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Abstract 

DNA, be y ond its canonical B-f orm double helix, adopts v arious alternativ e conf ormations, among which the i-motif, emerging in cytosine-rich 
sequences under acidic conditions, holds significant biological implications in transcription modulation and telomere biology. Despite recognizing 
the crucial role of i-motifs, predictive software for i-motif forming sequences has been limited. Addressing this gap, we introduce ‘iM-Seeker’, 
an inno v ativ e computational platf orm designed f or the prediction and e v aluation of i-motifs. iM-Seek er e xhibits the capability to identify potential 
i-motifs within DNA segments or entire genomes, calculating st abilit y scores for each predicted i-motif based on parameters such as the cyto- 
sine tracts number, loop lengths, and sequence composition. Furthermore, the w ebserv er le v erages automated machine learning (AutoML) to 
effortlessly fine-tune the optimal i-motif scoring model, incorporating user-supplied experiment al dat a and customised features. As an advanced, 
v ersatile approach, ‘iM-Seek er’ promises to adv ance genomic research, highlighting the potential of i-motifs in cell biology and therapeutic 
applications. The webserver is freely available at https://im-seeker.org . 
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eyond the canonical B-form double helix, DNA can assume
arious alternative conformations, including the triplexes,
ruciforms, G-quadruplexes, and i-motifs. These conforma-
ions, collectively referred to as non-B DNA structures, can
orm during cellular processes like replication and transcrip-
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tion ( 1 ). In 1993, researchers identified that DNA sequences
abundant in cytosines could transition into the i-motif, a form
distinct from the standard B-DNA, when exposed to acidic
environments ( 2 ,3 ). This transformation is facilitated by a
distinct hemiprotonation process of cytosine-cytosine pair-
ings, culminating in the intertwined C ·CH(+) pattern and a
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signature quadruple-helical structure. The emergence of this
structure is predominantly influenced by specific types of
cytosine-rich DNA sequences, typically marked by clusters
of cytosines interspersed with a limited number of other nu-
cleotides ( 3 ). 

The i-motif has increasingly drawn attention due to its pre-
sumed involvement in a range of complex biological functions.
It has been suggested that the i-motif functions as a molecular
switch in gene expression, a fundamental biological process,
and that specific small molecules can target the dynamic bal-
ance between the i-motif and the flexible hairpin to influence
this expression ( 4 ). This highlights the potential therapeutic
applications of targeting the i-motif for controlling gene ex-
pression ( 5 ). Beyond gene expression, connections have been
drawn between the i-motif and telomeric DNA, which is es-
sential for maintaining chromosomal stability. Furthermore,
its stability under mildly acidic conditions insinuates its pos-
sible involvement in cellular functions within such environ-
ments ( 6 ). Overall, the i-motif’s multifaceted roles encompass
gene expression modulation, telomere biology, and chromoso-
mal maintenance, emphasizing its significance in cell biology
and its potential as a therapeutic target ( 7 ). 

i-Motif structures, have been probed using a plethora of
techniques ( 8 ). While nuclear magnetic resonance (NMR)
spectroscopy and X-ray diffraction offer insights into their
unique proton spectra and high-resolution structures. UV
molecular absorption spectroscopy stands out for its routine
diagnostic potential. This method observes hyperchromicity
between 275 to 300 nm during cytosine protonation and mon-
itors absorbance shifts in the 275–295 nm range upon temper-
ature or pH variations ( 9 ,10 ). Importantly, the transition pH,
where half the population exists as i-motif and half as ran-
dom coil, is especially informative about the i-motif’s stability
and formation conditions ( 8 ). Other corroborative methods
include circular dichroism (CD), which shows characteristic i-
motif bands, synchrotron radiation circular dichroism (SRCD)
for a nuanced look at base protonation, fluorescence tech-
niques, such as FRET, and mechanical techniques like Laser
Tweezers ( 11–14 ). Additional methods, such as PAGE and
SEC for structural differentiation, Raman spectroscopy for
protonation detection, and mass spectrometry have expanded
our understanding of these captivating structures ( 15 ). 

