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IMPORTANCE Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric
amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are
largely unknown in dominantly inherited Alzheimer disease (DIAD).

OBJECTIVE To investigate longitudinal biomarker changes of synaptic dysfunction,
neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving
antiamyloid treatment.

DESIGN, SETTING, AND PARTICIPANTS From 2012 to 2019, the Dominantly Inherited Alzheimer
Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized
clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants
were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to
June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from
carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were
analyzed.

INTERVENTIONS In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4
weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab,
400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks.

MAIN OUTCOMES AND MEASURES Longitudinal changes in CSF levels of neurogranin, soluble
triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3–like 1 protein
(YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma
levels of GFAP and NfL.
RESULTS Of 236 eligible participants screened, 43 were excluded. A total of 142 participants
(mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab,
52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab
significantly reduced CSF neurogranin level at year 4 (mean [SD] β = −242.43 [48.04] pg/mL;
P < .001); reduced plasma GFAP level at year 1 (mean [SD] β = −0.02 [0.01] ng/mL; P = .02),
year 2 (mean [SD] β = −0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD]
β = −0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD]
β = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] β = 1.06 [0.52] ng/mL; P = .04).
Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] β = 0.14 [0.06];
P = .02). Correlation analysis for rates of change found stronger correlations between CSF
markers and fluid markers with Pittsburgh compound B positron emission tomography for
solanezumab and placebo.

CONCLUSIONS AND RELEVANCE This randomized clinical trial supports the importance of
fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and
neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid
therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid
biomarkers in determining disease modification.
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A lzheimer disease (AD) is characterized by progressive
neuropathological changes years before clinical symp-
toms emerge. Pathophysiological hallmarks are the

accumulation and aggregation of extracellular amyloid-β (Aβ),
intracellular neurofibrillary tangles composed of hyperphos-
phorylated tau, neuroinflammation, synaptic toxicity, and
neuronal death.1-3 Dominantly inherited AD (DIAD) is caused
by variants in APP, PSEN1, or PSEN2 genes, with carriers de-
veloping cognitive impairment at a predictable, young age.4

The phase 2/3 placebo-controlled, double-blind, random-
ized clinical trial, the Dominantly Inherited Alzheimer
Network Trial Unit (DIAN-TU-001), investigated 2 monoclo-
nal immunoglobulin G1 antibodies against amyloid:
gantenerumab targets Aβ fibrils, initiating plaque removal via
fragment crystallizable (Fc) γ-receptor–mediated activation of
microglial phagocytosis,5 and solanezumab binds to soluble
forms of Aβ, thereby potentially ameliorating their synaptic
toxicity.6-8 Although clear clinical benefits were not identi-
fied, target engagement was successful, showing a dose-
dependent reduction in amyloid positron emission tomogra-
phy (PET) burden with gantenerumab and significant increases
of cerebrospinal fluid (CSF) Aβ42 for solanezumab.9

However, the effect on emerging markers of AD-related
pathophysiology has not been sufficiently investigated.
Neurogranin is a postsynaptic protein and considered a soluble
marker of synaptic integrity due to its involvement in memory
function and synaptic plasticity, both showing early impair-
ment in AD.10 Glial fibrillary acidic protein (GFAP), chitinase
3–like protein 1 (YKL-40), and soluble triggering receptor ex-
pressed on myeloid cells 2 (sTREM2) are further biomarkers
of interest reflecting neuroinflammatory processes of astro-
cytes and microglia,11-14 whereas neurofilament light protein
(NfL) is a nonspecific marker of axonal degeneration in AD.15

AlthoughthemagnitudeofclinicalbenefitwhentargetingAβ
insymptomaticADisdebated,16,17 recenttrialshavedemonstrated
a slowing of clinical decline in sporadic AD (sAD) with antiamy-
loid treatment, leading to traditional regulatory approval of
lecanemab18 (USFoodandDrugAdministrationnewsreleaseJuly
2023). Considering the successful target engagement for both in-
terventions in the DIAN-TU-001 trial, we investigated the effect
of each drug on markers of AD-related pathology, in the context
oftheirdistinctmechanismsofactiononrespectiveformsofamy-
loid, and stage of disease by exploring longitudinal effects of gan-
tenerumab and solanezumab on CSF and plasma levels of neu-
rogranin, sTREM2, YKL-40, GFAP, and NfL.

