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What predicts citation counts and
translational impact in headache
research? A machine learning analysis
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Abstract

Background: We aimed to develop the first machine learning models to predict citation counts and the translational

impact, defined as inclusion in guidelines or policy documents, of headache research, and assess which factors are most

predictive.

Methods: Bibliometric data and the titles, abstracts, and keywords from 8600 publications in three headache-oriented

journals from their inception to 31 December 2017 were used. A series of machine learning models were implemented

to predict three classes of 5-year citation count intervals (0–5, 6–14 and, >14 citations); and the translational impact of a

publication. Models were evaluated out-of-sample with area under the receiver operating characteristics curve (AUC).

Results: The top performing gradient boosting model predicted correct citation count class with an out-of-sample

AUC of 0.81. Bibliometric data such as page count, number of references, first and last author citation counts and

h-index were among the most important predictors. Prediction of translational impact worked optimally when including

both bibliometric data and information from the title, abstract and keywords, reaching an out-of-sample AUC of 0.71 for

the top performing random forest model.

Conclusion: Citation counts are best predicted by bibliometric data, while models incorporating both bibliometric data

and publication content identifies the translational impact of headache research.
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Background

The headache research literature is rapidly expanding

(1), yet the importance and influence of individual sci-

entific works can be difficult to measure. Citation

counts, impact factor and h-index are common metrics

of research performance (2). Such metrics traditionally

drive research funding, recruitment and indicate the
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importance of publications (3). It is therefore of inter-
est for both funders, editors and researchers to be able
to predict future citation counts of a publication.

Recent advances in artificial intelligence have led to
a rapidly expanding body of literature investigating
and developing machine learning models that can pre-
dict citation counts (4). Predictive citation count
models are typically built and trained using bibliomet-
ric data such as information about the publishing jour-
nal, publication meta-data (e.g. number of authors,
word count and number of references), and author
and affiliation information, including their publication
and citation counts (5,6).

On the other hand, the use of citation counts as a
sole metric of research performance has been critiqued
as it does not necessarily reflect the real-world output
effect of the research (3,7,8). Therefore, models of
translational impact, measured as a scientific work’s
inclusion in guidelines and policy documents, have
recently been developed, with astonishingly high accu-
racy (9–11). Such models help elucidate the importance
of scientific publications beyond the citation count.

At present there exist no domain-specific citation
count prediction models for headache research publi-
cations, and no established method of evaluating the
scientific and medical impact of headache research. The
aim of this study was to develop and evaluate the first
ever machine learning models for accurately predicting
citation counts and the real-world translational impact
of headache research papers; and assess which factors
are most predictive.

Methods

In this machine learning study, we used a dataset con-
sisting of all publications from the three headache
research journals with the highest impact factor (see
below) to develop predictive models of citation counts
and translational impact. We followed established
guidelines for developing and reporting predictive
machine learning models in biomedical research (12)
and the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) Statement (13).

Data sources and data management

Data used for the analyses was downloaded from
Scopus on 10 November 2023. All publications in the
headache-oriented journals Cephalalgia (e-ISSN: 1468–
2982), Headache: The Journal of Head and Face Pain
(e-ISSN: 1526–4610), and the Journal of Headache and
Pain (e-ISSN: 1129–2377) were collected from their
inception, that is 1981, 1961, 2004 respectively, until
31 December 2017. We aimed to estimate 5-year

