2. Comparison of behavior of C1 and C2 defined in Eqs. (6) and (8), to N [Eq. (19)] and the criterion in Eq. (5) for the model given in
Eq. (29), for (a) κ = 0 at β = 1/T = 100, (b) κ = 0 at β = 1, (c) κ = 0.3 at β = 100, and (d) κ = 0.3 at β = 1. The system size is L = 12,
the blue shaded regions in (b) and (d) show the region where C2 is above the cutoff and entanglement detection is possible. The brown dashed
line denotes the cutoff 1 above with entanglement detection is possible via Eq. (5). A small longitudinal field of strength 10−3 is added to break
degeneracy.

we investigate the behavior of C2 in comparison to N in
the thermal states of the models described by the ANNNI
Hamiltonian. The thermal states are given by Eq. (27),
but with the Hamiltonian H now specified by the ANNNI
model.

From Fig. 2, it is evident that in all scenarios, the behav-
ior of C2 for the same observables as before is qualitatively
similar to that of the entanglement measure N . However,
the agreement of C1 is dependent on the chosen parameters
[64]. Since we work with just the connected correlation func-
tions, we sometimes may obtain large values of C1 and C2.
Because we are mostly concerned with detection and not
measurement, we deem rescaling unnecessary. Bounds can,
however, be found depending on the system size and operators
involved. For the transverse Ising model, in our paper where
we use total magnetization operator, the peak occurs at h = 0
and takes a value L2/4. This can be seen by computing the
Gibbs state in the presence of infinitesimal longitudinal field
at small but finite temperature— 1

2 |↑↑ . . . ↑〉 〈↑↑ . . . ↑| +
1
2 |↓↓ . . . ↓〉 〈↓↓ . . . ↓|. This state gives the maximum pos-
sible unnormalized connected correlation for this observable,
and, in fact, C2 is loosely upper bounded by this value as
well since we always rotate away from this special state. Fur-
thermore, the criteria in Eq. (5), |PO| + |P ′

O| > 1, denoted

by the brown dashed line, is not fulfilled almost everywhere,
thus being a poor entanglement witness in this set-up. An
improvement could potentially be achieved by increasing the
number of mutually unbiased basis (MUB) measurements,
although the analysis of this is beyond the scope of the present
paper. However, a complete agreement between C2 and N for
all values of h with κ = 0 and κ = 0.3 only occurs at large
values of β, where the state becomes minimally mixed.

For smaller β, there is a region where N = 0 while C2

has a small value. Here the system is separable via PPT
criterion, but not to purely real states (or there exists bound
entanglement) [65]. It is not separable to states with purely
imaginary off diagonal elements either as taking O = ∑〈|σz|〉
does not yield C2 = 0 in this region However, there still ex-
ists a qualitative similarity of C2 with N , which is due to
the stability of the correlator to perturbation with imaginary
separable states. We can utilize this qualitative similarity to
define a lower nonzero cutoff of C2 at each β which can
be used to detect entanglement. The cutoff can be found
using numerical simulations for small size systems and ex-
trapolated to larger sizes due to weak dependence on system
size (see Appendix D) and thus provides a viable route to
detect entanglement of states at thermal equilibrium. Note
that an arbitrary MUB to computational basis does not yield
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qualitatively similar results to N in this case, unlike the pre-
vious one.

The experimental realization of the transverse Ising model
is possible, for example, in quantum wires by tuning the
chemical potential appropriately [66]. After letting the system
reach thermal equilibrium, to perform the rotation one would
need to perform a quench by pinching between neighboring
electrons to ensure J = κ = 0 and let the system evolve for
time t = π

4h + 2kπ for k ∈ Z and measure the total σz corre-
lations between the corresponding parts of the system. After
the pinch, the evolution occurs via an on-site Hamiltonian,
hence the evolution does not generate entanglement. Then,
by using the thresholds for the specific temperature, we can
detect entanglement.

III. CONCLUSION

In this paper, we have demonstrated through an analytic
proof how measuring the one-connected correlation in the
appropriate basis can provide valuable insights into the sep-
arability of the state, and effectively detect entanglement by
leveraging specific properties of the state. This approach of-
fers a substantial reduction in the experimental burden for
a wide range of systems as compared to previous correla-
tion measurement methods that often require multiple basis
measurements to achieve efficient detection. Moreover, our
method presents an alternative means of detecting entangle-
ment in charge-conserved systems.

