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The field of retail analytics has been transformed by the availability of
rich data, which can be used to perform tasks such as demand forecasting and
inventory management. However, one task which has proved more challeng-
ing is the forecasting of demand for products which exhibit very few sales.
The sparsity of the resulting data limits the degree to which traditional ana-
lytics can be deployed. To combat this, we represent sales data as a structured
sparse multivariate point process, which allows for features such as autocor-
relation, cross-correlation, and temporal clustering, known to be present in
sparse sales data. We introduce a Bayesian point process model to capture
these phenomena, which includes a hurdle component to cope with sparsity
and an exciting component to cope with temporal clustering within and across
products. We then cast this model within a Bayesian hierarchical framework,
to allow the borrowing of information across different products, which is key
in addressing the data sparsity per product. We conduct a detailed analysis,
using real sales data, to show that this model outperforms existing methods in
terms of predictive power, and we discuss the interpretation of the inference.

1. Introduction. One of the main objectives of retail analytics is to build predictive de-
mand forecasting models for purposes such as inventory management, profit forecasting, as-
sessing the impact of marketing to name but a few. Demand models have been extensively
studied in the literature, focusing on forecasting sales of high volumes (Seeger, Salinas and
Flunkert (2016b), Ferreira, Lee and Simchi-Levi (2015), Sahu et al. (2014)). However, these
forecasting models often struggle to capture the demand dynamics of products with low sales
volumes. Such products, known as slow-moving-inventory (SMI), are typically for sale the
entire year but are only purchased on 1-5% of days, often with an intermittent pattern. They
are usually nonfood merchandise such as technology, fashion, and general household items.
The resultant demand data of SMI take the form of a sparse count process per product, largely
populated with zeros, with autocorrelation and contemporaneous structure across different
products (due to seasonality, promotions, and current trends).

There are three main aspects of a predictive model of SMI which are challenging. First,
since these products have low sales volumes, this leads to an inflation of zeros (corresponding
to days with no sales), which makes it difficult to estimate the effect of the traditional vari-
ables used in forecasting models (prices, promotions, seasonality, etc). Second, SMI demand
often occurs in bursts across different products, indicating a dependency either between a
product’s own sales history and the history of other similar products, or on a common exter-
nal factor that cannot be accounted for by available covariates. Third, SMI is often stocked
and sold for a relatively limited amount of time (short sales cycles), which results in little
covariate and demand history.
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Previous research dealing with such zero-inflated bursty processes includes exponen-
tial smoothing and related methodologies that attempt to forecast future observations as
a weighted moving average of past observations over time (Do Croston (1972), Gardner
(2006)). Such approaches primarily focus on the temporal burstiness of demand and demon-
strated initial success, though they are somewhat heuristic and lack an underlying stochas-
tic process consistent with intermittent demand and fail to provide a framework that natu-
rally accounts for predictors, information borrowing, and uncertainty (Shenstone and Hynd-
man (2005)). More recent developments have included neural network approaches (Seeger,
Salinas and Flunkert (2016a), Rangapuram et al. (2018), Salinas et al. (2020)) that show
promise at finding the complex nonlinear interdependencies across multiple intermittent de-
mand series across but suffer from overfitting issues and lack an underlying interpretability
(Kourentzes (2013), Pour, Tabar and Rahimzadeh (2008), Mishra et al. (2014)). Two main
contributions in the literature explicitly accommodate zero inflation in the context of demand
series. The first is Chapados (2014), who implement a Bayesian hierarchical zero-inflated
count model with time-varying regression parameters that shares information across inter-
mittent demand series. However, their approach limits the dependency on historical demand
to an AR(1) process in the mean of the count distribution and ignores the zero-process alto-
gether, exclude pricing information from their framework and without considering contempo-
raneous dependence between intermittent demand series. The second is Berry, Helman and
West (2020) who developed a dynamic zero-inflated multiscale mixture model of demand
time series; the distinction with our method is that they used transaction-level data, whereas
we only have aggregate sales data at hand. Though existing approaches have demonstrated
a degree of success at forecasting the intermittent demand of SMI, none have developed a
unified model that incorporates excitation dynamics, covariates beyond just seasonality, and
information pooling between the intermittent demand series in a way that sheds light into
additive benefits that each of these components has with respect to forecasting performance.

In this work we develop modelling, inferential, and predictive methods able to learn the
dynamics of sparse count processes for SMI products with few to no sales. We build on the
self-exciting model for sparse processes of Porter and White (2012) by introducing flexible
covariates that relate to product demand and extend their model to include a cross-excitation
contribution that allows differing intermittent demand series to excite one another, capturing
the process of intertwined contemporaneous excitation dynamics observed in SMI data. We
overcome the sparsity of information available for each individual product by integrating
the products into a Bayesian hierarchical model that allows for shrinkage and information
passing across differing sparse count process.

The layout of this paper is as follows; Section 2 describes the SMI demand data used in
this paper. Section 3 describes hurdle models and the Hawkes process. Section 4 outlines
our hierarchical Bayesian hurdle model with self- and cross-excitation components to model
multiple sparse count processes simultaneously. Section 5 presents the results of our sparse
count process on the demand data of touchscreen tablets across five South London super-
markets. We conduct a detailed investigation to compare our model to its nonhierarchical
equivalent and models without the self- and cross-excitation terms to highlight the benefits of
the information borrowing and excitation components and discuss the implications of these
results within the context of retail analytics. Section 6 concludes with a summary of our
contributions and a discussion of possible future developments.

2. Data. The dataset we consider consists of product sales information recorded through
the electronic points of sale of a leading United Kingdom supermarket retailer, anonymised
for general research purposes so that no individual shoppers could be identified. Access to
this anonymised dataset was provided by dunnhumby Ltd. The data consist of 17 longitudinal
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TABLE 1
Summary statistics of SMI demand within tablet category on the training set. The brands have been anonymised
with fictitious names for privacy purposes

Product Brand Total sales % nonzero sale days
1 SPARK 1 0.27
2 TECHY 409 53.57
3 TECHY 36 4.12
4 GADGET 9 1.92
5 TECHY 5 1.37
6 TECHY 13 3.57
7 TECHY 13 3.57
8 GADGET 13 3.30
9 GADGET 2 0.27
10 GADGET 5 1.37
11 TECHY 1 0.27
12 TECHY 12 1.92
13 TECHY 2 0.55
14 TECHY 3 0.82
15 TECHY 9 0.82
16 TECHY 6 1.10
17 TECHY 3 0.82

SMI sales processes over 464 days of trading between the dates 1 October 2013 to 7 January
2015. For each product the daily count corresponds to the aggregated sales of a touchscreen
tablet across five large supermarkets within south London. Daily prices as well as seasonality
characteristics are available as covariates during the 464 trading days, during which all of
the 17 tablets were stocked and in circulation. We split the data into training and test sets,
the first 364 trading days between 1 October 2013 to 29 September 2014 (a full trading year
excluding Christmas), and the remaining 100 trading days between 30 September 2014 to 7
January 2015 kept as hold-out test set. These training and test splits give a balance between
providing sufficient training periods where we observe one full year to allow the learning of
seasonal trends, whilst having test sets of a reasonable size to allow meaningful forecasts.
This dataset is challenging since we only have one year to learn seasonality from and thus
makes a hierarchical model formulation particularly applicable.

