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Highlights 13 

 Microplane-based anisotropic damage model incorporating maximum tensile stress criterion 14 

and Mohr-Coulomb criterion is proposed.  15 

 Peak strength and elastic modulus vary with the preferred crack/damage angles.  16 

 Fracture pattern of brittle rock and the effect of intermediate principal stress in true triaxial 17 

compressive tests is numerically replicated. 18 

Abstract 19 

Anisotropy is an important property that is widely present in crustal rocks. Efforts have been devoted 20 

to providing a constitutive model that can describe both inherent and stress-induced anisotropy in 21 

rock. Different from classic models, that are based on stress invariants or strain tensors, we propose 22 

here an anisotropic damage microplane model to capture the characteristics of rock properties in 23 

different orientations (i.e. their anisotropy). The basic idea is to couple continuum damage 24 

mechanics with the classic microplane model. The stress tensor in the model is dependent on the 25 

integration of microplane stresses in all orientations. The damage state of any element in the model 26 

is determined by the microplane that satisfies the maximum tensile stress criterion or Mohr-27 

Coulomb criterion. An ellipsoidal function was used to characterize the failure strength, where the 28 
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orientation of the failure plane changes with the preferred orientation of defects in the rock. The 29 

proposed model is validated against laboratory experiments performed on brittle material with 30 

orientated cracks and granite under true triaxial compression. The fracture pattern and the effect of 31 

the intermediate principal stress are numerically predicted by our anisotropic damage model, and 32 

we discuss relationships between the damage evolution and the anisotropy of the rock under true 33 

triaxial compression. The proposed numerical model, based on microplane theory, offers a new 34 

approach to analyzing the effect of crack orientation on the deformation and fracture of brittle rock. 35 

Keywords: Brittle rocks, anisotropy, microplane model, numerical simulation, intermediate 36 

principal stress, fracture pattern 37 

Notation 38 

𝜀𝑖𝑗, 𝜎𝑖𝑗 Strain and stress tensor 

𝜀𝑁, 𝜀𝑇 Normal and tangential strain in microplane 

𝜀𝑀, 𝜀𝐿 Two components of the tangential strain in microplane 

𝑛𝑖, 𝑛𝑗 Unit normal vector, 𝑖, 𝑗 = 1,2,3. 

𝑙𝑖, 𝑙𝑗, 𝑚𝑖, 𝑚𝑗 Components of unit tangential vector, 𝑖, 𝑗 = 1,2,3. 

𝐸𝑁, 𝐸𝑇 Normal and tangential elastic modulus 

ν Poisson’s ratio 

Ω Surface of unit sphere 

k, kth Microplane number 

𝜔𝑘 Integration weights of kth microplane 

𝑁𝑚 Total number of microplanes 

u Scale parameter of elements 

𝑢0 Average parameter of elements 

w Heterogeneity index 

𝜎𝑁
𝑘 , 𝜎𝑇

𝑘 Normal stress and tangential stress of kth microplane  

𝜎𝑡0, 𝜎𝑐0 Ultimate tensile strength and compression strength 

𝑆0 Ultimate strength of element 

𝜃𝑓, 𝑐0 Friction angle and cohesion 

𝐸, 𝐸′ Undamaged and effective elastic modulus 

D, Dt, Dc Damage variable, tensile damage, shear damage under compression 

𝜀𝑡0, 𝜀𝑐0 Ultimate strain corresponding to the 𝜎𝑡0 and 𝜎𝑐0 

η Residual strength coefficient (RSC) 

AC, a, b, c Anisotropy coefficient 

𝜃𝑥 Angle between the preferred orientation and X-axis 
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1. Introduction 39 

When a rock is stressed, microcracks can nucleate within or between the grains or crystals 40 

forming the rock. If the stress on the rock is increased further, these microcracks can extend and 41 

coalesce, eventually forming a macroscopic fracture that results in rock failure (Sammis and Ashby 42 

1986, Ashby and Sammis 1990). The microcracks that grow in response to an applied stress are 43 

typically aligned parallel or subparallel to the direction of the maximum principal stress, 44 

progressively creating an anisotropy within the rock (Menéndez et al. 1996, Wu et al. 2000, Rizzo 45 

et al. 2018). The anisotropy that develops in response to differential loading may also be influenced 46 

by any preexisting anisotropy in the rock, such as a bedding, laminations, foliations, a preferred 47 

orientation of preexisting microcracks, or a grain or pore shape preferred orientation (Nara and 48 

Kaneko 2006). For example, a pore shape preferred orientation has been shown to influence the 49 

angle of compaction bands that form in porous volcanic rock (Heap et al. 2022).  50 

The presence of microcracks reduces elastic wave velocities (O'Connell and Budiansky 1974). 51 

Thus, the development of an anisotropic network of microcracks (opening, closure, or shear 52 

displacement) can be monitored by measuring variations in elastic wave velocities (Schubnel and 53 

Guéguen 2003, Schubnel et al. 2006). This method has been previously used to monitor damage in, 54 

for sample, sandstone (Sayers et al. 1990, Sayers and Munster 1991, Shirole et al. 2020), granite 55 

(Benson et al. 2006), limestone (Gupta 1973), and serpentinites (David et al. 2018). The 56 

development of a microcrack anisotropy is more pronounced in experiments in which the stress is 57 

not applied hydrostatically (i.e. a differential stress) (Stuart et al. 1993, Browning et al. 2017, 58 

Browning et al. 2018). Rock is also considered to demonstrate a stress-memory effect (such as the 59 

so-called Kaiser effect; Lavrov 2003, Daoud et al. 2020), in which acoustic emissions (AE; 60 

commonly used as a proxy for the initiation of microcracks) are only observed in any stress cycle 61 

once the maximum stress in the previous cycle has been exceeded (Lavrov 2001, Heap et al. 2009, 62 

2010, Cerfontaine and Collin 2018, Daoud et al. 2020). However, the rotation of the principal stress 63 

in cyclic, sequential, true triaxial loading tests (CSTT) leads to new AE output at lower stress levels 64 

than previously observed. These new microcracks are not randomly orientated and their orientation 65 

depends on the direction of the maximum compressive stress. Thus, it could be considered 66 
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unsuitable to analyze the damage of brittle rock according to stress invariants (Browning et al. 2018).  67 