We have showcased the immediate applicability of our
technique in detecting entanglement in Heisenberg chains,
where our technique provides an efficient entanglement detec-
tion pathway for both pure and mixed states and in quantum
wires, where conventional correlation measurements face
challenges in detecting entanglement. Although the detection
in the latter case may not be immediate, the qualitative similar-
ity between our correlator and the negativity measure allows
for the establishment of thresholds based on experimental
conditions to effectively detect entanglement. Additionally,
we can also detect and quantify certain errors in full state
preparation by computing C2 between two uncoupled thermal
states which should be identically 0 for perfectly prepared
states. For example, lack of equilibriation will give us C2 = 0
as then we will have imaginary elements in the off-diagonal
density matrix due to unitary time evolution.

Overall, our paper provides a valuable approach for entan-
glement detection that offers both efficiency and applicability
across various systems. It significantly simplifies possibilities
of entanglement detection in experiments.
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APPENDIX A: PROPERTIES OF U IN EQ. (10)

We start with the following definition of U :

U = (
e−iσ xπ/4

)⊗L
, (A1)

where L denotes the length of the subsystem and

σx =
(

0 1
1 0

)
.

For L = 1, we have

U =
( 1√

2
− i√

2

− i√
2

1√
2

)
. (A2)

This can be written for future convenience as

U = 1√
2

(
1 a
a 1

)
, (A3)

with a = e−iπ/2. Then, for L = 2, 3, respectively we have

U = 1

2

⎛
⎜⎜⎝

1 a a a2

a 1 a2 a
a a2 1 a
a2 a a 1

⎞
⎟⎟⎠,

U = 1

2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a a a2 a a2 a2 a3

a 1 a2 a a2 a a3 a2

a a2 1 a a2 a3 a a2

a2 a a 1 a3 a2 a2 a
a a2 a2 a3 1 a a a2

a2 a a3 a2 a 1 a2 a
a2 a3 a a2 a a2 1 a
a3 a2 a2 a a2 a a 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Clearly, U = U T , which comes from σ T
x = σx. Additionally

we observe for these examples, Up,qUd−p+1,q = 1
L aL, where

d = 2L. This can be verified for a general case as follows.
Since we use the computational basis, the basis states

in Eq. (A3) will be (|0〉 , |1〉), hence UL=1 = 1√
2
(|0〉 〈0| +

|1〉 〈1| + a |0〉 〈1| + a |1〉 〈0|). Any element of U for a
generic L can be constructed out of these elements
due to the tensor product structure. For example, in
L = 3, the |110〉 〈010| element can be constructed as
〈1|UL=1 |0〉 〈1|UL=1 |1〉 〈0|UL=1 |0〉 = a × 1 × 1 = a, which
matches with the corresponding element in UL=3 (row 7, col-
umn 3) in Eq. (A4). Now, for an element of an arbitrary row
index p, the basis state for the column indices q and d − q + 1
will be just bit flipped states of each other. For example, at
L = 3, if we consider p = 2, then the q = 3 and q = 6 basis
states would be |001〉 〈010| and |001〉 〈101|. Then it can be
seen that U23U26 = a3

2
√

2
using Eq. (A3).

It follows that Up,qUd−p+1,q = 1
L e−iπL/2, and any element

of U can be written as an integer power of a, i.e., Up,q =
1√
L

e−iπ (φp,q )/2, where φp,q ∈ [0, L] ∩ Z.

APPENDIX B: AN ALTERNATIVE UNITARY ROTATION

In this Appendix, we shall provide another example of
the rotation which accomplishes the same task as the one
described in the main text. While this rotation provides the
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advantage of applicability to qudit systems, it is significantly
more nonlocal than the example in the main text, and thus is
harder to implement in practice.