Table 1 provides summary statistics over the training set of the sale counts across the 17
tablet products. The demand across the category is primarily driven by one product, as it
accounts for 75% of sales. However, the remaining products are extremely slow moving, as
indicated by the majority of them only having 0.5-5% nonzero sales days.

These data demonstrate many of the pertinent features of SMI sales processes. Figure 1
contrasts the sales and respective prices of one of the faster-selling tablets against a slower
one. The plots illustrate the zero inflation where many days record zero sales. The sales also
do not show a straightforward dependence on either the prices or the seasonal effects, as
indicated by the little movement in demand with respect to changes in prices and season.
A clustering effect in the succession of sales within their own demand series is also evident.
For example, sales of the right-hand plot in Figure 1 fall during the month prior to the festive
period, typically thought of as driving demand, but a quick succession of sales follows shortly
after this month. This suggests an excitation process not accounted for by covariate informa-
tion, as sales bursts occur outside the effects explained by covariate data. Figure 2 provides
plots suggesting the existence of possible contemporaneous excitation of tablet sales within
a particular brand. We see that sales of a tablet in a given brand are often followed by a
subsequent sale of another tablet of the same brand.
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F1G. 1. Plots of demand series (i.e., the daily number of sales) as a solid black line for two tablets with their
respective log prices in $ (dashed) over 364 days of training data. The left panel is a high-volume tablet (Product
1) and the right panel is a lower-volume tablet (Product 7). The shaded region is the month prior to Christmas.

3. Background. Our aim is to develop a Bayesian hierarchical model for the sales of
each product i on each day ¢, denoted y;; € {0, 1, ...}. In order to deal with the zero inflation,
we will use the hurdle regression model framework of separately modelling the probability
of each day having at least one sale and the distribution of the number of sales conditional
on there being at least one sale. In other words, we refer to a day as being a “zero” day if
no sales occur or a “nonzero” day if there is at least one sale and treat the classification of
days as zero vs nonzero as being a Bernoulli (binary) sequence. The number of sales on the
nonzero days is then separately modelled.

We will combine this hurdle model framework with self- and cross-excitation components
to account for the clustering of events. The remainder of this section reviews the hurdle and
excitation models upon which we will build.

3.1. Hurdle models. Mullahy (1986) introduced the hurdle regression model to handle an
inflation of zeros in count data for which traditional count models (Poisson, negative binomial
regression) could not adequately account. The hurdle model defines a distribution over the
counts {0, 1, ...} and assumes these counts can be split into two separate processes: a process
accounting exclusively for the 0’s (the hurdle) and a process accounting for nonzero counts.
Hurdle models, unlike their zero-inflated model counterpart (Lambert (1992)), assume the
zero and nonzero processes are separable, as zero observations arise exclusively from the de-
generate zero distribution and the count distribution over {1, ...}. We opt for a hurdle model
over a zero-inflated model, due to the separability of the zero and count processes (that ac-
commodates efficient inference), so that any occurrences of zero can be directly linked to the
ZETrO Process.

Within our context of SMI modelling, the inflation of zeros corresponds to days when
we observe zero sales, and the count process corresponds to days when we observe nonzero
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FIG. 2. Plots of tablet sales for the four products in the GADGET brand over a portion of the training set. The
differing colours correspond to the sales of a particular product within the given brand.
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sales. More concretely, let the number of sales of a particular product i be denoted as y; (we
suppress dependence on the product i subscript for notational convenience). The probability
density function of the hurdle model, given covariates x;, can be specified as

1 —p(x;, 6% for y; =0,
p(x;, 0°) f(ve | x7,0°) ye=1,....

Here p(x7,@%) is the probability of observing a nonzero count at time 7, and f(- | x¢, )
is a probability mass function defined on the positive integers. The covariates for the zero
process x; and count process x{ may overlap. The 6*, 8 are parameters for the zero and
count processes, respectively. For notational purposes we let E; be the indicator for an event
day such that £, =1 if y, > 1 (a day ¢t where at least one sales instance is observed) and
E; =0if y, =0 (a day # with no sales).

3.1 Pyl x:,0) =

3.2. Self-exciting processes. Hawkes (1971) introduced a Hawkes process as a self-
exciting temporal point process with conditional intensity function

(3.2) AD) =)+ Y vt —1),

itti<t
where ¢(¢) is the background rate, #; are the times prior to time ¢ when an event (i.e., nonzero
sales) occurred, and v(-) a continuous excitation function that controls the extent to which
events cluster together. This process effectively describes a count process where events in-
crease the probability of further such events in the short term, leading to clustered events (in
our case, days with nonzero sales). In the discrete context, the above can be reexpressed as

(3.3) MO =)+ kEjgt— ),
j<t

where ¢(?) is, as before, the background rate, E; is a Boolean indicator indicating event days
(E; =1 for an event day, that is, a day with nonzero sales), g(-) > 0 is the excitation kernel
(a probability mass function) that controls the extent to which events cluster together, and
Kk is some trigger constant that can be interpreted as the average number of triggered events
produced by each event. With a Hawkes process, instances of an event in turn increase (« > 0)
or decrease (x < 0) the probability of further such events occurring in the future. In this work
we focus on the case k > 0, which represents excitation (rather than inhibition). We denote
the history of events up to but not including ¢ as H,_1 = (Ey, ..., E;—1). Figure 3 plots
two simulated series from a Bernoulli distribution with a Hawkes process term. It illustrates
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Fi1G. 3. Simulated example. Two series of samples are generated from E; ~ Bernoulli(ps), with
logit(psr) =0 + k> ;- Eiglt —i |, 7) for t =1,...,364, where g(- | i, T) is the truncated negative bino-
mial density on the positive integers with mean and scale , t. The crosses are E; samples generated from
©@,k, 0, t) =(-3.2,3.1,1.0,5.0), and the solid line is the corresponding p;. The circle dots are E; samples
generated from (0,k, u,t) = (—2.5,5,5,60), and the dashed line is the corresponding p;. We observe how the
differing (0, k, i, ©) lead to different clustering patterns and underlying shapes of the probability of events.
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the variation in Bernoulli samples depending on the parameters of the excitation kernel and
trigger constant. For example, the dashed curve with the higher excitation constant ¥ shows
much stronger excitation as exhibited by the densely clustered events dots and as opposed to
the crosses which are mostly isolated events.