Methods
Trial Design and Participants
The DIAN-TU-001 study ran as a double-blind, placebo-
controlled, phase 3 randomized clinical trial from December
2012 until November 2019, spanning 25 sites in 7 countries
(Supplement 1 and Supplement 2). It was approved by the
Washington University Human Research Protection Office and
local institutional review boards at each participating site. Eli-
gible participants, after providing written informed consent,
were tested for the presence of a DIAD gene variant via

polymerase chain reaction–based amplification and subse-
quent Sanger sequencing. Baseline clinical status was deter-
mined using the Clinical Dementia Rating (CDR [Knight ADRC])
dementia staging instrument,19 grouping participants into cog-
nitively unimpaired (CDR 0), very mild dementia (CDR 0.5),
or mild dementia (CDR 1). Drug administration spanned 4 years,
allocating participants 3:1 to either drug or placebo, with a
midtrial increase to a maximal dosage of 1200 mg for gan-
tenerumab and 1600 mg for solanezumab.9 Further details can
be found in the original publication.20 Race and ethnicity in-
formation was collected from the participants through self-
report; categories included Asian, Black, multiracial/other, and
White. This study followed the Consolidated Standards of Re-
porting Trials (CONSORT) reporting guidelines.

Sample Collection and Fluid Biomarker Analysis
CSF samples were collected and processed as previously
described,20 undergoing 2 freeze-thaw cycles before analysis.
With limited availability of samples, analysis was restricted to rel-
evant downstream biomarkers of AD-related pathology. When
CSF and plasma were available, both were measured. Plasma
samples were collected at baseline, along with CSF, and at years
1, 2, and 4. EDTA tubes were centrifuged at 3000g for 10 minutes
at 4 °C and subsequently flash frozen in 1-mL aliquots for storage
at −80 °C. CSF and plasma biomarkers were measured by the
RocheNeuroToolKit(NTK),aportfolioofrobustprototypeassays,
running on the fully automated Elecsys platform (Roche
Diagnostics).21 Immunoassays for neurogranin, GFAP, sTREM2,
YKL-40,andNfLwereperformedonthecobase411ande601plat-
forms(RocheDiagnostics)byindividualsblindedtomutationand
treatment status. Of note, these analyses were distinct from im-
munoassays previously reported.20

Neuroimaging
Study participants underwent carbon 11 Pittsburgh com-
pound B (PiB) PET for amyloid imaging, magnetic resonance
imaging (MRI) for structural and safety measures, and [18F]-
fluorodeoxyglucose (FDG) PET for metabolic imaging at each

Key Points
Question How do antiamyloid agents affect downstream
biomarkers of Alzheimer-related pathophysiology regarding their
target engagement with either soluble (solanezumab) or fibrillar
(gantenerumab) amyloid?

Findings This phase 2/3 double-blind, placebo-controlled, random-
ized clinical trial including 142 participants investigated gan-
tenerumab and solanezumab in individuals with gene variants for
dominantly inherited Alzheimer disease. Gantenerumab decreased
cerebrospinal fluid (CSF) neurogranin and plasma glial fibrillary acidic
protein levels while increasing CSF levels of soluble triggering recep-
tor expressed on myeloid cells 2; in contrast, solanezumab treatment
was associated with increased CSF neurofilament light protein levels.

Meaning Antiamyloid agents removing fibrillar amyloid plaques
demonstrated effects on glial and postsynaptic fluid biomarkers
downstream of initial amyloid deposition, whereas binding soluble
amyloid-β was associated with increased measures of
neurodegeneration.
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time point of CSF collection. Neuroimaging protocols are de-
tailed in the original publication.20

Statistical Analysis
Treatment effects in each outcome were assessed in the modi-
fied intention-to-treat (mITT) population, including all ran-
domized participants who received at least 1 treatment dose
and had baseline and postbaseline assessments of the pri-
mary efficacy measurements. Within the mITT population,
subgroups were created based on baseline CDR Global scores:
asymptomatic (CDR = 0) and symptomatic (CDR >0) popula-
tions. However, the original trial was not powered for sub-
group analyses nor for post hoc biomarker analyses, with no
formal sample size calculations conducted. Mixed models for
repeated measures (MMRM) estimated treatment effects for
each outcome within the entire mITT population and the
asymptomatic and symptomatic subpopulation.

For the whole mITT population, MMRM analyses in-
cluded fixed effects of baseline value, treatment, visit, and the
interaction between treatment and visit. For asymptomatic and
symptomatic subpopulations, MMRM analysis included
additional fixed effects: baseline value, baseline status
(asymptomatic vs symptomatic), treatment, visit, and vari-
ous interactions involving these variables in order to esti-
mate the change over time for each subpopulation (including
baseline value × baseline status, treatment × visit, baseline sta-

tus × treatment, and baseline status × treatment × visit). The
model estimated least-squares mean changes from baseline to
each postbaseline visit, their differences, and 95% CIs.

