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Abstract
Purpose Obtaining large volumes of medical images, required for deep learning development, can be challenging in rare
pathologies. Image augmentation and preprocessing offer viable solutions. This work explores the case of necrotising ente-
rocolitis (NEC), a rare but life-threatening condition affecting premature neonates, with challenging radiological diagnosis.
We investigate data augmentation and preprocessing techniques and propose two optimised pipelines for developing reliable
computer-aided diagnosis models on a limited NEC dataset.
Methods We present a NEC dataset of 1090 Abdominal X-rays (AXRs) from 364 patients and investigate the effect of
geometric augmentations, colour scheme augmentations and their combination for NEC classification based on the ResNet-
50 backbone. We introduce two pipelines based on colour contrast and edge enhancement, to increase the visibility of subtle,
difficult-to-identify, criticalNECfindings onAXRs and achieve robust accuracy in a challenging three-classNECclassification
task.
Results Our results show that geometric augmentations improve performance, with Translation achieving +6.2%, while
Flipping and Occlusion decrease performance. Colour augmentations, like Equalisation, yield modest improvements. The
proposed Pr-1 and Pr-2 pipelines enhance model accuracy by +2.4% and +1.7%, respectively. Combining Pr-1/Pr-2 with
geometric augmentation, we achieve a maximum performance increase of 7.1%, achieving robust NEC classification.
Conclusion Based on an extensive validation of preprocessing and augmentation techniques, our work showcases the pre-
viously unreported potential of image preprocessing in AXR classification tasks with limited datasets. Our findings can be
extended to other medical tasks for designing reliable classifier models with limited X-ray datasets. Ultimately, we also
provide a benchmark for automated NEC detection and classification from AXRs.
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Introduction

Deep learning (DL) is established as a very promising tech-
nology for X-ray analysis and computer-aided diagnosis
(CAD), with application in a range of diverse pathologies
from fracture to cancer detection [1–3]. The most successful
cases of employing DL models for CAD have been reported
on relatively large volume datasets containing tens or even
hundreds of thousands of images [1–4].

X-ray imaging is routinely used to diagnose rare condi-
tions. One such pathology is necrotising enterocolitis (NEC),
a severe intestinal infection affecting premature newborns.
Nearly 12% of infants born weighing less than 1500g will
develop NEC, with overall mortality between 18 and 30%
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andmajor long-term complications (inflammatory strictures,
bowel obstruction, poor neurodevelopment) [5]. Economic
and societal impact is high accounting for approximately
19% of neonatal expenditure in the USA [6]. Depending
on the severity, medical NEC (mNEC) cases are treated
with gut rest, intravenous nutrition (total parenteral nutrition)
and antibiotics. Many infants though will require surgi-
cal intervention (sNEC) involving intestinal resections and
stoma formation, with severe cases constituting surgical
emergencies [7]. Mortality rates can reach up to 50% in
sNEC cases, and associated morbidity includes severe and
chronic complications, such as abdominal contamination due
to intestinal leakage, short gut syndrome and enduring neu-
rological impairment [7, 8].

Early diagnosis and staging from abdominal X-rays
(AXR), and subsequent surgical referral are vital as delays
can negatively impact outcomes. However, the radiologi-
cal signs of NEC in AXRs are very subtle, making their
identification and interpretation challenging, especially for
medical professionals without specialised expertise. Con-
founding factors such as variability in presentation (see
Fig. 1) and similarities to other conditions (neonatal sepsis)
pose further challenges to radiologists, paediatric surgeons
and neonatologists for correct diagnosing, staging and treat-
ment decisioning. Local neonatal ICUs often lack personnel
with specialised NEC expertise, which results in delayed
diagnosis and patient transfer to a paediatric surgical centre,
ultimately delaying initiation ofmedical treatment or surgical
intervention, with potentially severe adverse outcomes [9]. In
many cases, extended management with parenteral nutrition
is followed which is both costly and may affect liver function
[10].

Existing studies on automated NEC diagnosis employed
traditionalmachine learning techniques, leveraging biomark-
ers and clinical laboratory tests (i.e. tabular data) as key
features [11, 12]. Gao et. al. are among the first to utilise
AXRs for developing DL models (SENet-154, ResNet-
50) for NEC classification. In a private dataset of 4535
images, they report a maximum accuracy of 73.27% in a
binary (NEC/no-NEC) classification task. In the same work,
features extracted from X-rays were integrated with clin-
ical variables such as heart rate and haemoglobin into a
LightGBM model to finalise classification of NEC. The
authors also reported utilising a range of image augmen-
tation techniques to increase performance, but their actual
effect remains unexplored [13].