A second-rank and fourth-rank crack density tensor can characterize anisotropic crack 68 

networks in rock and fit elastic wave velocity data (Sayers and Kachanov 1995). Phenomenological 69 

models and micromechanical approaches are two families of damage models that have been 70 

developed for the description of induced damage. The concept of continuum damage mechanics 71 

based on the principle of effective stress was introduced using a scalar damage variable. However, 72 

in phenomenological models, it is necessary to introduce vector or tensor damage variables to reflect 73 

anisotropic damage. To this end, Murakami (1983) extended the theory to describe the anisotropic 74 

creep damage state using a second rank symmetric damage tensor. Chow and Wang (1987) used a 75 

symmetric fourth rank tensor by taking anisotropic continuum damage into account in the principal 76 

coordinate system. In element-based modelling it is intuitive to provide a measure of element 77 

surface area change during deformation, which can be defined as the ratio of the damaged part of 78 

the element in the model to the total area. Macroscopic damage models based on a thermodynamic 79 

framework also present an attractive approach to model anisotropic damage development. Pellet et 80 

al. (2005), for example, replaced the scalar damage variable with a second rank tensor and 81 

introduced an anisotropic parameter β to describe the behavior of anisotropic viscoplastic rock based 82 

on Lemaitre’s model. Shao et al. (2006) focused on the modeling of induced anisotropic damage 83 

during external loading and defined the macroscopic damage tensor as the variation of crack density 84 

in each orientation. However, it is challenging to capture damage orientation using stress and strain 85 

tensors with orthotropic invariants. In contrast, micromechanical approaches use the idea of a 86 

representative volume element (RVE) to study elastic solids containing inclusions, cavities, or 87 

cracks (Nemat-Nasser and Hori 2013). A microscopic-based model to describe the process of 88 

microcrack initiation, propagation, and the time dependent behavior of brittle-elastic rock under 89 

compression was constructed by Kachanov (1982a, 1982b, 1982c). The model of Kachanov (1982a, 90 

1982b, 1982c) can consider frictional sliding and branched microcracks, and the averaging of crack 91 

orientations described the stress-induced anisotropy. Li and Wang (2004) proposed a 3D cohesive 92 

isotropic damage model that uses the idea of RVE. The model of Li and Wang (2004) can model 93 

material degradation and failure due to cohesive microcrack growth. However, the use of these 94 
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models is often limited by the complexity of the calculation process caused by a variety of damage 95 

mechanisms.  96 

The concept of microplane models can be used to characterize damage orientation. The concept 97 

is based on the initial idea of  slip theory of plasticity used in metal (Batdorf and Budiansky 1949) 98 

and rock-like materials (Zienkiewicz and Pande 1977). Bazant and colleagues extended the 99 

microplane model approach to describe the softening behavior of quasi-brittle materials such as 100 

concrete (Bazant and Oh 1985, Bazant and Kim 1986, Bazant and Prat 1988, Bazant et al. 1996, 101 

Bazant et al. 2000, Bazant and Jirásek 2002, Bazant and Zi 2003). This approach is different from 102 

the method that constructs constitutive models using macroscopic continuum damage mechanics, 103 

fracturing theory, or stress-strain tensors and their invariants. These microplanes may be imagined 104 

to represent damage planes or weak planes in mesoscale structures, such as layers or defects within 105 

a material (Jin et al. 2016). The microplane model describes the constitutive behavior of a material 106 

using stress and strain vectors that act in all possible orientations on the RVE in the material. This 107 

approach circumvents the limitation of stress and strain invariants (the relationship can be automatic 108 

following integration), and the macroscopic strain or stress tensors are considered to be a summation 109 

of all these vectors under the assumption of a static or kinematic constraint (Bazant et al. 1996). The 110 

advantage of the microplane model is that it is easier to make anisotropic generalizations. 111 

Microplane models can also be used to model the creep of anisotropic clay (Bazant and Kim 1986, 112 

Bazant and Prat 1987). Based on the assumption of a parallel coupling between joints and rock, 113 

Chen and Bazant (2014) presented a microplane model for the anisotropic behavior of a jointed 114 

specimen. When an anisotropic model (Li et al. 2019a) coupled with a spherocylindrical microplane 115 

constitutive model (Li et al. 2017) and Kelvin chain was introduced into finite element analysis, the 116 

numerical simulations agreed with the experimental results. The features of the microplane model, 117 

and its differences and similarities with other approaches, was described in detail by Bažant (1999) 118 

and Brocca and Bazant (2000). The concrete and isotropic rock used in classical microplane models 119 

(Bazant and Zi 2003) were characterized by 29 parameters, most of which are difficult to obtain 120 

from laboratory experiments.   121 

The damage process of rock can be regarded as the reduction of the effective strength of an 122 
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element during loading, which leads to a local stress concentration and can promote macroscopic 123 

failure. We also note that damage is anisotropic and will also depend on the initial microstructure of 124 

the rock. In this paper, the advantages of the microplane model were incorporated in a damage model 125 

based on continuum damage mechanics. The basic idea of the model is that all of the damage in 126 

each orientation of an element in the material can interact and damage occurs in one direction and 127 

is inhibited in the other directions. The relationship between the stress and strain on the microplanes 128 

also satisfies the elastic-brittle damage constitutive function used in Xu et al. (2021b), and the yield 129 

function depends on the normal and tangential strain of the microplanes. This model is proposed to 130 

characterize the anisotropic mechanical behavior, damage evolution, and failure mode of 131 

sedimentary rock in the framework of continuum mechanics.  132 

2. Anisotropic damage-based microplane model 133 

2.1 Brief introduction to the microplane model  134 

It is first necessary to introduce the framework of the microplane model which has been used 135 

to simulate the mechanical behavior of quasi-brittle materials such as concrete, soil, rock, and fiber 136 

composites, etc. The model contains planes of many different orientations called microplanes 137 

(Brocca and Bazant 2000). Superimposing stress-strain vectors on these microplanes of different 138 

orientations will obtain the usual macroscopic stress and strain tensors that affect the macroscopic 139 

material behavior. The direction of a particular microplane can be imaged as the vector from the 140 

center of a sphere to its outer edge, as shown in Fig. 1a (the outer edge of the sphere is represented 141 

by the blue area in Fig. 1a). There are many advanced microplane models, such as M7 (Caner and 142 

Bazant 2013a, 2013b). However, these advanced models concentrate on the calibration and 143 

verification of experiments using many material parameters. 144 

Because of the limitation of computing capacity, the optimal integration is performed using a 145 

regular distribution of the integration points over the spherical surface. A regular polyhedron is used 146 

to approximate the sphere (Fig. 1b). It is noted that the regular polyhedron is centrosymmetric, and 147 

so the results can be expressed as double of the integration on the hemispherical surface (Bazant 148 

and Oh 1985). One of the integrations in the microplane model based on the regular polyhedron is 149 

shown in  150 

Fig. 1b, which has 12 vertexes and 30 edges. Therefore, the total number of integration points 151 

in the regular polyhedron shown in Fig. 1b is 2×21. As a result, only 21 partial differential equations 152 



 

7 

 

are required to accurately describe the behavior of this element. 153 

For a generic kth microplane, the microplane strain is the projection of the strain tensor as 154 

shown in  155 

Fig. 1c. The basic hypothesis is that the strain 𝜀𝑁 on the microplane is the projection of the 156 

macroscopic strain tensor 𝜀𝑖𝑗. The relationship between the unit vector 𝑛𝑖, normal strain 𝜀𝑁, and 157 

strain tensor 𝜀𝑖𝑗 is given by Bazant et al. (1996): 158 

 
N ij ij i j ijN n n     (1) 159 

where repeated indices imply summation over , 1, 2,3i j  . The similar relationship in tangential 160 

strain is given by:  161 
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The rate form is selected in the present study to characterize the elastic response of the material 163 

on the microplane level as follows: 164 
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where the σ𝑁  is normal stress, σ𝑀  and σ𝐿  are tangential stresses, and E𝑁  and E𝑇  are microplane 166 

moduli related to the macroscopic elastic modulus E and Poisson’s ratio ν as follows: 167 

