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We consider a quantum harmonic oscillator coupled with a graviton bath. We discuss the loss of
coherence in the matter sector due to the matter-graviton vertex interaction, which leads to a loss of
coherence provided that the matter-wave system is allowed to emit gravitons by the kinematics. Working
in the quantum-field-theory framework, we obtain a master equation by tracing away the gravitational
field at the leading order ∼OðGÞ and ∼Oðc−2Þ. We find that the decoherence rate is proportional
to the cube of the harmonic trapping frequency and vanishes for a free particle, as expected for a
system without a mass quadrupole. Furthermore, our quantum model of graviton emission recovers the
known classical formula for gravitational radiation from a classical harmonic oscillator for coherent
states with a large occupation number. In addition, we find that the quantum harmonic oscillator
eventually settles in a steady state with a remnant coherence of the ground and first excited states.
While classical emission of gravitational waves would make the harmonic system loose all of its energy,
our quantum field theory model does not allow the number states j1i and j0i to decay via graviton
emission. In particular, the superposition of number states 1ffiffi

2
p ½j0i þ j1i� is a steady state and never

decoheres.
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I. INTRODUCTION

One of the most striking consequences of general
relativity is undoubtedly given by gravitational waves
[1]. Such waves propagate through spacetime itself—are
part of it—and interact with all matter making it a
universal feature of all experiments. The gravitational
waves produced by small objects are however hindered by
the smallness of gravitational coupling, whilst the gravi-
tational waves produced by large astronomical bodies
become attenuated by the large distances to the Earth.
Nevertheless, a hundred years from the prediction of
gravitational waves [2,3] the detection of gravitational
waves was announced [4].
The feeble strain induced by the passing of gravitational

waves has been detected in an optomechanical setup
employing suspended mirrors [4]. Whilst most quantum
effects remain suppressed at such scales it has been shown
that tiny quantum correlations between the phase of light
and the position of the mirrors in the Advanced LIGO
detectors imprint a non-negligible signal [5]. Furthermore,

there is substantial progress towards reaching the motional
ground state of ∼10 kg large mirrors where quantum
effects become prominent [6,7].
Although a purely classical treatment of the gravita-

tional field still suffices to explain all of the current
experimental data, it is nonetheless interesting to ask what
would be the quantum signature of gravitational waves
and several different theoretical approaches have been
considered [8–19]. Recent theoretical works have also
investigated the possibility of detecting stochastic grav-
iton noise in the context of gravitational wave observa-
tories [20–22]. Quantum noise and decoherence induced
by gravitons has also been discussed for a system of two
massive particles within the framework of gravitational
wave detectors as well as of matter-wave interferometry
[23]. A proposal for detecting squeezed states of relic
gravitons originating from inflation by observing the
decoherence time of the entanglement between two
macroscopic mirrors suspended at the end of Michelson
interferometer has also been analyzed in [24].
However, discerning between classical models of gravity

from the quantum version will necessarily require testing
coherent features of gravity which cannot be mimicked by
any classical noise source. Such a proposal has been
devised by considering the two nearby masses—close
enough that they interact gravitationally but far enough
apart that all other channels of interaction are strongly
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suppressed—which can entangle only if the gravitational
field exhibits bonafide quantum features [25]1; see also
[27]. The underlying mechanism for the quantum entan-
glement of masses (QGEM) has been analyzed within
perturbative quantum gravity [28–32] and the framework of
the Arnowitt–Desse–Meissner (ADM) approach [33], as
well as in the path integral approach [34], and for the
massive graviton [35]. Recent developments include an
optomechanical proposal for testing the quantum light-
bending interaction [36], a quantum test of the weak
equivalence principle [37], and test whether gravity acts
as a quantum entity when measured [38].
It is thus interesting to ask whether quantized gravita-

tional waves could also induce coherent effects in quantum
systems, which would be difficult to explain using a
classical theory of gravity.
In this work, we consider a quantum harmonic oscillator

coupled to quantized gravitational waves in the context of
perturbative quantum gravity. We first review the results
of classical quadrupole radiation emitted by a classical
harmonic oscillator (Sec. II). We then obtain the matter-
graviton coupling in the laboratory frame of the quantum
harmonic oscillator using Fermi normal coordinates
(Sec. III). By tracing away the graviton, assumed to be
in the vacuum state, we obtain a simple master equation of
the Lindblad form [39,40] for the quantum harmonic
oscillator (Sec. IV). The obtained dynamics have some
important features. The total energy of the quantum
harmonic oscillator and of the emitted gravitons is con-
served (Sec. VA). The decay rate for number states jniwith
n ≫ 2 is proportional to the square of its associated energy
E2
n (Sec. V B). For small occupation numbers, the classical

and quantum predictions begin to differ, with the quantum
harmonic oscillator retaining a steady-state coherence.
In particular, the quantum harmonic oscillator settles in a
partially coherent combination of the ground and first
excited states, which is a distinct quantum signature of
graviton emission (Sec. V C). For coherent states with large
occupation numbers, we recover exactly the predictions
for a classical linear quandrupole. The obtained model can
thus be seen as the quantum counterpart of the classical
radiation theory (Sec. V D). The decoherence rate scales
with the cube of the trapping harmonic frequency, which
vanishes for a free particle as expected for a system without
a mass quadrupole. In particular, our model predicts that the
center-of-mass of an isolated system never decoheres due
to quantized gravitational waves (Sec. V E). We conclude
by discussing briefly the suitability of high frequency
mechanical oscillator for distinguishing between classical
and quantum gravitational waves (Sec. VI). In Appendix A
we provide the exact solution of the dynamics by formally
mapping our problem to two-photon processes [41,42], and

in Appendix B we estimate the size of the effect for matter-
wave interferometry focusing on the QGEM proposal.
Detailed feasibility studies are left for future research. In
specific experimental proposals the analysis would require
the inclusion of all the sources of decoherence, such as
from thermal photons and air molecules, which typically
dominate over gravitational decoherence in a laboratory
setting [43–47].