Currently, there is a scarcity of predictive software specif-
ically designed for i-motifs, particularly in terms of effective
scoring systems. While tools such as G4-iM Grinder have the
capability to predict the presence of both G-quadruplexes and
i-motifs from sequence ( 16 ). The scoring system of G4-iM
Grinder is primarily designed G-quadruplexes, not specifically
for i-motifs. In contrast, several machine learning-based tools
have been developed for G-quadruplex prediction, including
Quadron and G4Boost ( 17 ,18 ). Quadron employs a gradient
boosting machine algorithm and sequence features to distin-
guish G4 motifs capable of forming stable structures, while
G4Boost utilizes gradient-boosted decision trees to predict G4
folding probability and stability based on sequence and struc-
tural topology. However, given the distinct biophysical prop-
erties that differentiate G-quadruplexes from i-motifs, there
is a critical need for the development of specialized i-motif
searching software. Such software should integrate experi-
mental data and specifically address the unique characteristics
of i-motif forming sequences. 

To address this gap, we introduce ‘iM-Seeker’, an auto-
mated machine learning (AutoML) based platform for the pre-
diction, scoring, and modelling of i-motifs (Figure 1 ). This sys- 
tem has been designed to predict potential i-motifs from DNA 

sequences or entire genomes by allowing the customisation 

of parameters. Moreover, leveraging AutoML methodologies,
we provide users with the capacity to fine-tune the model by 
their own datasets and to procure end-to-end AutoML models 
tailored for i-motif scoring (Figure 1 ). In summary, our plat- 
form, ‘iM-Seeker’, aims to address the existing gaps in i-motif 
predictive software by introducing an advanced, customizable 
approach. We believe that these advancements can contribute 
positively to i-motif research, potentially facilitating new ap- 
plications and insights in genomic science. 

Materials and methods 

Full-stack design of server 

The ‘iM-Seeker’ webserver is designed to handle a wide range 
of tasks, which can be categorized into two main types: (i) 
computationally intensive tasks, such as automated machine 
learning (AutoML) modelling and genome-wide i-motif pre- 
diction and (ii) less computationally demanding tasks, includ- 
ing general requests and short DNA sequence predictions.
Upon receiving a request, the server first assesses its computa- 
tional complexity and assigns the task accordingly. For com- 
putationally intensive tasks, a sophisticated task queue model 
is employed at the backend. When a task is received, the back- 
end generates a unique task identifier and returns it to the 
frontend. The task is then enqueued for processing, and its 
details, including execution status and results, are stored in 

a database. The frontend can use this unique task identifier 
to periodically check the backend for the status and final re- 
sults of the task. On the other hand, for less computationally 
demanding tasks, the backend API immediately performs the 
necessary computations upon receipt and returns the results 
promptly. The frontend also includes a loading page to pre- 
vent accidental duplicate submissions. This intricate backend 

architecture is built using ‘Python3’, ‘fastAPI’ and ‘Celery’,
with ‘Redis’ serving as the underlying database. Our servers 
are configured not to store any user data, ensuring complete 
data privacy . Additionally , all files generated by our predictive 
models are automatically deleted 30 days after creation. This 
information is displayed on our website as a reminder, and we 
encourage users to download their files within this timeframe 
to prevent data loss. 

On the frontend, both the user interface and the underlying 
logic are developed using the ‘Vue3’ framework. The frontend 

dynamically routes different structures based on task identi- 
fiers to identify and instantiate the corresponding page tem- 
plates, ensuring a seamless user experience. Furthermore, to 

maintain a smooth user experience and prevent any uninten- 
tional freezing, the frontend utilizes AJAX for asynchronous 
communication with the backend. 

Automated machine learning 

The stability of i-motif structures is influenced by a com- 
plex interplay of various features. Thus, accurately pre- 
dicting i-motif stability necessitates careful selection of rel- 
evant features, employment of an appropriate regression 

model, and optimal tuning of hyperparameters. To address 
this challenge, we developed ‘iM-Seeker AutoML’, an auto- 
mated tool that systematically explores different combina- 
tions of feature selection methods, regression models, and 
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Figure 1 . Sc hematic o v ervie w of iM-Seek er. T he diagram illustrates the tw o primar y functionalities of the ser v er: ‘P rediction’, f or direct i-motif detection 
and st abilit y scoring , and ‘AutoML’, enabling users to train custom predictive models using their o wn i-motif bioph y sical data through automated machine 
learning. Created with Biorender.com. 
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yper-parameter settings to discover the optimal configura-
ion for i-motif stability prediction (Figure 2 ). By integrat-
ng these key components into an end-to-end pipeline, iM-
eeker enables de novo discovery of high-performing i-motif
tability scoring models without the need for manual in-
ervention or prior knowledge. This automated approach
as the potential to significantly accelerate the development
f accurate i-motif stability predictors and facilitate the in-
estigation of these important non-canonical nucleic acid
tructures. 