To examine correlations for rates of change in each out-
come, individual rates of change were calculated using the
least-squares mean method, and pairwise Spearman correla-
tions were reported. Plasma and CSF NfL levels were log trans-
formed following a previous convention, and a sensitivity
analysis was conducted to exclude 1 extreme value (above 3
SD) identified in the gantenerumab arm.

All analyses were conducted with SAS, version 9.4 (SAS
Institute). As post hoc analyses, these results are primarily
descriptive, and their interpretation should focus on clinical
relevance. With this and due to small sample sizes, no mul-
tiple comparison adjustments were made, and only nominal
P values are presented from 2-sided t tests with type I error of
.05 and 95% CI. P values <.05 were considered statistically
significant.

Results
Baseline Demographics
Baseline characteristics are displayed in Table 1. Of 236 eli-
gible participants screened, 43 were excluded. A total of 142
participants (mean [SD] age, 44 [10] years; 72 female [51%];

Table 1. Baseline Demographics and Mean Biomarker Levels of Participants in the Dominantly Inherited
Alzheimer Network Trial Unit (DIAN-TU-001) Trial Included in the Analysis

Characteristic Gantenerumab (n = 52) Solanezumab (n = 50) Placebo (n = 40)
Age, median (IQR), y 44.00 (39.00 to 53.25) 41.00 (36.00 to 50.00) 44.00 (37.75 to 51.00)

Baseline EYO, median (IQR), y −1.94 (−9.32 to 3.12) −2.58 (−6.79 to 2.66) −1.89 (−6.44 to 3.41)

Sex, No. (%)

Female 21 (40) 29 (58) 22 (55)

Male 31 (60) 21 (42) 18 (45)

APOE4 (≥1 ε4 allele), No. (%) 16 (30.8) 14 (28.0) 13 (32.5)

Variant type, No. (%)

APP 6 (11.5) 8 (16.0) 5 (12.5)

PSEN1 43 (82.7) 40 (80.0) 29 (80.0)

PSEN2 3 (5.8) 2 (4.0) 2 (7.5)

CDR 0, No. (%) 31 (59.6) 30 (60.0) 22 (55.0)

CSF neurogranin, median
(IQR), pg/mL

1310.00 (973.00 to
1608.00)

1236.00 (958.35 to
1611.50)

1179.00 (956.20 to
1683.00)

CSF sTREM2, median (IQR),
ng/mL

9.14 (7.27 to 12.00) 9.77 (7.15 to 11.55) 9.05 (7.56 to 11.02)

CSF YKL-40, median (IQR),
ng/mL

140.20 (108.10 to 166.50) 140.00 (107.20 to 164.20) 121.40 (99.48 to 183.58)

CSF GFAP, median (IQR),
ng/mL

7.11 (4.84 to 10.12) 5.62 (4.85 to 8.88) 5.89 (4.06 to 9.71)

CSF NfL (log), median (IQR) 4.65 (4.39 to 5.12) 4.65 (4.26 to 5.11) 4.73 (4.32 to 5.19)

Plasma GFAP, median (IQR),
ng/mL

0.10 (0.06 to 0.16) 0.12 (0.06 to 0.17) 0.13 (0.07 to 0.18)

Plasma NfL (log), median
(IQR)

0.45 (0.05 to 0.90) 0.64 (0.06 to 1.17) 0.46 (0.13 to 0.80)

PiB-PET composite (SUVR),
median (IQR)

2.45 (1.59 to 3.51) 2.40 (1.70 to 3.52) 2.40 (1.73 to 3.63)

FDG-PET precuneus (SUVR),
median (IQR)

1.83 (1.65 to 1.92) 1.80 (1.68 to 1.96) 1.80 (1.68 to 1.90)

MRI cortical thickness
precuneus, median (IQR), mm

2.26 (2.15 to 2.36) 2.22 (2.11 to 2.35) 2.25 (2.09 to 2.42)