3.3. Cross-exciting processes. Various extensions to (3.3) have been made to include
cross-excitation across related spatial or temporal processes. Lai et al. (2016) proposed a
scheme allowing for interexcitation and inhibition across different social media events across
both time and space domain. They used a triggering kernel, specified as exponential in time
and Gaussian in space, to capture cross-excitation and inhibition in tweets in different topics
and geographies. Zhou, Zha and Song (2013) used multidimensional Hawkes process (in the
continuous space) to model information spread across sparse low-rank social networks and
a triggering function which incorporates excitation from connected individuals in an addi-
tive form. Blundell, Beck and Heller (2012) modelled interaction between human relation-
ships using linked Hawkes processes through a kernel trigger function for the cross entries,
which are linked via a nonparametric Chinese restaurant process to determine the partitions
amongst social groups. Although the aforementioned approaches demonstrate a degree of
success within their relevant contexts, they have not been applied to sales forecasting before.

4. Model. We model the daily sales of SMI by explicitly modelling the absence of a
sale (termed the “zero-process”) and the number of sales by the “count-process.” Our model
introduces a Bayesian hierarchical version of the hurdle model of (3.1) with self- and cross-
excitation terms discussed in Section 4.2 in both the zero and count components. Our pro-
posed model makes the following three extensions to existing models: first, we use covariates
beyond seasonal information; in particular, we use price along Boolean seasonal variables to
assist in forecasting sales. Second, we use cross-excitation in the zero process of (3.1) that
aims to capture the contemporaneous nature of sales bursts across the SMI category. Third,
we build a Bayesian hierarchical model across the sales y;; (the sales at product i at time ¢) of
a SMI category to allow information borrowing, which is key in addressing the sales sparsity
per product.

4.1. Covariate data. In addition to the excitation exhibited in SMI sales, product level
covariates may offer predictive power to SMI forecasting. We introduce covariate data into
the model through the background intensity function ¢(¢) of (3.3). In the supermarket sales
context, this corresponds to a product’s own price along with seasonal effects (which are
common for all products). In particular, these covariates for a product i at time ¢ are the
logarithm of its price, along with the indicator functions of week day, month, and Christmas
period. We summarise these covariates as

log(p,,;) = log(price;,) = logarithm price of SMI product i at time ¢,

s; = (1 (teChristmas) » ]l(teMon), cee ]l(teSat), ]l(teJan)a cee ]l(teNov))-

Using Boolean indicators allows for a natural interpretation in an information borrowing
scheme and further avoids any explicit aggregation across the SMI product data, allowing us
to easily handle any issues relating to products coming in and out of circulation. We specify
the background intensities goiz (1), ¢ (t) of the zero and count processes of (3.3) as

18

(4.1) OH(t) =07 + 05 1og(pi) + Y 0 25kt
k=1

4.2) @i (1) = 01 + 03 log(p;,),
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where {Ql e 91120} and {67, 912} are the parameters associated with the zero and count pro-
cesses, respectively, for product i. The j index of 67, ranges from 1 — 20 to include the 1
additive constant, 1 log price variable, 6 week day, 11 month and 1 Christmas indicators.
Functions (4.1) and (4.2) describe the background intensities of the processes absent of ex-
citation. Thus, in the zero process, we expect the background intensity to depend on a linear
combination of log(price), seasonal effects, and some additive constant through a given link
function, whereas in the count process, we expect the background intensity to depend on
a linear combination of log(price) and some additive constant through a given link func-
tion. We restrict the background intensity of the count process to exclude seasonal effects
to reduce model complexity and the possibility of overfitting. It is important to note that,
for a given product, the count process only exists for ¢ with E;, = 1. This reduces the count
process data compared to the zero process. The link functions of (4.1) and (4.2) are context-
speciﬁc and will be speciﬁed in the data analysis sections. We now denote these covariates
as x;, = (p;;» 8¢) and x{, = (p;,) for the zero and count processes, respectively, in line with
notatlon of (3.1).

4.2. Cross-excitation. SMI sales of different but comparable products may occur in con-
temporaneous “bursts,” in that sales of a particular product may be followed by sales of a
comparable product in the immediate future; these bursts can be a result of external advertis-
ing campaigns or viral dynamics, but importantly, the apparent excitation not only happens
autocorrelatively but also contemporaneously across products. In the SMI context, cross-
excitation may occur across all products (i.e., a sale for a product leads to a higher probabil-
ity of a sale of any other product over the subsequent days), within each brand (i.e., a sale
of a product only affects subsequent sales of products of the same brand), or may even be
observed across groups of products with no apparent relationship. We refer to these groups
as “cross-excitation groups” to include any grouping of the products. Concretely, we define
E;; as the indicator for a cross-event day of product i of some cross-excitation group such
that Ei, =1if ) B\{i} Ykt = 1, where B is the set of indices corresponding to products of

the same group, and E-, =0if ZkeB\ tiy Ykt = 0. Thus, the indicator Eit is 1 if there is at
least one other sale within the cross-excitation group at time 7 and 0 otherwise. We denote
the history of cross-events up to but not including ¢ as H”_l = (E, Ly... zz—l)

The corresponding excitation process with the self- and cross- ex01tat10n of product i then
becomes

(4.3) Sit =) _«iEig(t —j1&,
j<t
(4.4) Sii=) &iEigt—jl,

j<t

where «;, k; are the trigger constants for the self- and cross-excitation, respectively, and
g is some probability mass function parametrised by ¢; and ¢; controlling the shape of
future self- and cross-excitation, respectively. Our cross-excitation formulation of (4.4) is
closely related to the multivariate Hawkes process (Hawkes (1971)), where we fix all cross-
excitation kernels of a given product to O that correspond to a different cross-excitation group
and have shared cross-excitation kernels with shared parameters for products corresponding
to the same group. We denote these collections of self- and cross-excitation parameters as
i = («i, &) and y; = (k;, ¢;), respectively.