The rotation matrix to be considered is closely related to
the many-body Fourier transform local to the subsystems,

(UA)pq = 1√
d

(
e

2iπ (p−1/2)q
d

)
, (B1)

and similarly for UB. The purpose of adding the factor of
−2iπq/2 with the usual Fourier transform will be clear in
the following computation. Using the specific nature of O, we
have

Tr[ρ ′OA] = Tr[ρ ′AOA]

= 1

d

d∑
p,q,r,s

e2π iq p−1/2
d ρqre−2π ir s−1/2

d ( f (s) + c1)δsp

= 1

d

d/2∑
p=1

d∑
q,r

( f (p) + c1)e2π i( p(q−r)
d − q−r

2d )ρqr

+ 1

d

d/2∑
p=1

d∑
q,r

(−[+] f (p) + c1)e2π i(− p(q−r)
d + q−r

2d )ρqr . (B2)

Then, using the symmetry (antisymmetry) of ρ (the first con-
dition), i.e., ρqr = [−]ρrq, we can simplify Eq. (B2) to obtain

Tr[ρ ′AOA] = 1

d

d∑
p=1

d∑
q,r

c1e2π i( p(q−r)
d − q−r

2d )ρqr

= c1Tr[ρ ′A] = c1. (B3)

It is worth noting here that for odd d , Eq. (B2) will have an
additional term and will be

Tr[ρ ′OA] = Tr[ρ ′AOA]

= 1

d

(d−1)/2∑
p=1

d∑
q,r

( f (p) + c1)e2π i( p(q−r)
d − q−r

2d )ρqr

+ 1

d

(d−1)/2∑
p=1

d∑
q,r

(−[+] f (p) + c1)e2π i(− p(q−r)
d + q−r

2d )ρqr

+ 1

d

d∑
q,r

( f ([d + 1]/2) + c1)e2π i( (d+1)(q−r)
2d − q−r

2d )ρqr .

Choosing f ([d + 1]/2) = 0 gives us Eq. (B3) back. This nat-
urally arises for separable real matrices from f (p) = − f (d −
p + 1) but becomes an additional condition for the purely
imaginary off-diagonal elements case. The rest of the proof
follows as in the main text. Thus, this rotation serves to obtain
the appropriate observable in both even- and odd-dimensional
Hilbert spaces.

APPENDIX C: PROOF OF PO = 1 FOR STATES
WITH CONSERVATION OF TOTAL MAGNETIZATION

Let us consider a mixed state of the form ρ =∑
i pi|ψi〉〈ψi|. |ψi〉 can be any pure state with the constraint

〈ψi|
∑L

j=1 σ
j

z |ψi〉 = M. We choose OA[B] = ∑LA[B]

i=1 σ z
i , hence

the various terms of the Pearson correlation for this state |ψi〉
are

〈OA ⊗ OB〉 =
M∑

k=0

|ck|2(M − k)k. (C1)

〈OA ⊗ I〉 =
(

M∑
k=0

(M − k)|ck|2
)

, (C2)

〈I ⊗ OB〉 =
(

M∑
k=0

k|ck|2
)

, (C3)

〈
O2

A ⊗ I
〉 =

M∑
k=0

(M − k)2|ck|2, (C4)

〈
I ⊗ O2

B

〉 =
M∑

k=0

k2|ck|2, (C5)

where |ck|2 is the probability of measuring k spins up in
subsystem B. Now PO can be written as

PO = 〈OA ⊗ OB〉 − 〈OA ⊗ I〉〈I ⊗ OB〉√(〈
O2

A ⊗ I
〉 − 〈OA ⊗ I〉2

)(〈
I ⊗ O2

B

〉 − 〈I ⊗ OB〉2
)

=
√

−[ ∑M
k=0(M − k)|ck|2

]2 + M
∑M

k=0(M − k)|ck|2 − ∑M
k=0(M − k)|ck|2

∑M
l=0 l|cl |2√∑M

k=0(M − k)2|ck|2 − ( ∑M
k=0(M − k)|ck|2

)2

×
√

−[ ∑M
k=0(M − k)|ck|2

]2 + M
∑M

k=0 k|ck|2 − ∑M
l=0(M − l )|cl |2

∑M
k=0 k|ck|2√∑M

k=0(M − k)2|ck|2 − ( ∑M
k=0 k|ck|2

)2
= −1, (C6)

where we have used
∑M

k=1 |ck|2 = 1 and separately com-
puted the ratios between the two terms in the denominator

by introducing a square root in the numerator. This re-
sult is valid unless (〈O2

A[B] ⊗ I〉 − 〈I ⊗ OA[B]〉2 yields 0,

023132-10



SEPARABILITY CRITERION USING ONE OBSERVABLE … PHYSICAL REVIEW RESEARCH 6, 023132 (2024)

i.e., the subsystem has a fixed number of particles as
well.

