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Abstract

This paper considers neural representation through the lens of active inference, a normative
framework for understanding brain function. It delves into how living organisms employ
generative models to minimize the discrepancy between predictions and observations (as
scored with variational free energy). The ensuing analysis suggests that the brain learns
generative models to navigate the world adaptively, not (or not solely) to understand it.
Different living organisms may possess an array of generative models, spanning from those
that support action-perception cycles to those that underwrite planning and imagination;
namely, from "explicit" models that entail variables for predicting concurrent sensations, like
objects, faces, or people—to "action-oriented models™ that predict action outcomes. It then
elucidates how generative models and belief dynamics might link to neural representation and
the implications of different types of generative models for understanding an agent’s cognitive
capabilities in relation to its ecological niche. The paper concludes with open questions
regarding the evolution of generative models and the development of advanced cognitive
abilities — and the gradual transition from "pragmatic” to "detached" neural representations.
The analysis on offer foregrounds the diverse roles that generative models play in cognitive
processes and the evolution of neural representation.



Introduction

“My thinking is first and last and always for the sake of my doing.”
—William James

The concept of "neural representation,” which pertains to the idea that the brain represents
elements of the external world, plays a prominent role in neuroscience, psychology, and
philosophy. However, its interpretation remains a subject of discussion 1°. The notion of
representation is intricate, particularly when applied to brain science, where it necessitates a
connection to specific brain activities or states. This engenders questions such as: What kind
of neural state or activity would count as a “representation”, and how? What would be the
entity out there that is “represented”? Does the brain really represent something or is the notion
of neural representation misplaced?

In this article, we approach the concept of neural representation through the lens of active
inference: a normative framework for describing brain function and cognitive processes *°.
Active inference proposes that the brain constructs a generative model encompassing the
external world, the body, and action possibilities. This model underwrites sense making and
purposeful interactions with the surroundings. For instance, it enables the apperception of the
visual image in Figure 1, while also offering various affordances (e.g., catching the fishes —
or not, in this instance).

Figure 1. Fishpond Mosaic designed by Gary Drostle and made by Gary Drostle and Rob
Turner in 1996 for Croydon Council, south London. Source: Wikipedia.

The connection between active inference and diverse philosophical concepts of representation
has triggered substantial discussion. For instance, it intersects with internalist perspectives !
and action-centered viewpoints 2, alongside enactive theories that negate the idea of



representation 3. Adding complexity to the debate is the variance in implicit notions of
representation among researchers, each accentuating distinct criteria 4.

Here, we sidestep this debate and focus instead on how neural representations might emerge
from the reciprocal exchanges between living organisms and the niches they inhabit;
particularly, when viewed through the lens of active inference. Our focus is on elucidating the
formal constructs employed by active inference to explain how living organisms solve
cognitive problems. These constructs encompass generative models, probabilistic beliefs, and
the concept of variational free energy. By delving into these constructs, we hope to naturalize
the notion of neural representation under a first principles account of sentient behavior.

Surprise minimization, active inference and action-perception loops

Each living entity confronts the inherent challenge of adaptively regulating and managing
essential parameters crucial for its existence, such as body temperature or glucose levels. From
a formal perspective, the imperative for adaptive control can be conceptualized remaining in a
limited array of potential states, or to inhabit an organism-specific niche that satisfies essential
needs. An example of this imperative is the requirement to maintain body temperature at
approximately 37°C. In terms of information theory, states that deviate from these acceptable
bounds are deemed “surprising”. For instance, significantly higher or lower sensed body
temperatures than 37°C fall under this technical concept of surprise (i.e., surprisal or self-
information). This underscores the vital importance for a living organism to minimize the
surprise inherent in its sensory interactions with the environment.

The notion of surprise, in turn, depends on two key factors: actively sampled sensory
observations from the external world and internally generated predictions regarding these
observations. More precisely, surprise increases with the discrepancy between predictions and
observations, see Figure 2A. An organism can mitigate this discrepancy in two complementary
ways: by adapting its predictions to anticipate forthcoming observations (perception) more
accurately or by influencing its surroundings to ensure alignment of forthcoming observations
with predictions (action).