The overall architecture of our iM-Seeker AutoML system
an be modelled as a bi-level programming problem (Figure 2 ).
i-level programming is a mathematical framework in which
ne optimisation problem is nested within another in a hierar-
hical manner. In this framework, the outer optimisation task
s referred to as the upper-level optimisation task, while the
mbedded optimisation task is known as the lower-level opti-
isation task. Mathematically, a bi-level programming prob-

em can be formulated as follows: 

maximize 
x u ∈ �d ×R n , x l ∈ R n 

F 
(
x 

u , x 

l ∗)

subject to x 

l ∗ ∈ argmax 

{
f x u 

(
x 

l 
)} (1)

here x 

u ∈ �d × R 

n and x 

l ∈ R 

n denote the upper and lower-
evel variables, respectively. In particular, the upper-level vari-
bles consist of a combination of feature selection methods
nd regression models, which guide the overarching strate-
ic decisions, including the selection of model structures and
eatures. Meanwhile, the lower-level variables focus on the
hyper-parameter settings for these models and methods, play-
ing a crucial role in fine-tuning model performance ( 19 ). F :
�d × R 

n → R and f x u : R 

n → R are the upper- and lower-
level objective functions, respectively. Here we use the co-
efficient of determination, as objective function, denoted as
R 

2 ( 20 ). Note that a bi-level programming involves nested
optimisation / decision-making tasks at both levels. For any
given x 

u , there is a corresponding pair ( x 

u , x 

l ∗) in which x 

l ∗

is an optimal or near-optimal response to x 

u . This pair forms
a viable solution to the upper-level optimization problem, as-
suming it adheres to all required constraints. 

Upper-level optimization 

The AutoML part of iM-Seeker considers multiple feature se-
lection methods as well as machine learning regression al-
gorithms (Figure 2 , Tables 1 and 2 ). In addition, we also
provide the corresponding hyper-parameters associated with
these feature selection methods and regression models, de-
tailing their characteristics in the relevant tables. The goal
of the upper-level optimization is to search for the best
combination of all possible alternatives (84 in total) for
the underlying regression task. For each candidate combina-
tion of feature selection and regression model, their corre-
sponding hyper-parameter settings are optimised via a lower-
level optimisation. At the upper level, the search of the best
combination of feature selection and regression model is
solved as a combinatorial optimisation problem as specified
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Figure 2. Automated machine learning modeling process. The schematic provides a visual overview of the ‘iM-Seeker’ framework, showcasing the 
integrated bi-le v el optimisation process f or i-motif st abilit y prediction. T he lo w er-le v el in v olv es h yper-parameter t uning via Tree-str uct ured Parzen 
Estimator (TPE), while the upper-le v el emplo y s Tabu search f or model and feature selection. T he process culminates in the e v aluation of model 
performance based on testing R 

2 values, facilitating an automated approach for predictive model packaging and deployment. Created with 
Biorender.com. 

Table 1. Ov ervie w of feature selection methods 

Label Algorithm Parameter Description 

GUS Generic Univariate Select Mode, Score_func_name, Percentile, K_best Selects features based on univariate 
statistical tests 

SFM Select From Model Estimator_choice, N_estimators, Max_depth, 
Threshold, Max_features 

Selects features based on importance 
weights from a model 

SFS Sequential Feature Select Estimator, Scoring_choice, Forward_choice, 
K_features_value, N_estimators, Max_depth 

Adds or removes features to form a 
feature subset 

RFE Recursive Feature 
Elimination 

Estimator_name, N_features_to_select, 
Max_depth 

Recursively removes features to 
minimize the feature set 

RFECV Recursive Feature 
Elimination with 
Cross-Validation 

Min_features_to_select, Scoring, 
Estimator_name, Max_depth, N_estimators, 
Estimator 

Performs RFE in a cross-validation loop 
to find the optimal number of features 

VT Variance Threshold Threshold Removes low-variance features 
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Search space 
For the upper level, the search space consists of all the valid
combinations of feature selection and regression model picked
up from the given portfolios (Tables 1 and 2 ). In practice, such
portfolios can be amended and specified by the software engi-
neers based on their preferences / requirements. 