II. CLASSICAL QUADRUPOLE RADIATION

We begin by briefly summarizing the main features of
classical gravitational radiation. We recall that gravitational
radiation is sourced by a time-dependent mass quadrupole.
In this work, we are primarily interested in the motion
along one spatial axis where the simplest mass quadrupole
is given by a coupled two-particle system [48] (see Fig. 1).
For concreteness we consider two masses, m1 and m2,
coupled by a quadratic potential,

Htwo-particle ¼
ðpð1ÞÞ2
2m1

þ ðpð2ÞÞ2
2m1

þ k
2
ðxð1Þ − xð2ÞÞ2; ð1Þ

(a)

(b) (c)

FIG. 1. Graphical illustration of linear quadrupole radiation.
(a) The linear quadrupole is generated by the relative motion of
two masses, m1 and m2, which are coupled with coupling ωm.
The center-of-mass motion (mass M) is unperturbed by the
emission of gravitational waves (which are of type “þ”), while
the relative motion (mass μ) slowly decays as its energy is
converted to gravitational waves and radiated away. The two-
particle problem can be always mapped to the problem of a
harmonically trapped reduced mass μ ¼ m1m2

m1þm2
with coupling

∼μx2, where x is relative distance between the two masses.
(b) Case m1 ∼m2. A physical realization consists of a trapped
particle (i.e., mass m1) inside a box containing the apparatus to
generate a harmonic trap (i.e., massm2). The recoil of the system/
box is on equal footing as m1 ∼m2. (c) Case m1 ≪ m2. The
problem reduces to the motion of the lighter mass m1 in a
harmonic trap with frequency ωm. The recoil of the heavier mass
m2 is negligible with respect to the recoil of the lighter mass m1

(which can be approximately identified with the reduced mass μ).

1The results of [25] were first reported in a conference talk in
Bangalore [26].
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where k is the spring constant, and xð1Þ (pð1Þ) and xð2Þ (pð2Þ)
denote the position (momenta) of particle 1 and 2,
respectively. It is useful to introduce the center-of-mass
coordinates,

x≡ xð1Þ − xð2Þ; p≡ pð1Þ þ pð2Þ; ð2Þ

xcm ≡m1xð1Þ þm2xð2Þ

m1 þm2

; pcm ≡m2pð1Þ −m1pð2Þ

m1 þm2

; ð3Þ

as well as the reduced and total mass,

μ ¼ m1m2

m1 þm2

; ð4Þ

M ¼ m1 þm2; ð5Þ

respectively. Using the center-of-mass quantities we find
that the potential in Eq. (1) reduces to

Htwo-particle ¼
p2
cm

2M
þ p2

2μ
þ μω2

m

2
x2; ð6Þ

where we have defined the harmonic frequency ω2
m ≡ k=μ.

We make two well-known observations. On one hand,
we note that the center-of-mass remains uncoupled and is
thus following a completely free motion (i.e., in the general
relativistic language the center-of-mass position xcm fol-
lows a geodesic). On the other hand, the relative motion is
subject to a quadratic potential which can give rise to a
time-dependent linear quadrupole moment (and hence can
act as a source of gravitational radiation). In particular, we
consider the following relative motion (in the first instance
neglecting energy dissipation mechanisms):

x ¼ l cosðωmtÞ; ð7Þ

where l is the amplitude of oscillation of the relative
motion. The corresponding quadrupole moment tensor is
given by

Dij ¼
Z

ρðx0; xÞð3x0ix0j − r02δijÞdx0; ð8Þ

where ρðxÞ is the mass density, x ¼ ðx1; x2; x3Þ, i, j denote
the spatial components, and r2 ¼ P

3
i¼1 x

2
i . Inserting in

Eq. (8) the mass density,

ρðxÞ ¼ μδðx01 − xÞδðx02Þδðx03Þ; ð9Þ

where x is given in Eq. (7), we readily find the following
nonvanishing elements,

D11 ¼ D22 ¼ −
1

2
D33 ¼ −μl2cos2ðωmtÞ: ð10Þ

In particular, the linear quadrupole moment gives rise to
gravitational radiation of type “þ.” The average energy
carried away by gravitational waves is given by [48,49]

Ė ¼ −
16GI2ω6

m

15c2
; ð11Þ

where we have introduced the moment of inertia I ¼ ml2.
Thus as the two-particle system is oscillating it will slowly
lose energy—a the amplitude of the relative motion, l,
will decay, while the center-of-mass motion will remain
completely unaffected. Any quantum model of quantized
gravitational waves should recover the behavior of classical
quadrupole radiation when the state of the harmonic
oscillator can be modeled as approximately classical
(i.e., with a coherent state with a large occupation number).

III. LINEARIZED QUANTUM GRAVITY

In this section, our working hypothesis is linearized
quantum gravity, for a review see [50]. We further assume
matter to be nonrelativistic, i.e. slowly moving. We find the
dominant interaction between matter and graviton in the
Fermi normal coordinates (FNC) which does not have any
remnant gauge freedom [1,51] and is commonly used to
describe laboratory experiments [52].

A. Fermi normal coordinates

For simplicity, we will assume that the relevant motion
of the particle is along the x-axis and consider the FNC
coordinates, xμ ¼ ðct; x; y; zÞ, of an ideal observer follow-
ing a geodesic trajectory (the situation of an observer
following a generic timelike curve can be analyzed in a
similar fashion). We start from the general relativistic point-
particle Lagrangian,

L ¼ −mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνẋμẋν

p
; ð12Þ

where m is the mass of the system,2 c is the speed of light,
and gμν is the metric expressed in FNC coordinates.
In particular, we write the metric as gμν ¼ ημν þ hμν, ημν
is the Minkowski metric, and hμν the spacetime curvature
perturbation near the geodesic up to order Oðx2Þ [53].
Assuming that matter is moving slowly, the dominant
contribution to the dynamics will be given by [54]

g00 ¼ −1þ 1

2c2
∂h211
∂t2

����
x¼0

x2; ð13Þ

where ḧ11 ¼ 2c2R0101 is the “þ” component of the
gravitational waves usually discussed in the transverse-
traceless (TT) coordinates, and R0101 is the Riemann tensor

2Here m denotes a generic mass. In the next Sec. III B we will
have two such masses, m1 and m2 (see also Fig. 1 for an
illustration).
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component [here ḧ11jx¼0 ≡ ḧ11ðt; 0Þ denotes the value
evaluated on the reference FNC curve].
For completeness, let us sketch how to derive Eq. (13).