citation counts, therefore, publications dated after
2017 were not included in the dataset as their relatively
lower lifespan would give biased low citation counts.
Twenty-eight bibliometric features (variables used for
machine learning) were captured for each publication.
Important features included: bibliographic meta-data
such as page count, number of references, number of
authors; first and last author information such as
h-index, publication count, and citation count at the
time of data download; journal information such as
impact factor and immediacy index at the time of
data download. To account for varying number of
authors, only information on first and last author
were captured. In cases where there was only one
author, that individual was considered the first and
last author. Authors were defined as annotated in
Scopus. In addition, Scopus categorizes publications
as articles, conference papers, editorials, errata, letters,
notes, reviews, and short surveys, and these categories
were used to define publication type. The full list of
bibliometric features can be found in Online
Supplementary Table 1. As machine learning models
cannot intuitively handle and interpret text informa-
tion, each publication’s title, abstract and keywords
were converted to numerical vector embeddings using
the state-of-the-art Natural language processing (NLP)
models Doc2Vec (14), SpaCy (15), and BioBERT (16).
Doc2Vec is a document-level model which utilizes
neural networks in order to convert an entire set of
sentences or a paragraph into numerical vectors.
SpaCy is a python package which recruits neural net-
work models that learn from large word corpora to pro-
duce numerical vectors. In our case, the large English
pipeline model (en_core_web_lg version 3.7.0) was used.
BioBERT is also a neural network word representation
model that is a trained language model that is further
pre-trained on biomedical data collected from PubMed.
All of these NLP methods convert the text to a list of
numbers that is interpretable by the machine learning
models for further analyses. The NLP method with the
best prediction accuracy was used in the final model.
Data samples with any missing feature information
were removed from the dataset. We chose not to
impute data as many features had a near infinite
number of unique variables (e.g. author affiliations)
which would not allow for accurate imputation. Finally,
the data was scaled with a Min-Max scaler so that each
feature was represented on a uniform range from 0 to 1.

The outcome (label) was defined as number of cita-
tions five years after publication. The publications were
divided into three classes, defined as three equal-sized
quantiles when ordering the publications by their
5-year citation counts. The classes were termed ‘few
citations’, ‘some citations’, and ‘many citations’,
respectively. The reason for stratifying the label into
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three classes was that citation counts are usually highly
skewed (most publications have few citations, and only
a few have very many citations) which makes machine
learning regression models (i.e. predicting the exact
number of citation counts) inaccurate when the
sample size is relatively low (17,18).

Translational impact was defined as a publication’s
inclusion in a guideline or policy document using
Wellcome Reach (Wellcome Trust; https://github.
com/wellcometrust/reach). The Wellcome Reach soft-
ware extracts the reference lists from documents on the
websites of the World Health Organization, UNICEF,
M�edecins Sans Frontiers, United Kingdom Government,
United Kingdom Parliament, and National Institute of
Clinical Excellence to provide a dataset of publications
included in guideline and policy documents. Publications
in the headache journals were matched to the Wellcome
Reach dataset using the digital object identifiers and titles
to identify which were included in guidelines and policy
documents.

To ensure generalizability and avoid overfitting, the
dataset was conventionally split into training, valida-
tion, and test subsets. The dataset was split into a train-
ing set, a validation set and a test set in the ratio 81:9:10
in a randomized fashion. The test set was kept unseen
during model training. The top performing model in
the validation set was used for final out-of-sample eval-
uation in the test set.

Predictive modelling

We trained a series of standard machine learning
models to predict the citation counts. Support Vector
Machines, k-Nearest Neighbors, Random Forest,
Decision Trees, Gradient Boosting, Ada Boosting,
Multiple Layer Perceptron and the TabNet (19) deep
learning architecture, were evaluated. All of these are
standard machine learning techniques used for classifi-
cation. The performance of all models on the training
set was evaluated by stratified 10-fold cross validation
using mean micro-averaged accuracy and the mean of
the micro-averaged one-vs-rest area under the receiver
operating characteristics curve (AUC) (20). AUC is a
score between 0 and 1. An AUC of 0.5 corresponds to
classification by chance, AUCs above 0.7–0.8 are con-
sidered good, and AUCs above 0.8–0.9 are considered
excellent. The most promising model was chosen for fur-
ther optimization where model hyperparameters were
optimized using a grid search (Online Supplementary
table 3). Next, feature selection was performed by calcu-
lating the Pearson correlation between each feature and
the citation count. Features with a correlation coefficient
absolute value below 0.5 were removed from the dataset.
The top performing model during training and validation
was evaluated on the test set by AUC and accuracy.