Objective function 

Recall from the Equation ( 1 ), the objective function for the
upper level F ( x 

u , x 

l ∗) takes a combination from the port-
folio ( x 

u ) and the optimized hyper-parameter of such com-
bination ( x 

l ∗) as inputs. It then outputs the correspond-
ing training R 

2 obtained by training model for comparison.
Note that x 

l ∗ is initially unknown for a given x 

u at the
upper-level before running a lower-level optimization rou-
tine. Therefore, the objective function at upper-level opti- 
mization is constrained and determined by the lower-level 
optimization. 

Optimization algorithm 

For the upper-level optimization, we use Tabu search to serve 
as the optimizer, which is also the entry point of the optimiza- 
tion phase ( 19 ). 

Lower-level optimization 

The major purpose of the lower-level optimization is to iden- 
tify the best hyper-parameters associated with the chosen com- 
bination of the feature selection method and the regression 

model (Figure 2 , Tables 1 and 2 ). Specifically, this level is mod- 
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Table 2. Ov ervie w of machine learning models in iM-Seeker 

Label Algorithm Parameter Description 

RIDGE Ridge Alpha Linear regression with L2 regularization 
DTR Decision Tree Regressor Max_depth, Min_samples_split, 

Min_samples_leaf 
A non-parametric supervised learning 
method used for regression 

RFR Random Forest Regressor N_estimators, Max_depth, 
Min_samples_split, Min_samples_leaf 

A meta estimator that fits a number of 
classifying decision trees on various 
sub-samples of the dataset 

GBR Gradient Boosting Regressor N_estimators, Learning_rate, 
Max_depth, Min_samples_split, 
Min_samples_leaf 

A machine learning technique for 
regression problems, which produces a 
prediction model in the form of an 
ensemble of weak prediction models 

SVR Support Vector Regression C, Kernel Epsilon-Support Vector Regression 
MLPR Multi-layer Perceptron 

Regressor 
Batch_size, Alpha, Learning_rate, 
Learning_rate_init, Momentum, 
Hidden_layer_sizes, Activation, Solver 

A class of feedforward artificial neural 
network (ANN) 

ETR Extra Trees Regressor N_estimators, Max_depth, 
Min_samples_split, Min_samples_leaf 

Fits a number of randomized decision trees 
on various sub-samples of the dataset and 
uses averaging to improve the predictive 
accuracy and control over-fitting 

BR Bagging Regressor N_estimators, Max_samples, 
Max_features, Base_estimator 

A meta estimator that fits base regressors 
each on random subsets of the original 
dataset 

ABR Ada Boost Regressor Base_estimator, Max_depth, 
N_estimators, Learning_rate 

A meta estimator that begins by fitting a 
regressor on the original dataset and then 
fits additional copies of the regressor on 
the same dataset 

STR Stacking Regressor Final_estimator_name, N_estimators, 
Max_depth, Max_iter, Learning_rate, 
Min_samples_leaf 

Stacks the output of individual estimator 
and uses a regressor to compute the final 
prediction 

HGBR Hist Gradient Boosting 
Regressor 

Max_iter, Learning_rate, Max_depth, 
Min_samples_leaf 

A gradient boosting-based ensemble 
learning technique that operates on 
histograms to allow for faster learning 

XGBR XGBoost Regressor Booster, Lambda, Alpha, Subsample, 
Colsample_bytree, Max_depth, 
Min_child_weight, Eta, Gamma, 
Grow_policy 

Gradient boosted decision trees designed 
for speed and performance 

S
A  

t  

r  

d  

o  

m

O
R  

t  

u  

 

p  

t  

r  

r

O
I  

g  

c  

E  

g  

a  

(  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae315/7659304 by D

O
 N

O
T U

SE Institute of Education m
erged w

ith 9000272 user on 06 M
ay 2024
earch space 
t this level, the search space is the configuration space of

he corresponding parameters for the feature selection and
egression model picked up from the upper-level routine. In-
eed, such a configuration space might be different depending
n the chosen combination of feature selection and regression
odel (Tables 1 and 2 ). 