One can Taylor expand the gravitational field h11ðt; xÞ ¼
h11ðct − xÞ, i.e., wave propagating in the positive x
direction, up to order Oðx2Þ,

h11ðt; xÞ ∼ h11ðt; 0Þ −
1

c
∂h11ðt; 0Þ

∂t
xþ 1

2c2
∂
2h11ðt; 0Þ

∂t2
x2:

ð14Þ

The first term on the rhs of Eq. (14) is a constant and can
be omitted, while the second term ∼x vanishes in FNC
coordinates, i.e., linear potentials ∼x vanish by choosing an
inertial reference frame. From Eq. (14) we are thus left with
the term,

h11ðt; xÞ ∼
1

2c2
∂
2h11ðt; 0Þ

∂t2
x2; ð15Þ

which encodes the spacetime curvature contribution. For a
rigorous derivation we refer the reader to [54].
Using Eqs. (12) and (13) we then readily find the

interaction Lagrangian between graviton and matter
degrees of freedom. Finally, using Hint ¼ −Lint we find
the interaction Hamiltonian,

Hint ¼
m
4

∂h211
∂t2

����
x¼0

x2: ð16Þ

The quadratic coupling in Eq. (16) has been derived by
assuming kΔx ≪ 1, where Δx is the characteristic size
of the system [implicitly assumed in the expansion in
Eq. (14)]. The latter condition can be rewritten also as
ωkΔx=c ≪ 1, where we have used ωk ¼ kc (i.e., we
assume nonrelativistic matter, with the trapped system
moving much more slowly than the speed of light).

B. Harmonic oscillator coupled to gravitational waves

From Eq. (16) we find that for the two-particle system
we have the following interaction Hamiltonian:

Hint ¼
1

4
ḧ11½m1ðxð1ÞÞ2 þm2ðxð2ÞÞ2�; ð17Þ

where xð1Þ (xð2Þ) is the position of particle 1 (particle 2). We
transform Eq. (17) using the center-of-mass coordinates
introduced in Eqs. (2) and (3) to find

Hint ¼
1

4
ḧ11½Mx2cm þ μx2�Þ; ð18Þ

where M (μ) is the total (reduced) mass.
From Eq. (18) it would thus appear that the center-of-

mass will be more strongly affected by the coupling to the
gravitational field than the relative motion (as we always
have M > μ)—we will show that this is not the case. In
particular, we will find that only the relative degree of
freedom can give rise to graviton emission, whilst leaving
undisturbed the center-of-mass motion—in complete anal-
ogy to classical quadrupole radiation. Indeed, the quadru-
pole is linked to the harmonic trap term ∼ω2

mx2 in Eq. (6),
while the center-of-mass motion is unconstrained and can
thus only follow a geodesic (i.e., it is in free fall) and as
such cannot radiate.

C. Matter-graviton Hamiltonian

We now obtain the leading order coupling between
gravitons and harmonically trapped quantum matter.
We consider the gravitational field expanded in plane
waves [15,55],

ĥijðt; xÞ ¼
Z

dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ

π2c2ωk

s
ĝk;λeλ

ijðnÞe−iðωkt−k·xÞ þ H:c:;

ð19Þ

where G is the Newton’s constant, ωk ¼ kc, k ¼ kkk,
n ¼ k=kkk, and ĝk;λ is the annihilation operator. In
Eq. (19) we also implicitly assume the summation over the
polarizations,

P
λ, where eλ

jk denote the basis tensors for
the two polarizations, λ ¼ 1; 2. The basis tensors satisfy the
completeness relation,

X
λ

eλ
ijðnÞeλ

klðnÞ ¼ PikPjl þ PilPjk − PijPkl; ð20Þ

wherePij ≡ PijðnÞ ¼ δij − ninj. From Eq. (16) and (19) we
however see that only eλ

11ðnÞ is relevant for the matter-wave
system. For later convenience we write the integral,Z

dnP11ðnÞP11ðnÞ ¼
32π

15
: ð21Þ

As we will see this latter expression quantifies the average
effect (on the x-axis motional state of the harmonic oscillator)
of the gravitons emitted in arbitrary directions.
We can readily write also the corresponding kinetic term

for the massless graviton field,

Hgrav ¼
Z

dkℏωkg
†
k;λĝk;λ: ð22Þ
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In addition, we assume that the matter degree of freedom
is harmonically trapped and described by the following
Hamiltonian3:

Hm ¼ p̂2

2m
þ μω2

m

2
x̂2; ð23Þ

where ωm is the harmonic frequency. As we will see it is
convenient to introduce the (adimensional) amplitude
quadrature,

X̂ ¼ b̂þ b̂†; ð24Þ

which is related to the position observable as x̂ ¼ δzpfX̂,
and the matter-zero-point-fluctuations are given by

δzpf ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

2μωm

s
: ð25Þ

Furthermore, we introduce the (adimensional) phase
quadrature,

P̂ ¼ iðb̂† − b̂Þ; ð26Þ

which is related to the physical momentum observable as

p̂ ¼
ffiffiffiffiffiffiffiffiffi
ℏμωm
2

q
P̂. In particular, we can rewrite Eq. (23) in the

standard notation,

Ĥm ¼ ℏωm

4
ðX̂2 þ P̂2Þ ¼ ℏωmb̂

†b̂: ð27Þ

The interaction Hamiltonian is given in Eq. (16), and
using Eq. (19) we find

Hint ¼
X
λ

Z
dkGλ

kĝk;λX̂
2 þ H:c:; ð28Þ

where the coupling is given by

Gλ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ3ω3

k

64π2c2ω2
m

s
eλ
11ðnÞ: ð29Þ

Importantly, we note that the coupling Gλ
k in Eq. (29) does

not depend on the mass of the matter system, but only
on graviton and matter-wave frequencies, ωk and ωm,
respectively—as such, the effect on the matter system in
the mesoscopic is precisely the same as, say, on atomic

systems. Of course, for a given value of the position
amplitude X̂, since x̂ ∼ X̂=

ffiffiffi
μ

p
, the lighter system will have

a larger physical position in comparison to the heavier one.
Similarly, if we would express the harmonic frequency, ωm,
in terms of the spring constant, K ¼ ω2

m=μ, we would again
find a dependency of the coupling on the mass of the
system μ.
In summary, the total Hamiltonian is now given by

Ĥtot ¼ Ĥgrav þ Ĥm þ Ĥint; ð30Þ

where Ĥgrav, Ĥm, and Ĥint are given in Eqs. (22), (27),
and (28).