Due to the rarity of NEC, the development of CAD
methodologieswill have to account for limited data availabil-
ity. A solution to artificially increase the size of datasets is
with image augmentation pipelines, where randomised geo-
metrical and image transformations are applied to images
with a likelihood during training, also shown to reduce over-
fitting and improve the generalisability of DL models [14].

For instance, Sirazitdinov et al. investigated the impact of
various data augmentations such as contrast adjustment,
brightness scaling, gamma correction, flipping, rotation,
noise addition and blurring, on the diagnosis of lung pathol-
ogy using theChestX-ray14 dataset of 112,120 images. Their
results indicate that rotation and flipping are the most effec-
tive augmentations, yielding accuracy improvements of 1.9%
and 1.5%, respectively, compared to the baselinewith no aug-
mentation. Conversely, augmentations involving contrast,
gamma correction and blurring led to a marginal perfor-
mance degradation of 0.1% [4]. Chokchaithanakul et al.
explored the effects of data augmentation for out-of-domain
tuberculosis screening. Different augmentations including
rotation, flipping, brightness scaling, contrast enhancement
and gamma correction are applied to a multi-centre dataset
comprising 6168 images. Their findings indicate that rota-
tion is the most effective augmentation technique, improving
in-domain accuracy by +10.1%. Furthermore, flipping is
identified as the most beneficial technique for enhancing out-
of-domain accuracy, with an improvement of +4.1% [15].

While image augmentations aim to diversify the training
data, image preprocessing focuses on enhancing quality and
consistency, thereby highlighting themost important features
for the model to learn from. Avşar tested three image pre-
processing methods for pneumonia detection on 5856 chest
X-rays. OnlyWiener filtering is reported with a +6.3% accu-
racy improvement [16]. Heidari et al., whose work is closest
to ours, used erosion and filtering techniques for COVID-19
classification on 8474 chest X-rays, achieving a +6.5% accu-
racy gain [17]. While previous works have shown promising
results with various image augmentation and preprocessing
techniques, it is important to note that most of the existing
literature on image augmentation focuses on medium-to-
large datasets, comprising at least several thousand images.
Such techniques may not have a similar effect to constrained
medical datasets where only a few hundred to a thousand
images are available. Our NEC dataset comprises of only
1090 images, collected over a 10-year period, due to the dis-
ease’s rarity.

Limited medical datasets are a prevalent issue that affects
CAD development, especially for rare conditions [18]. Pre-
processing and augmentation is a key step in DL-based CAD
for NEC, and although a plethora of techniques have been
reported, predominately for adult chest X-rays datasets, these
are not directly applicable to our task due to the intricacies of
NEC diagnosis because of confounding and subtle signs. To
address this, we conducted this study focusing on augmenta-
tion and preprocessingmethods tailored for ourNEC task. To
the best of our knowledge, we are the first to focus on image
augmentation on abdominal X-rays with feature-enhancing
preprocessing pipelines. Our contributions are summarised
as follows: (1)Unlike prior studies, we focus on a rare pathol-
ogy case attempting a novel CAD task (NEC diagnosis),
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Fig. 1 Example of images in our NEC dataset. a NP—No Pathology, b mNEC—Medical NEC, c sNEC—Surgical NEC. Arrows indicate NEC
findings

where obtaining large-scale datasets is difficult or imprac-
tical. (2) We propose a previously unreported opportunity
of image prepossessing in AXR and showcase its poten-
tial for improving classification performance in scenarios
constrained by data limitations. (3) We propose two opti-
mised preprocessing pipelines: Pr-1 and Pr-2 to enhance
the visibility of critical findings in AXR further improving
model performance. (4) Experimental outcomes show a per-
formance increase, with a ResNet-50 model for a three-class
NEC classification task, of +6.2% when employing Transla-
tion as the augmentationmethod. Furthermore, the use of our
proposed preprocessing pipelines in conjunction with Trans-
lation augmentation yields a performance boost of +7.1%,
demonstratingmarked improvement over the baselinemodel.
Finally, we show that proposed pipelines robustly generalise
to unseen data, showing even higher gains against the base-
line (+13%). Our approach of enhancing model development
via the optimum combination of augmentation and prepro-
cessing is directly transferable to other X-ray CAD tasks,
especially for rare diseases.