Active inference formalizes the reduction of surprise as the minimization of variational free
energy—a quantity that places an upper bound on surprise °. The two constituents of this
measure—divergence and evidence—correspond to perception and action, respectively, see
Figure 2B. Under certain simplifications, variational free energy reduces to (precision
weighted) prediction error. This will prove significant in our subsequent discussion of
predictive coding.

The interaction between action and perception is vital to reduce the gap between what an animal
predicts and what it actually experiences. This difference is measured as variational free
energy. Having accurate perception is important because if an animal can't sense its
surroundings correctly, it might struggle to choose the right actions. Likewise, if it doesn't take
actions to satisfy its basic needs like thirst, it might not survive for long.

Importantly, action is guided by an inherent optimism, described as a pre-existing preference
(or just "prior") for outcomes that ensure survival; namely, the outcomes or states of being that
are characteristic of the agent in question. Consider a creature under the midday sun. In such a
scenario, if its predictions encompassed outcomes like sunburn and dehydration, it would fare
poorly. Instead, a more successful animal might predict a constant temperature of 37°C,



prompting it to seek out shade *°. This illustration underscores that within active inference,
certain priors, such as “my body temperature is around 37°C”, extend beyond the conventional
scope in Bayesian statistics—typically indicating a priori knowledge about the external
environment—and instead, assume a role akin to 'set points' in cybernetics. These priors encode
task objectives as attractors within the organism's state space, enabling error correction and
negative feedback control °, That's because any difference between the expected and currently
sensed body temperature would trigger adaptive adjustments (like vasodilation or finding
shelter) to resolve the difference.
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Figure 2. Complementary Roles of Action and Perception in Variational Free Energy
Minimization. (a) Action and perception play distinct yet interdependent roles in minimizing
the discrepancy between an organism's predictions and the world. Perception reduces this
discrepancy by shaping the organism's beliefs to align more closely with the world, enhancing
predictive accuracy. On the other hand, action diminishes the discrepancy by modifying the
external environment, making it better match the organism's beliefs. (b) Variational free energy
mathematically captures the concept of ‘“discrepancy”. The variational free energy F
represents a functional (function of a function) dependent on both an approximate posterior
distribution (Q) and sensory data (y). The approximate posterior probability Q(x) pertaining
to hidden states (x) plays a crucial role in variational inference, serving as an approximation
to the true and typically intractable posterior probability of hidden states given the observed
data (P(x|y)). The process of free energy minimization involves two key components. The first
(divergence) term involves minimizing the Kullback-Leibler (KL) divergence between the
approximate posterior Q and the true posterior P, effectively updating beliefs to make Q
converge as closely as possible to P. This divergence term reflects the adjustment of beliefs,
akin to the perceptual role observed in biological systems. The second (evidence) term ensures
the optimization of the marginal likelihood (P(y)), by aligning the model's predictions with the
observed data and therefore avoiding “surprise”. While the first (divergence) term implies
changing beliefs, the second (evidence) term implies changing the observed data, by acting.
Therefore, the divergence and evidence terms map to perception and action, respectively.
Further discussion about the technical details of free energy minimization can be found in .



The same feedback loop applies to controlling movement. Figure 3 gives a simple instance of
active inference in posture control for a "finger." The finger's posture is determined by a single
factor: its angle. Figure 3A displays perceptual inference—inferring the finger's angle from
what is sensed. In this basic setup, the influence of both the prior (preferred angle) and action
IS absent, so the finger remains stationary. Initially, the actual angle of the finger (dark blue) is
vertical, while the inferred angle, the average angle in the agent's beliefs (light blue), is
mistakenly set as horizontal. The system's internal feedback doesn't match the inferred angle,
leading to a difference (proprioceptive prediction error: propr pred err, shown in green)
between the real and inferred angles. The system minimizes variational free energy (in this
case, minimizing prediction error) by “changing its mind”, and after around 100 steps, the
inferred angle aligns with the actual angle.
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Figure 3. Hlustration of Active Inference for Postural Control of a ""Finger". (A) Perception
serves to minimize the discrepancy between the actual angle of the finger in the generative
process (represented by the dark blue line) and the estimated angle, which corresponds to the
agent's posterior belief (depicted in light blue). (B) Collaboratively, perception and action
work to diminish the gap between the preferred angle (prior belief indicated by the dotted blue
line) and the presently inferred angle (depicted in light blue) of the finger by adjusting the
actual finger angle (dark blue). This alignment results from the finger being moved toward the
preferred angle. (C) In the absence of action but when the prior belief is factored in, the
inferred angle converges to an intermediate point between the actual position and the prior