IV. DECOHERENCE DUE TO
GRAVITON BATH—QFT MODEL

In this section, we will obtain the dynamics of the matter
system when coupled to the quantum field model of the
gravitational field (see the previous Sec. III). We will refer
to the developed model as the QFT model (the gravitational
field will be considered from the QFT point of view, while
the matter system will be modeled in the first quantization).
We will assume that the graviton field is in the ground state,
i.e. without any excitations (i.e., an initially empty bath),

hĝ†k;λĝk0;λ0 i ¼ 0; ð31Þ

hĝk;λĝ†k0;λ0 i ¼ δð3Þðk − k0Þδλ;λ0 ; ð32Þ

and hĝ†k;λĝ†k0;λ0 i ¼ hĝk;λĝk0;λ0 i ¼ 0.
We construct the quantum master equation for the matter

system—by tracing out the gravitational field—closely
following the generic derivation from [56] (see
Chap. 3.3). We denote the total statistical operator of
the problem as ρ̂ðtotÞ (the matter-wave system and the
gravitational field), and by ρ̂ (ρ̂ðgÞ) the reduced statistical
operator for the matter-wave system (the gravitational
field), obtained by tracing away the gravitational field
(the matter-wave system). The von-Neumann equation can
be expressed in the interaction picture as

d
dt

ρ̂ðtotÞt ¼ −
i
ℏ
½HðintÞ

t ; ρ̂ðtotÞt �; ð33Þ

where

ĤðintÞ
t ¼

X
λ

Z
dkGλ

kĝk;λe
−iωktX̂2

t þ H:c: ð34Þ

is the interaction Hamiltonian from Eq. (28) transformed
into the interaction picture. The amplitude quadrature (the
adimensional position observable) in the interaction picture
is given by

3We will first focus on the coupling of the relative motion, x, to
the gravitational field. The results for the center-of-mass, xcm, can
then be obtained by taking the limit ωm → 0. In this limit the
equations for the center-of-mass and relative motion become of
the same form as can be concluded from the Hamiltonians in
Eqs. (6) and (18).
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X̂t ¼ b̂e−iωmt þ b̂†eiωmt: ð35Þ

The dynamics in Eq. (33) can be formally solved

ρ̂ðtotÞt ¼ ρ̂ðtotÞ0 −
i
ℏ

Z
t

0

ds½ĤðintÞ
s ; ρ̂ðtotÞs �: ð36Þ

By then inserting Eq. (36) into Eq. (33), and tracing over
the bath (the gravitational field), we obtain

d
dt

ρ̂t ¼ −
1

ℏ2

Z
t

0

ds trg½ĤðintÞ
t ; ½ĤðintÞ

s ; ρ̂ðtotÞs ��; ð37Þ

where the first-order term, trg½HðintÞ
t ; ρ̂ðtotÞ0 �, vanished as

hĝk;λi ¼ hĝ†k;λi ¼ 0. On the other hand, the second-order
term, on the right-hand side of Eq. (37) is nonzero—as it
depends on the value of the vacuum fluctuations, hĝk;λĝ†k0;λ0 i,
defined in Eq. (32). Equation (37) is, however, still a formal
(exact) relation, containing the net effect of all Feynman
diagrams with any number of vertices. We will now discuss
the approximations that will lead to the more familiar
Lindblad form of the quantum master equation—describing
the effect of the dominant tree-level Feynman diagram
contributions—exploiting the weakness of the coupling
∼

ffiffiffiffi
G

p
.

We first impose the Born approximation, ρ̂ðtotÞs ≈ ρ̂s ⊗ ρ̂ðgÞ,
on the right hand-side of Eq. (37). Importantly, the Born
approximation precludes from the analysis any entanglement
between the matter-wave system, and the gravitational
field as we are explicitly assuming a factorizable state.

Furthermore, the state of the graviton bath, ρ̂ðgÞ ≡ ρ̂ðgÞ0 , is
always the same as far as the system is concerned—here we
are assuming that the interaction between the system and the
gravitational field isweak, with negligible effect on the latter.
We next want to make Eq. (37) local in time (i.e., such

that the dynamics will depend only on the state ρ̂t at time t,
but not on the state at earlier times) and independent of the
choice of the initial time. To this end, we first formally
solve the von Neumann equation to connect the state at time
s with the state at time t to find

ρ̂ðtotÞs ¼ ρ̂ðtotÞt þ i
ℏ

Z
t

s
ds0½ĤðintÞ

s0 ; ρ̂ðtotÞs0 �; ð38Þ

i.e., similarly, as we have done in Eq. (36). We then insert
Eq. (38) into Eq. (37) to find

d
dt

ρ̂t ¼ −
1

ℏ2

Z
t

0

ds trg½ĤðintÞ
t ; ½ĤðintÞ

s ; ρ̂ðtotÞt ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∼G terms

−
i
ℏ3

Z
t

0

ds
Z

t

s
ds0trg½ĤðintÞ

t ; ½ĤðintÞ
s ; ½ĤðintÞ

s0 ; ρ̂ðtotÞs0 ���|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∼G3=2 and higher order terms

;

ð39Þ

where we have explicitly separated the dominant terms ∼G
in the first line from the higher order terms in the second
line (each Hamiltonian operator introduces a vertex ∼

ffiffiffiffi
G

p
).

In the following we will truncate the dynamics at the
dominant order ∼G which is justified by the weakness of
the graviton-matter coupling ∼

ffiffiffiffi
G

p
[see Eqs. (29) and (34)].