The same modelling strategy was used to predict

translational impact (inclusion in a guideline or

policy document). Since this outcome was dichoto-

mous, simple two-class AUC and balanced accuracy

were used as scoring metrics. Since this outcome was

highly imbalanced (only two of every 100 publications

were included in guideline and policy documents) a

series of resampling strategies, including undersam-

pling, oversampling, synthetic minority oversampling

technique and conformal prediction (21) were evaluat-
ed. In addition, classifier-inherent balancing techni-

ques, such as equal-class weighting for the random

forest and boosting models, were implemented wherev-

er available.
To evaluate the impact of bibliometric data versus

text-based publication content (title, abstract and key-

word embeddings) we conducted two ablation analyses

for both the citation count prediction and the transla-

tional impact prediction. Ablation refers to a method

to evaluate machine learning models by removing cer-

tain input features and assessing its impact on the per-
formance of the model. The first ablation analysis

excluded all text-based features and included only

bibliometric data. The second ablation analysis used

only text-based features without any bibliometric

data. The modelling strategy for the ablation analyses

was the same as for the complete dataset. In addition,

to address any potential bias from features captured at

the time of the Scopus search, we conducted a sensitiv-

ity analysis where first and last author citation count,

citations per article and h-index were excluded.
For the top performing citation count model, we

constructed SHAP (Shapley Additive exPlanations)

plots. SHAP uses Shapley values to explain machine

learning model predictions, by assigning each feature

an importance value. This enables interpretation of

how each feature contributes towards a particular pre-

diction and allows visualization of how each feature

contributes positively or negatively towards the predic-

tion. It also enables ranking of the different features

from most important to least important. For the top

performing translational impact model, we constructed

an aggregate SHAP summary plot to visualize the rel-

ative impact of pooled bibliometric features versus

pooled text-based features. We also created a word

cloud of the words used in the title and keywords of

the ‘many citations’ strata.
Summary statistics were calculated as means with

standard deviations (SD) and medians with inter-quartile

ranges (IQR) according to distribution. Normality

assumptions were based on visual inspection of histo-

grams. No hypothesis tests were made. All analyses were

done with Python 3.10 (Python Software Foundation)

with the following open-source packages: Pandas 1.5.3,
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Scikit-learn 1.3.0, Matplotlib 3.7.0, WordCloud 1.9.2,
SHAP 0.42.1, pybliometrics 3.4.0 and Gensim 4.3.0.

This research was purely bibliometric without
involvement of patients and thus ethical approval and
patient consent was not deemed necessary.

Results

A total of 14,279 publications were identified through
the Scopus search, but 5679 publications were omitted
due to missing data. The remaining 8600 publications
were eligible and available for the predictive modelling
(Online Supplementary Table 2). Among these, 6481
were original publications, and 2119 were editorials,
errata, letters, notes, reviews, short surveys, or confer-
ence papers. The quantile classes were nearly equal
where 2867 of the total number of publications had
few citations (mean number of citations¼ 1.8� 1.6;
median¼ 2, IQR¼ 0 to 3, range¼ 0–5), 2867 had
some citations (mean number of citations¼ 9.0� 2.7;
median¼ 9, IQR¼ 7 to 11, range¼ 6–14), and 2866
had many citations (mean number of cita-
tions¼ 33.8� 14.0; median¼ 25, IQR¼ 18 to 36, range
>14). Figure 1 illustrates the number of publications per
citation count for three journals.

Citation prediction modelling

Table 1 shows training performance for all evaluated
citation count models and the impact of different NLP

strategies before hyperparameter optimization.