 
(1 4 )
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1 2 1

N T N
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E E E

v






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 
 (4) 168 

Under the hypothesis of the kinematic constraint, the microplane strain is the projections 169 

of the strain tensor ε𝑖𝑗, but the microplane stress is not equal to the projections of the macroscopic 170 

stress tensor 𝜎𝑖𝑗. Thus, static equilibrium is applied by the principle of virtual work with reference 171 

to the surface Ω of a unit sphere. The basic equilibrium equation should consider any variation, 𝛿𝜀𝑖𝑗, 172 

and was introduced by Bazant et al. (1996): 173 
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where k is the microplane number (or a chosen set of integration points representing orientations 175 

defined by unit vectors 𝑛𝑖), 𝑁𝑚 is the total number of the microplanes, and 𝜔𝑘 is the integration 176 

weight. This means that macroscopic stress-strain relations can be derived by the summation of the 177 

contributions from the individual microplane systems. 178 

2.2 Heterogeneity of rock 179 

Microstructural heterogeneities induced by the size and/or shape of grains or pores affect the 180 

physical and mechanical properties of rock (Baud et al. 2005, Louis et al. 2009, Griffiths et al. 2017). 181 

Hence, either the Weibull distribution, normal distribution, or average distribution functions are 182 

usually used to generate element properties randomly and automatically to describe the physical and 183 

mechanical properties of mesoscopic rock. The Weibull distribution function has been shown to 184 

well describe the mechanical properties of heterogeneous rock (Zhou et al. 2020, Xu et al. 2021b). 185 

In this way, mesoscale numerical models are able to encompass macroscopic plasticity because the 186 

elastic modulus of the elements in the model will have a relatively narrow distribution (Liang et al. 187 

2007, Liang et al. 2008). A smooth stress-strain curve can be obtained according to the statistical 188 

distribution. The relevant equation can be written as follows: 189 

 0

( )
1

0 0

( ) ( )

wu

uww u
f u e

u u


  (6) 190 

where 𝑢  is the scale parameter of an individual element (elastic modulus, strength, and 191 

cohesion in this paper), 𝑢0  is parameter related to the average value of elements, and 𝑤  is the 192 

heterogeneity index. The probability density distribution with different heterogeneity indices is 193 

shown in 194 

Fig. 2. As the heterogeneity index increases, the parameter in question will have an increasingly 195 

narrower distribution of values (Fig. 2).   196 

Different from the microplane model that applies an exponential function on each microplane 197 

to characterize the stress (𝜎𝑖) − strain (𝜀𝑖) behavior (Bazant et al. 2000), the non-linear behavior 198 

characterized by the Weibull distribution and damage criterion can simplify the constitutive 199 

relationship on the microplane (Tang 1997).  200 

2.3 Damage evolution of the microplane model 201 
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The classic microplane model uses the stress-strain boundary to describe the non-linear 202 

behavior of material. The advantage of this concept is that the function relating the components of 203 

microplane stress (𝜎𝑁 , 𝜎𝑀  and 𝜎𝐿 ) and microplane strain (𝜀𝑁 , 𝜀𝑀  and 𝜀𝐿 ) can be established 204 

independently. Using this concept, the model can describe the macroscopic, anisotropic, inelastic, 205 

and nonlinear behavior of rock resulting from the micromechanical mechanisms of friction, slip, 206 

and opening of cracks. The stress boundary will not be reached at the same loading step because the 207 

stress states on each microplane are different, which provides a smooth macroscopic stress-strain 208 

relation (Li et al. 2017). However, the non-linear behavior of brittle rock in this study was described 209 

using the heterogeneity and damage constitutive equations, described in the previous section. We 210 

consider here that the brittle rock will fail when the microplane stress exceeds a threshold that 211 

depends on the microplane stress. The response of the material on the microplane is elastic when 212 

the microplane stress does not exceed the specified threshold, and the microplane stress will 213 

decrease when it exceeds the threshold. Based on this, we introduce a damage criterion to describe 214 

the mechanical behavior of the quasi-brittle material. 215 

For tensile damage in the model, it can be considered that the element is damaged when the 216 

microplane stress satisfies the damage criterion, and that the crack propagates along the direction of 217 

this microplane. When the elements are under tension (𝜎𝑁 ≥ 0), the damage criterion is given by: 218 

 
1 0max[ ]k

N tf     (7) 219 

where max⁡[𝜎𝑁
𝑘] is the maximum normal stress and 𝜎𝑡0 is the tensile strength of the kth microplane 220 

of an element. The maximum stress of the element is the maximum of the normal stress on a kth 221 

microplane in all directions.  222 

When the element is under compression (𝜎𝑁 < 0), the damaged microplane can be assumed to 223 

be governed by the sliding crack model (Stevens and Holcomb 1980) and the Mohr-Coulomb law 224 

can describe the relation between the normal stress and the shear stress. For compressive and shear 225 

damage in the microplane model, it can be considered that the element is damaged when the normal 226 

stress 𝜎𝑁 and tangential stress 𝜎𝑇 on the kth microplane of an element satisfies the damage criterion. 227 

The equation can be written as follows: 228 

 2 0tank k

N f Tf c      (8) 229 
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where 𝜎𝑁
𝑘 and 𝜎𝑇

𝑘 are normal and tangential stress of the kth microplane of an element, respectively, 230 

and 𝜃𝑓 and 𝑐0 are friction angle and cohesion, respectively. Tensile damage is preferred when the 231 

microplane system is under tension and compression simultaneously. 232 

A geometric damage tensor based on the microplane model was discussed by Carol et al. (1991). 233 

However, damage on the microplane in this study was a scalar, and occurred when the damage 234 

criterion (𝑓1 ≥ 0  or 𝑓2 ≥ 0 ) was satisfied. We consider here that the direction of microcrack 235 

propagation has only one preferred orientation. Therefore, under the framework of microplane 236 

theory, the macro damage of an element is in one direction only. 237 

The type of damage on the microplane (tensile damage 𝐷𝑡 and shear damage 𝐷𝑐) depends on 238 

which damage criterion 𝑓1  or 𝑓2  is satisfied first. The relationship between the elastic modulus 239 

reduction and the microplane damage is given by continuum damage mechanics: 240 

 ' (1 )E D E   (9) 241 

where E’ is the effective elastic modulus and E is the undamaged elastic modulus. The elastic 242 

modulus on each microplane can be divided according to Eq. (4). The damage D is divided into the 243 

damage resulting from tension 𝐷𝑡 and the damage resulting from compression 𝐷𝑐.  As shown in  244 

Fig. 3, the normal microplane stress 𝜎𝑁
𝑘 increases linearly, but it will drop when the damage criterion 245 

𝑓1 is satisfied when the material is under tension (𝜎𝑁
𝑘 ≥ 0). Under the compressive state (𝜎𝑁