In this way, we find an equation that is local in time (i.e., it
depends only on the state ρ̂t at time t, but not on the state at
earlier times). In addition, we change the integration
variable s → t − s and extend the integration limit to
infinity, i.e.,

R
t
0 →

R
∞
0 , to find

d
dt

ρ̂t ¼ −
1

ℏ2

Z
∞

0

ds trg½HðintÞ
t ; ½HðintÞ

t−s ; ρ̂
ðtotÞ
t ��: ð40Þ

Extending the integration limit to infinity is allowed if the
integrand decays sufficiently fast for values of s different
from t—such an assumption is valid when the decay time
of the graviton bath correlation function is much faster than
the timescale over which the state of the system changes
appreciably. This makes the dynamics in Eq. (40) inde-
pendent of the choice for the initial time [compare with
Eq. (37)], which is a sensible requirement for nonrelativ-
istic matter coupled to the gravitational field. The steps in
Eqs. (39) and (40) is equivalent to taking the Markov
approximation commonly performed in analogous electro-
magnetic calculations (see Refs. [43,56–58] for more
details).
In summary, applying the approximations from the

previous two paragraphs to Eq. (37), we find the following
Markovian master equation:

d
dt

ρ̂t ¼ −
1

ℏ2

Z
∞

0

ds trg½HðintÞ
t ; ½HðintÞ

t−s ; ρ̂t ⊗ ρ̂ðgÞ��: ð41Þ

We then proceed by inserting the interaction Hamiltonian
from Eq. (34) into Eq. (41) to eventually find

d
dt

ρ̂t ¼ −
1

ℏ2

X
λ;λ0

Z
∞

0

ds
Z

dk
Z

dk0

× hĝk;λĝ†k0;λ0 iGλ
kG

λ0
k0e

−iðωk−ωk0 Þt

× fe−iωk0 sX̂2
t X̂

2
t−sρ̂t − eiωk0 sX̂2

t ρ̂tX̂
2
t−s

× eiωksρ̂tX̂
2
t−sX̂

2
t − e−iωksX̂2

t−sρ̂tX̂
2
t g; ð42Þ

where we have already used the fact that there are no
excitations of the gravitational field, hĝ†k;λĝk0;λ0 i ¼ 0

[see Eq. (31)].
We now insert the nonzero value for the vacuum

fluctuations, hĝk;λĝ†k0;λ0 i ∼ δðk − k0Þδλ;λ0 [see Eq. (32)],

TOROŠ, MAZUMDAR, and BOSE PHYS. REV. D 109, 084050 (2024)

084050-6



d
dt

ρ̂t ¼ −
1

ℏ2

Z
∞

0

ds
Z

dk
X
λ

ðGλ
kÞ2

× fe−iωksX̂2
t X̂

2
t−sρ̂t − eiωksX̂2

t ρ̂tX̂
2
t−s

× eiωksρ̂tX̂
2
t−sX̂

2
t − e−iωksX̂2

t−sρ̂tX̂
2
t g; ð43Þ

and inserting the expression for the coupling Gλ
k from

Eq. (29), to obtain

d
dt

ρ̂t ¼ −
Z

∞

0

ds
Z

dk
Gℏω3

k

64π2c2ω2
m

X
λ

eλ
11ðkÞeλ

11ðkÞ

× fe−iωksX̂2
t X̂

2
t−sρ̂t − eiωksX̂2

t ρ̂tX̂
2
t−s

× eiωksρ̂tX̂
2
t−sX̂

2
t − e−iωksX̂2

t−sρ̂tX̂
2
t g: ð44Þ

The summation can be evaluated using the completeness
relation from Eq. (20) and the relation in Eq. (21)—we then
integrate over the solid angle by first expressing the

integration measure as dk ¼ k2dkdn ¼ ω2
k

c3 dωkdn, where
k ¼ kkk and n ¼ k=kkk. From Eq. (44) we thus find

d
dt

ρ̂t ¼ −
Z

∞

0

ds
Z

∞

0

dωk
Gℏω5

k

30πc5ω2
m
:

× fe−iωksX̂2
t X̂

2
t−sρ̂t − eiωksX̂2

t ρ̂tX̂
2
t−s

× eiωksρ̂tX̂
2
t−sX̂

2
t − e−iωksX̂2

t−sρ̂tX̂
2
t g: ð45Þ

We now finally insert the position amplitude observable
from Eq. (35) and apply the rotating wave approximation;
i.e. we keep terms with equal number of b̂ and b̂†, and
neglect the other fast rotating terms which typically give
only a small correction, see [59],

d
dt

ρ̂t ¼ −
Z

∞

0

dωk
Gℏω5

k

30πc5ω2
m

Z
∞

0

ds

× e−iðωk−2ωmÞsðb̂†2b̂2ρ̂t − b̂2ρ̂tb̂
†2Þ

þ eiðωk−2ωmÞsðρ̂tb̂†2b̂2 − b̂2ρ̂tb̂
†2Þ; ð46Þ

where we have kept only the nonzero contribution,
∼δðωs − ωkÞ, while we have omitted the other contribu-
tions. Specifically, the terms ∼δðωs þ ωkÞ are zero as the
graviton cannot have negative frequency, while the terms
∼ω5

kδðωkÞ vanish. We then finally integrate over all
possible out-going graviton frequencies, ωk, using the fact
that Z

∞

0

dse−iðωk−2ωmÞs ¼ πδðωk − 2ωmÞ; ð47Þ

i.e., the QFT and open quantum system formalism leads us
the energy conservation (see Sec. VA for a discussion).
Eventually, we find a simple Lindblad equation (in
Schrödinger picture),

d
dt

ρ̂t ¼ γgrav

�
b̂2ρ̂tb̂

†2 −
1

2
fb̂†2b̂2; ρ̂tg

�
; ð48Þ

where f·; ·g denotes the anticommutator, and the emission
rate is given by

γgrav ¼
32

15
t2Plω

3
m: ð49Þ

γgrav is parameter-free and depends on fundamental con-
stants of nature only through the Planck time,
tPl ¼ ðGℏ=c5Þ1=2 ∼ 10−43 s, and is independent of the mass
or any other intrinsic or extrinsic property of the system
apart from the frequency ωm. Of course, if one would
express ωm in terms of the mechanical spring constant,
K ¼ ω2

m=μ, then γgrav would depend on the mass of the
system as μ3=2.
The quantum master equation in Eq. (48) is valid for a

wide range of particle masses, from the microscopic, e.g.,
optically trapped atoms, to the mesoscopic scale and
beyond, e.g., the 10 kg LIGO mirror. In particular, it can
be used to estimate the gravitational decoherence for any
harmonically trapped system.4

V. CONSEQUENCES OF THE QFT MODEL

In the previous Sec. IV we have derived the dynamics for
a harmonically trapped system coupled to an initially empty
graviton bath. At the leading orderOðGÞwe have found the
master equation in Eq. (48) which describes the dynamics
of the matter system as it emits gravitons. In Secs. VA–VC
we now make a series of key observations about the QFT
model and the consequences of the master equation
in Eq. (48).

A. Conservation of total energy

We first highlight that the total energy of the system,
formed by the matter and the gravitational field, is con-
served in the derived QFT model. The starting point of the
analysis was the interaction Hamiltonian in Eq. (28), which
is energy conserving (i.e., we have an associated energy
conserving Feynman vertex diagram ∼

ffiffiffiffi
G

p
).