Abbreviations: APOE, apolipoprotein
E; APP, amyloid-precursor protein;
CDR, Clinical Dementia Rating; CSF,
cerebrospinal fluid; EYO, estimated
years to symptom onset; FDG,
fluorodeoxyglucose; GFAP, glial
fibrillary acidic protein; MRI,
magnetic resonance imaging; NfL,
neurofilament light protein; PET,
positron emission tomography; PiB,
Pittsburgh compound B; PSEN1,
presenilin 1; PSEN2, presenilin 2;
sTREM2, soluble triggering receptor
expressed on myeloid cells 2; SUVR,
standardized uptake value ratio;
YKL-40, chitinase 3–like protein 1.
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70 male [49%]) were included in the study (gantenerumab, 52
[37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Partici-
pants self-identified with the following race and ethnicity cat-
egories: 3 Asian (2%), 1 Black (0.7%), 19 multiracial/other (6%),
and 129 White (91%). Participants included in this analysis
showed similar distributions for age, baseline estimated years
to symptom onset, sex, clinical status, biomarker levels, APOE4
status, and gene variant type.

CSF and Plasma Measures
We investigated the impact of gantenerumab or solan-
ezumab treatment on downstream CSF and plasma biomark-
ers (Figure 1, Figure 2, and Table 2) and further characterized
both drugs with exploratory analyses within the presympto-
matic and symptomatic subgroup (eFigures 1 and 2 and
eTables 1 and 2 in Supplement 3).

Gantenerumab treatment significantly decreased CSF
neurogranin levels at year 4 compared with placebo (mean [SD]
β = −242.43 [48.04] pg/mL; P < .001) (Figure 1A), whereas
solanezumab exhibited no effect on CSF neurogranin
(Figure 1B).

CSF sTREM2 levels (Figure 1C and D) increased steadily
with gantenerumab compared with placebo (year 2: mean [SD]
β = 1.12 [0.43] ng/mL; P = .01; year 4: mean [SD] β = 1.06 [0.52]
ng/mL; P = .04). Solanezumab revealed no effect on sTREM2
level by year 4. CSF YKL-40 level (Figure 1E and F) was not
significantly increased with gantenerumab or solanezumab.
Further, no effect on CSF GFAP levels was seen with
gantenerumab or solanezumab at any time point. Plasma GFAP
levels (Figure 2C and D), however, stabilized under
gantenerumab compared with placebo (year 1: mean
[SD] β = −0.02 [0.01] ng/mL; P = .02; year 2: mean [SD]
β = −0.03 [0.01] ng/mL; P = .002; year 4: mean [SD]
β = −0.06 [0.02] ng/mL; P < .001) but were not affected by
solanezumab.

Lastly, we found no difference in CSF NfL levels (Figure 2A
and B) for gantenerumab. However, with solanezumab, CSF
NfL (log) was significantly increased compared with placebo
at year 4 (mean [SD] β = 0.14 [0.06]; P = .02). For plasma NfL
(Figure 2E and F), solanezumab had no significant effect, and
gantenerumab revealed a nonsignificant difference at year 4.

For the exploratory subgroup analysis (eTables 1 and 2 and
eFigures 1 and 2 in Supplement 3), we found neurogranin and
sTREM2 levels significantly decreased and increased, respec-
tively, in presymptomatic partic ipants receiv ing
gantenerumab. CSF GFAP and NfL (log) levels showed signifi-
cant increases with solanezumab and plasma NfL (log) level
was significantly lowered in symptomatic carriers receiving
gantenerumab, whereas plasma GFAP level significantly de-
creased in both groups for gantenerumab and increased in pre-
symptomatics with solanezumab.

Correlation Analysis
Correlation analyses between the individually calculated rates
of change of fluid and imaging biomarkers were conducted for
gantenerumab or solanezumab separately (Figure 3 and eFig-
ure 3 and eTable 3 in Supplement 3). Further details are also
presented in eTables 4 and 5 in Supplement 3.

Both interventions revealed similar patterns of positive cor-
relations between all CSF biomarkers, with the solanezumab
arm showing a tendency of higher correlation coefficients. Cor-
relations of biomarkers with imaging for solanezumab found
that CSF markers of sTREM2 (Spearman ρ = −0.36; P = .03),
YKL-40 (Spearman ρ = −0.35; P = .03), GFAP (Spearman ρ =
−0.38; P = .02), and NfL (log; Spearman ρ = −0.42; P = .01) were
negatively correlated with PiB PET, whereas no relationship
was detected for gantenerumab. However, participants receiv-
ing gantenerumab showed a correlation of lower GFAP (plasma
Spearman ρ = −0.54; P = .008; CSF Spearman ρ = −0.36; P = .02)
and NfL (log; plasma Spearman ρ = −0.49; P = .02; CSF
Spearman ρ = −0.38; P = .01) levels in CSF and plasma with in-
creased glucose metabolism in the precuneus, and solan-
ezumab revealed a negative correlation with FDG precuneus
for CSF NfL (log) level only (Spearman ρ = −0.47; P = .01). For
CDR SB, there was moderate correlation with CSF NfL (log) and
GFAP level only in both drugs arms (solanezumab: NfL [log]
Spearman ρ = 0.38; P = .02; GFAP Spearman ρ = 0.33; P = .02;
gantenerumab: NfL [log] Spearman ρ = 0.44; P = .002; GFAP
Spearman ρ = 0.31; P = .03).

