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ABSTRACT
Recent years have seen an explosion of interest in organic radicals due to their promise for highly efficient organic light-emitting diodes and
molecular qubits. However, accurately and inexpensively computing their electronic structure has been challenging, especially for excited
states, due to the spin-contamination problem. Furthermore, while alternacy or “pseudoparity” rules have guided the interpretation and
prediction of the excited states of closed-shell hydrocarbons since the 1950s, similar general rules for hydrocarbon radicals have not to our
knowledge been found yet. In this article, we present solutions to both of these challenges. First, we combine the extended configuration
interaction singles method with Pariser–Parr–Pople (PPP) theory to obtain a method that we call ExROPPP (Extended Restricted Open-shell
PPP) theory. We find that ExROPPP computes spin-pure excited states of hydrocarbon radicals with comparable accuracy to experiment
as high-level general multi-configurational quasi-degenerate perturbation theory calculations but at a computational cost that is at least two
orders of magnitude lower. We then use ExROPPP to derive widely applicable rules for the spectra of alternant hydrocarbon radicals, which
are completely consistent with our computed results. These findings pave the way for highly accurate and efficient computation and prediction
of the excited states of organic radicals.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0191373

I. INTRODUCTION

It was long thought that the search for stable emissive
organic radicals was hopeless, as none were known experimen-
tally.1 However, since the discovery of stable, highly emissive organic
radicals and the development of highly emissive radical organic
light-emitting diodes (OLEDs), there has been an explosion of inter-
est in the field.2–8 External quantum efficiencies in excess of 25%
and internal quantum efficiencies of near unity3 for some radical-
based devices have been reported. Although phosphorescent OLEDs
based on molecules containing heavy elements and those based
on organic closed-shell molecules that exhibit thermally activated
delayed fluorescence also have high efficiencies, such figures are
usually hard to achieve in conventional closed-shell OLEDs due
to spin-statistics.9–15 Such high-performing OLEDs have potential
applications in the next generation of lightweight and flexible
displays and lighting.3 Moreover, radical-based devices can achieve

this intense emission in the near-infrared (NIR) region, a char-
acteristic that is unusual for small molecules and highly desirable
for the development of fluorescent probes and NIR sources for
medical diagnostic applications.16–19 Emissive organic radicals have
since been incorporated into emissive conjugated polymers,7 which
opens up the possibility of having the efficiency and spectral benefits
of a radical emitter with the processability advantages of conju-
gated polymers and also the possibility of semiconductivity.11,20 In
addition, emissive organic radicals have potential applications as
spin-optical interfaces in quantum information processing.21

While there has been considerable work done over the years
to investigate the electronic structure of radicals, diradicals, and
polyradicals,22–24 accurately computing their electronic structure
remains challenging largely due to spin-contamination. The first
problem is whether to use unrestricted or restricted orbitals as the
most obvious choice that gives the most accurate energies and the
best description of the ground state are unrestricted orbitals, but
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using those results in spin-contamination. The second problem is
the choice of determinants for the excited states as including all
single-excitations in configuration interaction singles (CIS) results
in spin-contaminated excited states, even when using a restricted
basis.24–27 Furthermore, while general alternacy or pseudoparity
rules have been known since the 1950s28 to assign, predict, and
interpret the spectra of closed-shell hydrocarbons, to the best of
our knowledge, no such general rules exist for the excited states of
hydrocarbon radicals.

In this article, focusing on organic radicals with a single
unpaired electron (monoradicals), we give a detailed overview of
some of the existing theories for radical electronic structure calcu-
lation, the challenges that arise when it comes to excited states of
radicals, and how or if they can be overcome. We then expand on
this previous work seeking to provide new insight into the properties
of the excited electronic states of radicals.

One problem encountered in the calculation of the electroni-
cally excited states of radicals is that there is no ideal set of orbitals to
choose from. Both the unrestricted Hartree–Fock (UHF) method29

and the restricted open-shell Hartree–Fock (ROHF) method30–33

have their shortfalls. While UHF is often preferred as it gives lower,
more accurate energies due to each of the electrons having different
spatial orbitals, UHF states comprising a finite linear combina-
tion of UHF determinants are generally not eigenfunctions of the
total spin operator Ŝ 2.34 Although UHF (and unrestricted density
functional theory) is a useful tool for calculating accurate ground
state properties, and in many such cases the spin-contamination
can be ignored,22,35–42 it can be problematic for excited states
where spin-contamination is unavoidable and can lead to unphysical
or uninterpretable results.22,24,27,43–45 Conversely, ROHF eliminates
spin-contamination by construction for states where all unpaired
electrons are of the same spin, including the ground state. Further-
more, it is possible to form spin-adapted ROHF configurations in a
finite number of determinants for all other states.24,27,30–34,41 How-
ever, ROHF has its weaknesses, namely, that it gives less accurate
energies than UHF and also the issue of orbital energies not being
uniquely defined.46,47

Although both UHF and ROHF clearly have their own limi-
tations, for calculation of the photophysical properties of radicals,
we believe that spin-purity must take precedence over a slight
improvement in accuracy. However, using a restricted reference is
not a sufficient criterion on its own for satisfying the spin-purity
of the excited states, as it should be ensured that the correct linear
combinations of determinants are chosen for states with more than
one open-shell.

This brings us to the second major challenge in preserving the
spin-purity of the excited states. In the case of closed-shell molecules,
from the set of all single-excitations of α and β electrons, ∣Φj ′

i ⟩ and

∣Φj̄ ′

ī ⟩, respectively, one can form a complete set of spin-adapted

singlet ∣1Ψj ′

i ⟩ and triplet ∣3Ψj ′

i ⟩ configurations or configuration
state functions (CSFs) from a restricted determinant in configu-
ration interaction singles (CIS). This is the simplest configuration
interaction method and the formal starting point for many other
more accurate methods.34,41,48 Usually, we are only interested in the
singlet states with regard to absorption and emission as triplet states
are formally dark. However, caution must be taken when choosing

FIG. 1. Illustration of the problem of using only single excitations to describe the
excited states of a doublet radical that consist of three open-shells. Four excited
configurations are pictured: (a) the spin-pure singlet-coupled doublet (2S) state
(“+” combination) formed of only single excitations, (b) the “−” combination of
two single excitations that is spin-contaminated, (c) the spin-pure quartet state
composed of single and double excitations, and (d) the spin-pure triplet-coupled
doublet (2T) state composed of single and double excitations.

a basis for the excited states of radicals. First, if one were to use
a basis of all single excitations, as in the closed-shell case, and
form a complete set of states, this would, in general, result in
spin-contamination. This is shown pictorially in Fig. 1 below and
also presented numerically Table X, where we have presented the
results of this approach for the benzyl radical. The general spin
properties of closed-shell molecules and radicals are presented in
Table I.

One solution to the spin-contamination problem in radical CIS
is to restrict the basis of single excitations to only include those
that are pure doublets, which are those with only one open-shell,
in which case the resulting states would also be pure doublets.
Alternatively, one could go a step further and also add in some
spin-adapted doublet states for those configurations containing
three open-shells;49 however, neither method captures quartet states.
Furthermore, some excited doublet states with three open-shells are
also not captured by these methods, which, despite being dark, could
affect the spectrum. This problem is solved if one also includes a
certain type of double excitations in the basis, as shown in previous
literature, and in this case a complete set of spin-pure doublet and
quartet states can be constructed on the same theoretical footing in
a similar manner to closed-shell CIS.24,25 This formulation of open-
shell CI, which is discussed further in Sec. II is sometimes referred
to as extended CIS or XCIS.25 This is different to CISD where all
double excitations are included and which would not, in general, be
spin-pure for radicals. In addition, XCIS has the same scaling as CIS,
where the number of determinants scales with O(NoccNvir), whereas
CISD scales with O(N2

occN2
vir), where Nocc is the number of occupied
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TABLE I. Comparison of the general spin properties of the singly excited electronic states for closed-shell molecules and
radicals.