Methods

Dataset andmodel

A fully anonymised dataset was collected from the Great
Ormond Street Hospital, London, UK (GOSH). AXRs
images from various hardware systems, including mobile
X-rays machines, were reviewed by 5 radiologists and
paediatric surgeons and labelled in three classes: surgical
NEC (sNEC, 372 images from 137 patients), medical NEC
(mNEC, 341 images from 102 patients) and No Pathology
(NP, 377 images from 143 patients). Example images and

the dataset’s demographic information are provided in Fig. 1
and Table 1 in Online Resource 1, respectively.

We employ the established ResNet-50 [19, 20] model
initialised on ImageNet [21] and train it, using multiclass
cross-entropy loss, theAdamoptimiserwith a learning rate of
0.001 and batch size of 16, for 150 epochs. We report results
on the best-performing setting, comparing them against the
baseline with no preprocessing or augmentations using aver-
ages, standard deviations and p-values of accuracy, precision,
recall and F1 score. The output of the network is a probability
value for each class, and the onewith the highest is selected as
the final class label. Implementation took place on PyTorch
and trained on a single RTX 2080-Ti GPU.

Preprocessing and augmentation techniques

We conduct a comprehensive evaluation of image augmenta-
tions in alignment with prior studies [4, 15]. All experiments
and their settings are listed in Table 1. For geometric augmen-
tations, we examine five geometric augmentations, namely:
Translation—to enhance the model’s invariance to the posi-
tioning of features; Cropping—to diversify feature sizes and
locations while maintaining critical information; Rotation—
to enrich the model’s understanding of features across
different orientations; Horizontal and Vertical Flipping—to
improve the model’s resilience to various spatial configura-
tions. Comprehensively, we examine five colour augmenta-
tions: Occlusion—to train the model in recognizing partially
visible features, Noise—to increase the model’s robustness
against small perturbations; Equalisation—to enhance the
contrast and highlight feature distinctions; Sharpening—
to emphasise edge details for better feature extraction;
and colour inversion—to promote colour invariance in the
model’s feature recognition capabilities. Furthermore, we
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Table 1 List of augmentation/preprocessing techniques and their corresponding settings.

Geometric augmentations Colour augmentations Preprocessing + combinations

Name Settings Name Settings Name Settings

Baseline N/A Noise (10, 25, 50)% C Translation & rotation 10% L & 20◦ D

Translation (10, 25, 50)% L Equalisation (10, 25, 50)% C Sharpening & equalisation 10% C & 50% C

Cropping (159, 174, 188, 200) WH Sharpening (10, 25, 50)% C Pr-1 preprocessing N/A

Rotation 10, 20, 40, 60 Colour inversion (10, 25, 50)% C Pr-2 preprocessing N/A

Horizontal flipping (10, 25, 50)% C Pr-1 & translation N/A & 10% L

Vertical flipping (10, 25, 50)% C Pr-2 & translation N/A & 10% L

Horizontal & vertical flipping (10, 25, 50)% C

Occlusion (5, 15, 25)% A

C—Chance of augmentation being applied, L—Length of image, WH—Cropped image width and height, D—Degree of rotation, A—Area of
image

Fig. 2 Example of different augmentations applied in our experiments

explore the compounding effects of combined augmentations
by pairing Translation with Rotation and Sharpening with
Equalisation, identified as the top-performing augmentation
in their respective categories. Figure 2 shows an example of
each augmentation considered.