𝑘 < 0), 246 

the microplane stress threshold is controlled by both the normal stress and tangential stress, and it 247 

is damaged when the function 𝑓2 is satisfied. The gradient of microplane stress 𝜎𝑁
𝑘 and strain 𝜀𝑁

𝑘  is 248 

the elastic modulus 𝐸𝑁 on the kth microplane. In addition, the stress or strain state is symmetrical 249 

about the center of the sphere and only half of integral points need be calculated by partial 250 

differential equations. Thus, the damaged microplane is only calculated at each step in a microplane 251 

system. Damage can be described by the kth microplane: 252 
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where η is the residual strength coefficient (RSC), which represents the magnitude of stress 255 
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reduction after damage. 𝜎𝑡0  and 𝜎𝑐0  are assigned by the input parameter strength 𝑆0 . The ratio 256 

between 𝜎𝑐0 and 𝜎𝑡0 is the ratio of the compressive to tensile strength (the CT ratio). 𝜀𝑡0, 𝜀𝑐0 is the 257 

ultimate strain corresponding to the 𝜎𝑡0 and 𝜎𝑐0. 258 

It is reasonable to characterize the macroscopic second rank or higher rank damage tensor using 259 

a projection tensor, similar to the relation between the microplane strain and macroscopic strain 260 

tensor. As we have mentioned before, crack propagation in an element only develops along the 261 

preferred orientation. The microplane that first satisfies the damage function is considered to 262 

influence the degradation of the corresponding element mechanical parameters. Thus, the stress or 263 

strain on the microplanes is compared to each other to confirm that the element is damaged when a 264 

microplane satisfies the damage criterion. We assume that the damage on the microplane is coupled 265 

with the microplane stress and strain. However, we also assume that microplane damage 266 

(microcrack) interaction can be neglected so that tractions on the microplanes can be calculated as 267 

induced by externally applied stresses. The macroscopic damage in the numerical model is taken 268 

into account by a self-consistent method that considers the damage as embedded into the effective 269 

elastic properties. 270 

2.4 Characterization of the anisotropy 271 

Anisotropy in rock can be divided into inherent anisotropy and stress induced anisotropy which 272 

are widely existed in rocks(Barton and Quadros 2014). Inherent anisotropy in rocks can be caused 273 

by weak planes (preferred orientation of microcracks, bedding plane, grain boundary, etc.). 274 

Establishment of the anisotropic numerical model for granite is shown in  275 

 276 

Fig. 4. The local micrograph of a granite block is showed in  277 

 278 

Fig. 4a. Then we use the FracPaQ (Healy et al. 2017) to characteristize the properties such as 279 

orientations, size and spatial distribution of fractures and grain boundaries in the local micrograph 280 

( 281 

 282 

Fig. 4b). Although the granite does not show the strong anisotropy at macroscope like shale, 283 
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the result of FracPaQ quantification of fractures and grain boundary in local micrograph of granite 284 

show the correlation of direction in  285 

 286 

Fig. 4 c. Thus, the basic tetrahedral elements in 3D numerical model can be considered as the 287 

anisotropic continuum to simulate the anisotropic properties of rock. Direction dependence of model 288 

is due to the inhomogeneous distribution of the microplane system (Huang et al. 2016). Based on 289 

this, ellipsoid is introduced to characterize the anisotropy in rocks by directionally changing the 290 

weight in the integral scheme ( 291 

 292 

Fig. 4d).  Since the macroscopic stress tensor is calculated applying integration of finite number of 293 

microplanes in the frame of microplane system, each microplane will give different feedback to the 294 

stress (Bažant and Oh 1986, Li et al. 2016), and thus it can simulate the stress-induced anisotropy 295 

of rock. 296 

 An anisotropy coefficient (AC) is introduced to describe the preferred orientation in the rock. 297 

This coefficient is defined as the distance from the center of the ellipsoid to the microplane on the 298 

ellipsoid. The physical meaning of the ellipsoid can be regarded as the rock mechanical properties 299 

in different directions. The flaws are contained in an isotropic elastic material but the strength of an 300 

element is controlled by the AC. Each microplane is a unit vector 𝑛𝑖
𝑘 = (𝑛1

𝑘, 𝑛2
𝑘 , 𝑛3

𝑘), so the space 301 

line corresponding to the kth microplane can be described as: 302 

 

1 2 3

k k k

x y z

n n n
   (12) 303 

And the spatial strength of the rock element can be described as: 304 

 

2 2 2

2 2 2
1

x y z

a b c
    (13) 305 

When 𝑎 = 𝑏 = 𝑐, the material can be considered isotropic, with 𝑎 ≠ 𝑏 ≠ 𝑐 defining the case 306 

of orthogonal anisotropy, and 𝑎 = 𝑏 ≠ 𝑐 defining the case of transverse anisotropy. In this study, 307 

the plane crack with a preferred orientation can be regarded as a transversely isotropic material. 308 

When the orientation is changed, it can be considered that the ellipsoid is rotated clockwise around 309 
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the X-axis in the OZY plane when the initial orientation 𝜃𝑥 changes. As  310 

 311 

Fig. 4d shows, damage occurs more easily in the orientation of the shorter axis. The matrix of 312 

the coordinate conversion 𝑅𝑥(𝜃𝑥) is: 313 

 

1 0 0

( ) 0 cos sin

0 sin cos

x x x x

x x

R   

 

 
 


 
  

 (14) 314 

According to Eq. (12) to Eq. (14), the AC of each microplane related with the 𝜃𝑥 is given by: 315 

         
2 2 2

' ' '
k k k

kAC x y z    (15) 316 

where the variable in the cartesian system is: 317 

 

1

2

3

'

'

'
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cos sin
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k
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k

k
k

k k

k k k

x x
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x x
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y
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z

x x
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z z y

 

 

 


 


 




   

   

 (16) 318 

where ∆= √(𝑛1
𝑘 ∙ 𝑏𝑐)

2
+ (𝑛2

𝑘 ∙ 𝑎𝑐)
2
+ (𝑛3

𝑘 ∙ 𝑎𝑏)
2
. Then, the normal stress and tangential stress of 319 

the damaged kth microplane can be described as: 320 

 
'(1 )k k k

N N ND AC E    (17) 321 

 
'(1 )k k k

T T TD AC E    (18) 322 

where 𝐸𝑁
′  and 𝐸𝑇

′  are the damaged normal and tangential elastic moduli, respectively, and D is the 323 

damage variable on the kth microplane. The damage variable varies because the strength of each 324 

microplane in an element is different.  325 

2.5 Numerical implementation of the microplane damage model 326 

The numerical algorithm of the heterogeneous and anisotropic damage model based on the 327 

microplane model is numerically implemented into COMSOL with MATLAB. A flow chart 328 
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showing the iterative steps is presented in  329 