Doc2Vec showed the most reliable and accurate predic-

tion results during training and was chosen as NLP

method. The Gradient Boosting classifier displayed

the best performance during training with a cross-

validated AUC of 0.71 (SD¼ 0.025) mean training

accuracy of 0.52 (SD¼ 0.024), and a validation AUC

of 0.71. Feature selection resulted in the removal of

journal volume, issue, start and end pages, year, fund-

ing, open access and title length. After feature selection

and hyperparameter optimization, the results were fur-

ther improved, achieving a cross-validated AUC of 0.76

(SD¼ 0.016), a mean accuracy of 0.56 (SD¼ 0.023), and

validation AUC of 0.76. Out-of-sample test set perfor-

mance for the optimized Gradient Boosting classifier

was 0.78 AUC and an accuracy of 0.58.
In the ablation analyses using only text-based fea-

tures, there was a decrease in accuracy with the

Gradient Boosting classifier achieving an AUC of

0.64 and an accuracy of 0.45 in the test set. The abla-

tion analysis including only bibliometric features

resulted in a test set AUC of 0.81 and an accuracy of

0.60. Receiver operating characteristics curves for the

ablation analyses are shown in Figure 2. The sensitivity

analysis resulted in an AUC of 0.78 and an accuracy of

0.59 (Online Supplementary Figure 1).
Figure 3 is the SHAP plot illustrating the impor-

tance of the model. In the figure, the top 25 features

are ranked from most important to least important.

Figure 1. Distribution plot of number of publications per citation count. A distribution plot showing the number of publications with
a given 5-year citation counts for three headache journals from their inception to 31 December 2017. The y-axis is on a logarithmic
scale. The blue hue represents publications in Cephalalgia, the orange hue represents publications in Headache, and the green hue
represents publications in Journal of Headache and Pain. Note that the distribution is skewed, where most publications have few
citations, and only a few have many citations (i.e. >200).
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Bibliometric features such as a high page count, high
number of citations for the first and last author, high
number of references included in the publication, many
affiliations, high number of publications for the affili-
ations, and high author h-index predicted a high cita-
tion count. Publication type was the 8th most
important feature, and reviews were generally predic-
tive of many citations, whereas letters, editorials, and
other short format publications were predictive of few
citations. Figure 4 shows the 10 most important fea-
tures and their relative impact on the predictions.

Figure 5 presents the word clouds outlining the most
used words in the titles and keywords unique to the
publications in the ‘many citations’ stratus.

Translational impact modelling

The training and validation results for the translation

impact analysis are presented in Table 2 and the corre-

sponding test set receiver operating characteristics

curves are illustrated in Figure 6. The optimal modelling

strategy for the translational impact was the Random

Forest classifier, in part due to its excellence in handling

heavily imbalanced datasets. The resampling strategies

did not alter the balance of predictions. Out-of-sample

performance for the Random Forest classifier was an

AUC of 0.71 and a balanced accuracy of 0.59.
In the ablation analyses of the translational impact,

results were generally more favorable when including

Table 1. Performance of different modelling strategies in predicting citation counts.

Model

NLP strategy for citation count prediction

Doc2Vec SpaCy BioBERT

Ada Boosting 0.63 (SD¼ 0.019); 0.64 0.68 (SD¼ 0.025); 0.66 0.66 (SD¼ 0.025); 0.66

Support Vector Machine 0.63 (SD¼ 0.023); 0.65 0.67 (SD¼ 0.027); 0.65 0.63 (SD¼ 0.018); 0.63

Random Forest 0.65 (SD¼ 0.021); 0.66 0.65 (SD¼ 0.021); 0.66 0.66 (SD¼ 0.020); 0.66

Naı̈ve Bayes 0.65 (SD¼ 0.021); 0.63 0.62 (SD¼ 0.027); 0.62 0.64 (SD¼ 0.021); 0.63

Decision Tree 0.53 (SD¼ 0.024); 0.54 0.57 (SD¼ 0.014); 0.55 0.55 (SD¼ 0.021); 0.55