Property Closed-shell Radical

Ground state multiplicity Singlet Doublet
Determinant RHF ROHF or UHF

Spin-multiplicity of
single-excitations

∣Ψj ′

i ⟩ + ∣Ψ
j̄ ′

ī ⟩ is singlet. ∣Ψ0̄
ī ⟩, ∣Ψ

j ′

0 ⟩, ∣Ψ
j ′

i ⟩ + ∣Ψ
j̄ ′

ī ⟩ are doublets.
∣Ψj ′

i ⟩ − ∣Ψ
j̄ ′

ī ⟩ is triplet.
∣Ψj ′

i ⟩ − ∣Ψ
j̄ ′

ī ⟩ contaminated.
Usual multiplicity of Triplet DoubletLowest excited state
Spin restriction alone sufficient Yes NoFor spin-purity?

orbitals and Nvir is the number of virtual (unoccupied) orbitals in the
ground state.

We must stress here that there are many other existing methods
to obtain accurate, spin-pure excited states of radicals, such as the
multiconfigurational SCF (MCSCF) method, multiconfigurational
second-order perturbation theory, such as CASPT2 and general
multi-configurational quasi-degenerate perturbation theory (GMC-
QDPT) mentioned later, full-CI (FCI), and coupled-cluster (CC)
theory.34,50–53 These methods achieve spin-pure results for radicals
by using a restricted open-shell reference and by either including
all possible configurations (within a given active space in MCSCF
and CASPT2/GMCQDPT) or including fewer than all possible
configurations and employing spin-adaption techniques.54–56 When
used correctly, these methods can give accurate results,57 although
for very accurate excitation energies, one must also include nuclear
quantum effects.58 However, these calculations are computationally
expensive, with their computational cost increasing by many
orders of magnitude with increasing molecular size, and also are
by no means black-box methods, requiring chemical intuition and
experience to be accurately utilized.34 One potential avenue is to
decrease the computational cost of such methods by, for example,
combining MCSCF or FCI with quantum Monte Carlo; however,
discussions on this topic are beyond the scope of this article.59,60

On the other hand, time-dependent density functional theory
(TD-DFT) allows for the rapid calculation of electronic excited
state spectra, which does not require any non-trivial input from
the user and has become a popular method for the simulation of
UV–visible spectra.61,62 However, TD-DFT has several drawbacks,
namely, that: (a) its results can vary significantly depending on the
chosen functional,61,62 (b) it is inaccurate at describing long-range
phenomena, such as charge-transfer without the use of specifically
tailored long-range functionals,63–66 and (c) it does not typically give
spin-pure states, as an unrestricted version of the Kohn–Sham equa-
tions is often preferred in favor of more accurate energies, and even
if a restricted open-shell reference is used, conventional TD-DFT
does not form spin-adapted excited states.44,45 A spin-adapted
version of TD-DFT for radicals has recently been developed,
called X-TDDFT, which is clearly a faster alternative to the more
expensive MCSCF/CASPT2/GMC-QDPT/FCI/CC methods.45

However, X-TDDFT is by no means theoretically straightforward
since the double excitations it requires are not compatible with

conventional TD-DFT so a work-around using spin-flip single
excitations and reference states with different values of Ms needs
to be implemented. Finally, although TD-DFT is faster than the
post-Hartree–Fock methods mentioned above, it still becomes
unfeasibly expensive for large numbers of calculations, and there is
a growing need for ever faster property determination methods for
high-throughput virtual screening of molecular candidates, artificial
intelligence (AI) algorithm search methods, and for property
determination of large molecules.67–69

This brings us to two key aims, which we will address in this
paper.

A. An inexpensive method for screening radicals
What is the simplest and least computationally expensive

method that can calculate spin-pure doublet and quartet states of
radicals with reasonable accuracy?

B. Design rules for emissive radicals based
on alternant hydrocarbons

A general set of rules for the interaction of the excited states of
radicals would allow for a better understanding of their UV–visible
spectra, guiding the assignment of bands and allowing us to pre-
dict the effect of structural variations on their spectra. Considering
that many emissive radicals are (non-alternant) derivatives of alter-
nant hydrocarbons, such as the triphenylmethyl radical,2–7 a good
starting point would be to deduce such design rules for alternant
hydrocarbon radicals.

The article is structured as follows: first, in Sec. II, we
define the key theoretical concepts that will inform the discussion
of our methodology. Here, we discuss the XCIS method for dou-
blet radicals,24,25 a restricted open-shell method for the molecular
orbitals,24 Pariser–Parr–Pople theory and its approximations,28,70–73

and also give a brief overview of the theories relating to alternant
hydrocarbons.28,72,74 In Sec. III, we show how the XCIS and PPP the-
ory with a restricted open-shell determinant can be combined and
implemented in a method that we call Extended Restricted Open-
shell PPP (ExROPPP) theory, for the rapid calculation of spin-pure
excited states of radicals, which is not limited to just alternant hydro-
carbons. The numerical results of computations with ExROPPP
are presented in Sec. IV A, where the method is benchmarked
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against the highly accurate multiconfigurational perturbation the-
ory method GMC-QDPT and experimental data, where ExROPPP is
seen to have a similar accuracy to GMC-QDPT. Finally, in Sec. IV B,
we then apply the algebra of XCIS to alternant hydrocarbons, and
by making a small number of approximations, we derive rules for
the interaction of excited states of alternant hydrocarbon radicals
similar to those derived previously for closed-shell molecules.28 We
believe that these rules may aid with the assignment of bands in the
UV–visible spectra of radicals and also guide the design of emissive
radicals.

II. BACKGROUND THEORY
Here, we discuss the XCIS method for the excited states of

radicals,24,25 the restricted open-shell method of Longuet-Higgins
and Pople,24 which allows us to obtain self-consistent molecular
orbitals for a system with one unpaired electron in its ground
state; the various approximations of the Pariser-Parr-Pople (PPP)
theory;28,70–73 and finally, the theories of Coulson, Rushbrooke,
Pople and Pariser, which apply alternant hydrocarbons that we will
call upon to derive the alternacy rules for radicals.28,72,74

A. From CIS to XCIS
We start by discussing the description of the ground state of

the radical. Restricted orbitals are chosen where k doubly occu-
pied closed-shells and one singly occupied open-shell make up the
ground state, which is a pure doublet with S =MS = 1/2. We label
the orbitals, choosing 0 to be the singly occupied molecular orbital
(SOMO), and successively number the doubly occupied orbitals in
order of descending energy starting from 1 (the HOMO) and the
vacant orbitals in order of ascending energy with primes starting
from 1′ (the LUMO). We choose this notation as it is the same as that
used by Pariser28 and in Ref. 27. We now discuss the excited configu-
rations. Single excitations from the ground state ∣2Ψ0⟩ give rise to the

following configurations: ∣2Ψ0̄
ī ⟩, ∣

2Ψj ′

0 ⟩, ∣Ψ
j ′

i ⟩, and ∣Ψj̄ ′

ī ⟩ (see Fig. 1 in
the supplementary material for a comprehensive molecular orbital
diagram).

As we are concerned with finding those states that are eigen-
states of the total spin operator Ŝ 2, we shall ascertain the effect of
Ŝ 2 on the above-mentioned configurations. The states ∣2Ψ0⟩, ∣2Ψ0̄

ī ⟩,
and ∣2Ψj ′

0 ⟩ are eigenstates of Ŝ 2, where S = 1/2—these configurations
are pure doublet states. This is to be expected as they have only
one open-shell. On the other hand, those configurations that have
three open-shells, ∣Ψj ′

i ⟩ and ∣Ψj̄ ′

ī ⟩, are not eigenstates of Ŝ 2 and are
mixtures of doublet and quartet states. Naturally, we can make two
orthonormal linear combinations of ∣Ψj ′

i ⟩ and ∣Ψj̄ ′

ī ⟩,

∣2SΨj ′

i ⟩ =
1√
2
(∣Ψj ′

i ⟩ + ∣Ψ
j̄ ′

ī ⟩), (1a)

∣DQΨj ′

i ⟩ =
1√
2
(∣Ψj ′

i ⟩ − ∣Ψ
j̄ ′

ī ⟩), (1b)

to see if we can construct two spin-adapted states. We find that the
“+” combination is a pure doublet with S = 1/2; however, the “−”
combination is not an eigenstate of Ŝ 2. Then, it is clearly impossible

to construct a spin-pure basis for doublet and quartet excited states
of a radical from just single excitations from the ground state.