Discussion
We leveraged the Roche NeuroToolKit to assess multiple
CSF and plasma markers of AD-related processes in the DIAN-
TU-001 trial. As solanezumab and gantenerumab differ in
target engagement, we aimed to elucidate the impact of each
drug on biofluid markers of inflammation, synaptic loss, and
neurodegeneration. We found that treatment with
gantenerumab significantly decreased levels of CSF neurogra-
nin and plasma GFAP levels while increasing CSF sTREM2 level.
Meanwhile, solanezumab did not show beneficial changes in
these biomarkers but significantly increased CSF NfL levels,
which were previously demonstrated using a different immu-
noassay. With gantenerumab, lower levels of CSF YKL-40,
GFAP, NfL (log), and plasma GFAP and NfL (log) significantly
correlated with higher precuneus FDG-PET signals, and
correlations between all CSF markers revealed slightly higher
correlations for solanezumab relative to gantenerumab.

Early synaptic loss in AD is hypothesized to be induced by
soluble forms of amyloid,22 rendering antiamyloid agents tar-
geting soluble Aβ promising candidates against initial syn-
apse loss. Neurogranin-level increases in the CSF in mild cog-
nitive impairment and AD predict conversion from mild
cognitive impairment to AD23,24 and correlate with hippocam-
pal atrophy and cognitive decline.8,24,25 Increased neurogra-
nin level also correlates with CSF phosphorylated tau (p-tau)
181 and total tau (t-tau)—but not Aβ42—in sAD10,24,26 and
DIAD.27 We found that gantenerumab—but not solanezumab—
decreased CSF levels of neurogranin at highest dosage. This
suggests that a reduction of the specific soluble amyloid pep-
tides targeted by solanezumab is not sufficient to decrease neu-
rogranin levels. However, the administration of an agent against
fibrillar amyloid might alleviate synaptic degeneration and
therefore decrease CSF neurogranin levels. This is in line with
reports of neurogranin increasing only after the point of amy-
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Figure 1. Estimated Mean Change From Baseline for Gantenerumab, Solanezumab, and Placebo for Cerebrospinal Fluid (CSF) Markers
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Assessment of CSF markers was done for both gantenerumab and solanezumab, respectively, in neurogranin (A and B), soluble triggering receptor expressed on
myeloid cells 2 (sTREM2; C and D), chitinase 3–like protein 1 (YKL-40; E and F), and glial fibrillary acidic protein (GFAP; G and H),
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loid PET positivity28 and correlating with neuropathological
amyloid plaques,29 as well as with observations from a Study
to Confirm Safety and Efficacy of Lecanemab in Participants
With Early Alzheimer Disease (Clarity AD), reporting a de-
crease in neurogranin levels compared with placebo after 12
and 18 months of lecanemab administration,18 a drug with a
similar binding profile, primarily targeting protofibrils and dif-
fuse fibrils of Aβ.30,31 Exploratory results from the Study of
Gantenerumab in Participants With Prodromal Alzheimer
Disease (Scarlet Road) also suggested a dose-dependent re-
duction of CSF neurogranin level with gantenerumab, al-
though careful interpretation is warranted as it was stopped
prematurely due to futility.32

We further assessed sTREM2, YKL-40, and GFAP levels as
markers of neuroinflammation. In AD, CSF sTREM2 concen-
trations seem to change dynamically, peaking at the early
symptomatic stage of sAD and DIAD.33 Although some stud-
ies report higher levels of sTREM2 to be associated with higher
degrees of AD-related pathology,34-36 others have found it to
correlate with lower cross-sectional tau PET burden as well as
CSF t-tau and p-tau levels,34,37 and less longitudinal increase
of amyloid PET burden in sAD.11 Similarly, steeper annual in-
creases of sTREM2 level result in a reduced rate of increase in
PiB-PET burden in symptomatic carriers of a DIAD gene vari-
ant and a diminished rate in CSF Aβ42 decrease in presymp-
tomatic carriers of a DIAD gene variant.38