K-Nearest Neighbor 0.63 (SD¼ 0.024); 0.64 0.62 (SD¼ 0.025); 0.63 0.63 (SD¼ 0.022); 0.64

Gradient Boosting 0.70 (SD¼ 0.025); 0.71 0.67 (SD¼ 0.022); 0.69 0.69 (SD¼ 0.008); 0.70

Multilayer Perceptron 0.69 (SD¼ 0.016); 0.69 0.66 (SD¼ 0.025); 0.66 0.69 (SD¼ 0.025); 0.69

Deep Learning 0.51 (SD¼ 0.330); 0.52 0.53 (SD¼ 0.045); 0.53 0.58 (SD¼ 0.019); 0.58

Performances for the different machine learning classifiers and NLP strategies before hyperparameter optimization and feature selection scored with

10-fold mean cross-validated AUC with standard deviation on the training set and AUC on the validation set. AUCs are calculated as the micro-

averaged One-vs-Rest. The choice of model for further analyses was based on validation set performance. Gradient Boosting with Doc2Vec NLP

strategy showed best performance during training and validation and was used for out-of-sample test set scoring.

NLP¼Natural Language Processing; AUC¼Area Under the receiver operating characteristics Curve; SD¼ Standard Deviation.

Figure 2. ROC plots of optimized Gradient Boosting model on citation count prediction. ROC plots showing mean training
performance (blue line) with 1 standard deviation (gray shaded area) and out-of-sample test set performance (orange line) for the
optimal Gradient Boosting citation count model. AUCs are calculated as the micro-averaged One-vs-Rest. (a) Model performance
using both bibliometric and text-based features. (b) Model performance using only text-based features. (c) Model performance using
only bibliometric features. The highest out-of-sample test set performance is achieved in the bibliometric ablation model (c).
ROC¼Receiver operating characteristics curve; AUC¼Area under curve; OvR¼One-vs-Rest.
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both bibliometric features and text-based features

(Table 2). Out-of-sample performance for the biblio-

metric data alone ablation analysis was an AUC of

0.69 and a balanced accuracy of 0.56. Out-of-sample

performance for text-based data alone was an AUC of

0.64 and an accuracy of 0.55. The sensitivity analyses

resulted in a test set AUC of 0.71 and an accuracy of

0.85 (Online Supplementary Figure 2).
Figure 6 is a bar chart of the aggregated SHAP

values for the bibliometric data, publication title fea-

tures, and publication abstract features, respectively.

Online Supplementary Figure 3 is a SHAP plot of the

full translational impact model illustrating that the

importance of the features is highly distributed and

that title- and abstract-derived feature embeddings

are equally important as the bibliometric data for the

predictions (Figure 7).

Discussion

Even though the literature on citation count prediction

is vast there is not yet a headache domain-specific

model for comparison. However, some studies illus-

trate benchmark performances in the general biomedi-

cal literature. Li and colleagues developed an

exhaustive deep learning regression model of nearly

10 million biomedical papers which achieved an r2 of

0.78 for prediction of citation counts (22). The top

performing model in our study achieved an AUC of

0.81. Nelson and colleagues created a field-wide deep

Figure 3. SHAP summary plot for top (bibliometric ablation) citation count model. SHAP summary plot from the top performing
citation count model illustrating the contributions of the top 25 features towards the prediction. Each dot represents one sample for
the features listed on the right. The x-axis represents the impact of that feature on the prediction, where dots on the right side of the
vertical axis contribute to a positive prediction, i.e., higher citation count, and dots on the left side contribute to a negative prediction.
Dots farther from the vertical axis indicate larger impact on the prediction. Red indicates a higher value of the feature (e.g., higher
page count or higher number or many references). Blue values indicate lower values of the feature (e.g. low page count or few
references). SHAP¼ Shapley Additive exPlanations.
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learning model of more than 43.3 million published
papers which accurately predicted inclusion in guide-
line and policy document reference lists with an AUC
of 0.92 and inclusion in patents with an AUC of 0.92
(9). In the latter study, predicting inclusion in guide-
lines and policy documents were far superior when
using publication content as compared to prediction
from citation counts alone—serving as a solid argu-
ment that modeling of research content could guide
the objective measurement of translational potential.