As previous literature has shown, one must, therefore, go
to higher-order excitations to attempt to satisfy spin-purity while
calculating doublet and quartet states on the same theoretical
footing.24,25 Double excitations of the type ∣Ψ0̄j ′

ī0 ⟩ were suggested

as, along with the single-excitations ∣Ψj ′

i ⟩ and ∣Ψj̄ ′

ī ⟩, they complete
all permutations of three open-shells in orbitals i, 0, and j′ with
MS = 1/2.

One can construct the matrix representation of Ŝ 2 in the basis
of the following three excitations: ∣Ψj ′

i ⟩, ∣Ψ
j̄ ′

ī ⟩, and ∣Ψ0̄j ′

ī0 ⟩,

S2 =
⎛
⎜⎜
⎝

7/4 −1 1
−1 7/4 −1
1 −1 7/4

⎞
⎟⎟
⎠

, (2)

which has eigenvalues of 3/4 twice and 15/4, corresponding to two
doublet eigenstates and one quartet eigenstate,

∣2SΨj ′

i ⟩ =
1√
2
(∣Ψj ′

i ⟩ + ∣Ψ
j̄ ′

ī ⟩), (3a)

∣2TΨj ′

i ⟩ =
1√
6
(−∣Ψj ′

i ⟩ + ∣Ψ
j̄ ′

ī ⟩ + 2∣Ψ0̄j ′

ī0 ⟩), (3b)

∣4Ψj ′

i ⟩ =
1√
3
(∣Ψj ′

i ⟩ − ∣Ψ
j̄ ′

ī ⟩ + ∣Ψ
0̄j ′

ī0 ⟩). (3c)

These three states, along with ∣2Ψ0⟩, ∣2Ψ0̄
ī ⟩, and ∣2Ψj ′

0 ⟩, constitute a
basis for the spin-pure excited doublet and quartet states of a radical
and will be the starting point for our methodology.24,25,27 Here, we
note that while the quartet eigenstate ∣4Ψj ′

i ⟩ is uniquely defined, the
two doublet eigenstates are not, since they are spin degenerate and
can be mixed. We label the first doublet state [Eq. (3a)] 2S as it can
have a nonvanishing dipole moment from the ground state24,27 and
is sometimes referred to as “singlet-coupled,”75 and we refer to the
second doublet state [Eq. (3b)] as 2T as it is always completely dark
and is sometimes referred to as “triplet-coupled.”75

B. The restricted open-shell method for the orbitals
While there are many variations of restricted open-shell meth-

ods to choose from, we elect to use the method of Longuet-Higgins
and Pople.24 In this method, the ground state orbitals are solved
variationally as per the usual HF method, but in this case, minimiz-
ing the ground state energy with respect to mixing of small amounts
of single excitations ∣Ψ0̄

ī ⟩, ∣
2Ψj ′

0 ⟩, and ∣2SΨj ′

i ⟩ into the ground state.
They propose a single Fock operator for both closed-shell and

open-shell spin-orbitals,

⟨ψp∣Ĥ∣ψq⟩ = Fpq = hpq +
k

∑
l=1
[2(pq∣ll) − (pl∣lq)]

+ 1
2
[2(pq∣00) − (p0∣0q)]. (4)
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In this method, the ground state mixing of the configuration ∣2SΨj ′

i ⟩
is exactly zero; however, the ground state mixing of the config-
urations ∣2Ψ0̄

ī ⟩ and ∣2Ψj ′

0 ⟩ is almost but not exactly zero (see the
supplementary material for further details). Therefore, Brillouin’s
theorem is almost but not completely satisfied. As a note here, there
are other restricted open-shell approaches for the orbitals that are
more general in that they can be applied to systems with more than
one open-shell in the ground state, and they also satisfy Brillouin’s
theorem exactly.30–33 However, these more general methods involve
partitioning the set of orbitals into interacting subspaces for doubly
occupied, partially occupied, and vacant orbitals each with their
respective Fock operators, requiring the use of Lagrange multipliers
to solve the coupled Roothaan equations while maintaining spin-
restriction.30–33 While this ensures Brillouin’s theorem is satisfied
exactly, these methods are complicated to implement, and there-
fore, we elect to use the approximate method of Longuet-Higgins
and Pople for systems with a single open-shell doublet ground state,
despite it only approximately satisfying Brillouin’s theorem, as it is
theoretically simpler and involves only diagonalizing a single Fock
matrix for all orbitals. As we shall see later, this simple form of
the Fock operator also allows the derivation of elegant rules for the
spectra of alternant hydrocarbon radicals.

C. Pariser–Parr–Pople theory
Thus far, in our discussion of the method to obtain the molecu-

lar orbitals, we have assumed an arbitrary basis of atomic orbitals
and have not detailed the method to be used to obtain the one-
electron (core) integrals hμν and two-electron integrals (μν∣ρσ)
needed to form the Fock matrix. We could elect to use Gaus-
sian orbitals and compute the integrals for the set of all atomic
orbitals exactly; however, this comes at a computational expense that
we aim to minimize. We, therefore, call upon Pariser–Parr–Pople
(PPP) theory28,70–73 as it is arguably the simplest and least com-
putationally expensive method known to accurately reproduce the
excited state spectra of π-conjugated closed-shell molecules,76,77

and we will see that it performs similarly well for π-conjugated
organic radicals when using restricted orbitals and coupled with
XCIS in a method that we call ExROPPP. Moreover, due to the
approximations within PPP theory, many integrals vanish and
many different integrals become equivalent, simplifying the form
of the Hamiltonian and other electron operators. Therefore, apply-
ing the approximations of PPP theory to the Hamiltonian and
dipole moment operators within XCIS allows us to derive alternacy
rules.

PPP theory is a semiempirical method for the electronic
structure calculation of conjugated π systems. The π system is
treated using an implicit basis of p orbitals centered on the
atomic nuclei, where neighboring p orbitals interact via a Hückel β
(resonance integral) term. The σ system is treated as core-like and
only interacts with the π system through a Hückel α (core integral)
term, which also accounts for nuclear charge.

In PPP theory, the neglect of differential overlap (NDO)
approximation is applied, where the overlap integral between any
two atomic orbitals is equal to the Kronecker delta function of
the two orbitals, ⟨ϕμ∣ϕν⟩ = δμν. First, this means that the Roothaan
equations simplify to FC = CE, where E is a diagonal matrix of

orbital energies {ϵp}. The second implication of NDO is that the
expressions for the two-electron integrals are greatly simplified, as
those integrals that depend on the overlap of two p orbitals on
different atoms are neglected. Therefore, the two-electron integrals
take the form,

(μν∣ρσ) = (μμ∣ρρ)δμνδρσ = γμρδμνδρσ , (5)

where γμρ is a function of the distance between the two atomic
centers.27

D. Alternant hydrocarbon radicals
Alternant hydrocarbons are conjugated hydrocarbons whose

atoms can be divided into two sets, often referred to as starred
and unstarred, where no two atoms of the same set may be
directly bonded. This structural symmetry results in underlying
symmetries in the energies and coefficients of pairs of orbitals
and degeneracy of pairs of single-excitations. This pairing theorem
was first proven by Coulson and Rushbrooke for closed-shell
systems, where it was shown to hold under the approximations
of neglect of differential overlap (NDO) and resonance interac-
tion only between nearest neighboring atoms, such approximations
being present in Pariser–Parr–Pople theory (see Sec. II C).74 Subse-
quently, the Coulson–Rushbrooke pairing theorem was also shown
to hold for odd alternant hydrocarbon radicals.24,78 This symmetry
of alternant hydrocarbons is sometimes referred to as pseudoparity,
particle-hole symmetry, or the Coulson–Rushbrooke–Longuet-
Higgins theorem.79–81

1. Orbital energy symmetry
According to the theorem, for every bonding orbital, there

exists an antibonding orbital with an equal and opposite energy
relative to the energy of a non-interacting atomic orbital. In the
case of monoradicals, the SOMO has a non-bonding character and
its energy is the same as that of a non-interacting orbital, and all
other orbitals can be grouped into bonding and antibonding pairs,
which are equally spaced in energy about the SOMO, (ϵi + ϵi′)/2
= (Fi,i + Fi′ ,i′)/2 = ϵ0 = F0,0.