In addition to the image augmentations listed in Fig. 2,
we introduce two image preprocessing pipelines, to improve

the model’s focus on key features, highlighting depth in
the structures and minimising the impact of irrelevant data
on convergence. Pipeline 1 (Pr-1) employs the two most
effective colour scheme augmentations (Sharpening and
Equalisation, based on experiment results in Table 2), apply-
ing them with a 100% likelihood. Drawing inspiration from
[22], we also present pipeline 2 (Pr-2), depicted in Fig. 3. Pr-2
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Table 2 NEC classification
results from cross-validation
and testing experiments

Fivefold cross-validation Accuracy% Precision% Recall% F1

0. Baseline 63.9 ± 2.0 63.7 ± 2.5 63.4 ± 2.4 63.0 ± 2.2

1. Translation 70.1 ± 1.4* 69.0 ± 1.8* 68.4 ± 2.1* 68.8 ± 2.1*

2. Cropping 69.1 ± 2.2* 68.6 ± 2.6* 68.0 ± 2.3* 67.7 ± 2.2*

3. Rotation 70.0 ± 1.8* 68.8±1.8* 68.9 ± 1.7* 68.7 ± 1.7*

4. Horizontal flipping 64.3 ± 1.6 62.7 ± 1.6 62.7 ± 1.7 62.5 ± 1.5

5. Vertical flipping 62.1 ± 4.0 61.2 ± 4.3 60.5 ± 3.9 60.2 ± 3.7

6. Horizontal & vertical flipping 63.8 ± 1.4 63.2 ± 1.2 61.4 ± 1.8 61.3 ± 1.8

7. Occlusion 59.6 ± 2.0 58.6 ± 1.6 57.9 ± 2.3 57.4 ± 2.8

8. Noise 62.6 ± 2.7 61.9 ± 2.2 61.7 ± 2.5 61.4 ± 2.6

9. Sharpening 62.6 ± 1.0 63.2 ± 3.2 61.3 ± 2.2 60.8 ± 2.1

10. Equalisation 64.6 ± 1.1 63.4 ± 1.0 63.6 ± 1.0 63.2 ± 1.0

11. Colour inversion 60.9 ± 1.8 59.6 ± 1.7 59.5 ± 1.8 59.4 ± 1.8

12. Pr-1 preprocessing 66.3 ± 1.2* 64.9 ± 1.3 64.6 ± 1.3 64.5 ± 1.4

13. Pr-2 Preprocessing 65.6 ± 2.4 64.4 ± 2.3 64.3 ± 2.3 64.2 ± 2.3

14. Translation & rotation 67.2 ± 1.3* 66.4 ± 1.8* 64.6 ± 1.9 64.6 ± 2.2

15. Sharpening & equalisation 61.9 ± 2.3 61.1 ± 2.4 60.9 ± 2.3 60.7 ± 2.2

16. Pr-1 & translation 71.0 ± 1.6* 69.7 ± 1.7* 68.7 ± 2.8* 68.4 ± 3.1*

17. Pr-2 & translation 69.7 ± 1.2* 68.8 ± 1.4* 67.5 ± 1.9* 67.4 ± 1.9*

Hold-out testing Accuracy% Precision% Recall% F1

Baseline 56.3 ± 1.7* 59.1 ± 1.8* 56.3 ± 2.1* 56.1 ± 2.1*

Translation 68.0 ± 1.4* 70.6 ± 1.5* 68.0 ± 1.3* 67.9 ± 1.4*

Rotation 68.7 ± 1.5* 70.3 ± 1.7* 68.7 ± 1.7* 68.6 ± 1.7*

Pr-1 preprocessing 64.0 ± 1.9* 64.8 ± 2.1* 64.0 ± 2.1* 63.3 ± 2.0*

Pr-2 preprocessing 61.0 ± 2.6* 62.2 ± 1.3* 61.0 ± 2.2* 60.9 ± 2.3*

Pr-1 & translation 69.3 ± 1.7* 70.5 ± 1.8* 69.3 ± 1.6* 69.3 ± 1.7*

Pr-2 & translation 66.3+2.0* 68.0 ± 1.9* 66.3 ± 1.8* 66.0±1.8*

With the augmentation and preprocessingmethods considered. The bestmodelwithin each category is in italic,
and best overall result is indicated in bold. * indicates p < 0.05. For conciseness, only the top-performing
settings for each augmentation type are displayed. Full results are provided in Online Resource 1 (Fig. 3)

Fig. 3 Overview of the Pr-2
pipeline. The pipeline converts
the single-channel image into a
three channel and sharpens the
first channel using a sharpening
kernel. The second channel
incorporates both sharpening
kernel and CLAHE for enhanced
contrast. The third leverages
histogram compression, unsharp
masking, and Low Illumination
Image Enhancement (LIME) to
emphasise edge-defining
structures
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is designed to highlight internal structures by stacking three
differently processed versions of the original image into a
three-channel format. The first channel undergoes sharpen-
ing through a sharpening kernel. The second channel receives
both a sharpening kernel andContrast-LimitedAdaptiveHis-
togramEqualisation (CLAHE) for enhanced contrast. Lastly,
the third channel is processed using histogram compression,
unsharp masking and Low Illumination Image Enhance-
ment (LIME) [23] to emphasise edge-defining structures
in the abdomen. Experiments are conducted on these two
proposed preprocessing pipelines, both individually and in
combination with the top-performing augmentation tech-
nique, identified as translation.