To illustrate in more detail the energy balance let us
consider energy eigenstates of the harmonic oscillator with
the energy levels separated by multiples of ℏωm. The matter
system of initial energy ℏωi emits an on shell graviton of
energy ℏωk ¼ 2ℏωm resulting in the final matter energy
ℏωf ¼ ℏωi − 2ℏωm. The graviton frequency 2ωm is a

4We recall that in deriving Eq. (48) we have implicitly
performed the calculation for long-wavelength gravitons (with
wavelength λ large compared to the spatial delocalization Δx) as
for typical experimental frequencies ωm and delocalizations Δx
we always have λ ¼ 2πc

ωm
≫ Δx. We leave the calculation for short-

wavelength gravitons for future research [we would need to
consider higher-order FNC terms in Eqs. (13)–(16)].
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consequence of the quadratic position coupling of the
matter system, ∼X̂2 ∝ ðb̂þ b̂†Þ2, to the gravitational field,
ĝk;λ. However, we did not impose energy conservation at
any stage, but rather the energy balance arises directly from
the matter-graviton coupling and the quantum field theory
analysis. In particular, see how the energy conserving
condition δðωk − 2ωmÞ emerges in Eq. (47).
The energy balance can thus be summarized as

ℏωi − ℏωf|fflfflfflfflfflffl{zfflfflfflfflfflffl}
matter

¼ 2ℏωm ¼ ℏωf|{z}
graviton

: ð50Þ

Importantly, as ωm > 0 the matter system loses energy, i.e.
ωf < ωi. The energy of the matter subsystem is monoto-
nously decreasing with the energy carried away by the
emitted gravitons, but the total energy of the matter-
graviton system remains conserved.
We can also understand why graviton emission is the

only possible process at order ∼
ffiffiffiffi
G

p
based on physical

considerations. As the gravitational field is initially in the
lowest energy state j0i it can only absorb energy from the
matter-system (i.e., graviton emission from the matter
system) while all other processes are forbidden by energy
conservation.

B. Decay of number states

In the following we will be interested in the number
states jni. For such states we can estimate the order of
magnitude of the decoherence by computing the decay of
the phonon number,

d
dt

hn̂it ¼ tr

�
n̂
d
dt

ρ̂t

�
; ð51Þ

where h·it ¼ tr½·ρt�, and n̂ ¼ b̂†b̂. Specifically, inserting the
QFT model from Eq. (48), and using the cyclic property of
the trace, we readily find

d
dt

hn̂it ¼ γgravhb̂†2b̂†b̂b̂2 −
1

2
fb̂†2b̂2; b̂†b̂git: ð52Þ

From Eq. (52), recalling the commutation relation
½b̂; b̂†� ¼ 1, we then eventually find

d
dt

hn̂it ¼ −2γgravhb̂†2b̂2it: ð53Þ

Finally, using the identity b̂†2b̂2 ¼ b̂†b̂b̂†b̂ − b̂†½b̂; b̂†�b̂
(and again the commutation relation) we then obtain from
Eq. (53),

d
dt

hn̂it ¼ −2γgravðhn̂2it − hn̂itÞ: ð54Þ

We first note that for the number state jni with n ≥ 2 the
right-hand side of Eq. (54) is negative (i.e., the number state

decays). In particular, for n ≫ 2 we can neglect the term
hn̂it and we can rewrite Eq. (54) as

ṅ ≈ −
64

15
ωm

�
E
EPl

�
2

; ð55Þ

where we have used the definition of γgrav from Eq. (49), the
relation between Planck time and energy, tPl ¼ ℏ=EPl,
and the standard definition of the harmonic oscillator
energy, E ¼ ℏωmn.
We second note that for jni with n ¼ 0, 1 the decay rate

in Eq. (54) is zero (i.e., the number states j1i and j0i do not
decay). This is hinting at the idea of coherence protection
from quantized gravitational waves, which we now discuss
in Sec. V C.

C. Coherence protection for the relative-motion

Let us now discuss the consequences of the QFT model
when we have low occupation numbers. The master
equation in Eq. (48) is formally equivalent to the master
equation appearing in the context of two-photon absorption
problems [41]. Exploiting this formal mapping we find that
Eq. (48) can be solved analytically with the steady-state
given by

ρ̂∞ ¼ λ0j0ih0j þ λ1j1ih1j þ λc½j0ih1j þ j1ih0j�; ð56Þ

where λ0,λ1 and λc depend on the initial matter state ρ̂0, and
j·i denotes a number state. The coefficients λj (j ¼ 0; 1; c)
are given for completeness in Appendix A following [42].
When discussing a coupling to an empty gravitational

bath the naive expectation would have been that the system
will eventually decay to the ground state emitting all of its
energy—in line with the energy decay predicted by the
classical gravitational radiation formula given in Eq. (11).
However, as we start approaching the ground state the
nature of the two-phonon process ∼b̂2 in Eq. (48) begins to
modify the continuous classical picture. Indeed, applying
twice the annihilation operator b̂ to the number state jni
induces the transition,

jni → jn − 2i; ð57Þ

and thus the number states j1i, j0i are unable to decay
further (as negative occupation numbers are prohibited by
energy conservation). Hence, the matter system decays to
the state in Eq. (56) where it retains a remnant coherence λc.
Let us now consider two basic examples. We first

consider a superposition state of the form,

jψ0i ∼ jβi þ j − βi; ð58Þ

where j � βi denote coherent states, and β∈R can be
interpreted as the superposition size. By writing the state on
number basis one finds that jψ0i ¼

P
nh2njψ0ij2ni which
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is expected for a state with even parity. The two-phonon
process in Eq. (57) will then eventually lead to a decay of
the state jψ0i to the ground state j0i.
We next consider the superposition of number states,

jψ0i ¼
1ffiffiffi
2

p ½j0i þ j1i�: ð59Þ

By constructing ρ̂0 ¼ jψ0ihψ0j we notice we are in the
steady state defined in Eq. (56) with λ0 ¼ λ1 ¼ λc ¼ 1=2
and the two-phonon process in Eq. (57) is energetically
forbidden. The state in Eq. (59) or any other superposition
of j0i and j1i does not decay, but rather retains its
coherence indefinitely.