2. Orbital coefficient symmetry
In alternant hydrocarbon radicals, the SOMO has amplitude on

only the starred atoms, and for every Coulson–Rushbrooke orbital
pair, the orbital coefficients in bonding and antibonding pairs (i) are
equal in magnitude and (ii) have equal signs on the starred atoms
and opposite signs on the un-starred atoms. In the convention fol-
lowed in this paper, the number of starred atoms is one greater
than the number of unstarred atoms for odd alternant hydrocarbon
radicals. The following is then true for two electron inte-
grals for alternant hydrocarbon radicals: (ij∣kl) = (ij∣k′l′) = (i′j′∣kl)
= (i′j′∣k′l′), (i′j∣kl) = (ij′∣kl), and (i0∣jk) = (i′0∣jk). The latter rela-
tion is a special case of the first two because the SOMO is unchanged
by changing the signs of the un-starred atoms, i.e., ψ0 = ψ0′ . Similar
identities also exist for dipole moments, μij = μi′j′ , μij′ = μi′j, and
μi0 = μi′0, where we use the standard definition of the dipole moment
in atomic units, μi j = ⟨i∣μ̂∣ j⟩ = −⟨i∣r∣ j⟩.
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3. Degeneracy of the excited states with a single
open-shell

These symmetry relations result in degeneracies in pairs of exci-
tations, even when two electron terms are taken into account within
the regime of the above-mentioned approximations. The excitations
∣2Ψ0̄

ī ⟩ and ∣2Ψi′
0 ⟩ are degenerate for the corresponding pairs of bond-

ing and antibonding orbitals, ψi and ψi′ . They can be factored into
two-determinant linear combinations with a “+” or “−” sign, as
shown in the following equation:24,27

∣2Ψ±0i⟩ =
1√
2
(∣2Ψ0̄

ī ⟩ ± ∣
2Ψi′

0 ⟩). (6)

III. METHODOLOGY
We introduce a novel method, which we call the ExROPPP

(Extended Restricted Open-shell Pariser–Parr–Pople) theory for the
rapid and accurate simulation of spin-pure excited states of organic
π-conjugated radicals. This method marries the idea of XCIS24,25

with PPP theory28,70–73 using the restricted open-shell method of
Ref. 24. We implement the equations in Secs. II B and II C in an
in-house code, using the same parameters as those used previously
for closed-shell molecules,69 to form the restricted open-shell Fock
matrix in PPP theory and to subsequently obtain the optimized
molecular orbital coefficients and orbital energies by iteratively
solving the Roothaan equations until convergence of the total
energy. The essential equations of XCIS discussed in Sec. II A (see
Hx

XCIS, Hs
XCIS, Mx

XCIS, and Ms
XCIS in the supplementary material,

Tables IX, X, XIII, and XIV) are then implemented to form and
diagonalize the XCIS Hamiltonian to give the energies and expan-
sion coefficients of the XCIS excited states and to compute their
dipole moments and oscillator strengths for the plotting of linear
absorption spectra. This method was benchmarked on a series of
alternant hydrocarbon radicals, and the results of these computa-
tions are given in Sec. IV. However, we must stress that this method
is not limited to just alternant hydrocarbon radicals but can be
applied to any radical with one unpaired electron in its ground
state.

IV. RESULTS
In this section, we now present the central results of this

paper. First, we present the results of numerical calculations on
a range of alternant hydrocarbon radicals with our new method,
ExROPPP, where ExROPPP is shown to be accurate in comparison
to the experimental data and higher-level methods, spin-pure
and computationally inexpensive. Second, we reveal the simple
and elegant rules of interaction between the excited states of
alternant hydrocarbon radicals, similar to those found by Pariser for
closed-shell molecules,28 which we believe could aid the design of
radicals.

A. Numerical results from ExROPPP on alternant
hydrocarbon radicals

Here, we present the results of our new method, ExROPPP,
benchmarked against experimental data and the results of
calculations with general multi-configurational quasi-degenerate

perturbation theory (GMC-QDPT), an accurate post-Hartree–Fock
method for calculating excited states. The UV–visible vertical
absorption spectra of a series of odd alternant hydrocarbon radicals
shown in Fig. 2 were simulated using the ExROPPP method
described in Sec. III, and these results were also compared to the
results of calculations using GMC-QDPT and experimental spectro-
scopic data in the literature, where available. We must stress here
that we choose to use alternant hydrocarbons to demonstrate the
utility of ExROPPP, despite the fact ExROPPP is not limited to just
alternant hydrocarbons, as they are generally stable, and thus, there
is a large amount of experimental spectroscopic data available for
them in the literature. In addition, since many emissive radicals
are non-alternant derivatives of alternant hydrocarbons, the results
of these computations are still of relevance to the design of emis-
sive radicals. The ExROPPP and GMC-QDPT simulated spectra of
the radicals are presented together in Figs. 3–5, and their spectro-
scopically observed states computed by the two theoretical methods
compared to the experimental data are presented in Tables II–VIII,
with further detail presented in Tables I–VII of the supplementary
material. The results of the two theoretical methods are generally
consistent with each other and closely reproduce the experimental
excitation energies.

We now consider the accuracy, speed, and spin purity of
ExROPPP.

FIG. 2. Odd alternant hydrocarbons considered in this paper. The abbreviations
were used for the following radicals: DPM–diphenylmethyl, DPXM–diphenyl-p-
xenylmethyl, PDXM–phenyl-di-p-xenylmethyl, and TXM–tri-p-xenylmethyl.
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FIG. 3. UV–visible vertical absorption spectra of the allyl radical simulated by
ExROPPP (solid blue) and GMC-QDPT (the blue dotted–dashed line).

FIG. 4. UV–visible vertical absorption spectra of benzyl (red) and diphenyl-
methyl (blue) radicals simulated by ExROPPP (solid lines) and GMC-QDPT (the
dotted–dashed lines).

FIG. 5. UV–visible vertical absorption spectra of the trityl radical and its derivatives,
DPXM, PDXM, and TXM, simulated by ExROPPP (solid lines) and GMC-QDPT
(dotted–dashed lines), showing good agreement between the two methods.

1. Accuracy
a. The allyl, benzyl, and diphenylmethyl radicals. The

ExROPPP and GMC-QDPT simulated spectra for these radicals are
shown in Fig. 3 and 4, and their spectroscopic data are presented

TABLE II. Excitation energies of the allyl radical calculated by ExROPPP and GMC-
QDPT compared to the experimental data.82

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

12B2 3.05 3.45 3.07
22B2 5.65 6.47 5.00

TABLE III. Excitation energies of the benzyl radical calculated by ExROPPP and
GMC-QDPT compared to the experimental data.86

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

12A2 2.89 3.05 2.76
22A2 3.98 4.20 4.00
42B2 4.92 5.25 4.77

TABLE IV. Excitation energies of diphenylmethyl radical calculated by ExROPPP and
GMC-QDPT compared to the experimental data.87

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

12A 2.64 2.56 2.37
42A 3.95 4.13 3.69

TABLE V. Excitation energies of the trityl radical calculated by ExROPPP and GMC-
QDPT compared to the experimental data.90

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

12E 2.74 2.63 2.41
22E 3.88 3.91 3.60

TABLE VI. Excitation energies of the DPXM radical calculated by ExROPPP and
GMC-QDPT compared to the experimental data.90

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

22B 2.56 2.40 2.07
32B 3.53 3.51 3.31
22A 3.86 3.91 3.60

TABLE VII. Excitation energies of the phenyl-di-p-xenylmethyl (PDXM) radical
calculated by ExROPPP and GMC-QDPT compared to the experimental data.90

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

12A 2.51 2.33 2.03
22A 3.42 3.42 3.03
32B 3.66 3.87 3.45
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TABLE VIII. Excitation energies of the tri-p-xenylmethyl (TXM) radical calculated by
ExROPPP and GMC-QDPT compared to the experimental data.90

State EExROPPP (eV) EGMC-QDPT (eV) Eexp . (eV)

12E 2.52 2.30 2.03
22E 3.41 3.34 2.95

in Tables II–IV. The energies and relative intensities are generally
consistent between the two theoretical methods and with the
experimental data.