4.3. Self- and cross-exciting hurdle model. 'We formulate our SMI model by utilising the
hurdle model specification of (3.1). In particular, we use a logistic link function to model the
zero-process with a background intensity ¢*(¢) (4.1), including seasonal Boolean covariates,



HIERARCHICAL MODELLING OF SPARSE COUNT PROCESSES 953

logarithm of price as well as self- and cross-excitation components ((4.3) and (4.4)). Sim-
ilarly, for the count process, we use a negative binomial distribution with a log-link mean
intensity ¢°(¢) (4.2), which includes logarithm of price as well as the self-excitation term
of (4.3). Our model is indexed by 17 longitudinal sales series from the tablets category over
464 (training+test) days of trading between the dates 1 October 2013 to 7 January 2015. We
specify the probability mass function of the hurdle model as

pit | Xis. Hir, Hir,07)
(45) — 1 - ( it? th Hll‘a 02) for Yit = 07
( l[’Hll‘aHll’o )f(yll |)\'(xftaHll’01L)’¢) in‘ENJ’_?

where A(-) represents a link function and f (y;s|A, ¢) = (y"’y:iﬂb)(k lJrqb)y” l(x 1Jr(z)) and

¢ =1, which is the probability mass function of the shifted negative binomial distribution
(NB) and H;;, H;;, x”, and x” are as defined in Sections 3.2, 4.2, and 4.1, respectively,
indexed by product i. We specify the link functions as

loglt( ( ll’ Hlla Hllv 02)) = (plz(t) + SZ + Stha
log(A(x7,, Hir, 07)) = ¢ (1) + S

<piz (t) and f (1) are as defined from (4.1) and (4.2), respectively, but indexed by product i. We
define S%, = 3 kFEiug(t —s | ué,t%) and S, = 3, KFEig(t — s | ji%, T7) similarly to
(4.3) and (4.4), respectively, with g(z | M, 7) = (t 2”)(“ l+T)t l(u )" as the shifted
NB distribution. We 51m11ar1y define S;, =D _ ki Ei g(t —s | uj, tf). We denote the col-
lection of shot parameters as y; = (/cl ,,ul, T5), vy = (k7 15, T, Z) and y;¢ = (kf, uf, tf) and
collectively denote 07 = (05, ..., 055, %%, )712) and 0 = (65}, 65, i©).

During this work spec1al attention is paid to the spemﬁcatlon of hierarchical priors over the
collection @; and 67, as they are the mechanism through which we penalise complexity and
pool information to combat data sparsity. In particular, we specify 6;; ~ N(p7, (05)2) and
pf ~ N3, (gj?)z) and fix (o;)2 for j =1,...,20 and similarly specify Ql.cj ~ N(,ojc., (06)2)
and ,oj ~ N(®¥¢, (gj‘.')z) and fix (0;3)2 for each j = 1, 2. For parameters of the shot function S?

254

we specify )/Z ~ Gamma(nZ vz) with 77Z ~ Gamma(az 82) and fix vZ for each j =1,2,3.

We specify priors on y and y 51m11ar1y The full detalls of h1erarchlcal prior specification
are contained in Appendlx Al

S. Results. We fit variations of the model (4.5) to the 17 longitudinal SMI sales pro-
cesses over 364 days of trading between the dates 1 October 2013 to 29 September 2014. We
denote time interval over which we train our models as 7 A hold out test set, over 100
trading days between 30 September 2014 to 7 January 20135, is used to evaluate the predictive
performance of the model variations for both the zero and count processes. We denote this
test interval as 7', As the zero and count processes are separable, we will model inference
and analysis on these separately.

5.1. Zero process variations. 'To assess the predictive benefits of the additions of self-
excitation, cross-excitation, and hierarchical components to the zero process of the hurdle
model of (3.1), we implement the following cumulative variations of both the link functions
as well as the hierarchical layering used in the modelling foreachi =1, ..., 17:

e Benchmark (Bench): As a simple benchmark to assess our models against, we treat the
zero-process as being an independent and identically distributed collection of Bernoulli
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random variables. The empirical probability of a day being a zero day for product i is

hence given by y; = Z',T;' I (yi; = 0)/|T'™"| where I(-) is the identity function. The
test-set is then predicted using the standard Bernoulli(y;) likelihood.
e Baseline model (Base] ): We learn the zero process with link function

logit(p (x,, Hir, Hir, 05)) = ¢,

that is, a constant probability per product. This is the Bayesian baseline model, as it es-
timates the zero-process independent of covariate information. The ¢; is estimated using
vague priors. The performance of this model is used to verify the relative benefits that
covariate information brings to SMI zero-process modelling.

e Hierarchical Bayesian (HB?): We learn the zero process with link function

logit(p(xf,, Hir. Hir, 05)) = i (1),

with the hierarchical prior formulation discussed in Section 4.3. This model is implemented
to establish a benchmark of the simplest regression model, that is, a model that excludes
information of previous events and is used to verify the relative benefits of self-excitation
and cross-excitation.

e Bayesian with self-excitation (BE?): We learn the zero process of the hurdle model with
link function

logit( ( Xip Hir, Hll’ 01)) =@, () +S;;

but exclude the hierarchical prior formulation shown in Section 4.3. More concretely, we
fix the parameters p?, (O’Z )2, and 17 V3  across all j. This model is implemented to estab-
lish a benchmark of a model with eX01tat10n but without information borrowing between
products and is used to verify the relative benefits of information borrowing between prod-
ucts.

e Hierarchical Bayesian with self-excitation (HBE?): We learn the zero process with link
function

logit( ( it Hi, Hlt’ oz)) @i HORS Sll’

with the hierarchical prior formulation discussed in Section 4.3. This model is implemented
to demonstrate the possible benefits of self-excitation in the standard zero-inflated regres-
sion model.

e Bayesian with self- and cross-excitation (BEC*): We learn the zero process with link func-
tion

loglt( ( ll" Hllv Hll" 02)) = (plz(t) + Slzt + Slzt

but exclude the hierarchical prior formulation shown in Section 4.3. Prior specification is
similar to that of BE® but extended to include p;. This is a benchmark of a model with
self- and cross-excitation but without an information borrowing scheme.

e Hierarchical Bayesian with self- and cross-excitation (HBEC?): This is the full model
discussed in the Section 4.3. We learn the zero process with link function

logit( ( ,tathHltsoz)) (t)+SZ +Szzt’

with the hierarchical prior formulation discussed in Section 4.3. The hyperpriors are se-
lected to balance borrowing across products and penalising complexity.

Parameter inference is performed by Hamiltonian Monte Carlo sampling algorithm and
is implemented using the rstan library (Stan Development Team (2016)). Convergence was
confirmed by Heidelberger—Welch statistic across all models and parameters (Heidelberger
and Welch (1981)). The specification of hyperpriors is included in Appendix A.1.
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5.2. Zero process fits. The predictive performance of models Base], HB*, BE?, HBE?,
BEC?, and HBEC? is assessed by calculating how capable each model is at predicting the
probability of a sale occurring on a given day over the test interval 7' (30 September 2014
to 7 January 2015) foreachi =1, ..., 17, given the history of self- and cross-events H;;, H;,,
covariate information x73,, and posterior samples. We denote the sth posterior sample of 67 of
the ith product as 67;. The sales occurrence probabilities are based on the posterior samples
67, inferred from the training interval T4 (between 1 October 2013 to 29 September 2014).