Results

For experimentation, following [24–26], we perform five-
fold cross-validation to ensure the robustness of our result
and avoid overfitting due to small dataset size. We divide the
dataset into fivefolds following an 80/20 split for training
and validation. Each fold contains the same number (320) of
images for each label and is divided into five subsets of 64
images each, with four intended for training and one for vali-
dation. The additional 32 sNEC, 1 mNEC and 37 NP AXRs,
randomly selected, were used exclusively for validation (see
Online Resource 1 for an illustration of the dataset splits).
In all five iterations a new model is independently trained
with fourfold and validated on onefold that is different dur-
ing each iteration. It is therefore guaranteed that there is no
data leakage between the training and validation sets. In addi-
tion to the validation, we further test best-performing setting
on a hold-out set of 60 images (20 mNEC, 20 sNEC, 20 no
pathology) from 21 patients, to confirm generalisability and
robustness of our results.

Cross-validation experiment

Table 2 lists a summary of the results from our NEC clas-
sification experiments (full table in the Online Resource 1).
Geometric augmentations (1–7) show considerable improve-
ment over the Baseline (0), with Translation (1) achieving
the highest of +6.2%. Horizontal and Vertical Flipping and
their combination (4–6) have minimum effect. This contra-
dicts [14], suggesting that the ResNet model learns mostly
localised representations, when trained in our limited NEC
dataset, and finds it difficult to generalise to patterns in
widely different locations. Colour scheme augmentations
(9–11) lead to small changes, while adding Occlusion and
Noise (7,8) reduces performance. Both preprocessing meth-
ods (12,13) lead to improvements of +2.4% and +1.7%
compared to the Baseline. Combining Translation and Rota-
tion (14) leads to an improvement of + 3.3%, but a smaller one

than the individual gains, while combining Sharpening and
Equalisation (15) causes a negative effect. Pairing both of the
proposed prepossessing pipelines with Translation (16–17)
leads to significant improvements with Pr-1 and Translation
(17) achieving the best performance overall with an accuracy
increase of +7.13% compared to the Baseline.

Hold-out testing experiment

The bottom section of Table 2 shows results of the best-
performingmethods on the hold-out testing set. Our previous
findings are also confirmed in this experiment. First, all mod-
els outperform the baseline and show good generalisation
to the unseen dataset. Secondly Rotation (68.70% acc) and
Translation (68.0% acc) generalise better than Pr-1 (64.00%
acc) and Pr-2 (61.0% acc). This makes sense, as geomet-
ric augmentations are expected to provide more resilience to
changes in feature representation than preprocessing. Finally,
the best performancewas again achievedby themodel trained
using the combination of augmentation and preprocessing
(Pr1+trans: 69.3% acc), showing the ability of the proposed
approach to effectively generalise to unseen images.

Discussion and visualisation

Figure 4 compares example predictions across the baseline,
Pr-1 with Translation and Pr-2 with Translation. In the first
row an NP image is incorrectly classified by the baseline as
mNEC and with very high probability. Moreover, in the sec-
ond and third rows, the baseline model erroneously classifies
mNEC as sNEC and sNEC as mNEC, respectively. In the
absence of preprocessing, input images appear blurry and
marred by low contrast, leading to incorrect model predic-
tions. The application of Pr-1 and Pr-2 effectively sharpens
both contrast and edges. This results in enhanced visibility of
NEC indicators and findings, allowing the model to learn to
distinguish the three classes, yielding accurate predictions.

To further illustrate the improvements added by the Pr-2&
Translation, Fig. 5 showsGrad-CAM++outputs of validation
samples. Evidently, the proposed pipeline better focuses on
abdominal areas, where NEC findings are located, leading
to correct classification. This is different from the baseline
that occasionally focuses on irrelevant areas (e.g. the spine
column).