For the allyl radical, in the C2v point group, the 12B2 state
(D1) is composed of ∣Ψ−01⟩ in both GMC-QDPT and ExROPPP and
appears at 3.07 eV (404 nm) in the experiment82 and at 3.45 eV
(360 nm) and 3.05 eV (407 nm) in GMC-QDPT and ExROPPP
calculations, respectively, showing a good agreement, especially for
ExROPPP. The experimental intensity of the 12B2 state is known to
be very weak in other studies,83,84 which is in agreement with the
low oscillator strengths computed by GMC-QDPT and ExROPPP
of 0.005 and 0, respectively. The 22B2 state, ∣Ψ+01⟩ in GMC-QDPT
and ExROPPP, appears at 5.00 eV (248 nm) in the experiment82

and 6.47 eV (192 nm) and 5.65 eV (220 nm) in GMC-QDPT and
ExROPPP, respectively, showing a close agreement. 22B2 is observed
as a bright absorption in another study,85 which is in agreement with
GMC-QDPT and ExROPPP with oscillator strengths of 0.567 and
0.422, respectively.

The weak 12A2 state (D1) of the benzyl radical is seen around
2.76 eV (450 nm) in the experimental spectrum.86 The 12A2 state
is predicted to be at 3.05 eV (407 nm) in GMC-QDPT and 2.89 eV
(430 nm) in ExROPPP and similar to the allyl radical is predicted to
be completely dark by ExROPPP (composed of ∣Ψ−01⟩), with a very
small oscillator strength predicted by GMC-QDPT. The 32B2 state
(∣Ψ−02⟩ in ExROPPP), which appears at 4.99 eV (248 nm) with f ≈ 0
in GMC-QDPT and 4.50 eV (275 nm) with f = 0 in ExROPPP, is
not seen in the experiment likely due to it having a vanishingly small
intensity. The two bright states of the benzyl radical, 22A2 and 42B2,
which are composed of ∣Ψ+01⟩ and ∣Ψ+02⟩, respectively, in ExROPPP
are seen in the experimental spectrum at 4.00 eV (310 nm) and
4.77 eV (260 nm), respectively.86 These states are also well captured
by GMC-QDPT [(22A2 at 4.20 eV (295 nm) and 42B2 at 5.25 eV
(236 nm)] and ExROPPP [22A2 at 3.98 eV (311 nm) and 42B2 at
4.92 eV (252 nm)] with a particularly good agreement in ExROPPP.
The relative intensities of these transitions are also in agreement
between the two theoretical methods, with the 42B2 state predicted
to be brighter than the 22A2 by GMC-QDPT and ExROPPP, which
is also consistent with the experimental spectrum.86 While the
agreement between ExROPPP and the experiment is slightly bet-
ter for the bright states than the dark states, the overall accuracy
of ExROPPP for the benzyl radical is as good as, if not better, than
GMC-QDPT.

In the GMC-QDPT calculations, the orbitals 1 (2b2) and 2
(1a2) are swapped in the energetic order compared to ExROPPP,
and the excited states seem to be composed of different excitations;
however, on swapping the orbital indices 1 and 2 in the GMC-QDPT
excitations, the states are the same as those in ExROPPP. To avoid
confusion, we have omitted the compositions of the GMC-QDPT

states here and these results are given in the supplementary
material.

The results for the benzyl radical are also supported by early
theoretical results.88,89 In particular, Ref. 88 shows the same energy
ordering and relative intensities of the excited states for the ben-
zyl radical: 12A2 (weak absorption), 22B2 (weak absorption), 22A2
(strong absorption), and 32B2 (strong absorption, corresponds to
42B2 in ExROPPP/GMC-QDPT). Ref. 88 only considered the first
two orbitals above and below the SOMO in the benzyl radical,
derived from the splitting of the 12E and 22E levels in benzene,
not accounting for the extra dark state 32B2 in ExROPPP, which
involves orbitals 3 and 3′ in the benzyl radical so the energetic order-
ing in both methods is essentially the same for the states captured
by both.

For DPM, which belongs to the C2 point group, the 12A state
(D1) appears at 2.37 eV (523 nm) in the experiment87 and at 2.56 eV
(485 nm) and 2.64 eV (470 nm) in GMC-QDPT and ExROPPP,
respectively, and is primarily composed of ∣Ψ−01⟩ in ExROPPP. This
state has a weak absorption (370 dm3 mol−1 cm−1)87 in the exper-
iment and is dark in GMC-QDPT and ExROPPP. The bright 42A
state is seen at 3.69 eV (336 nm) in the experiment,87 and its energy
is well reproduced by GMC-QDPT and ExROPPP with values of
4.13 eV (300 nm) and 3.95 eV (314 nm), respectively, and is com-
posed of ∣Ψ+01⟩ in ExROPPP. It has a high measured intensity of
31 000 dm3 mol−1 cm−1, which is in agreement with the large oscilla-
tor strengths calculated by GMC-QDPT and ExROPPP of 0.714 and
0.781, respectively. Similarly as for the benzyl radical, the ExROPPP
calculated energy of the bright state is in closer agreement with the
experiment than with the dark (D1) state. The energetic ordering
of the doublet states in DPM is not the same in ExROPPP and
GMC-QDPT due to near degeneracies and a high density of states
at low energy.

b. The triphenylmethyl radical and its p-xenyl derivatives. The
experimental UV–visible absorption spectra of the trityl (triphenyl-
methyl) radical and its p-xenyl derivatives, di-phenyl-p-xenylmethyl
(DPXM), phenyl-di-p-xenylmethyl (PDXM), and tri-p-xenylmethyl
(TXM) contain one or two intense absorption bands depending on
the molecule’s point symmetry and are seen at around 300–500 nm.
They also have one or two very weak bands in the region of
500–700 nm in the visible spectrum.90 Trityl and TXM, in the D3
point group, both have a single intense near-UV band owing to
the 22E state, which is mainly composed of the ∣Ψ+01⟩ and ∣Ψ+02⟩
states (excitations between the SOMO and the doubly degenerate
HOMO/LUMO) as seen in GMC-QDPT and ExROPPP calcula-
tions. DPXM and PDXM, both of which belong to the C2 group,
have two intense bands owing to the ∣Ψ+01⟩ and ∣Ψ+02⟩ states due
to the removal of their degeneracy in descending order from D3
to C2 symmetry, with one of them having the irreducible repre-
sentation A and the other B (the assignment of A or B to the
excitations above differs between the two radicals). The ExROPPP
and GMC-QDPT simulated spectra of these four radicals are shown
in Fig. 5 and their spectroscopic data are presented in Tables V–VIII
(and in more detail in Tables IV–VII in the supplementary
material).

There is a good agreement between ExROPPP and the experi-
mental data for these four radicals, which is better for the bright UV
“+” states as opposed to the dark lowest energy excited “−” states
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in the visible, which are completely dark in ExROPPP (due to the
radicals all being alternant) and only have a very small extinction
coefficient in the experimental spectra. For the bright transitions,
the ExROPPP values are within 0.28 eV (25 nm) of the experimental
value for trityl, 0.26 eV (24 nm) for DPXM, 0.39 eV (48 nm) for
PDXM, and 0.46 eV (56 nm) for TXM. It is suggested by Ref. 90
that the lowest excited state of the trityl and TXM radicals is of A1
symmetry from analysis of the fluorescence polarization data; how-
ever, we believe this not to be the case as this lowest excited state
of the trityl radical has been shown to be a doubly degenerate E
state in a later publication91 and in our results. The results of GMC-
QDPT calculations for these radicals are also in good agreement with
ExROPPP, and the relative energy ordering of the doublet states is
the same in both methods.