More precisely, we apply the following methodology over the test interval:

1. On given day ¢ on the test interval and sth posterior sample, we compute the full predictive
posterior distribution of the probability of a sale occurring based conditioned on x;,, H;;,
H;,, 05, for each producti =1,...,17.

2. We observe yj;+1 (the number of sales of product i on day # + 1) foreachi =1,...,17
and update the self- and cross-event histories H;;11, Hj;+1 fori=1,...,17.

3. Repeat steps for each ¢, for each sample s and i over the test period of 30 September 2014
to 7 January 2015.

This builds up a set of daily predictive posterior probabilities p;;s for each s =1, ..., S for
the probability of a sale on a given day over 7' for each i =1, ..., 17, based on posterior
samples inferred from 7" conditioned on x5, Hii, Hi;, 05.

To evaluate the predictive performance of the models for the zero process we use the log-
average log-predictive likelihood, also known as the logarithmic score, computed as

1 1e E; 1-E;
pl? - | Ttest| Z 10g<§ X;pitsr(l - pits)( it) )
§=

te TlCSt

where pj;s is the prediction probability of a sale occurring for product i from posterior sample
s for some model of interest, which is averaged over the posterior. Table 2 provides the pl*
scores across products and models.

Table 2 reveals some interesting findings. First, all models beat the simple benchmark
model which forecasts based on the empirical distribution of the training set. When it comes
to our proposed models, we observe that the model HB?, the zero process model with covari-
ate information, provides a significant improvement in predictive performance, compared to
the baseline model Base] without covariate information. We further see that inclusion of
a self-excitation component in (3.1) provides a marked improvement over the model HB*?
without self-excitation. Figure 4 demonstrates an example of the benefit of including self-
excitation by comparing the event day prediction performance between models HBE* and
HB? over a portion of the test set. We observe inclusion of self-excitation produces a 95%
credibility interval of model HBE? that captures a subsequent sale that model HB? does not
immediately after the first sale at = 382.

Table 2 further indicates the predictive benefits that hierarchical extensions provide over
its nonhierarchical equivalents. Figure 5 illustrates an example of the benefit of these hierar-
chical extensions by comparing event day prediction performance between models HBE? and
BE? over a portion of the test set. We observe that by information pooling across the intermit-
tent demand series produces a 95% credibility interval of model HBE? that captures a sale at
t = 446 (during the Christmas period). This is despite the absence of sales over the Christmas
period of the previous year for this product. In this way the hierarchical model benefits from
inferring parameter values of other intermittent demand series, which have observed sales
over the previous the Christmas period.

Finally, Table 2 indicates that the cross-excitation expositions of models BEC* and HBEC*
offer an improvement in event day prediction over the test set, compared to their noncross-
excitation counterparts (i.e., BE? and HBE?). Interestingly, cross-excitation does not offer
any benefits in terms of the training set but shows significant predictive gains in the test set.
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TABLE 2
Predictive log-likelihoods p and p scores of the zero process fits for the models Base?, HBZ?, BE?,
HBE?, BEC?, and HBEC? and each product along with the benchmark model. The best (i.e., highest predictive
likelihood) model for each product is shown in bold. The final two rows show the average pl* averaged across all
products in the test and training sets, respectively

z,test Z,train
li li

z,test zZ,test zZ,test z,test z,test

Product i Plgench  PlBase,.i Plip,; PIEET PIHBE. i Plgeci  PliBEc,
1 —0.0028  —0.0037  —0.0316  —0.0032  —0.0204  —0.0032  —0.0197
2 —-0.7372  —0.7347  —0.6566 ~ —0.6085 ~ —0.5587  —0.6042  —0.5518
3 -0.0736 ~ —0.0733  —0.0681  —0.0618  —0.0556  —0.0623  —0.0559
4 —-02946  —0.2944  —0.2827  —0.293 —-0.2854  —0.29 —0.2835
5 —-0.1420  —0.1416 ~ —0.1309  —0.1046  —0.1212  —0.1027  —0.1181
6 —-0.0364  —0.0367  —0.058 —-0.0255  —0.0363  —0.0254  —0.0363
7 —-0.0693  —0.0692  —0.0742  —0.0591  —0.0598  —0.06 —0.0607
8 —-0.0673  —0.0674  —0.0895  —0.0647  —0.0691  —0.0642  —0.0677
9 —-0.0617 ~ —0.0597  —0.0727  —0.0568  —0.0598  —0.0569  —0.0593
10 —-0.0993  —0.0991  —0.113 —-0.1076  —0.1045  —0.106 —0.1022
11 -0.1796 ~ —0.1716 ~ —0.1148  —0.1401 ~ —0.1179  —0.1397  —0.1180
12 —-0.0981  —0.098 —0.1186  —0.1048  —0.1053  —0.103 —0.1027
13 —-0.1615  —0.1584  —0.1525  —0.0975  —0.0999  —0.0981  —0.0991
14 —0.1041  —0.1034  —0.0866  —0.1115  —0.0993  —0.1111  —0.0995
15 —0.1041 ~ —0.1036  —0.1115  —0.1078  —0.1049  —0.1083  —0.1052
16 —-0.0560  —0.0561  —0.0747  —0.0612  —0.066 —-0.0619  —0.0661
17 —0.1520  —0.1501  —0.1523  —0.136 -0.1309  —0.1366  —0.1307
E[piZt]  —01435 01424 —0.1405  —0.1261  —0.1232  —0.1255  —0.1221
E[pIZmt] 00393 —0.1145  —0.1131  —0.0985  —0.1071  —0.0983  —0.1071

As a last feature of Table 2 that deserves comment, we note that the predictive likelihood
for Product 1 is substantially worse than the others, across all models. This is because this
product had a relatively high volume of sales with at least one unit being sold on almost
half the days in the sample period. This means that the zero process is high entropy, and
hence, the predictive likelihoods will be lower. The forecasting performance for Product 3
is also slightly worse than the other products across all models; this is because the number
of nonzero sale days for this product increased substantially from 93% in the training set to
98% in the test set, which may be indicative of some structural change.