Figure 2. Estimated Mean Change From Baseline for Gantenerumab, Solanezumab, and Placebo for Cerebrospinal Fluid (CSF) and Plasma Markers
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Assessment of CSF markers was done for both gantenerumab and
solanezumab, respectively, in neurofilament light protein (NfL; A and B) and of
plasma markers in glial fibrillary acidic protein (GFAP; C and D) and NfL (E and

F). All estimations are shown with 95% CI error bars.
a Resembles a significance of a P value <.05 or lower (Table 2).
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Table 2. Results of the Model Analysis in the Whole Cohort Investigating the Longitudinal Changes
of the Respective Biomarkers in Cerebrospinal Fluid (CSF) and Plasma for Each Drug

Yeara Sample size

Estimated
least-squares mean
change from baseline SE (95% CI) P value

CSF neurogranin, pg/mL

Gantenerumab

1 44 −21.863 48.04 (−117.44 to 73.71) .65

2 40 −51.785 60.72 (−172.60 to 69.03) .40

4 28 −242.430 63.68 (−369.12 to −115.73) <.001

Solanezumab

1 38 1.182 53.87 (−106.16 to 108.53) .98

2 35 8.507 63.98 (−118.98 to 135.99) .90

4 30 23.712 96.44 (−168.44 to 215.87) .81

CSF sTREM2, ng/mL

Gantenerumab

1 44 0.636 0.33 (−0.02 to 1.29) .06

2 40 1.123 0.43 (0.26 to 1.99) .01

4 28 1.063 0.52 (0.03 to 2.09) .04

Solanezumab

1 39 0.021 0.47 (−0.91 to 0.96) .97

2 36 −0.026 0.42 (−0.86 to 0.81) .95

4 30 0.436 0.59 (−0.73 to 1.61) .46

CSF YKL-40, ng/mL

Gantenerumab

1 44 7.196 4.86 (−2.47 to 16.86) .14

2 40 13.795 8.38 (−2.88 to 30.47) .10

4 28 16.822 9.39 (−1.86 to 35.50) .08

Solanezumab

1 40 8.994 10.70 (−12.32 to 30.31) .40

2 37 5.394 9.83 (−14.19 to 24.98) .59

4 30 19.511 13.28 (−6.93 to 45.96) .15

CSF GFAP, ng/mL

Gantenerumab

1 45 −0.105 0.36 (−0.82 to 0.61) .77

2 41 0.024 0.40 (−0.78 to 0.83) .95

4 29 4.713 6.55 (−8.32 to 17.74) .47

Solanezumab

1 40 −0.156 0.40 (−0.95 to 0.64) .70

2 36 0.434 0.39 (−0.34 to 1.21) .27

4 30 0.941 0.64 (−0.34 to 2.22) .15

CSF NfL (log)

Gantenerumab

1 44 −0.016 0.04 (−0.09 to 0.06) .66

2 40 −0.019 0.04 (−0.09 to 0.05) .61

4 28 −0.053 0.06 (−0.17 to 0.06) .35

Solanezumab

1 40 −0.002 0.07 (−0.14 to 0.13) .97

2 37 0.068 0.04 (−0.01 to 0.15) .10

4 30 0.143 0.06 (0.03 to 0.26) .02

(continued)
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In participants receiving gantenerumab, we found that CSF
sTREM2 level increased compared with placebo, whereas
solanezumab treatment remained without effect. Consider-
ing that decreased PiB PET levels were observed with gan-
tenerumab, sTREM2 elevation might reflect an increase of mi-
croglia activity attributable to their receptor-mediated
engagement with the drug, prompting increased glial activ-
ity with augmented plaque removal. Accordingly, a study re-
ported that the dose-dependent effect of an agent against fi-
brillar amyloid on microglia was predominantly TREM2
mediated, with TREM2-depleted microglia exhibiting dimin-
ished ability to engulf Aβ and remove plaques, despite el-
evated levels of Fc receptors expected to compensate for defi-
cits in phagocytic activity.39 Some investigations further
suggest independent effects of sTREM2 on microglia by pro-
tecting them from apoptosis, promoting proinflammatory
states40 and modulating Aβ clearance abilities.41

Elevated CSF levels of YKL-40 have been found in sAD and
DIAD42,43 and seem to correlate with t-tau, p-tau, and in-
creased cortical thinning in patients with reduced Aβ42
levels.44 Gantenerumab and solanezumab had no effect on
YKL-40 compared with placebo. Although increased YKL-40
level has been proposed to precede amyloid plaques,45 stud-
ies in sAD and DIAD have found no correlation with CSF
Aβ42,27,46 ultimately leaving the treatment-related changes in
YKL-40 levels a subject of future research.