Fig. 5. The process of numerical implementation is as follows: 330 

(1) A heterogeneous distribution is assigned for each element and its parameters; (a) Young’s 331 

modulus 𝐸 of the elements in the numerical model, and the elastic modulus 𝐸𝑁 and 𝐸𝑇 on the 332 

microplanes of each element, are obtained using Eq. (4); (b) the ultimate strength 𝑆0  under 333 

compression is assigned, and the CT ratio (Xu et al. 2012) is used in the model to identify the 334 

ultimate strength under tension; (c) cohesion 𝐶0 is assigned; and finally, (d) damage value D is 335 

given an initial value of zero.  336 

(2) The macroscopic strain tensor 𝜀𝑖𝑗  is decomposed into normal and tangential strains on the 337 

microplane as described by Eq. (1). 338 

(3) The microplane stress is calculated according to Eq. (2) and Eq. (3).  339 

(4) The damage criterion is checked using Eq. (7) and Eq. (8) to determine the damage state.  340 

(5) All the microplanes in an element are compared and their states revised according to the 341 

microplane with the highest damage value.  The elastic moduli 𝐸𝑁 and 𝐸𝑇 on the microplanes 342 

are calculated and updated. At the same time as updating of the elastic moduli, the microplane 343 

stress is also updated. Then, the updated normal and tangential elastic moduli after each time 344 

step need to be calculated in the program before proceding to the next step. The current 345 

microplane stress can be calculated using Eq. (3). 346 

(6) The current macroscopic stress tensor is calculated using Eq. (5). 347 

(7) The model stops when the total calculating step is reached. 348 

3. Numerical simulations for anisotropic rock 349 

3.1 Simulations of inherently anisotropy 350 

In this section we perform numerical simulations to test whether the model can capture the 351 

mechanical behavior of materials containing an inherent anisotropy (in this case, a crack anisotropy). 352 

A damage tensor that describes the orientated cracks was developed and verified by both 353 

experiments using intact and cracked plaster specimens and simulations using the finite element 354 

method (Kawamoto et al. 1988). The cracked plaster specimens used in Kawamoto et al. (1988) had 355 

several plane cracks (see inset in Fig. 6b) and the intact specimens contained no visible cracks. The 356 
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improved microplane damage model with the same dimensions as these plaster specimens (50 mm 357 

×100 mm×300 mm) will now be used to compare the model output with these previously published 358 

experimental data. Our focus in this section is the variation in material strength due to the crack 359 

orientation, and so a precise modeling of the fracture process using the finite element method is not 360 

necessary at this stage. Further, this explicit algorithm in the finite element method is preferred to 361 

solve coupled partial differential equations. The parameters of the plaster experiments (Kawamoto 362 

et al. 1988) and the physical input parameters for the numerical model are given in Table 1. It should 363 

be noted that parameters such as strength 𝑆0, elastic modulus E, and cohesion 𝐶0 are the mean values 364 

from the Weibull distribution in the numerical model (Eq. (6)). Differently orientated crack angles 365 

(angle between the loading direction and crack preferred orientation) are represented by the angle 366 

𝜃𝑥. The numerical specimens were deformed at a strain rate of 1×10-5 s-1 along the direction of the 367 

maximum principal stress 𝜎1 . The difference between the intact model and the cracked model 368 

provides the parameters of the AC, which are 𝑎 = 𝑏 = 𝑐 = 1 for the intact model, and 𝑎 = 𝑏 = 0.5, 369 

𝑐 = 1 for the cracked model. This means that when the crack angle is 𝜃𝑥 = 0°, the crack model has 370 

a preferred orientation in the vertical direction. The simulations show that the uniaxial compressive 371 

strength of the intact specimen is higher than the cracked specimens, and that uniaxial compressive 372 

strength decreases as a function of decreasing crack angle in the cracked specimens (Fig. 6a). We 373 

also highlight that the elastic modulus of the intact specimen is higher than that of the cracked 374 

specimens. Normalized peak strength is defined as the value obtained by dividing the uniaxial 375 

compressive strength of the cracked sample by the intact one. Normalizing the strength is required 376 

to compare our simulations with the experimental data of Kawamoto et al. (1988). Fig. 6b shows 377 

that the results of the numerical simulation are in good agreement with the experimental data of 378 

Kawamoto et al. (1988). Cn, also shown in Fig. 6b, is a crack coefficient that varies from 0 to 1 in 379 

the damage tensor based on the strain equivalence hypothesis (Kawamoto et al. 1988). 380 

 381 

Table 1  The physical input parameters for the numerical model. The experiments on plaster are 382 

from Kawamoto et al. (1988). 383 

Parameters Experiments on plaster Simulation 
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Strength 𝑆0 (MPa) -- 10 

Elastic modulus E (GPa) 1.11 5 

Cohesion 𝐶0  (MPa) 1.32 1 

Homogeneity index w -- 5 

CT ratio -- 10 

Poisson’s ratio ν 0.17 0.17 

Friction angle 𝜃𝑓 (°) 8.0 8.0 

RSC -- 0.01 

Loading rate (s-1) -- 1×10-5 

3.2 Influence of the intermediate principal stress during true triaxial compressive 384 

loading  385 

The effect of the intermediate principal stress 𝜎2 on rock strength has been investigated using 386 

a true triaxial testing apparatus (Haimson and Chang 2000, Zhenlong et al. 2019) The main 387 

difference between conventional and true triaxial testing is the ability to independently vary the 388 

magnitude of the intermediate principal stress.  Hence, the anisotropic microcrack networks that can 389 

be generated during true triaxial testing are an efficient and effective way to analyze the performance 390 

of our anisotropic model. Therefore, the present numerical model is used to analyze the influence 391 

of the intermediate principal stress on rock mechanical behavior and failure. Table 2 shows the input 392 

parameters for the numerical model. The four parameters in Table 2 exert a great influence on 393 

deformation and fracturing in the numerical model. Other model parameters, such as the CT ratio, 394 

RSC, and friction angle, are the same as those listed in Table 1. We highlight that the size of the 395 

numerical model is 50 mm×50 mm×100 mm, which has the same proportion as the granite samples 396 

used in the experiments of Zhao et al. (2021) (100 mm×100 mm×200 mm), experiments that we 397 

will compare with our numerical simulations. There are different loading methods in true triaxial 398 

compression tests, such as constant stress or strain loading, constant stress rate or strain rate loading, 399 

etc. In our numerical simulations, the loading is applied along the direction of the maximum stress 400 

𝜎1 (the Z-axis) at a constant displacement rate of 5×10-6 ms-1. To provide the prescribed values for 401 

the intermediate principal stress 𝜎2 (X-axis) and the minimum principal stress 𝜎3 (Y-axis), we used 402 

a constant stress rate of 1.5 MPas-1. In the case of 𝜎2 = 30 MPa and 𝜎3 = 0 MPa, the stressing rate 403 

is 1.5 MPas-1 along the X-axis and the displacement rate is 5×10-6 ms-1 along the Z-axis. Therefore, 404 

the stress will be constant (30 MPa) after 20 s (1 second for each calculation step), and the 405 

displacement along the Z-axis will continue to increase until the model is totally damaged or the 406 

calculation is completed. The parameters of the anisotropic coefficient are set as 𝑎 = 𝑏 = 𝑐 = 1, 407 

which means that the numerical sample has no preferred orientation at the start of the simulation 408 

and the damage direction in the model will depend on the loading direction. We first compare the 409 

results of uniaxial numerical simulations with laboratory uniaxial compressive strength tests on 410 

granite in  411 

Table 3 (Zhao et al. 2021). As shown in  412 

Table 3, the results of the numerical simulations are in good agreement with the laboratory data 413 
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of Zhao et al. (2021).  414 