bjective function 

ecall from the Equation ( 1 ), when a combination of fea-
ure selection and regression model is picked up from the
pper-level routine, the objective function for the lower-level

f ( x 

l ) takes the configuration of the corresponding hyper-
arameters as the inputs ( x 

l ) and outputs the training R 

2 for
he model. The R 

2 collected from the result of the low-level
outine is finally used as the objective value at the upper-level
outine to steer the optimization. 

ptimization algorithm 

t is not uncommon that the training and evaluation of a re-
ression model is time consuming. To make our iM-Seeker
omputationally efficient, we apply the Tree-structured Parzen
stimator (TPE), a state-of-the-art Bayesian optimization al-
orithm for hyper-parameter optimzation of machine learning
lgorithms—as the optimizer for the lower-level optimization
 21 ). Note that TPE can cope with a wide range of variables
well, including integer, real, and categorical ones, which fits
precisely with our requirements. 

iM-Seeker prediction function 

The ‘iM-Seeker prediction’ function offers several adjustable
parameters (Figure 3 ), including the range of the number of cy-
tosine tracts (C-tracts), loop length, the algorithm defining the
loop, the allowance for i-motif overlap, and the option for a
greedy algorithm. By default, the C-tract range is set from 3 to
5, allowing users to specify the number of C-tracts. The loop
length can be adjusted in two ways: either by directly setting
the overall loop range, e.g. 1–12, or by independently defin-
ing the lengths of the side and middle loops. The ‘Greedy algo-
rithm’ determines the preference for longer (greedy) or shorter
(non-greedy) i-motifs, with the default set to non-greedy. Each
predicted i-motif is evaluated using a default machine learning
model, providing results including an i-motif stability score
and the predicted transition pH value ( 22 ). The aforemen-
tioned algorithm identifies the i-motif region, and to enhance
feature extraction, we have incorporated an algorithm to pre-
cisely locate the loop ( 22 ). This feature provides two settings:
striving for equal loop lengths or aiming for shorter side loops.

iM-Seeker AutoML function 

The ‘iM-Seeker AutoML’ function is a crucial function that
streamlines the process of creating a comprehensive end-to-
end predictive model for i-motif analysis (Figure 4 ). After
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Figure 3. ‘iM-Seeker Prediction’ function. A schematic representation of the i-motif prediction process, from DNA sequence input to the final prediction 
output. The process includes model selection, parameter customization, and a summary of predicted i-motifs with statistical analysis. Created with 
Biorender.com. 

Figure 4. ‘iM-Seeker AutoML’. This diagram illustrates the workflow from inputting i-motif sequences and experimental data to the final AutoML model 
verification. It details the data validation, feature selection and settings adjustment phases, concluding with a model performance graph and a prompt for 
downloading the trained machine learning model. Created with Biorender.com. 
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training the model using automated machine learning (Au-
toML), iM-Seeker AutoML encapsulates it within a self-
contained package, enabling users to easily progress from
DNA sequence input to i-motif prediction and evaluation. The
packaged dataset encompasses a variety of components: pa-
rameters for i-motif prediction including the C-tracts range
and loop length; feature names chosen both by the user and
AutoML; the corresponding extraction algorithms for these
features; matrices for feature normalization alongside their
associated parameters; and the machine learning model it-
self. These elements are subsequently transformed into byte
streams, ensuring their standardized storage. Users can up- 
load this package within the ‘iM-Seeker prediction’ function,
thereby enabling a seamless DNA to i-motif prediction and 

evaluation experience. 

Main functionality of web server 

The ‘iM-Seeker’ server, accessible at https://im-seeker.org , is 
an innovative, user-friendly computing platform dedicated to 

predicting DNA i-motif structures. It offers two main func- 
tionalities: ‘iM-Seeker Prediction’, enabling i-motif prediction 

https://im-seeker.org
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nd scoring from DNA sequences, and ‘ iM-Seeker AutoML’,
acilitating the training of i-motif predictive models using cus-
om data through automated machine learning (Figure 1 ). The
ownload page provides resources such as i-motif predictions
nd scoring for common genomes (e.g. Human, Mouse, Ara-
idopsis), default models used by the server, and model train-
ng data. To ensure optimal usability and clarity for users,
 comprehensive ‘Help’ section has been incorporated, pro-
iding detailed user guidelines. Each stage includes thorough
uidance, instructions, and rigorous validation to prevent in-
orrect configurations. 