belief. The "t" symbols signify discrete time steps in the simulation. Refer to the main text for a
comprehensive explanation.

Figure 3B serves as a follow-up to Figure 3A, introducing the influences of both the prior and
action. Here, the image exemplifies the cooperative dynamic between action and perception,
guiding movement toward the preferred (horizontal) angle. Initially, the finger's real and
inferred angles align with the vertical position. However, the system leans towards a prior
preference for a horizontal finger angle, predicting it consistently. As a result, there's a
mismatch (prior pred err, shown in violet) between the prior and inferred angles. This prompts
the inferred angle (light blue) to shift towards the favored (prior) angle, leading to a second
discrepancy (propr pred err, depicted in green) between the real and inferred angles. This time,
the difference can be bridged by acting (red line), by physically moving the real finger (dark
blue). The system reduces variational free energy by merging action and perception, causing
both real and inferred angles to converge with the preferred (prior) angle, after about 100 steps.
Notably, active inference differentiates from predictive coding in that it allows for acting on
the world to fulfill predictions, such as moving to a preferred state. It is worth remarking that
the usage of the term “prior” in this example differs from the most typical usage in Bayesian
statistics; and this might create some confusion. In this example, the prior is not a distribution
over all the “typical” finger angles (in fact, the horizontal angle could be unlikely a-priori) but
rather stands for a prior preference. If the role of the prior were only to infer the true position
of the finger, this (incorrect) prior would lead to a poor inference: namely, the inference — or
perhaps the “delusion” — that the finger is more horizontal that it really is. However, in active
inference, the role of priors (or at least some of them) is computing a good course of action, for
which the agent needs to determine a “good next angle” or set point, as an intermediate step
towards the preferred (horizontal) angle. The “delusion” that the finger is more horizontal than
it really is therefore helps moving the finger towards the desired (horizontal) position, specified
in the prior. In this perspective, the inferred angle position could be considered a “prescription”
for movement rather than the agent’s best hypothesis about the true state of the world, as more
common in Bayesian statistics. It's also worth mentioning that this is a simple example. Later
we will see how this framework can be extended to encompass a more complex notion of
purposeful action—where organisms can envision future movement targets, establish them as
priors, and finally attain them through planned action.

Lastly, Figure 3C offers an alternative extension of Figure 3A, incorporating the influence of
the prior while excluding action. Here, following Bayes' rule, observations and priors are
merged, causing the inference of the angle's position to gravitate toward a midpoint between
the real position and the prior belief. (note that in this simulation, both prior and observations
carry the same weight. In active inference, this weight is contingent upon the precision or
reciprocal variance of the comparative information streams—a topic we will address in more
depth later.)

To recap, we have introduced the fundamental imperative for living organisms as the
minimization of the discrepancy between predictions and observations (technically, variational
free energy). Additionally, we clarified that both perception and action play a concerted role in
achieving this minimization. This viewpoint underscores the brain's nature as a predictive
apparatus, continually generating predictions about the external world to steer both perceptual
understanding and action regulation. This stands in contrast to viewing the brain as a
mechanism primarily focused on converting external stimuli into internal representations and
subsequent motor responses. However, we have yet to elaborate on the neural mechanisms that



living entities employ to formulate their predictions and conduct their inferences. This brings
us to our next section.