 415 

Table 2 Input parameters for numerical model used to explore the influence of the intermediate 416 

principal stress on the mechanical behavior of rock. 417 

Strength 𝑆0 (MPa) Elastic modulus E (GPa) Cohesion 𝐶0  (MPa) Homogeneity index w 

920 47 10 5 

 418 

Table 3 Physical parameters of the uniaxial experimental sample (data from Zhao et al., 2021) and 419 

the physical parameters used in the uniaxial numerical model. 420 

Parameters Experimental results Numerical simulation 

Peak strength (MPa) 187 192 

Elastic modulus (GPa) 41 40.9 

Poisson’s ratio 0.27 0.27 

 421 

The true triaxial loading method described above is to make sure that 𝜎1, 𝜎2, 𝜎3 are applied in 422 

the same direction in a given numerical simulation. For the simulation performed at 𝜎3 = 0 MPa in  423 

Fig. 7a (green squares), the elastic modulus E decreased slightly when loading in the  𝜎2 424 

direction stopped. Thus, the elastic modulus increased slightly as a function of increasing 𝜎2. The 425 

peak strength of the rock sample has the maximum value at 𝜎2 = 60 MPa (red triangles; Fig. 7a). 426 

The results of the numerical simulations are also compared with true triaxial experiments performed 427 

under different values of 𝜎2 in  428 

Fig. 7b (data for granite from Zhao et al., 2021). Although the peak strength of the simulations 429 

and experiments are quite different when 𝜎2 = 60 MPa, the simulations and the experiments show 430 

the same tendency as a function of increasing intermediate principal stress (Fig. 7b). We compared 431 

the peak strength verse 𝜎2 of microplane damage model (MPD model) with those of Mohr-Coulomb 432 

(MC)  model and Drucker-Prager (DP) model, in which Mohr-Coulomb criterion and Drucker-433 

Prager criterion are respectively used to judge the damage under compression (Zhou et al. 2020). 434 

Different from the logical scheme of microplane model, the orientation of cracks is not involved in 435 

MC model and DP model. As shown in Fig. 7c, the curve from MPD model shows that the peak 436 

strength rises firstly, then decreases after 90 MPa under the true triaxial loading (𝜎3=10 MPa). Peak 437 
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strength from DP model rises with the increase of 𝜎2 , because DP criterion based on the stress 438 

invariant. Intermediate principal stress has little influence on MC model, because the intermediate 439 

principal stress 𝜎2 is not included in MC criterion, but 𝜎3 play a key role in MC model, in which 440 

peak strength is 187 MPa when 𝜎3=0 MPa and 226 MPa when 𝜎3=10 MPa. Although MPD model 441 

use the MC criterion on the microplane, the mechanical response is related to the direction of 442 

microplane. It is indicated that the effect of the intermediate principal stress under true triaxial 443 

loading is the result of anisotropic damage. 444 

 445 

3.3 Fracture pattern during true triaxial compressive loading 446 

To analyze the stress-induced anisotropy in rock, the fracture pattern of rock under true triaxial 447 

compression was investigated using the numerical models. The stress-strain curve for the simulation 448 

subjected to uniaxial loading (𝜎3 = 𝜎2 = 0 MPa) is shown in  449 

Fig. 7a (green squares). Snapshots of the damage evolution in this numerical model are shown 450 

in  451 

Fig. 8a. In this uniaxial simulation, the degradation of the elastic modulus was mainly induced 452 

by tensile damage.  453 

Fig. 8a shows snapshots of the evolution of elastic modulus and damage evolution for the 454 

numerical sample deformed under uniaxial compression (𝜎2 = 𝜎3 = 0  MPa). For the elastic 455 

modulus snapshots, warm colors represent high values and cold colors represent low values. To 456 

distinguish between the two types of damage, tensile damage 𝐷𝑡 is negative and shear damage 𝐷𝑐 457 

is positive in the legend of  458 

Fig. 8 (Yuan et al. 2021). In Fig. 8a, shear damage and tensile damage occurred randomly at 459 

80 s and grew in size up to 100 s. The stress dropped at around 100 s when the strain of the model 460 

was around 0.5%. To better observe the fracture distribution and orientation, we have filtered out 461 

the shear damage in Fig. 8. Fig. 8b shows a true triaxial simulation in which a 𝜎2 of 30 MPa was 462 

applied along the Y-axis. This simulation shows that the generation of damage is in the direction of 463 

the Y-axis (Fig. 8b). Using the distribution of elastic modulus, we conclude that the fracture plane 464 

is parallel to the 𝜎2 direction when 𝜎2 is applied along the Y-axis. The fracture plane is shown in 465 

gray in the schematic diagram in the bottom right image (Fig. 8b).  466 

Fig. 8c shows the case in which a 𝜎2 of 30 MPa is applied along the X-axis. Although the 467 

damage evolution is quite different from the case shown in  468 

Fig. 8b, the fracture plane is still parallel to the direction of  𝜎2  (i.e. along the X-axis). 469 

Furthermore, the case of 𝜎2 = 30 MPa (Y-axis), 𝜎3 = 10 MPa (X-axis), and the case of 𝜎2 = 30 470 

MPa (X-axis), 𝜎3 = 10 MPa (Y-axis) are simulated to show the fracture pattern in  471 

Fig. 8d and  472 

Fig. 8e. Compared with the case of 𝜎2 = 30 MPa (Y-axis), 𝜎3 = 0 MPa (X-axis), and the case 473 

of 𝜎2 = 30 MPa (X-axis), 𝜎3 = 0 MPa (Y-axis), the numerical sample runs more time to fail and 474 

the damage is more severe with the increased minimum principal stress. However, the fracture plane 475 
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composed of damage element is still approximately parallel to the direction of intermediate principal 476 

stress. In conclusion,  477 

Fig. 8 shows that the loading direction exerts a great influence on the fracture pattern that 478 

develops in the numerical model, and that the intermediate principal stress (if 𝜎2 > 𝜎3) controls the 479 

direction of damage propagation, such that the damage is parallel to the direction of 𝜎2. 480 

4. Discussion 481 

4.1 Deformation of an inherently anisotropic material 482 

Natural rocks often contain an inherent anisotropy such as bedding planes, laminations, 483 

foliations or a grain or pore shape preferred orientation. Any strength anisotropy that may be induced 484 

by such inherent anisotropy is able to be realized in our improved theoretical model based on the 485 

microplane model (Chen and Bazant 2014, Li et al. 2017) and the multi-laminate model (Sadrnejad 486 

and Shakeri 2017). In order to achieve this, we include an ellipsoidal function to increase the 487 

difference between the integration points, which directly affect the micro stress and strain in a 488 

certain orientation, in the microplane system. An element is automatically considered using the 489 

variation of damage on a microplane in this model, which is similar to the multi-laminate model 490 