5.3. Cross-excitation groups. The cross-excitation framework depends on user-defined
groups. Brand marketing campaigns can lead to an increase of sales across an entire brand,

E13,|
E13,|

T T T T T T T T T T T T T T T T
365 370 375 380 385 390 395 400 365 370 375 380 385 390 395 400
t, time index (days) t, time index (days)

FIG. 4.  Plots of the predictive models HB* (left) and HBE? (right) for product i = 11 over a portion of the test
set. The crosses and circle dots represent self- and cross-event days, respectively (i.e., E;; and E it)- The black line
is the estimated posterior mean of an event day observation (i.e., p;;), and the shaded region is the 95% credible
interval of these estimates.
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FIG. 5. Plots of the predictive models BE* (left) and HBEZ (right) for product i = 3 over a portion of the test
set. The crosses and circle dots represent self- and cross-event days, respectively (i.e., Ej; and E;;). The black line
is the estimated posterior mean of an event day observation (i.e., p;;), and the shaded region is the 95% credible
interval of these estimates.

which in turn may be captured by the model as cross-excitation; therefore, a natural choice
for cross-excitation groups is the product brand. However, other groupings may provide equal
good or better model fit. We explore three distinct options for the cross-excitation groups: (a)
by product brand, (b) across the entire category (i.e., all products in the category can cross-
excite), (c) using data driven preprocessing of products into clusters following the procedure
described below:

We create a matrix C to capture cross-excitation from product j to i by computing

X S, 10i > 0Ly > 0) 1 (i = 0)
Yo 1G> 0) X U(yje > 0) '

In other words, for each sale event in i we compute the total number of the preceding #,, days
which were associated with an event in j but not i. This number is then normalised by the
total number of sales days for products i and j to give us the average number of potentially
cross-exciting events from j into each sale of i, as a proportion of total sales in j. Here we
transform C into a symmetric matrix through CY™ = C + C’. The columns of this matrix
are then clustered using complete linkage hierarchical clustering, assuming correlation as
distance, visualised in Figure 6. However, note that the model formulation does not require
the cross-excitation groupings to be symmetric; one could have product i cross-exciting into
product j but not vice-versa; however, this is beyond the scope of this paper.

We cluster the products into three clusters to ensure consistency with the brand groups.
Closer inspection shows that product 2, which sells a lot more than the remaining products,
has been placed into a cluster by itself; the largest cluster. Which contains all of “GADGET”
products as well as some “TECHY,” is largely driven by two products, namely, products 9 and
13, which only sold on two and five days, respectively, but which were associated (either pre-
ceeded or followed) by sales of a few other products. Note that the heuristic approximation of
cross-excitation groups does not account for excitation, due to simultaneous price reductions,
which may be captured through dependence on covariates within the model.

We fit the models using the three types of cross-excitation groups with exactly the same
prior distribution specifications as before and show predictive log-likelihoods in Table 3. As
can be seen, the best overall model is the one fitted using the empirical clustering described
above; notably, the improvement is achieved through products in the larger cluster (products
4,5, 10, 11, 12, 13). It’s also worth noting that the model allowing “full” excitation across
all products performs worst, highlighting the fact that cross-excitations do not happen com-
pletely randomly but may be driven by, for example, unobserved targeted promotions.

G.D Cji
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F1G. 6. Heatmap of approximate cross-excitation matrix, where each column i corresponds to the approximate
cross-excitation rate into product i from each row j, given by equation (5.1). Row and column labels correspond
to product index; the bar above the matrix shows the brand to which each product belongs. The dendrogram
shows the full hierarchical clustering using complete linkage and correlation distance. To compare with using
brand directly to define cross-excitation groups, we cut the dendrogram into three clusters. Note that the columns

have been reshuffled to accommodate visualisation of the dendrogram.

TABLE 3
Predictive log-likelihoods plf’teSt of the zero process fits for the model HBEC?, using brand to define
cross-excitation groups (left column), our empirical clustering procedure described above (middle column), and
cross-excitation across all products (right-hand column). The best (i.e., highest predictive log-likelihood) model
for each product is shown in bold. The final row shows the average pl* averaged across all products in the test set

Product i Plii]?]i:tc,i plii]t;gt(:”,i P lﬁltselsitcf i
1 —0.0034 —0.0051 —0.0051
2 —0.5343 —0.5308 —0.5303
3 —0.0603 —0.0643 —0.0596
4 —-0.2918 —0.2764 —0.3243
5 —0.1326 —0.1259 —0.1312
6 —0.0249 —0.0273 —0.0219
7 —0.0606 —0.0632 —0.0574
8 —0.0642 —0.0620 —0.0607
9 —0.0618 —0.0581 —0.0618
10 —0.0969 —0.0935 —0.1028
11 —0.1638 —0.1628 —0.1795
12 —0.1032 —0.0897 —0.1048
13 —0.1388 —0.1218 —0.1375
14 —0.1062 —0.1069 —0.1132
15 —0.1072 —0.1094 —0.1051
16 —0.0592 —0.0583 —0.0554
17 —0.1502 —0.1576 —0.1579
ElplLSt —0.1270 —0.1243 —0.1299
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5.4. Count process variations. Similarly to Section 5.2, the benefits of the excitation and
hierarchical component to the count process of hurdle model (3.1) are verified by implement-
ing the following cumulative variations in the link functions and hierarchical layerings of the
model for each i =1, ..., 17. These model variations follow the same rationale as with the
ZEro process:

e Benchmark (Bench): As a simple benchmark to assess our models against, we forecast the
nonzero test set counts using the empirical density of the nonzero training set counts. For
product i, suppose there are n; training set days with nonzero counts. For each count y;,
in the test set that also occurs in the training set, the log-predictive likelihood under this
benchmark model is

1
log( <05+ Z ylt ylt >)
l’l, + 05 many,; y/[

_} eTtram
it

The 0.5 is added to all possible values (here taken as 1,..., max;, y;,;, the maximum
count value observed in the training set) as shrinkage to ensure that test set values, which
don’t feature in the training set for a particular product, have nonzero probability.

e Baseline model (Base{): We learn the count process with link function

log (x5, Hir.65)) = ¢f.

that is, a constant rate per product. This is the Bayesian baseline model, as it estimates the
zero-process independent of covariate information. The ¢f is estimated using vague priors.
e Hierarchical Bayesian (HB€): We learn the count process with link function

log(A(x§,, Hir, 07)) = of (1),

with the hierarchical prior formulation discussed in Section 4.3.
e Bayesian with self-excitation (BE€): We learn the count process with link function

log(A(x7;, Hir, 07)) = ¢ (1) + Sf;

but exclude the hierarchical prior formulation shown in Section 4.3.
e Hierarchical Bayesian with self-excitation (HBE€): This is the full model discussed in the
Section 4.3. We learn the count process with link function

log(A(xf,, Hir, 07)) = ¢ (1) + Sj;.
with the hierarchical prior formulation discussed in Section 4.3.