By substituting this result for each |ψi〉 and using Tr[ρ] =
1, we can show PO = 1 for the full density matrix. Using the
result of Ref. [31], it immediately follows that any correla-
tion found in the MUB basis denotes the state is entangled.
Thus, measuring correlation in one basis is enough to detect
entanglement.

APPENDIX D: FULL PHASE DIAGRAM OF TI MODEL

In the top panel of Fig. 3, we show the behavior of C2

for a range of β and h, while denoting the contour where
N shows a nonzero value by red. Clearly, for all values
of h, C2 is an excellent witness of entanglement for β > 1
i.e., at low temperature. For smaller β, we need to define a
threshold value of C2, C th

2 to accurately detect entanglement.
We show the numerically computed threshold values in the
middle panel of Fig. 3. Two things are immediately apparent.
The first is there is no significant finite-size effect, in fact,
the threshold values reduce with system size, which allows
one to numerically compute the threshold for small system
sizes and use them for experiments with a larger number of
spins. Further accuracy can be achieved by a proper finite
size analysis of the values which are beyond the scope of this
paper. The second prominent feature is the discrete groupings
of the values, which occurs due to discrete grid of h and the
finite tolerance available to detect N . Finally, in the bottom
panel of Fig. 3, we plot the threshold values of β, β th for
different h, which is defined as the smallest value of β which
allows for accurate detection of entanglement with C th

2 = 0.
This also shows reduction with system size L.

APPENDIX E: EXAMPLE III: PXP MODEL

As a final example, we consider the kinetically constrained
Rydberg atom model which has recently gained much at-
tention due to presence of quantum scars. In particular, we
study entanglement detection for states in thermal equilibrium
[Eq. (27)] obtained from the Hamiltonian

H =
L∑

i=1

(
�σ̃ x

i + �σ z
i

)
(E1)

and show that our method has the potential to be applied
for entanglement witnessing. Mapping an empty Rydberg site
to a down spin and a filled site to an up spin, we denote
here the σ̃ x

i = Pσ x
i P operation, where P denotes projection

to only those states in Hilbert space with no neighboring
up spins. It is known that this model has a ferromagnetic
ground state with all spins pointing down, i.e., the presence
of zero excited Rydberg atoms when � � 0 and Z2 sym-
metry broken ground state for � � 0. As shown in Fig. 4,
at large β = 100, different correlators behave similarly. In
Fig. 4(a), we observe that while N shows a distinct peak
at the known critical point of δ/� = 0.65, the maxima of
C2 occurs at a slightly larger value. This is not unexpected
as C2 is not an entanglement measure but a witness, hence
we can only expect qualitative agreement. However, using
Eq. (5), we cannot detect entanglement anywhere in the
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FIG. 3. Top: Behavior of C2 for model in Eq. (29) with κ = 0
for different values of β and h. The red line denotes the contour of
N = 10−4 to be used as an indicator to define the lower bound of C2

to detect entanglement. Middle: Threshold C2 values which can be
used to detect entanglement. Bottom: Threshold β values above with
C th

2 = 0 for different system sizes L. The black solid line denotes the
moving average over δh = 0.1.

system as we never reach the threshold value of 1. Ex-
pectedly, C1 shows a completely different behavior to N at
low β as seen Fig. 4(b) for a highly mixed state, where C2

qualitatively follows N , but still there exists a region where
N = 0 but C2 = 0. Note that the agreement between C2 and
N is more pronounced in this case than the Ising model,
thus allowing for smaller cutoffs and providing better detec-
tion at larger temperatures. In Rydberg atoms, the change of
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(a) (b)

FIG. 4. Plots showing comparison of behavior of C2 and C1 defined in Eqs. (6) and (8) to negativity N and the criterion in Eq. (5) for the
model given in Eq. (E1) (a) at β = 1/T = 100, (b) at β = 1, The system size is L = 12. The green grid line in (a) denotes the critical point.

basis can be simply executed experimentally via switching
off the detuning field and the kinetic constraints by reduc-
ing the Rydberg blockade radius, and then taking a snapshot

of the atomic density at different sites at t = π
4h + 2kπ ,for

k ∈ Z, thus computing the correlation between the relevant
subsystems.
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