(Sadrnejad and Shakeri 2017). The multi-laminate model assumes that the damage develops on the 491 

microplanes independently, and that the damage planes exist in one element and have no impact on 492 

other elements. However, only one group (i.e. two planes) of microplanes may be damaged at each 493 

loading step in this study. We assume in this study that, once a microplane is damaged, the damage 494 

evolution of the other planes is suppressed, and that this damaged microplane will control the 495 

element behavior. All the mechanical parameters, such as elastic moduli and cohesion (except the 496 

strength of the element), will degrade simultaneously once a microplane has satisfied the damage 497 

function. This assumption is applied to each tetrahedral element in the numerical model (see  498 

 499 

Fig. 4).  500 

Specimens containing a single crack were used to investagate the effect of crack angle on 501 

mechanical behavior in previous studies (Xu et al. 2013, Li et al. 2019b, Xu et al. 2021a, Xue et al. 502 

2021). Barre granite and Stanstead granite are reported that maximum preferred orientation of 503 
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microcracks related to the directions of lowest Young’s modulus and strength (Douglass and Voight 504 

1969). The strength of numerical specimens containing a single crack, found using the model 505 

described here, shows the same tendency as a function of crack angle (preferred orientation of 506 

material) as experiments performed on cracked plaster (Kawamoto et al. 1988) (Fig. 6b). In both 507 

the experiments and models, strength increases as the crack angle is increased from 0° to 90° (Fig. 508 

6b). However, the strength of a sample containing a single crack will also be affected by the crack 509 

length and rock properties (Yang and Jing 2011, Le et al. 2018). The mechanical properties in 510 

different directions is realized in this study by introducing Eq. (12) and Eq. (13). Obviously, the 511 

parameters a, b, and c are an idealized form to represent the preferred crack orientation. Further, 512 

these parameters promote or inhibit the damage evolution in certain directions. As described by Eq. 513 

(9), the induced damage directly affects the elastic modulus E of the specimen. The intact specimen 514 

has a higher E than the cracked specimen, and the specimen with a crack angle of 0° has the lowest 515 

E (Fig. 6a). This means that the cracks that form in response to the loading changed the mechaincal 516 

properties of the rock. With the increase in crack angle, the ability of the material to resist elastic 517 

deformation will increase. The elastic modulus increases with the crack angle (i.e. the angle of the 518 

ellipsoid), and thus the maximum strength of a cracked specimen occurs when the crack angle is 519 

90°. When the crack angle is 0° ( 520 

 521 

Fig. 4d), 𝑎 = 𝑏 = 0.5, 𝑐 = 1, where a corresponds to the X-axis, b corresponds to the Y-axis 522 

and c corresponds to the Z-axis. The length from the center to the ellipsoid surface refers to how 523 

easily the microplane can satisfy the damage criterion, whereby a longer length means that the 524 

microplane is more easily damaged. Thus, the microplane system can be more easily damaged at a 525 

crack angle of 0° than at 90° under axial loading. Also, the Young’s modulus of rock at 0° is lower 526 

than that at 90° (shown in  527 

Fig. 9). Understanding the relationship between the elastic modulus and the crack angle will 528 

be helpful in predicting the mechanical behavior of a cracked rock mass. However, relationship 529 

between the numerical parameters in the equations and real physical parameters is uncertain at 530 

present due to the limitations of the currently available data.  531 
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4.2 Stress induced anisotropic damage under true triaxial loading  532 

The fracture pattern that develops in the model is related to the minimum strength of an 533 

interface at an angle of (90° + 𝜑)/2 , where  𝜑 is the friction angle. However, the problem becomes 534 

more complicated in three-dimensions because the damage will be influenced by the stress loading 535 

path. For the constitutive relationship based on stress tensors, the fracture pattern will not change 536 

with the direction of stress since the element state is controlled only by the magnitude of the stress. 537 

The results of true triaxial experiments are ideal to test our model, due to the crack anisotropy 538 

that develops during truly triaxial loading in these experiments. To describe the effect of the 539 

intermediate principal stress on the mechanical behavior of rock in true triaxial experiments, the 540 

constitutive relationship must necessarily include the stress tensor 𝜎2. The Drucker-Prager yield 541 

criterion is often used in numerical simulations to account for 𝜎2 (Liang et al. 2006, Pan et al. 2012). 542 

However, the nature of the stress-induced anisotropy has rarely previously been considered in this 543 

type of model. In the present model, the maximum tensile stress criterion and Mohr-Coulomb 544 

criterion are considered on the microplanes, and the application of 𝜎2  in the model changes the 545 

microplane strain-stress state in the loading direction. The macro stress tensor obtained from the 546 

integration of microplane stress for a particular element will influence the surrounding elements. In 547 

the direction of applied 𝜎2, the microplane stress increases with the value of 𝜎2 until it satisfies the 548 

damage criterion. Thus, the macro fracture pattern is random under uniaxial compression, but it will 549 

be parallel to the intermediate principal stress (𝜎2 > 0) under true triaxial compression. Whether 550 

the 𝜎2 is applied along the X- or Y-axis, the damage plane is always parallel to the 𝜎2 direction (as 551 

shown in Fig. 8). The strength (peak stress) is the macroscopic consequence of the heterogeneous 552 

rock particles in a sample under the compressive loading. This means that some elements are 553 

damaged before the peak stress is reached and some elements remain undamaged after peak stress, 554 

which allows us to visualize the damage evolution during the numerical simulation. The maximum 555 

tensile stress criterion for the tensile state and the Mohr-Coulomb criterion for the compressive state 556 

are used to reliably analyze the damage of a particular element, and the intermediate principal stress 557 

makes no contribution to these results. The damage always occurs in a relatively weak area during 558 

loading. However, the orientation of the resultant fracture following deformation is not always the 559 

same in heterogeneous rock. The increase of the intermediate principal stress 𝜎2  increases the 560 

strength of rock in the loading direction, and it will influence the orientation of the damage in the 561 

microplane system. As a result, the strength (peak stress) will increase because the direction of the 562 

lowest strength has changed. The strength increases with increasing 𝜎2 until it reaches a certain 563 

value (60 MPa in our simulations; Fig. 7b). This is because the intermediate principal stress cannot 564 

increase the strength of microplanes in all directions. Meanwhile, the increase of 𝜎2 will decrease 565 

the strength of all the other microplanes. Thus, the intermediate principal stress results in a stress-566 

induced anisotropy.  567 

Fig. 7 shows that the intermediate principal stress effect in our numerical simulations has 568 

almost the same tendency as for true triaxial experiments performed on granite (data from Zhao et 569 
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al., 2021). However, there is a slight difference in strength between the model and the expeirments 570 

when 𝜎2 = 60 MPa (Fig. 7b). This is because the model only has four parameters related to the 571 

mechanical properties. 572 

The typical fracture pattern of brittle rock specimens deformed under true triaxial loading is 573 

shown in  574 

Fig. 10a (Feng et al. 2015), in which 𝜃 is defined as the fracture angle between the normal of 575 

the fracture plane and the 𝜎1  direction. The fracture plane during true triaxial loading is always 576 

parallel to the direction of 𝜎2, which means that the loading direction has a great influence on the 577 

damage pattern. One of the advantages of the proposed numerical model is that it is able to simulate 578 

loading of the numerical specimen evenly. Meanwhile, the numerical simulations shown in  579 