-Motif prediction 

he ‘iM-Seeker Prediction’ function identifies potential i-
otifs in DNA sequences (Figure 3 ). The process unfolds in

wo stages: initially by specifying the DNA sequence and sub-
equently by adjusting prediction parameters. DNA fragments
r multiple gene sequences can be pasted directly into the text
nput box or uploaded from local ‘Fasta’ files. After clicking
he ‘continue’ button, the platform displays details of the de-
ected sequence, such as sequence number, count, and length. 

Within the ‘Settings’ for i-motif prediction, we provide two
odes of prediction: ‘End-to-end prediction’ and ‘Advanced
rediction’. There is no need for any complex parameteriza-
ion in ‘End-to-end prediction’, we will use the common pre-
iction parameters and default trained scoring model ( 22 ).
dditionally, end-to-end prediction packages obtained in Au-

oML can be uploaded here to enable custom end-to-end pre-
iction. ‘Advanced prediction’ allows users to customize pro-
esses, including prediction parameters (e.g. C-tracts, loop
ength) and selecting specific models. 

Upon selecting the ‘Prediction’ function, the provided DNA
equence and specified settings are promptly processed on the
erver. As genome-level predictions can be time-consuming,
hese tasks are systematically queued. To facilitate monitor-
ng of the task’s progress, a unique task ID and related hyper-
ink are provided, revealing a progress bar when processing is
till underway. This hyperlink can be securely stored, and re-
ults are readily accessible through its activation within a 30-
ay window following successful prediction. Upon task com-
letion, a comprehensive table is displayed, showcasing the
redicted i-motifs along with their pertinent attributes such
s name, position, length, and sequence, with special atten-
ion given to C-tracts and loop regions. Additionally, each
redicted i-motif is rigorously evaluated using a default ma-
hine learning model, providing insightful results including an
-motif prediction score and the predicted transition pH value.
he results, displayed clearly and precisely, can be enlarged to

ull screen for detailed examination, and there is an option to
ownload the associated data for further analysis or record-
eeping. 

utomated machine learning modelling for i-motifs 

 key function of the iM-Seeker server is automated ma-
hine learning (AutoML) (Figure 4 ). The current offerings
nclude i-motif scoring models derived from UV molecular
bsorption-based i-motif transition pH data, labelled as the
Default’ model ( 22 ). Recognizing the potential limitations of
his model in handling novel data or unique experimental con-
itions, ‘iM-Seeker AutoML’ allows for the integration of new
ata with existing datasets or the creation of entirely new
odels. This new dataset can be derived not only from the
transition pH values but also from any quantifiable parame-
ters associated with i-motif sequences, such as melting points
under different pH conditions. 

The ‘iM-Seeker AutoML’ function is meticulously designed
to combine the creation of complex regression models, tar-
geted feature extraction, and precise prediction algorithms
into a comprehensive ‘end-to-end’ predictive system, tailored
for specific dataset applications (Figure 4 ). The procedure be-
gins with the input of DNA sequences representing i-motifs,
along with their relevant characteristics such as transition pH
and melting point, all formatted in CSV (comma-separated
values). To ensure data integrity, the system thoroughly re-
evaluates the input i-motif sequences, ensuring alignment with
established i-motif prediction standards. Leveraging prior
knowledge, 33 DNA i-motif-related features have been pre-
determined. The framework provides the option to manually
select essential features or to utilize the model’s automated
feature selection mechanism. 