The excitation energies and relative intensities of the lowest
excited states for the triphenylmethyl radical are also largely
supported theoretical studies based loosely on Ref. 24, where the
first excited state in their results is the 2E state predicted to have a
weak absorption at 2.41 eV (515 nm) and their fifth excited state
is the 2E state predicted to have an intense absorption at 3.84 eV
(322 nm) corresponding to 22E in our results.91 The number of
states is different in both methods; however, the energetic order-
ing of the states captured by both ExROPPP and the method of
Ref. 91 is the same. The energies in Ref. 91 were shifted such that the
energy of the lowest excited state matched the experimental data,
whereas our results are not manipulated in any way to match the
experiment.

c. Quartet states. The agreement between the GMC-QDPT
and ExROPPP calculated energies for the quartet states is not as
good as for the doublet states for the radicals tested. For the allyl rad-
ical, the quartet state energy is 6.07 eV in GMC-QDPT and 4.40 eV
in ExROPPP. Similarly, for the benzyl radical, GMC-QDPT predicts
energies of 4.42 and 5.42 eV for the 14B2 and 14A2 states, respec-
tively, but the ExROPPP values are 3.62 and 4.80 eV, again seeming
to underestimate the quartet energy. ExROPPP also seems to largely
underestimate the quartet energies for the trityl radical for the 14A2
and 14E states when compared to the GMC-QDPT values. In addi-
tion, the relative energetic ordering of the doublet and quartet states
is different in the GMC-QDPT and ExROPPP results. One possible
reason for this discrepancy is that the set of PPP parameters used
in this paper (and PPP theory in general) have mainly been applied
for calculating the energies of singlet–singlet transitions in closed-
shell molecules and, in particular, simulating their spectra, in which
only those transitions that are bright are of importance.92 Therefore,
by analogy, one would expect these parameters to be more accurate
for calculating the energies of excited doublet states and less accurate
for (dark) excited quartet states in radicals, which is what we observe
from our results.

Moreover, it is known to be very difficult to experimentally
measure quartet state energies as quartet states are formally dark.
In addition, in the case of odd alternant hydrocarbon radicals, the
first quartet state is usually higher in energy than the lowest excited
doublet state so it is not normally observed through intersystem
crossing from the doublet state in the same way that a triplet state
is observed via intersystem crossing from the singlet state in a
closed-shell molecule.93 As a side note, this is a useful property of
such radicals that makes them desirable for making OLEDs, but also

means that the quartet state is rarely observed.24,94,95 The experi-
mental quartet energies for the odd alternant hydrocarbon radicals
tested, to the best of our knowledge, are absent from the literature, so
it is impossible to comment on the accuracy of ExROPPP for quartet
states with any certainty.

Finally, on analyzing the CI expansion of the quartet states
calculated by ExROPPP, we notice that the quartet states for the
trityl, DPXM, PDXM, and TXM radicals have significant contribu-
tions from higher excitations (i > 2 and j′ > 2′), and therefore, it
is expected that their computed energies will be dependent on the
inclusion of such higher excitations.

d. Overall accuracy. Figure 6 shows a comparison of the exper-
imental excitation energies and those computed by using the two
theoretical methods. The ExROPPP calculated energies are all close
to the experimental values. As mentioned earlier, it is difficult to
comment on the accuracy of ExROPPP for the calculation of quar-
tet state energies. The root mean squared (RMS) errors of the
ExROPPP and GMC-QDPT results Ecalc.

i compared to the exper-
imental excitation energies Eexp.

i have been calculated using the
formula,

ϵRMS =
¿
ÁÁÀ 1

N

N

∑
i=1
(Ecalc.

i − Eexp.
i )

2. (7)

The ϵRMS values for the ExROPPP and GMC-QDPT results are pre-
sented in Table IX. It can be seen that ExROPPP calculates excitation
energies with a similar accuracy to GMC-QDPT for the doublet

FIG. 6. Comparison of ExROPPP and GMC-QDPT excitation energies to
experiment. No results have been shifted to agree with the experiment, and
the ExROPPP results are produced using the same parameterization as has
previously been used for closed-shell molecules. ExROPPP is found to be as
accurate as GMC-QDPT when compared to the experimental energies for doublet
states.
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TABLE IX. RMS errors of (i) ExROPPP and (ii) GMC-QDPT calculated excited state
energies compared to the experimental values and (iii) ExROPPP calculated energies
compared to GMC-QDPT for the odd alternant hydrocarbon radicals presented in this
paper. The numbers without brackets are for all states, whereas the numbers inside
the brackets are calculated for doublet states only.

ϵRMS/eV

GMC-QDPT vs exp. (0.48)
ExROPPP vs exp. (0.33)
ExROPPP vs GMC-QDPT 0.63 (0.50)

states of the alternant hydrocarbon radicals chosen. We must stress
that the results of ExROPPP computations presented here are the
raw results that are in no way shifted to agree with the experiment
(or GMC-QDPT), and the same parameters are used as in previous
studies on closed-shell molecules.69 Computations using the bases of
excitations and of spin-adapted states yield identical results.

In general, the key features of the low lying electronic states
of radicals are well captured by using the simple and computation-
ally inexpensive ExROPPP method. For the alternant hydrocarbon
radicals studied, the lowest lying electronic state above the ground
state is always a doublet D1 and always has a very weak absorption
in the experiment. This state is always ∣2Ψ−0i⟩ at the ExROPPP level
of theory and always in the dark state, but at the higher level of
theory in GMC-QDPT, it may have a very small oscillator strength.24

The doublet states ∣2Ψ+0i⟩ are always responsible for the low energy
intense bands. There are higher lying doublet states of the type
∣2SΨj ′

i ⟩, which are also bright; however, for the molecules tested
they lie far into the UV and are of less relevance to the optical
properties. Furthermore, it is shown by the ExROPPP calculations
that only a small number of excited states, at most ∣Ψ+01⟩, ∣Ψ+02⟩, and
∣Ψ+03⟩, are responsible for the significant features of the UV–visible
spectrum for these molecules, involving transitions between the
SOMO and the 1, 2, 3, 1′, 2, and 3′ orbitals.

2. Spin-purity
We calculated ⟨S2⟩i and the degree of spin-contamination

Δ⟨S2⟩i for each of the ExROPPP states i. We find that Δ⟨S2⟩i = 0 for
all ExROPPP states. However, on the basis of all single excitations
only (ROPPP-CIS), Δ⟨S2⟩i ≠ 0 for all states (apart from for the allyl
radical, where only some states are contaminated, but this is a special
case and not the trend), and Δ⟨S2⟩i is generally significantly large, as

presented in Table X. See Sec. V C in the supplementary material for
the calculation of spin-contamination.

3. Speed
The speed of the ExROPPP method was compared to that of the

accurate post-Hartree–Fock method, GMC-QDPT, for the radicals
studied. These results are presented in Table XI. GMC-QDPT
calculations on all radicals were performed using GAMESS-US using
2 cores on a desktop computer, and all ExROPPP calculations were
performed using Python 3 using the same desktop computer and
utilized 8 cores. The timings from ExROPPP presented here are for
proof of concept purposes only since the ExROPPP code has not
been optimized and was coded in Python; however, it clearly offers
a substantial reduction in the computation time compared to GMC-
QDPT. We leave optimization of the ExROPPP code and rigorous
benchmarking for future work. We defined the speed-up factor as
tGMC-QDPT/tExROPPP.

B. Alternacy rules
In this section, we apply the algebra of XCIS on the basis

of spin-adapted plus and minus states to alternant hydrocarbon
radicals. Using this method, we can deduce simple and widely appli-
cable rules for the interaction of the excited states of alternant
hydrocarbon radicals, which may guide spectral interpretation and
molecular design of emissive radicals.

It has long been known that due to pseudoparity, the excited
states of closed-shell alternant hydrocarbons can be factored into
plus and minus combinations, and that a further set of Hamiltonian
interaction and dipole moment selection rules apply to them in
addition to the usual rules concerning symmetry and spin.28 These
rules were originally derived by Pariser considering the ground
state and single-excitations and using the approximations of NDO
and zero resonance integrals between the non-nearest-neighbouring
atoms. While the idea of pseudoparity has been known for a long
time to also apply to radicals,24 and some of Pariser’s rules have
been explored in special cases; to the best of our knowledge, there
has yet to be an attempt to derive a general set of rules for alternant
hydrocarbon radicals. In this section, we test Pariser’s rules to
see if they also apply to radicals. We apply the equations for
the XCIS method for the radicals mentioned above to derive the
Hamiltonian and dipole moment interaction elements of plus and
minus states, as it is the analog for radicals of CIS in closed-shell
systems.

TABLE X. Demonstration of spin-contamination Δ⟨S2⟩, resulting from the use of a basis of all single-excitations. The excited
states calculated by (a) ROPPP-CIS (CIS with restricted open-shell PPP reference with all single excitations) and (b)
ExROPPP for the benzyl radical (C2v point group) are presented and compared to the results of the GMC-QDPT calculations
and experimental data.86 1B2 is the ground state.