Although dynamics of CSF GFAP have been somewhat in-
consistent in AD,47-50 recent studies show plasma GFAP lev-
els to reliably increase in early stage sAD and DIAD,51,52 pre-
dict PiB-PET positivity49,53 and correlate with longitudinal
amyloid PET54 and cognitive decline.49 Plasma GFAP levels in
carriers of DIAD gene variants seem to diverge from noncar-

riers around 16 years before expected symptom onset, cor-
roborating findings of early changes in sAD.55 Interestingly, we
found no relevant treatment-related differences in CSF GFAP
levels for either drug. GFAP plasma levels, however, revealed
a significant decrease in participants receiving gan-
tenerumab, with levels continuously rising in placebo, mir-
roring previous results with lecanemab18 and donanemab,56

where both trials reported a longitudinal decrease of plasma
GFAP relative to baseline. Given that in AD, activated astro-
cytes colocalize more readily with fibrillar amyloid plaques57

and increased GFAP expression has been found to correlate pre-
dominantly with the presence of solid Aβ plaques,14 these re-
sults could hint at an indirect amelioration of astrocytic reac-
tivity by gantenerumab due to successful cerebral plaque
removal and explain why the engagement of solanezumab with
soluble amyloid remained without effect on GFAP. The dis-
crepancy between CSF and plasma hereby further underlines
the theory that plasma levels might be more closely related to
amyloid status due to an amyloid-dependent, direct secre-
tion of GFAP into the bloodstream by astrocytic end feet,
whereas CSF GFAP might respond to events in later disease
stages, eg, neuroinflammation.49

Finally, we assessed NfL (log), which increases with age
in CSF and blood and was found to correlate with progressive
cognitive dysfunction in sAD and DIAD.58,59 CSF NfL levels in-
creased with solanezumab, as it was reported in the main
publication,20 but not gantenerumab, whereas significant cor-
relations with imaging and CSF markers were seen for both
drugs. These results differ from the original publication re-
porting significant decreases in CSF NfL level at year 1 and 4
for gantenerumab.20 However, only a subset of the original
samples was included here, and original results were ob-

Table 2. Results of the Model Analysis in the Whole Cohort Investigating the Longitudinal Changes
of the Respective Biomarkers in Cerebrospinal Fluid (CSF) and Plasma for Each Drug (continued)

Yeara Sample size

Estimated
least-squares mean
change from baseline SE (95% CI) P value

Plasma GFAP, ng/mL

Gantenerumab

1 20 −0.019 0.01 (−0.03 to 0) .02

2 20 −0.025 0.01 (−0.04 to −0.01) .002

4 13 −0.058 0.02 (−0.09 to −0.03) <.001

Solanezumab

1 18 −0.006 0.01 (−0.02 to 0.01) .47

2 19 −0.023 0.01 (−0.05 to 0) .10

4 9 −0.007 0.03 (−0.06 to 0.05) .80

Plasma NfL (log)

Gantenerumab

1 18 −0.032 0.09 (−0.21 to 0.15) .72

2 19 −0.035 0.11 (−0.25 to 0.18) .74

4 13 −0.180 0.13 (−0.45 to 0.09) .19

Solanezumab

1 17 −0.085 0.08 (−0.24 to 0.07) .29

2 18 −0.012 0.15 (−0.31 to 0.29) .94

4 8 −0.020 0.17 (−0.36 to 0.32) .91

Abbreviations: GFAP, glial fibrillary
acidic protein; NfL, neurofilament
light protein; sTREM2, soluble
triggering receptor expressed on
myeloid cells 2; YKL-40, chitinase
3–like protein 1.
a Each year represents the time

duration of drug administration
since the initial biomarker
assessment at baseline.
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tained using Simoa (Quanterix) instead of the NTK. Compara-
tively, effect sizes 3 times higher for NFL with Simoa (eTable 6
in Supplement 3) could be attributed to differences in assay

standardization. Seeing no difference in CSF NfL level is, how-
ever, in line with our findings for plasma NfL, with no differ-
ence for either intervention compared with placebo. In sAD,

Figure 3. Correlations for Individual Rate of Change of Cerebrospinal Fluid (CSF) and Plasma Markers and Tests
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receptor expressed on myeloid cells 2
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(GFAP), neurofilament light protein
(NfL), and plasma markers included
GFAP and NfL. Tests included
Pittsburgh compound B (PiB)
positron emission tomography (PET),
[18F]-fluorodeoxyglucose (FDG) PET
for precuneus, magnetic resonance
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Clinical Dementia Rating (CDR) sums
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placebo group can be found in
eFigure 3 in Supplement 3. NS
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a P <.05.
b P <.01.
c P <.001.