The predictive performance achieved in our study is
close, but not as good as the benchmark models. Yet
this is inevitable, given that model fidelity is correlated
to data input size (23), which in our case is finitely
limited by the available headache research volume.
Nevertheless, the model presented here is highly spe-
cific for the headache research domain meaning that it,
at present, offers an unrivaled performance as predictor
for headache research citation count and translational
impact.

Figure 4. SHAP plot of the most important features in the citation count prediction model. SHAP plot of the relative importance of
the top 10 features in the citation count prediction model. Mean absolute values are presented. This means that the features could be
predicting both few and many citations. Note that page count is more important for the prediction than the sum of the 20 least
important features.

Figure 5. Word clouds of the keywords and titles of the most cited publications. Word clouds indicating the most frequent words
used in the most cited articles of the three examined journals with respect to: (a) their keywords and (b) their titles. Words that are
common in all publications regardless of citation counts have been excluded from the word clouds so that words unique to the ‘many
citations’ classes are identified. Because research topics of interest change over time, words that are prominent in the word cloud
does not alone predict high citation counts—a particular word must also be used at the correct time. Of note, COVID-19 is not
appearing as the studies used for this analysis were published prior to 2018, while CGRP has rarely been used in the title and
keywords of publications between the three journals inception and 2017. CGRP¼ calcitonin gene related peptide.

Danelakis et al. 7



The models developed in this paper can be relevant

and applicable for both researchers, editors, and

funders. As a researcher, navigating the scientific liter-

ature, especially unfamiliar domains, can be a daunting

undertaking. Often, one looks to publications from

renowned affiliations, published high-impact journals

and with high citation counts to identify important

works, not necessarily reflecting the most recent inno-

vations. Editors must often make the decision to accept

or reject a paper without knowledge of its future cita-

tion count or impact. Funders use classic research per-

formance metrics such as citation counts to inform

decisions (3). But citation counts as a sole measure of

informing funding can be unreliable and irreplicable,

and at times approach random (24), leaving room for

improvement of how to choose, publish and fund

research projects (25).
In our analysis of citation counts, bibliometric data

appears to be more important than the contents of the

paper for predictability. Relatively non-scientific and

non-intuitive features such as page count, number of

references, number of authors and number of author

affiliations are identified as important predictors. Other

studies have also indicated that such bibliometric data

predicts citation counts. One study showed that the

increasing length and number of authors seems to

increase citation counts (26). Another review found

that factors such as the length of the paper, the

number of authors, and the number, prestige and variety

of the references are associated with many citations (27).

Table 2. Performance of different modelling strategies in predicting translational impact

Model

Translational impact prediction

Bibliometric features Text-based features All features

Ada Boosting 0.70 (SD¼ 0.045); 0.70 0.50 (SD¼ 0.045); 0.50 0.51 (SD¼ 0.010); 0.51

Support Vector Machine 0.70 (SD¼ 0.063); 0.70 0.55 (SD¼ 0.055); 0.56 0.65 (SD¼ 0.063); 0.67

Random Forest 0.70 (SD¼ 0.059); 0.70 0.57 (SD¼ 0.043); 0.60 0.71 (SD¼ 0.059); 0.72

Naı̈ve Bayes 0.66 (SD¼ 0.071); 0.67 0.55 (SD¼ 0.043); 0.56 0.60 (SD¼ 0.074); 0.60

Decision Tree 0.52 (SD¼ 0.023); 0.51 0.50 (SD¼ 0.024); 0.50 0.51 (SD¼ 0.016); 0.52