D. Recovering classical gravitational radiation

To recover the classical results for the gravitational
radiation of a harmonic oscillator we will consider coherent
states jβi. For coherent states with low occupation number
n ¼ jβj2 ≪ 1 we have jβi ∼ j0i þ βj1i, which was the case
discussed in the previous Sec. V C. We now consider the
opposite regime n ¼ jβj2 ≫ 1 corresponding to coherent
states with large occupation numbers.
For coherent states with large occupation numbers we

can replace the operators b̂ and b̂† with the corresponding
classical observables b and b�. From Eq. (53) we thus
immediately find

d
dt

hn̂it ≈ −2γgravjbj4: ð60Þ

We then multiply Eq. (60) with ℏωm to obtain

Ė ¼ −2ℏωmγgravjbj4; ð61Þ

where E ¼ ℏωmhn̂it denotes the energy of the system.
A high occupation coherent state, neglecting for the

moment the energy decay, simply oscillates in a harmonic
trap with the position given by x ¼ δzpfðbþ b�Þ (where we
have again replaced the quantum observables with the
corresponding classical ones). The position amplitude is
given by l ¼ 2δzpf jbj, where the zero-point fluctuation δzpf
is defined in Eq. (25). Inverting this relation we thus
immediately find

jbj ¼ l

ffiffiffiffiffiffiffiffiffi
μωm

2ℏ

r
: ð62Þ

We now insert in Eq. (61) the amplitude from Eq. (62),
the expression for the emission rate γgrav ¼ 32

15
t2Plω

3
m from

Eq. (49), and use the definition of the Planck time
tPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c5

p
, to eventually obtain

Ė ¼ −
16GI2ω6

m

15c5
; ð63Þ

where we have introduced the moment of inertia I ¼ μl2.
Importantly, Eq. (63) matches exactly the classical linear
quadrupole radiation formula in Eq. (11). The obtained
QFT model can be thus seen as the quantum counterpart to
the classical theory of gravitational emission.

E. Coherence protection for the center-of-mass
of an isolated system

We recall that ρ̂t in Eq. (48) is the state associated with
the relative motion between two masses with reduced mass
μ and coupling rate ωm [see Fig. 1]. The consequences of
the QFT model for the relative motion has been discussed
in detail in Secs. VA–VD. Here we now analyze the
consequences of the QFT model for the center-of-mass
motion.
We first note that when we decouple the two masses,

i.e., ωm → 0, then γgrav → 0, and the decoherence rate in
Eq. (49) vanishes. This is not surprising, as the relative
motion of two decoupled particles (a system without a mass
quadrupole) is no longer coupled to on-shell gravitation.
Importantly, as can be seen from Eqs. (6) and (18) the
Hamiltonian for the center-of-mass motion can be formally
mapped to the Hamiltonian of the relative motion in the
limiting case ωm → 0 (where the reduced mass μ is in place
of the total massM). Thus we find that the coherence of the
center-of-mass motion of an isolated system is decoupled
from on shell gravitons, and its coherence will be com-
pletely protected from quantized gravitational waves.

VI. SUMMARY AND DISCUSSION

In this paper, we have developed a quantum field theory
(QFT) model to describe the emission of gravitons from a
harmonically trapped system. The master equation is given
in Eq. (48), and the associated decoherence rate γgrav is
given in Eq. (49). The key results of the developed QFT
model are the following:

(i) conservation of the total energy of the matter system
and gravitational field (Sec. VA),

(ii) decay of number states jni for n ≫ 2 proportional to
the square of its corresponding energy E2

n which can
be seen as a consequence of Einstein’s equivalence
principle (Sec. V B),

(iii) the quantum harmonic oscillator settles in a steady
state with a remnant coherence of the ground and
first excited states as both j0i and j1i cannot decay
via graviton emission (Sec. V C),

(iv) the formula for classical gravitational radiation is
recovered exactly for coherent states with large
occupation number (Sec. V D), and

(v) complete coherence protection for the center-of-
mass of an isolated system which does not have a
mass quadrupole and thus cannot emit quantized
gravitational waves (Sec. V E).
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Our analysis captures the fact that a harmonic oscillator
has a linear mass quadrupole which gives rise to graviton
emission. If however, themass quadrupole is absent, then the
system will not emit gravitons. As a result, a free isolated
system or the center-of-mass degree of freedom does not
decohere via graviton emission but rather retains its coher-
ence indefinitely. Only systems with a mass quadrupole are
coupled to on shell gravitons. Importantly our analysis
recovers the classical gravitational radiation formulae when
we consider coherent states with large occupation numbers
(i.e., classical-like states).
The developed QFT model predicts a deviation from

classical predictions only when we are close to the ground
state and the quantized nature of the fields becomes
important. In particular, we have found that the state
∼j0i þ j1i, or for that matter any superposition of the
ground and first excited states will remain coherent
indefinitely. The reason is that the graviton emission
process only allows transitions jni → jn − 2i for the
harmonic oscillator, which can be seen as a direct conse-
quence of Einstein’s equivalence principle and of the
quadrupole nature of gravitational waves. While linear
potentials ∼x vanish by choosing an inertial reference
frame, the quadratic coupling ∼x2 cannot be canceled by a
change of coordinates and indeed it models the interaction
with “þ” gravitational waves. In the quantum domain, the
quadratic coupling x̂2 gives rise to the two-phonon tran-
sitions jni → jn − 2i, which is the only process allowed by
energy-momentum conservation.
The decoherence rate γgrav ∝ ω3

m given in Eq. (49) sug-
gested that high-frequency mechanical oscillators could be
used for testing the coupling to quantized gravitational
waves. The analysis showed that the effects can be amplified
by using states with large occupation numbers. However, the
QFT model reduces to the classical predictions for coherent
states with large occupation numbers (and hence the
quantum and classical prediction cannot be distinguished
experimentally), while other nontrivial quantum states such
as superposition states are difficult to achieve experimentally
(see Appendix B where we discuss the effects in the next
generation of matter-wave interferometry such as the QGEM
protocol [25]). Alternatively, we would like a scheme with a
harmonic oscillator near the ground state where quantum
effects become more pronounced, but unfortunately there the
graviton emission process is very slow. We nonetheless hope
that the obtained theoretical results will inspire the develop-
ment of schemes to test quantum effects related to quantized
gravitational waves such as the discovered coherence pro-
tection mechanism.
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APPENDIX A: EXACT SOLUTION

In this appendix, we provide for completeness the
solution of the graviton emission dynamics in Eq. (48).
We note that the emission of two phonons into the
gravitational field which can be reinterpreted as the
absorption of two phonons by the gravitational field—
the dynamics can be thus formally mapped to the process of
two-photon absorption by the optical field. We summarize
the exact solution following the presentation of the optical
case [41].
We introduce a normalized time τ ¼ 2γgravt (such that

when τ ∼ 0.5 we expect to see the first prominent effects)
and the transformed density matrix,

ψnðμ; τÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ μÞ!

n!

r
hnjρ̂τjnþ μi: ðA1Þ

The solution for the elements with μ ≠ 1 is given by

ψnðμ; τÞ ¼
X∞
k¼n

ðk−n evenÞ

ð−1Þk=2−n=22n
n!