Downstream Biomarker Effects of Gantenerumab or Solanezumab in Dominantly Inherited Alzheimer Disease Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology Published online April 29, 2024 E9

Downloaded from jamanetwork.com by University College London user on 05/08/2024

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2024.0991?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.0991
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2024.0991


donanemab and lecanemab did not affect plasma NfL (log)
levels56 or NfL levels in the CSF and plasma,18 respectively. The
increase in CSF NfL level with solanezumab treatment is, how-
ever, directionally consistent with cognitive worsening re-
ported in the DIAN-TU-001 study20 and with the numerically
greater cognitive decline observed in A4 in preclinical sAD.60

The reasons for increases of NfL level and cognitive decline are
unclear, as a meta-analysis of the Trial of Solanezumab for Mild
Dementia Due to Alzheimer’s Disease (EXPEDITION) 2 and 3
trials has found modest cognitive improvement in mildly symp-
tomatic AD with solanezumab.61 Differences in the stage of dis-
ease could be one possible explanation.

Similar to prior biomarker findings in the DIAN-TU-001
trial,20 only gantenerumab significantly modulated markers
of synaptic injury and neuroinflammation in a beneficial way.
Though only exploratory, we found these differences predomi-
nantly within the presymptomatic group. In contrast, solan-
ezumab did not show beneficial effects on biofluid markers or
neuroimaging, in line with previous publications in DIAD and
sAD,20,60 suggesting little impact of soluble Aβ42 or Aβ40 pep-
tides on downstream pathophysiology. These discrepancies un-
derscore the importance of targeting specific amyloid forms
in AD treatment. Although results for gantenerumab imply a
potential impact on early-stage AD-related pathology, the lim-
ited influence of solanezumab on the biomarkers calls for fur-
ther investigation into its role in disease modification, espe-
cially in the context of its hypothesized neuroprotective effects
against soluble amyloid-induced synaptic toxicity. These find-
ings highlight the nuanced and complex nature of AD thera-
peutics, where the specific molecular targets of treatments can
lead to varying outcomes in disease progression and bio-
marker profiles.

Correlation analysis revealed generally higher coeffi-
cients for solanezumab between fluid biomarkers and PiB PET
that were similar to those receiving placebo. Considering that
solanezumab had no significant effect on amyloid burden in
PiB PET in this cohort, these findings suggest, in contrast to
gantenerumab, where a lack of correlation for PiB PET and fluid
markers hints at a decoupling due to significant target engage-

ment and that solanezumab has little impact on biomarker pro-
gression in AD. With clinical progression, CDR-SB correlated
moderately and to a similar degree with CSF NfL and GFAP for
gantenerumab and solanezumab, suggesting that the patho-
physiological modulations seen in this analysis do not trans-
late to beneficial cognitive effects, similar to findings in the
main publication.20

Limitations
Our analysis has limitations. The DIAN-TU-001 study was not
intended to provide sufficient power to identify statistically
significant differences for subgroups; results should be inter-
preted accordingly. Further, due to midtrial dose escalation,9

not all participants received the highest dose for the same time
span, which might have implications for downstream bio-
marker levels. Moreover, a lack of racial and ethnic diversity
limits generalizability of the presented results. Finally, al-
though our findings offer valuable insights into changes of AD
pathophysiology under antiamyloid treatment, the assessed
biomarkers remain a tool of research with need for further stan-
dardization of assays, investigation of diagnostic and predic-
tive value concerning clinical status and clinical function, as
well as assessment of pathophysiological context. It is pos-
sible that with larger study cohorts or longer treatment dura-
tions, a novel magnitude of treatment effect might be found.
As of now, results need to be interpreted with caution.

Conclusions
In summary, in DIAN-TU-001 randomized clinical trial, we
report the beneficial impact of fibrillar amyloid reduction on
fluid markers of synaptic dysfunction and neuroinflamma-
tion in DIAD, whereas the reduction of soluble Aβ42 or Aβ40
peptides did not show a positive effect on any of those
markers. Results from further studies administering antiamy-
loid therapies in both sAD and DIAD are crucial to corrobo-
rate the utility of nonamyloid biomarkers in evaluating dis-
ease modification.
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