K-Nearest Neighbor 0.52 (SD¼ 0.045); 0.51 0.50 (SD¼ 0.036); 0.50 0.49 (SD¼ 0.020); 0.50

Gradient Boosting 0.63 (SD¼ 0.164); 0.65 0.63 (SD¼ 0.164); 0.65 0.64 (SD¼ 0.145); 0.64

Multilayer Perceptron 0.47 (SD¼ 0.045); 0.48 0.48 (SD¼ 0.056); 0.49 0.52 (SD¼ 0.064); 0.56

Deep Learning 0.60 (SD¼ 0.030); 0.60 0.53 (SD¼ 0.051); 0.54 0.53 (SD¼ 0.053); 0.53

Performances for the different machine learning classifiers with different sets of input features scored with 10-fold mean cross-validated AUC with

standard deviation on the training set and AUC on the validation set. The columns titled “Bibliometric features” and “Text-based features” refer to the

two ablation analyses. The rightmost column shows the results of the complete translational impact model including both bibliometric and text-based

features. The top performing model in validation was Random Forest which subsequently was used on the test set.

AUC¼Area Under the receiver operating characteristics Curve; SD¼ Standard Deviation.

Figure 6. ROC plots of the optimized Random Forest model on translational impact prediction. ROC plots showing mean training
performance (blue line) with 1 standard deviation (gray shaded area) and out-of-sample test set performance (orange line) for the
translational impact models. (a) Model performance using both text-based and bibliometric features. (b) Model performance using
only text-based features. (c) Model performance using only bibliometric features. The highest out-of-sample test set performance is
achieved in the complete model (a). ROC¼Receiver operating characteristics curve; AUC¼Area under curve.
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The fact that increasing page count indicates more cita-
tions could be due to highly cited publications—such as
position papers from neurological societies, guidelines,
classifications and reviews—tending to be longer, and
that lengthy papers may appear more complex and
methodologically robust thus gaining more attention
and citations. Reviews also predict many citations as
compared to original publications, whereas the short-
format publications predict fewer citations (Figure 2).
Not surprisingly, the number of articles, number of cita-
tions and h-index of the first and last author are also
highly predictive of citation counts. This is well-
established in the general bibliometric literature (27).
A bibliometric study from 2017 sought to identify the
100 top cited headache related publications (28) and
demonstrated that large proportions of the citations
seem to accumulate among relatively small groups of
journals, authors and affiliation. More than half of the
100 papers were published in one of the three journals
Neurology, Cephalalgia or Headache, five institutions
represented nearly a third of the papers, and five authors
were first authors on nearly a fourth of the papers. Of
course, such accumulation of acknowledgement is
warranted by the respective institutions and authors
scientific excellence. Still, researchers, editors and policy-
makers alike must keep in mind that “reasons for cita-
tion” may be the result of a myriad of both scientific and
non-scientific reasons (5,27). Finally, a strength of the
machine learning models lies in their ability to identify
patterns across a large number of predictors. Even
though a single feature, such as journal impact factor,
may seem unimportant, it is only in conjunction with
many other features that it has the capacity to inform
the prediction.

The notion that bibliometric data alone predict the
citation count, and thus indicates the importance of a
scientific work, must be considered with caution (29).
Our translational impact modelling demonstrates that
research content is just as important as bibliometric
data in predicting translational potential and clinical
importance. In addition, the importance of the features
in the translational impact model is highly distributed
meaning that all the features are necessary for optimal
model performance (Online Supplementary Figure 1).
On the contrary, the citation count model uses primar-
ily the top 10–15 features to inform the prediction. This
discrepancy in feature dimensionality, i.e. the number
of features needed for optimal performance, is impor-
tant. Benchmark predictive models clearly show that it
is the models that include the widest array of both
bibliometric and publication content input data that
yields the highest fidelity in identifying the clinical
importance of a scientific work (9).