Our results show that the dataset size is an important fac-
tor when considering image augmentation and preprocessing
pipelines in DL development for X-ray CAD tasks, as it
can significantly influence the performance of the network.
Contrary to the available literature, for small datasets, aug-
mentations that conserve most of the original information
(1–2) tend to be more efficient, while transformations that
either significantly change the location of the features (5,6)
or occlusions which alter core image information (7), tend to
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work poorly. With this in mind, when designing an augmen-
tation pipeline, caution is advised when applying multiple
augmentation steps, as their combined effect can reduce
the model’s performance as indicated in our results (14,15).
Large datasets cause a slower model convergence but benefit
from pipelines targeting to filter out outliers, thus increasing
the robustness of classification. In limited-size datasets, like
the one we present here, the main goal should be to artifi-
cially expand the available data for training without altering
key information. Our results also highlight the potential ben-
efit of enhancing core image attributes (e.g. contrast) via
preprocessing to improve classification performance. Both
proposed Pr-1 (17.) and Pr-2 (16.) preprocessing pipelines

lead to improvements of +2.4% and +1.7% in classification
accuracy and increased robustness, as indicated by reduced
deviation in the majority of metrics.

It is important to acknowledge that our study has potential
limitations. All images are collected from the same medi-
cal centre; therefore, our dataset may not represent the full
distribution of NEC cases. Also, our two proposed prepro-
cessing pipelines focus on better highlighting the abdominal
structures in AXRs, thus enhancing NEC features, but par-
ticularly Pr-2 was designed considering the available dataset.
This could introduce bias and may make the model perform
differently in images from other sources. However, consider-
ing our proposed pipeline Pr1+Translation shows that even

Fig. 4 Comparison of predictions between (left) baseline, (middle) Pr-1+Trans, and (right) Pr-2+Trans for all three NEC classes. Preprocessing
approaches enhance the signs of NEC within the image, allowing the model to accurately classify the condition
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Fig. 5 Grad-CAM++ regions contributing to predictions of NEC classes. The rows indicate baseline and Pr-2 & Translation trained models, while
columns show input data, truth label and gradient maps along with classification and confidence level

standard preprocessing techniques (sharpening and equali-
sation) can increase model’s robustness. Given its simplicity
it is expected to introduce minimum bias and be widely gen-
eralisable across the spectrum of AXR images.

Conclusion

This study explores the efficacy of various image augmen-
tations and preprocessing strategies in the development of
CAD models for NEC, a rare but devastating condition
affecting premature-born babies. The task itself presents
major clinical—identification of disease severity, as opposed
to simple detection, is the key objective; imaging—subtle
and difficult to distinguish radiological signatures; and
technical—limited data size due to rarity, challenges. Our
exhaustive experimental evaluation reveals that geometric
augmentations preserving critical image features are most
conducive for model training, showing an increase in perfor-
mance of +6.2% with Translation and +6.1% with Rotation.
Conversely, augmentations such as occlusion, which signif-
icantly alter core image information, led to a performance
decrement. Colour augmentations, on the other hand, yielded
marginal gains, with a maximum improvement of +0.7%
achieved through Equalisation. We propose two optimised
preprocessing pipelines in a novel X-ray classification task
in limited settings: Pr-1, centred on colour and contrast
enhancement, and Pr-2, centred on edge enhancement. These
pipelines successfully elevated model accuracy by +2.4%
and +1.7%, respectively. Moreover, we demonstrated that
combining Pr-1 and Pr-2 with Translation augmentation
yielded the best outcomes improving classification accuracy

by+7.1%against the baseline. In experimentswith a hold-out
testing set, the proposed pipelines show good ability to gen-
eralise to unseen data, while the best-performing one (Pr1 &
Translation) achieves the maximum improvement of +13%
against the baseline. This investigation provides a nuanced
understanding of DL development in X-ray classification,
specifically highlighting the critical role of data augmenta-
tion andpreprocessing techniques in enhancing performance,
particularly in the challenging context of limited datasets for
automated diagnosis of rare medical conditions. In the future
we plan to integrate AXR datasets from different medical
centres and investigate any potential domain shift caused by
patient distribution,X-raymachine settings, aswell as bench-
mark our proposed pipelines on additional DL architectures
(CNN and Transformer-based backbones).
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