State ⟨S2⟩ a) ⟨S2⟩ b) Δ⟨S2⟩ a) Δ⟨S2⟩ b) E a) (eV) E b) (eV) EGMC-QDPT (eV) Eexp . (eV)

1B2 0.789 0.75 0.276 0 n/a n/a n/a n/a
1A2 1.016 0.75 0.679 0 2.99 2.89 3.05 2.76
2A2 0.866 0.75 0.467 0 3.96 3.98 4.20 4.00
4B2 0.761 0.75 0.146 0 4.83 4.92 5.25 4.77
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TABLE XI. Comparison of the speed of the ExROPPP method with GMC-QDPT. The
GMC-QDPT calculations are for doublet calculations only and are at least two orders
of magnitude slower than ExROPPP. The timings given are the total CPU time.

Molecule tGMC-QDPT/s tExROPPP/s Speed-up factor

Allyl 9.26 0.0231 402
Benzyl 1560 0.157 9970
DPM 22 000 0.511 43 000
Trityl 8670 1.58 5500
DPXM 31 800 4.10 7740
PDXM 80 800 8.74 9250
TXM 163 000 18.1 9020

In order to get a complete picture of the interaction of
the excited states of radicals, we need to consider the plus and
minus combinations of all XCIS states. The plus and minus states
with one open-shell have already been worked out for us by
Longuet-Higgins and Pople and are given in Sec. II Eq. (6).24

However, as far as we are aware, Longuet-Higgins and Pople did
not consider the pseudoparity adapted states of three open-shells
and we must now define them. The doublet and quartet states with
three open-shells also come in degenerate pairs, and we can make
the following linear combinations of these pairs of states:

∣2SΨ±ij ⟩ =
1√
2
(∣2SΨj ′

i ⟩ ± ∣
2SΨi′

j ⟩), (8a)

∣2TΨ±ij ⟩ =
1√
2
(∣2TΨj ′

i ⟩ ∓ ∣
2TΨi′

j ⟩), (8b)

∣4Ψ±ij ⟩ =
1√
2
(∣4Ψj ′

i ⟩ ± ∣
4Ψi′

j ⟩), (8c)

where i ≠ j. When i = j, Eqs. (8a)–(8c) are no longer valid and only
one state ∣XΨi′

i ⟩ exists (where X = 2S, 2T, or 4). Note that we have

defined the ∣2TΨ±i j⟩ linear combinations with the opposite signs to
the other two pairs of states, i.e., for ∣2SΨ±i j⟩ and ∣4Ψ±i j⟩, the plus state
has a “+” sign and the minus state has a “−” sign in their expan-
sions in Eq. (8a) and Eq. (8c), respectively. However, for ∣2TΨ±i j⟩,
the plus state has a “−” sign and the minus state has a “+” sign.
The reason for this seemingly inconsistent definition will become
apparent when we make the approximations relating to alternant
hydrocarbons.

Now that we have defined a complete basis of pseudopar-
ity and spin-adapted states, we can derive the exact matrix ele-
ments for the XCIS Hamiltonian Hp

XCIS on this basis, using the
equations presented in Tables IX and X in the supplementary
material, Sec. IV as discussed above. These are presented in the
supplementary material, Sec. IV C in Table XI. We also derive the
exact dipole moments Mp

XCIS on the basis of plus and minus states,
which are presented in Table XV in the supplementary material,
Sec. VI G.

We then consider the effect of the same approximations as
Pariser did on the XCIS Hamiltonian and dipole moments, in
addition to the assumption that the Fock matrix is diagonalized,

i.e., Fi,j = δijϵi (in other words, this requires that the orbitals used
in forming the Hamiltonian are the converged molecular orbitals).
After making this series of approximations, the matrix elements
simplify greatly and many of which vanish. The XCIS Hamilto-
nian Ha

XCIS and dipole moment operator Ma
XCIS on the basis of

pseudoparity and spin-adapted states under the aforementioned
approximations are given in Tables XI and XV, respectively, in Secs.
II D and II H of the supplementary material. From this algebra, clear
rules for the excited state spectra of alternant radical hydrocarbons
emerge, which are similar but not identical to those for closed-shell
molecules and which can be found in Table XII.

First, we find that there is zero Hamiltonian interaction
between the plus and minus states of alternant hydrocarbon radicals.
This has been previously shown to be true for closed-shell alternant
hydrocarbons.28 In the case of radicals although there is the afore-
mentioned caveat that we have to define the ∣2TΨ±i j⟩ states with the

opposite signs in their expansion in terms of ∣2TΨj ′

i ⟩ and ∣2TΨi′
j ⟩, and

additionally, we notice that the ∣2TΨi′
i ⟩ states behave as minus states,

whereas ∣2SΨi′
i ⟩ and ∣4Ψi′

i ⟩ behave as plus states. We find that for
radicals, the ground state behaves like a minus state and only inter-
acts with other minus states. In closed-shell alternant hydrocarbons,
this is also true; however, due to Brillouin’s theorem only higher
than singly excited minus states may interact with the ground state.
On the other hand, a weaker version of Brillouin’s theorem applies
for radicals where singly excited states of the type ∣2Ψ−0i⟩ may mix
with the ground state but all other purely singly excited states
are forbidden from interacting with the ground state (∣2TΨi′

i ⟩ and

∣2TΨ−i j⟩ interact with ∣2Ψ0⟩ but have doubly excited character). The
Hamiltonian interaction rules for radicals are shown pictorially
below in Fig. 7 and presented algebraically in Table XII in the
supplementary material, Sec. IV D.

Furthermore, Pariser showed that for closed-shell molecules,
the Hamiltonian on the basis of singlet minus states ∣1Ψ−i j⟩ is
exactly the same as the Hamiltonian on the basis of triplet minus
states ∣3Ψ−i j⟩. While this is an interesting observation, we find no
corresponding rule for radicals: no two non-zero Hamiltonian
matrix elements are in general the same.

Second, we find that for radicals, the dipole moments between
two plus states or between two minus states are exactly zero. This
selection rule applies on top of the more general spin selection rule
and any selection rules imposed by point group symmetry.34,96 This
pseudoparity selection rule has been previously known for closed-
shell alternant hydrocarbons.28 Consequently, the transition dipole
moment between two states may be non-zero if and only if the states
are of opposite pseudoparity and equal multiplicity and regardless
of whether the alternant hydrocarbon is closed-shell or a radical. It
follows that the ground-state and any XCIS states of an alternant
hydrocarbon have a zero permanent dipole moment. The pseu-
doparity selection rule for radicals is shown pictorially in Fig. 8 and
presented algebraically in Table XVI in the supplementary material,
Sec. IV H.

All of the above-mentioned rules hold even after configura-
tion interaction. That is, there exist four sets of states grouped by
pseduoparity (plus or minus) and multiplicity (singlet/doublet or
triplet/quartet), where any member of one set does not interact

J. Chem. Phys. 160, 164110 (2024); doi: 10.1063/5.0191373 160, 164110-11

© Author(s) 2024

 06 M
ay 2024 19:39:09

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 7. Interaction of the electronic excited states of an alternant hydrocarbon
radical via the Hamiltonian Ĥ. The lines drawn between the states represent an
interaction via Ĥ. The states may interact if and only if they are in the same
quadrant.

FIG. 8. Interaction of the electronic excited states of an alternant hydrocarbon
radical via the dipole moment operator μ̂. The lines drawn between the states
represent an interaction via μ̂. Only states with the same multiplicity and opposite
pseudoparity may interact through the dipole moment operator.

via the Hamiltonian with any member of any other set before
and after configuration interaction. Furthermore, states of the
same pseudoparity and/or opposite multiplicity have zero dipole
moments between one another before and after configuration
interaction.