One must also keep in mind that many of the author
related features (h-index, number of citations and
articles) were captured at the timepoint when this
study was conducted. This is a methodological weak-
ness; however, we argue that our findings still are valid
for several reasons. Firstly, the citation count models
include personal author information not influenced by
this “time-bias” such as affiliations. Secondly, other
bibliometric meta-data features seem to be just as
important for the citation count predictions, validating
the model. This is also confirmed by the sensitivity
analysis showing only slightly poorer performance.
Thirdly, the ablated citation count model using only
text-based features has a moderate predictive accuracy
further validating the precision of the model regardless
of a potential “time-bias” from author citation counts
at the time of data collection. Finally, the translational
impact models are not influenced as the outcome
(inclusion in a guideline or policy document) is not
decided by the citation count. The same weakness is
true for the journal impact factor, also captured at
the timepoint of analyses. Future models should
attempt to gather historical publication metrics and
impact factors to improve model precision.

A few other limitations must also be kept in mind
when interpreting the results of this study. First, the
models are based on retrospective data. This means
that it learns the patterns of the publishers, journals,
researchers, and guideline- and policymakers in identi-
fying citations counts and relevant clinical impacts. If,
for example, a new medication, not available in the
training data literature, is introduced to the model, its
potential importance will not be intuitively captured by
the model, and it will likely be misclassified. Second,
the included journals publish a combination of basic,
translational, and clinical research, but the two former

Figure 7. Contribution of input features to translational impact
model. Aggregated absolute SHAP values for the bibliometric
data, abstract derived text-based features and title derived text-
based features on the translational impact model. Note that the
combination of features from both the abstract and title con-
tribute more to the prediction than the bibliometric data.
SHAP¼ Shapley Additive exPlanations.
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types are underrepresented in guidelines and policy
documents. One must therefore suspect that the impor-
tance of basic and translational research is undervalued
in the translational impact modelling. A possible future
prospect for identifying the importance of basic and
translational research could be modelling of inclusion
in both technical and pharmacological patents.
Likewise, the translational impact does not incorporate
inclusion in headache and neurology specific guide-
lines, and communication to the public. Third, several
factors that intuitively could influence the predictions
were not included in the models: presentation of the
paper at conferences, funding sources, being part of
a special collection, the presence of multinational
authors, if the manuscript had previously been submit-
ted to other journals, or a publication stemming from
the boards of neurological of headache societies. Such
factors should be incorporated in future models.
Fourth, a substantial portion of publications had miss-
ing data and were excluded from the analyses which
could impact the results—on the other hand, a choice
to impute data could also lead to biased results.
Finally, the input data was limited to three headache-
related journals, yet many milestone papers in head-
ache research have been published in high-impact

general journals. We argue that it is unlikely that this
would influence the accuracy of the citation count
models as these publications represent the extreme
end of citation counts which is easier to predict, and
most likely adhere similar methodology and reporting
standard as the papers included in the model.

Conclusion

In this study we demonstrate that machine learning
models may predict the citation count of headache
research papers with good accuracy. Bibliometric
data such as high page count, many authors, many
references, first and last authors with many citations
and high author h-index seems to be among the most
important predictors for high citation counts. On the
other hand, complex models of both bibliometric data
and publication content identify the translational
impact of headache scientific works. We argue that
citation counts alone as a metric of the importance of
a scientific work must be used with caution, whereas
models incorporating publication content could be
used to guide researchers, editors, and funders in iden-
tifying the most relevant and potentially impactful sci-
entific works.

Clinical implications

• Machine learning can be used to predict the citation counts of headache papers and predict which papers
will be included in guideline and policy documents.

• High citation counts are mainly predicted by bibliometric data such as high page count, many references,
high author citation counts, and high author h-index.

• The future impact of a headache research paper is predicted by the contents of its title, abstract and
keywords.
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