In the AutoML setup, the main focus is on defining the
number of rounds and the scope of the model optimization
search, including the number of computational rounds, itera-
tions, model selection, and feature selection algorithms. These
parameters are primarily used to regulate the balance between
model runtime and performance. For user convenience, there
are four preset parameter combinations to choose from, rang-
ing from ‘Swift Basic’, which achieves average model quality
in a few minutes, to ‘Best Performance’, which may take a
few days but yields the optimal model. For those seeking more
control, advanced settings allow for precise hyper-parameter
fine-tuning, with detailed explanations provided in the Meth-
ods section. Initiating model training is straightforward, and
given its resource-intensive nature, each training task is as-
signed a unique ID for progress tracking. Once completed, the
model’s performance metrics become accessible, alongside op-
tions to download the model, view statistical plots, and anal-
yse training processes. 

The AutoML configuration emphasizes carefully specifying
the extent and depth of model optimization. This involves
setting the number of optimization cycles, iterations, model
selection, and feature selection algorithms. These parameters
are crucial for achieving a balance between the model’s exe-
cution time and its performance. The system offers four pre-
configured parameter sets, ranging from ‘Swift Basic’ for rapid
acquisition of average model quality in minutes, to ‘Best Per-
formance’, a more time-intensive option that delivers the high-
est quality model over several days. For detailed control, ad-
vanced customisation options are available for precise hyper-
parameter adjustments, with extensive documentation pro-
vided in the Methods section. The initiation of model train-
ing is designed to be efficient, and given its demanding na-
ture, each training instance is assigned a unique identifier for
tracking progress. Upon completion, the system provides ac-
cess to a range of analytical tools, including performance met-
rics, options for model downloading, visual statistical repre-
sentations, and in-depth insights into the training process. 

i-Motif densities in different species 

Utilizing the comprehensive prediction capabilities of iM-
Seeker server, we conducted a systematic analysis and scoring
of DNA i-motifs across a diverse range of 30 species, encom-
passing mammals, plants, birds, fungi, and bacteria (Figure 5
and Table 3 ). Our methodology involved calculating the num-
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Figure 5. Statistics of DNA i-motifs in 30 species. ( A ) i-motif densities per million bases (iPM) across 30 species. ( B ) R elativ e a v erage prediction scores 
of i-motifs in 30 species, obtained by normalizing the average scores of all predicted i-motifs in each species to a 0–1 scale. This normalization facilitates 
comparison across different datasets. Among the 30 species, four species with significant changes in rankings are highlighted. 
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ber of i-motifs per million nucleotides (iPM) for each species.
This analysis revealed significant variability in i-motif densi-
ties. Notably, the genomes of the Canis lupus familiaris (do-
mestic dog), Xenopus tropicalis (frog), and Canis lupus dingo
(dingo) exhibited the highest i-motif densities, whereas Es-
c heric hia coli and Saccharomyces cerevisiae (yeast) displayed
the lowest. 

Furthermore, we evaluated these predicted i-motifs us-
ing the default scoring model of iM-Seeker, uncovering a
notable divergence from the i-motif density rankings. In-
triguingly, Hordeum vulgare (barley), yeast and Drosophila
melanogaster (fruit fly), despite their lower i-motif density
rankings at 19th, 22nd and 30th respectively, emerged with
the top three average i-motif stability scores. This indicates
a relative stability of i-motifs in these species. Such dispari-
ties in i-motif stability and density among species might be
attributable to variations in their cellular environments and
the distinct biological functions of the i-motifs within these
contexts. 

Other functions 

iM-Seeker performs i-motif prediction across standard
genomes using various parameters. Relevant prediction data is
accessible on the download page. By entering the species name
or specific parameters in the search field, the system intuitively
filters and presents pertinent data. Comprehensive guidelines
for site navigation, along with in-depth explanations of i-motif
prediction and AutoML parameters, are readily available on
the help page. 
Discussion 

The diversity of DNA structures beyond the conventional B- 
form has always been of interest, with particular emphasis on 

non-B structures like the i-motif. The discovery of the i-motif,
which forms from cytosine-rich sequences under acidic condi- 
tions, revealed a unique quadruple-helical structure stabilized 

by hemiprotonated cytosine-cytosine base pairs. The poten- 
tial implications of the i-motif in biological functions such as 
transcription modulation and telomere biology are profound,
suggesting its value not only in understanding cell biology but 
also as a therapeutic target. 