Parameter inference is performed by Hamiltonian Monte Carlo sampling algorithm and
is implemented using the rstan library (Stan Development Team (2016)). Convergence was
confirmed by Heidelberger—Welch statistic across all models and parameters (Heidelberger
and Welch (1981)). The specification of these hyperpriors and constant of models HB¢, BE€,
and HBE® is included in Appendix A.1.

5.5. Count process fits. Similarly to the zero processes outlined in Section 5.2, we test
the performance of the count variation models Base{, HB¢, BE®, and HBE® by calculating
how capable each model is of predicting the volume of sales on event days (i.e., days when
sale has been observed) over the test interval 7't (between 30 September 2014 to 7 January
2015) foreach i =1, ..., 17, given the history of self events Hj;, covariate information xl o
and posterior samples. We apply the same methodology over the test interval as with the zero
process:
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1. Oneventday ¢ (i.e., E; = 1) on the test interval and sth posterior sample, we compute the
full predictive posterior distribution of the volume of sales occurring conditioned on Hj,,

x§, 07 foreachi=1,...,17.
2. We observe yj;4+1 (the volume of sales of product i on day t + 1) foreachi =1,...,17
and update the self-event histories H;;+1 fori =1, ..., 17.

3. Repeat steps for each ¢, for each sample s and i over the test period of 30 September 2014
to 7 January 2015.

This builds up a set of posterior rates A;;s for samples s =1, ..., S for the probability of the
number of sales on a given event day over 7" for eachi =1, ..., 17 based on our posterior
sample fits inferred from T'2in conditioned on xi,, Hi, 05.

Similarly to the zero process, we evaluate the predictive performance by calculating the
log-predictive likelihood for each of the products i =1, ..., 17. The log-predictive likelihood

for the count process is given by

1 S =24 Airs — 1 Yik—1 ¢ ¢
S L () (o)
Pl Z g(S; Yik — 1 Aits—14+¢ Aits — 1+ ¢

teT; K

where ¢ = 1 and A is the prediction mean of count sales occurring for product i from the
sth posterior sample for some model of interest and 7; = {¢|y;; > 0}, that is, 7; are the set
time indices corresponding to sales days for product i over some interval of time. Table 4
provides the pl¢ scores for across products and models.

Table 4 reveals some interesting findings. First, the extreme sparsity in the number of
nonzero counts makes the count density hard to estimate, and so the improvement over the
baseline model is lower than for the previous binary forecasting of the nonzero days. Next,
we observe that the model variations of HB¢, BE®, and HBE® perform significantly better

TABLE 4
Predictive log-likelihoods pll? scores of the count process fits for the models Base‘i, HB¢, BE¢, and HBE® along
with the benchmark model, for each product. The final two rows show the total pl¢ across all products in the test
and training sets, respectively. Note that products 1 and 6 did not have any sales in the test set so do not have a
predictive likelihood for the count process

z,test

Product Plgench Plgaseo i pliin.; Igi; PHEBE, i
1 — — — — —

2 —0.8572 —0.8619 —0.8943 —0.6471 —0.6752
3 —0.8557 —0.9100 —0.5500 —0.6200 —0.4800
4 —0.6131 —0.2286 —0.2543 —0.2371 —0.2529
5 —0.5978 —0.0267 —0.0233 —0.0267 —0.2200
6 — — — — —

7 —0.2877 —0.0100 —0.0000 —0.0400 —0.2200
8 —3.5264 —4.9900 —4.1600 —7.9200 —3.1700
9 —1.3863 —2.5400 —1.4000 —1.5000 —1.6000
10 —1.7968 —1.9900 —1.9900 —1.9000 —1.0200
11 —1.7525 —2.3500 —2.3567 —2.4833 —3.6500
12 —1.2321 —0.5100 —0.5450 —0.5150 —0.3400
13 —1.5661 —1.1533 —1.1567 —1.1567 —0.7767
14 —1.7996 —3.0950 —3.2300 —3.2400 —2.6150
15 —1.1632 —1.0200 —1.0250 —0.9750 —0.3300
16 —2.8904 —1.5700 —2.6400 —1.6300 —1.8000
17 —0.8267 —0.0333 —0.0267 —0.0300 —0.1833
Pl —1.0840 ~1.0121 ~1.0109 —0.9681 —0.8740
plG i —1.2234 —1.1614 —1.559 —1.0641 —1.1212
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FI1G. 7. Histogram of the observed number of days corresponding to each sale volume for product i = 10, with

the 95% credible intervals from the fitted models HBC (left) and HBEC (right). For example, there were exactly
five days that had one sale, and this is inside the posterior interval for both models. However the HBEC model
gives a substantially narrower prediction interval.

than the Baseline model Base| with no covariates. Similarly to the zero process, Table 4
indicates the count process uniformly benefits from the inclusion of self-excitation in the
model variations outlined in Section 5.4.

We further see that the count process benefits more from the hierarchical borrowing across
the intermittent demand series. This is understandable, given the level of sparsity in the count
process. As Table 1 indicates, the number of sales that each intermittent demand series has
is very small (typically in the order three to 20 sales), and thus it may be expected that in-
formation borrowing would particularly benefit the individual models due to the lack of data.
An example of this extra strength that comes from the hierarchical model is illustrated by
Figure 7. This plot shows a histogram of the number of sales of product 10 in the train-
ing set, with corresponding 95% credibility intervals of posterior predictive densities for the
models HB¢ and BE€. We observe that the hierarchical model (even without the excitation)
produces much tighter credibility intervals around the observed data than the model without
information borrowing.

However, the best performing models are ones with both information borrowing and self-
excitation, as we can see the aggregate log-predictive likelihood of Zl_l p fngg:ft of Table 4
provides more evidence that model HBES is the best fitting model.

5.6. Retail analytics discussion. The output of models, outlined in Sections 5.1 and 5.4,
provides interesting interpretations from a retail analytics perspective. First, we observe that
covariate data x”, X, as specified in 4.1 improves forecasting performance for the intermit-
tent demand series of SMI products. This is indicated in both HB¢ and HB*—models with
regression parameters and no form of excitation—outperforming their baseline counterparts
on both the training and test sets. This importantly sheds light into the intermittent demand
of SMI, in that it demonstrates covariate data such as prices and seasonality ought to be in-
corporated into training forecasting models, as it seems predictions are improved from their
inclusion.