Specifically concerning their dipole moment from the ground
state ∣Ψ0⟩ (which is a minus state of the lowest multiplicity), plus
states of the same multiplicity may be bright and have a non-zero
transition dipole moment, whereas minus states are always dark,
even after configuration interaction. However, there are cases where
plus states of the same multiplicity as the ground state may be
completely dark (such as ∣2TΨ+i j⟩) or may have vanishingly small
transition dipole moments; however, this is not in violation of any
of the above-mentioned rules. As a result of the dipole pseudoparity
selection rule for alternant hydrocarbons and it holding after con-
figuration interaction, it is usually (but not always) the case that the
lowest energy electronic excited state of an alternant hydrocarbon
radical is completely dark at this level of theory91,97 and is expected
to have a vanishingly small dipole moment in the experiment and
in calculations at higher levels of theory.85–87,90,98–100 The reason for
this is that the lowest state is usually a doublet minus state of the
form ∣Ψ−i0⟩.24,101 The lowest excited state cannot be ∣Ψ+i0⟩ as there will
always be a corresponding minus state of lower energy.24,101 If the
first excited state is not ∣Ψ−i0⟩ then it must contain at least some con-
tribution from configurations of three open-shells. Inspecting the
relevant matrix elements in the supplementary material, Table XII,
we find that ∣4Ψ+i j⟩ is always the lowest energy configuration out of

all of those with open-shells in i, 0, and j′, and ∣4Ψi′
i ⟩ is always the

lowest energy configuration out of all of those with open-shells in i,
0, and i′, so it is likely but not certain that in the case that ∣Ψ−i0⟩ is
not lowest in energy, the lowest energy state will be a quartet state,
which will also be dark.

For practical purposes, the alternacy rules presented here mean
that the UV–vis spectrum of an alternant hydrocarbon radical will
show a very weak absorption at low energies (corresponding to D1
that will usually be ∣2Ψ−10⟩) and an intense absorption at higher
energies (usually corresponding to ∣2Ψ+10⟩). Since emission is usu-
ally from the lowest excited state according to Kasha’s rule, emission
from alternant radicals is likely to be slow and outcompeted by non-
radiative decay. Consequently, organic radicals for OLEDs should
not be alternant hydrocarbons. These rules are consistent with, but
stronger than, the previous design rules that emissive radicals should
be non-alternant.27,100 It was previously known that D1 would usu-
ally be ∣2Ψ−10⟩ and dark, but this did not exclude the possibility of
∣2Ψ−10⟩ mixing with, and borrowing intensity102 from, higher-lying
bright excitations. However, the alternacy rules derived here show
that ∣2Ψ−10⟩ can mix only with other minus excitations, which also
have zero dipole moments with the ground state, such that after
configuration interaction, ∣2Ψ−10⟩ will remain dark.

In addition, although the alternacy rules derived here, strictly
speaking, only hold for purely hydrocarbon radicals, they are
likely to hold qualitatively for chlorinated radicals, such as the
tris-(2,4,6-trichlorophenyl)-methyl (TTM) and perchlorotriphenyl-
methyl (PTM) radicals, where the high electronegativity of chlo-
rine compared to carbon and the mismatch between its 3p
orbitals and the 2p orbitals of carbon mean that it is unlikely to
participate significantly in the electronic structure in the conjugated
system.100,101

Comparing the above-mentioned alternacy rules with the
numerical results from ExROPPP calculations on alternant hydro-
carbons presented in Sec. IV A, we see that the results of ExROPPP
are entirely consistent with these rules. This is presented in
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TABLE XII. Novel excited state interaction rules derived for alternant hydrocarbon radicals compared to those already existing
for closed-shell alternant hydrocarbons.

Rule Radical Closed-shell

1 All states belong to one of two All states belong to one of two
pseudoparity groups, plus or minus. pseudoparity groups, plus or minus.

2 Degeneracy: Degeneracy:
E(2Ψ0̄

ī ) = E(2Ψi′
0 ) E(1Ψj ′

i ) = E(1Ψi′
j )

E(2SΨj ′

i ) = E(2SΨi′
j )

E(3Ψj ′

i ) = E(3Ψi′
j )E(2TΨj ′

i ) = E(2TΨi′
j )

E(4Ψj ′

i ) = E(4Ψi′
j )

3 Plus and minus states: Plus and minus states:
∣2Ψ±0i⟩ = 1√

2
(∣2Ψ0̄

ī ⟩ ± ∣
2Ψi′

0 ⟩) ∣1Ψj ′ ,±
i ⟩ = 1√

2
(∣1Ψj ′

i ⟩ ± ∣
1Ψi′

j ⟩)
∣2SΨ±i j⟩ = 1√

2
(∣2SΨj ′

i ⟩ ± ∣
2SΨi′

j ⟩) ∣3Ψj ′ ,±
i ⟩ = 1√

2
(∣3Ψj ′

i ⟩ ± ∣
3Ψi′

j ⟩)
∣2TΨ±i j⟩ = 1√

2
(∣2TΨj ′

i ⟩ ∓ ∣
2TΨi′

j ⟩)
∣1Ψi′

i ⟩ and ∣3Ψi′
i ⟩ are plus states.∣4Ψ±i j⟩ = 1√

2
(∣4Ψj ′

i ⟩ ± ∣
4Ψi′

j ⟩)
∣2SΨi′

i ⟩ and ∣4Ψi′
i ⟩ are plus states but

∣2TΨi′
i ⟩ is a minus state.

4 ∣2Ψ0⟩ is a minus state. ∣1Ψ0⟩ is a minus state.
5 There is zero Hamiltonian interaction There is zero Hamiltonian interaction

between plus and minus states. between plus and minus states.
6 N/A ⟨1Ψ−i j∣Ĥ∣1Ψ−kl⟩ = ⟨3Ψ−i j∣Ĥ∣3Ψ−kl⟩
7 For any two arbitrary states ∣Ψu⟩ and ∣Ψv⟩, For any two arbitrary states ∣Ψu⟩ and ∣Ψv⟩,

⟨Ψu∣μ̂∣Ψv⟩may be non-zero if and only if ⟨Ψu∣μ̂∣Ψv⟩may be non-zero if and only if
∣Ψu⟩ and ∣Ψv⟩ have equal multiplicity and ∣Ψu⟩ and ∣Ψv⟩ have equal multiplicity and

opposite pseudoparity. opposite pseudoparity.
8 D1 state usually ∣2Ψ−01⟩, which is always S1 state usually ∣1Ψ1′

1 ⟩, which is usually
dark. bright.

9 E(2Ψ+0i) − E(2Ψ−0i) = 2Ki0 ≥ 0 N/A
10 Rules 1, 5, and 7 hold after configuration Rules 1, 5, and 7 hold after configuration

interaction. interaction.

Tables I–VII in Sec. I of the supplementary material, where the
energies, oscillator strengths, and CI expansion coefficients of the
ExROPPP states are tabulated.

V. CONCLUSIONS
In this article, we have combined previous ideas that adding

certain double excitations to a radical CIS calculation can lead to
spin purity24,25,27 with Pariser–Parr–Pople theory28,70–73 to obtain a
computational method for the low-lying electronically excited states
of hydrocarbon radicals. This method, which we call ExROPPP,
reproduces experimental doublet excitation energies and intensi-
ties for a series of odd alternant hydrocarbon radicals accurately
and with minimal computational effort, with a similar degree of
accuracy to the general multiconfigurational quasi-degenerate per-
turbation theory (GMC-QDPT), an accurate multiconfigurational
SCF method. In addition, using the approximations of PPP theory,
we have derived widely applicable rules for alternant hydrocarbons,

which should aid in the prediction, assignment, and interpretation
of their spectra.

There are many avenues for future research. The proof-of-
concept calculations in this paper are for hydrocarbon radicals (for
which, there already exists tested parameterization), and we plan to
extend this method to radicals containing nitrogen and chlorine,
such as the breakthrough fluorescent radical TTM-3NCz,3 sulfur
containing radicals, such as those based on thiophene,7 and non-
alternant and ionic radicals. There are possibilities of using machine
learning103 to optimize ExROPPP parameterization, especially for
heteroatoms and for quartet states, given that our initial results
suggest that ExROPPP is less accurate for quartet state energies than
doublet state energies. The ExROPPP method could be extended
to radicals with more than one unpaired electron in their ground
state,22 and the alternacy rules that we have derived for monoradi-
cals may be extendable to these systems. It is our hope that ExROPPP
can be extended to accurately and quickly simulate a wide range of
conjugated organic radicals, becoming a useful tool for rapid spectral
determination. This can then be used to design highly efficient and
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emissive radicals27 for applications such as OLEDs3 and quantum
computing.21

SUPPLEMENTARY MATERIAL

The supplementary material contains tables presenting detailed
energies, oscillator strengths/intensities, and composition of excited
states calculated by ExROPPP and GMC-QDPT and obtained from
experimental data. It also contains molecular geometries used for
the calculations and any other details of the computational methods
used in this paper.
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