×
Γðk=2þ n=2þ σÞ

ΓðσÞΓðk=2 − n=2þ 1ÞA
σ
ke

−λkτ; ðA2Þ

where

Aσ
k ¼

ðkþ σÞΓðσÞ
2kπ1=2

X∞
m¼k

ðm−k evenÞ

m!

ðm − kÞ

×
m!Γðm=2 − k=2þ 1=2Þ

ðm − kÞ!Γðm=2þ k=2þ σ þ 1Þψmðμ; 0Þ; ðA3Þ

σ ¼ 1
2
ðμ − 1Þ and λk ¼ kðkþ μ − 1Þ þ 1

2
μðμ − 1Þ.

The solution for elements with μ ¼ 1 (with n > 0) is
given by

ψnð1; τÞ ¼
X∞
k¼n

ðk−n evenÞ

ð−1Þk=2−n=22n−1k
n!

×
Γðk=2þ n=2Þ

Γðk=2 − n=2þ 1ÞBke−k
2τ; ðA4Þ

where

Bk ¼
X∞
m¼k

ðm−k evenÞ

m!

ðm=2þ k=2Þ!ðm=2 − k=2Þ!

×
1

22−δðkÞ
ψmð1; 0Þ; ðA5Þ

and δðkÞ ¼ 0 (δðkÞ ¼ 1) if k ¼ 0 (k > 0).
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We find that the two-phonon process in Eq. (48) induces
a nontrivial steady-state,

ρ̂∞ ¼ λ0j0ih0j þ λ1j1ih1j þ λc½j0ih1j þ j1ih0j�; ðA6Þ

where λ0,λ1 and λ01 depend on the initial matter state ρ̂0,
and j·i denotes here a number state. In particular, we have
that λ0, λ1 are the sum of the initial even/odd phonon
numbers,

λ0 ¼
X∞
n¼0

h2njρ̂0j2ni; λ1 ¼
X∞
n¼0

h2nþ 1jρ̂0j2nþ 1i;

ðA7Þ

while the steady-state coherence is given by the sum of the
initial coherences between neighboring number states,

λc ¼
X∞
n¼0

ð2n − 1Þ!!
ð2nÞ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ!
ð2nÞ!

s
h2njρ̂0j2nþ 1i: ðA8Þ

APPENDIX B: QGEM SETUP

It is interesting to estimate the order of magnitude of
gravitational decoherence for the QGEM (quantum gravity
induced entanglement of masses) protocol [25].
In the original proposal, there are two quantum masses

whose center of mass is separated by a distance
d ∼ 450 μm, while their spatial superposition size is
assumed to be Δx ∼ 250 μm. In order to obtain an
entanglement phase of order one—due to exchange of
virtual gravitons—the masses (assumed to be the same in
the simplest case) were taken to be m ∼ 10−14 kg. The
masses are kept in a well-preserved vacuum at low temper-
ature to eliminate strong sources of decoherence mediated
via electromagnetic interactions, and the entire setup is
assumed to be in a free fall to minimize the effect of
classical noise sources.
Here we are interested only in a rough upper bound

on the gravitational decoherence rate in the QGEM setup.
To proceed we make three simplifying approximations.
(i) We consider an experiment with only one particle of
mass m prepared in a spatial superposition Δx (this is
reasonable as the two masses are coupled only weakly

through gravity, and thus the main contribution to
decoherence will arise from each particle individually).
(ii) Assuming that the interferometric loop is completed in
a time t ¼ 1 s we can estimate an effective harmonic
trap frequency as ωm ∼ 2π=t ∼ 2π × 1 Hz (the particle
together with the experimental equipment forms a linear
quadrupole during the preparation/recombination of the
superposition when the two are coupled by magnetic field
gradients). (iii) The particle delocalization is given by
b ¼ Δx=δzpf ∼ 107, where we recall that the zero-point

motion of the matter system is δzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωmÞ

p
. In a

more rigorous analysis we would need to decompose the
interferometric paths in frequency space [60,61] instead of
using an effective harmonic frequency ωm and solve the
appropriate master equation numerically as well as include
the second particle in the modeling, but the order of
magnitude of the effects should not increase.
We now consider the even superposition state given by

jψi ∼ jbi þ j − bi; ðB1Þ

where we assume h−bjbi ≈ 0. We know from the analysis
below Eq. (58) that the state jψiwill eventually decay to the
ground state j0i. From Eq. (60) we know that the decay rate
of the phonon number for a coherent state j � bi is given by
∼γgravjbj4. This suggests that a rough upper bound of the
decoherence rate could be given by γeffective ∼ γgravjbj4,
where γgrav ∼ t2Plω

3
m.

Plugging in the numbers we find that the order of
magnitude of the decoherence rate from graviton emission
should not exceed γeffective ∼ 10−56 Hz. Decoherence from
environmental gravitational waves originating from distant
sources would be enhanced by the effective number of
gravitons Pt=ðℏωkÞ, where P is the power passing through
the interferometer of effective area A, t is the interfero-
metric time, and ωk ¼ 2ωm is the frequency of the
gravitons. Assuming Δx ≫ R ∼ 1 μm (with R denoting
the physical size of the particle), we can estimate the
effective area to be A ∼ ΔxR. However, even if we use
γeffective ∼ γgravjbj4Pt=ðℏωkÞ with P ¼ 10 pW (estimated
from [6]) we find only γeffective ∼ 10−33 Hz. In short, the
QGEM setup does not seem to be prone to be affected by
decoherence from quantized gravitational waves.
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