Addressing the previously identified gap in predictive soft- 
ware for i-motifs, ‘iM-Seeker’ emerges as a significant ad- 
vancement, substantially contributing to the field of genomic 
science. This sophisticated platform uniquely combines pre- 
cision, versatility, and user-centric design to facilitate accu- 
rate predictions, comprehensive scoring, and robust mod- 
elling of i-motifs. Underpinned by a meticulously curated 

dataset and cutting-edge machine learning methodologies,
‘iM-Seeker’ demonstrates an exceptional level of precision 

and adaptability. 
The platform’s intuitive interface ensures that users across 

various expertise levels can seamlessly navigate its extensive 
features and resources. The ‘iM-Seeker Prediction’ functional- 
ity empowers users to identify potential i-motifs within DNA 

sequences, offering a streamlined process that is both efficient 
and accurate. The ‘iM-Seeker AutoML’ functionality is a fully 
automated tool designed for training predictive models cus- 
tomized to the unique characteristics of each dataset. By bridg- 
ing the gap in i-motif research and offering a platform, ‘iM- 
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Table 3. i-Motif statistic of 30 species 

Categories General name Latin name Genome version C density iPM Average score 

Mammal Blue whale Balaenoptera musculus mBalMus1.v2 0.202 205 .523 0.401 
Cow Bos taurus ARS-UCD1.2 0.209 209 .955 0.425 
Dingo Canis lupus dingo ASM325472v1 0.206 242 .257 0.400 
Cat Felis catus Felis_catus_9.0 0.205 232 .422 0.398 
Dog Canis lupus familiaris ROS_Cfam_1.0 0.205 249 .056 0.399 
Dromedary Camelus dromedarius CamDro2 0.207 201 .155 0.400 
Giant panda Ailuropoda melanoleuca ASM200744v2 0.205 211 .594 0.406 
Goat Capra hircus ARS1 0.210 203 .910 0.415 
Guinea pig Cavia porcellus Cavpor3.0 0.195 93 .062 0.417 
Horse Equus caballus EquCab3.0 0.207 163 .384 0.403 
House mouse Mus musculus GRCm39 0.203 183 .174 0.393 
Human Homo sapiens GRCh38 0.194 124 .276 0.404 
Pig Sus scrofa Sscrofa11.1 0.207 175 .282 0.388 
Rabbit Oryctolagus cuniculus OryCun2.0 0.203 171 .631 0.406 
Rat Rattus norvegicus mRatBN7.2 0.208 164 .029 0.392 

Plant Arabidopsis Arabidopsis thaliana TAIR10 0.180 16 .287 0.397 
Barley Hordeum vulgare MorexV3 0.222 120 .359 0.445 
Maize Zea mays Zm-B73 0.234 114 .865 0.421 
Moss Physcomitrium patens Phypa V3 0.166 27 .428 0.392 
Rapeseed Br assica r apa Brapa 1.0 0.169 21 .499 0.377 
Rice Oryza sativa IRGSP-1.0 0.218 121 .502 0.416 
Wheat Triticum aestivum IWGSC 0.226 104 .086 0.433 

Bird Chicken Gallus gallus GRCg7b 0.210 190 .400 0.399 
Mallard Anas platyrhynchos ASM874695v1 0.209 197 .513 0.414 

Nematode C. elegans Caenorhabditis elegans WBcel235 0.177 25 .407 0.434 
Bacteria E. coli Esc heric hia coli ASM584v2 0.254 15 .081 0.366 
Amphibian Frog Xenopus tropicalis UCB_Xtro_10.0 0.203 244 .626 0.406 
Insect Fruit Fly Drosophila melanogaster BDGP6.32 0.208 100 .107 0.442 
Fungus Yeast Saccharomyces cerevisiae R64-1-1 0.191 7 .239 0.446 
Fish Zebrafish Danio rerio GRCz11 0.183 38 .812 0.378 

S  

m

D

i  

p  

i

A

T  

I  

(  

C  

t

F

U  

s  

Y  

s  

c  

z  

F  

H  

M  

l  

(  

[

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae315/7659304 by D

O
 N

O
T U

SE Institute of Education m
erged w

ith 9000272 user on 06 M
ay 2024
eeker’ is poised to catalyse a new era of insights and advance-
ents in genomic science. 

ata availability 

M-Seeker is a freely accessible web server designed for the
rediction and evaluation of i-motifs in DNA sequences. The
M-Seeker server is available at https://im-seeker.org . 
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