Though it is hard to tease apart the contribution of each piece of the model to its predic-
tive power for individual products, some patterns emerge. Closer inspection of the results in
Table 2 reveals that products with extremely low sales (such as products 10 and 13 which
only contain two sales in the test set) essentially do not benefit from a complicated model
structure; on the other end, the product with the highest volume of sales (product 1) benefits
from the excitation, cross-excitation, and hierarchy of the model. Products with several sales
in the test set generally benefit greatly from the excitation component (e.g., products 6, 8 and
11), and a few also take advantage of the cross-excitation component (products 4,5 and 7).
Although across the whole dataset the overall best predictive model is the full hierarchical
model with both self- and cross-excitation, the choice also depends on specific commercial
interest into individual products as well as profit-driven loss functions (Berry, Helman and
West (2020)).
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FIG. 8.  Box plots of the posterior distribution of u§ across all products for model HBE*. The i estimates being
greater than 2 indicates the temporal excitation exhibited in that data typically occurs at lags greater than 1.

Our findings further support the hypothesis that intermittent demand forecasting is im-
proved when excitation dynamics are incorporated into models. This supports the findings
of Snyder, Ord and Beaumont (2012) and Chapados (2014) where they establish that models
incorporating the recent sales history outperform temporally static models. This is impor-
tant because it ultimately allows retailers to circumvent overstocking that typically results
from inaccurate forecasting (Ghobbar and Friend (2003)). However, our findings reveal some
aspects of intermittent demand forecasting that go beyond the work of Snyder, Ord and Beau-
mont (2012) and Chapados (2014). Namely, we establish that the temporal excitation exists
even if you condition on the seasonal trends and pricing information of x;;. This suggests
that temporal excitation is systematic and occurs beyond the variables traditionally utilised in
forecasting models. We furthermore find that temporal excitation is manifested at lags greater
than 1. Figure 8 demonstrates that uf (the mean of excitation function of g(- | u, 7)) is ap-
proximately 2 across the majority of products, which implies that 2 /3 of the probability mass
of g(- | u, 7) is placed on lags greater than or equal to 2. This is crucially important, as it
indicates that a simple AR(1) (or similar) is possibly not enough, compared to the Hawkes
process that incorporates the entire history of events.

6. Conclusion. In this work we introduced a hierarchical model for the sales of the slow-
moving-inventory category of touchscreen tablets across five large supermarkets in south
London. We modelled the sales process as a Bayesian hierarchical zero-inflated hurdle re-
gression model with self- and cross-excitation components. Our model specification is inter-
pretable and allows a deeper understanding of the role that covariates, self-excitation, and
cross-excitation play in the sales process of slow-moving-inventory and further provides a
fully specified predictive distribution over this process. We demonstrated that the hierarchi-
cal structure as well as the self- and cross-excitation additions offer a significant improvement
in the predictive accuracy of this SMI sales process.

This model has important implications to the challenging issues that retail analytics face
when developing SMI models. First, it offers utility in terms of demand and profit forecast-
ing that will allow retailers more accurate predictions of the sales distributions to aid with
the issue of inventory management as well as price optimisation over short-term horizons.
It helps to explain the sources of variation and uncertainty that is exhibited in intermittent
demand processes that previously was not well understood. The model also reveals a strong
excitation component to these sales which could warrant further investigation into potential
underlying factors that could explain the observed excitation (e.g., marketing campaigns). We
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further note that, though there are many other approaches of specifying the cross-excitation
relationship between pairwise products, our adopted approach of defining empirical cross-
excitation groups provided an intuitive and computationally simple method of expressing
suspected temporal cross-correlation. Interestingly, the empirical clusters kept all products of
“GADGET” brand into the same cluster, pointing to natural interactions between brand and
cross-excitation.

This work could be extended in many different directions. For example, a variable selec-
tion methodology could be introduced into the covariate predictors for each of the regression
models. Our approach specified a priori the cross-excitation structure by defining an excita-
tion event as an a sale occurring within user-defined; it could also be interesting to assess
whether the excitation structure could be inferred from the data. Although there are existing
models in nonparametric clustering of count time series (Nieto-Barajas and Contreras-Cristdn
(2014)), cross-excitation signal can only be captured through the full cross-excitation model,
which would be computationally prohibitive. A more promising direction may be to relax the
assumption of symmetric cross-excitation (i.e., product i may excite product j but not nec-
essarily vice versa) and treating cross-excitation terms through Bayesian variable selection
(Tadesse and Vannucci (2021)).

APPENDIX

A.1. Prior formulation. Table 5 specifies the prior structure of the zero process models
models Basef, HB*?, BE?, HBE?, BEC?, and HBEC?. Table 6 specifies the prior structure of
the count process models Base{, HB¢, BE¢, and HBE®.

TABLE 5
Prior formulation of models Basei, HB%, BE%, HBE?, BEC%, and HBEC*. We abbreviate Normal(uz, o) and

Gamma(w, B) to N(u, 02) and G(«, B), respectively

Parameter Base? HB* BE* HBE? BEC? HBEC*?
¥ ~ N(-3,3)

07, ~ N(u%,0.05)  N(=3,0.75)  N(u§,005)  N(=3,075  N(ui,0.05)
6% ~ N(u5, 0.05) N(0, 0.75) N(u5, 0.05) N(0, 0.75) N(u5, 0.05)
050 ~ N(3,, 0.05) N(0, 0.75) N(u3,, 0.05) N(0, 0.75) N(u5, 0.05)
Vi~ G(5, 1) G, 1) G(5, 1) G, 1)
yh~ 1+G(1,2) 1+ G(15,2) 1+G(1,2) 1+G(13,2)
Y5~ G(10,2.5) G(n§.2.5) G(10,2.5) G(15. 2.5)
i~ G(2.8) G(iF%. 8)
§5, ~ 1+G(1,2)  1+G(7,2)
74~ G(10,2.5) G5, 2.5)
5 ~ N(=3,0.75) N(=3,0.75) N(=3,0.75)
p3 ~ N(0, 0.75) N(0, 0.75) N(0, 0.75)
P50 ~ N(0, 0.75) N(0, 0.75) N(0, 0.75)
0y ~ G(50, 10) G(50, 10)
5~ G(10, 10) G(10, 10)
05 ~ G(500, 50) G(500, 50)
iy~ G(30, 15)
s~ G(10, 10)
s~ G(500, 50)
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TABLE 6
Prior formulation of models Base{, HB®, BE®, and HBE®

Parameter Basef HB¢ BE¢ HBE¢
@F ~ N(—4,4)
91‘1 ~ N(,bLi', 1) N(1,0.75) N(ui, 0.05)
 ~ NS, 1) N(-1,0.75) N(1$, 0.05)
Ya~ G(1,5) G(n{,5)
v~ 1+G(@3, 1) 1+G(»5. 1)
Y3~ G4, 1) G5, D
6 ~ N(,0.5) N(1,0.75)
p5 ~ N(—1,0.5) N(-1,0.75)
nj ~ G(5,95)
7)5 - G(15,5)
77% ~ G(40, 10)
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