Fig. 8a and  580 

Fig. 8b highlight that the macroscopic fractures in the model will always form parallel to the 581 

direction of 𝜎2. Relatively larger stresses will exceed the damage threshold of the rock along the 582 

loading direction and will promote the propagation of the damage. Thus, the fracture plane formed 583 

in the model will always be approximately parallel to 𝜎2, as shown in  584 

Fig. 10. The experimental results of cumulative acoustic emission (AE) under the true triaxial 585 

test (Bai et al. 2022) is compared with numerical simulations, the purple plane based on AE events 586 

shows the potential damage plane ( 587 

Fig. 10b). In the stage of increasing 𝜎2, the damage plane is approximately parallel to 𝜎2,  Bai 588 

et al. (2022) thinks the generated cracks have preferred orientation in the direction of 𝜎2 . The 589 

numerical model presented in this paper can also show the effect of the intermediate principal stress. 590 

5. Conclusions 591 

We present here a microplane-based anisotropic damage model that can be used to capture the 592 

mechanical behaviour of inherently anisotropic rock and the stress-induced anisotropy that develops 593 

in isotropic rock following differential loading. In the model, the maximum tensile stress criterion 594 

and the Mohr-Coulomb criterion are used as the damage criteria for tensile and compressive damage, 595 

respectively. Each microplane can be assumed to represent cracks in a particular region (microplane 596 

system) with any orientation. The model can simulate cracks with a preferred orientation by 597 

introducing an ellipsoidal function. Because the model will decrease the elastic modulus when 598 

cracks form in the specimen, the preferred orientation means that it will more easily satisfy the 599 
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damage criterion. Thus, rock will be easily damaged when the preferred orientation of cracks is 600 

parallel to the loading direction. Likewise, the rock will be stronger when the preferred orientation 601 

is perpendicular to the loading direction. 602 

The intermediate principal stress in true triaxial loading is known to influence the direction of 603 

the resultant macroscopic fracture. As a result, the proposed microplane model is ideally suited to 604 

simulate true triaxial experiments. To do so, we only need to use the maximum tensile stress criterion 605 

and the Mohr-Coulomb criterion in the microplane model, and do not need to consider other more 606 

complex criteria that need to include stress or strain invariants. Furthermore, we show that the 607 

fracture pattern of brittle rock observed in true triaxial experiments can be reproduced by our model. 608 

Our models show that the applied loading can influence the direction of crack propagation, as seen 609 

in previous experimental studies. 610 

The model presented in this study is based on the framework of a microplane model and uses 611 

the maximum tensile stress criterion and Mohr-Coulomb criterion to characterize how rock 612 

mechanical behavior is affected by crack orientation. However, there are currently relatively few 613 

input parameters available for the numerical model from laboratory experiments, which affects the 614 

calibration and validation of the model. Field and laboratory tests should therefore be performed to 615 

verify the rationality of the proposed model in future studies. 616 
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 827 

 828 

Fig. 1  The microplane system. (a) Spatial direction of the microplane (blue area). (b) For the case 829 

of 2×21 integration points, the regular icosahedron is shown in green, and the yellow points (12 830 

vertexes and 30 midpoints of edges) represent the microplanes around an element in the material. 831 

(c) For kth microplane, strain vector 𝜀𝑛 is composed of normal strain 𝜀𝑁 and tangential strain 𝜀𝑇 in 832 

the local coordinate system. 833 
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 836 

 837 

Fig. 2  Probability density distribution for scale parameter u with different heterogeneity indices w 838 

(1.2, 1.5, 2, 3, and 5). 839 
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 841 

 842 

Fig. 3 Damage constitutive relationship of microplane model used in this study. 843 
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 846 

 847 

 848 

Fig. 4  Establishment of anisotropic numerical model at micro- and macro- scale. (a) Thin section 849 

of granite. (b) The trace of the microfractures and grain boundaries generated by FracPaQ. (c) 850 

Quantifying angles and proportion of the fracture pattern in micrograph. (d) An ellipsoid for the 851 

tetrahedron element in the 3D model to characterize the anisotropy of rock. 852 
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 853 

 854 

Fig. 5  Flow chart of the microplane-based anisotropic damage model developed in this study. 855 
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857 

 858 

Fig. 6 Numerical simulations of intact and cracked specimens with a preferred orientation. (a) 859 

Stress-strain curves of the intact and cracked specimens from the numerical simulations (angle is 860 

the crack angle). (b) Normalized peak strength of the cracked specimens as a function of crack angle. 861 

The experimental results are shown as black circles (data from Kawamoto et al., 1988) and the 862 

results of the numerical simulations (this study) are shown as red squares. Solid, dot-dashed, and 863 

dotted lines are predictions from the damage tensor based on the strain equivalence hypothesis 864 

(Kawamoto et al., 1988). 865 

 866 



 

38 

 

 867 

868 



 

39 

 

 869 

 870 

Fig. 7 Results of the true triaxial numerical simulations performed for this study. (a) Stress-871 

strain curves for numerical samples deformed under true triaxial conditions using different 872 

values of 𝜎2. (b) Peak strength as a function of 𝜎2 for the experiments shown in (a) (𝜎3 = 0 873 

MPa). The peak stresses from our simulations (black triangles) are compared with experimental 874 

data for granite from Zhao et al. (2021) (orange circles). (c) Peak strength varied with 𝜎2 of 875 

different model under true triaxial loading (𝜎3= 10 MPa).  876 
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 884 

 885 

Fig. 8 Elastic modulus E and damage D evolution for the numerical simulations performed under 886 

different values of 𝜎2. (a) The case of 𝜎2 = 𝜎3 = 0 MPa. (b) The case of 𝜎2 = 30 MPa (Y-axis) and 887 

𝜎3 = 0 MPa (X-axis). (c) The case of 𝜎2 = 30 MPa (X-axis) and 𝜎3 = 0 MPa (Y-axis). (d) The case 888 

of 𝜎2 = 30 MPa (Y-axis) and 𝜎3 = 10 MPa (X-axis). (e) The case of 𝜎2 = 30 MPa (X-axis) and 889 

𝜎3 = 10 MPa (Y-axis). 890 
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 894 

 895 

Fig. 9 Young’s modulus varied with preferred orientation of microcracks in model 896 
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 900 

 901 

Fig. 10 Orientations of rock fracture pattern in experiments. (a)Typical fracture pattern under 902 

true triaxial compressive loading (Feng et al. 2015). (b)Cumulative acoustic emission locations 903 

of rock in true triaxial test (Bai et al. 2022). 904 
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