Generative models

How do organisms generate their predictions? In order to generate predictions and draw
inferences, organisms rely on acquired generative models of the causes of their sensations. A
generative model is a statistical description of how observations stem from unobserved (hidden
or latent) states. For instance, it explains how a visual object, like an apple, produces an image
on the retina. This concept of a generative model aligns with the influential perspective in
cognitive science, suggesting that living entities carry small-scale models or cognitive maps of
the external world 178, such as for example allocentric maps of space in the hippocampus *°.
It further resonates with the notion of "world models" in artificial intelligence 2%,

While generative models are often associated with "models of the external world,"” this notion
extends to encompass a broader scope: it includes models not only of the external world but
also of the body (e.g., the "body schema"), the internal milieu (e.g., the "interoceptive
schema™), emotional aspects, social dynamics, self-related constructs, and more 2228, The
crucial point is that for survival, the generative models for living entities must not only provide
ways to comprehend the world but also prescribe methods for action — thus attributing agency
to organisms. In other words, the brain learns generative models to interact with the world, not
(or not just) to understand it. Consequently, models that include potential actions and implicit
affordances ?° become pivotal in the context of living organisms.

Figure 4 illustrates the key distinction between the brain's "generative model™ of the external
world and the actual external world (referred to as the "generative process" responsible for an
organism's observations). The figure highlights several key aspects. Firstly, a generative model
captures the statistical relations between observables (y) and states (x) that are hidden from
direct observation. This equates formally to the joint probability distribution over unobservable
causes and observable consequences P(x,y). Secondly, it's crucial to note that a generative
model doesn't equate to reality itself; rather, it represents an organism's interpretation of reality
— which it can realize or author through action. Both the generative model and the generative
process incorporate "hidden states," but these states need not necessarily correspond or even
resemble each other. The hidden states within the organism's generative model (x) support
Bayesian beliefs, representing probability distributions over latent states that are used to predict
sensory consequences, including, crucially, the consequences of our movements and
physiology that can be realized by motor and autonomic reflexes, respectively.

However, the hidden states used to generate predictions are not isomorphic with hidden
variables in the external world (x*) — they can be distinct variables, such as categorical versus
continuous. For example, | may have the Bayesian belief that 1 am writing this sentence.
However, in reality, my movements are the result of electromechanical forces exerted by my
musculature that are trying to minimize proprioceptive prediction errors; thereby fulfilling the
proprioceptive predictions entailed by my beliefs (much in the spirit of ideomotor theory). This
distinction between internal hidden states (of the generative model) and external hidden states
(of the generative process) gains significance as we deconstruct the concept of neural
representation.

The relationship between the agent and the world is interactive, forming loops between action
and perception. The generative model influences the generative process via actions, while the



generative process shapes the generative model through observations. This dynamic implies
that internal hidden states and external hidden states are statistically separate and cannot
directly impact each other. This statistical separation is formally articulated through the concept
of a Markov blanket. Those interested in exploring this concept and its potential ramifications
for the notion of representation may refer to
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Figure 4. Differences between the Generative Model and the Generative Process in Active
Inference. Under active inference, the generative model and the generative process encompass
distinct sets of hidden states (x and x* respectively). These two components form
interconnected action-perception loops: the generative model can exert influence over the
generative process through action (u), while the generative process can affect the model
through observations (y). The generative model is expressed mathematically as the joint
probability distribution P(x,y). This model can generate hypothetical observations — i.e.,
predictions — (y) based on an inferred state (x). The generative model can be "inverted" for
Bayesian inference — estimating the value of x after observing y (which may itself have been
caused by the estimated value of x, as a self-fulfilling prediction). The outcome of this inference
is a posterior or Bayesian belief. To update Bayesian beliefs, active inference employs a
variational approximation, leading to an approximate posterior belief denoted by Q(x), which
approximates the true posterior, labeled as P(x|y). See main text for further elaboration.

An essential point to note is that generative models can be employed in two distinct directions:
from x to y and vice versa. In the first direction, known as the generative direction, these models
facilitate the generation of potential observations from inferred hidden states. Essentially, this
means that the models can be used to create predictions and imaginative content, resulting in
the designation "generative" models. This capacity is notably demonstrated by contemporary
generative Al models that capture statistical patterns from extensive curated datasets and
subsequently produce synthetic text (e.g., BERT, GPT) or images (e.g., Midjourney, DALL-
E) 3032, When employed in the second direction, called the inferential direction, from y to X,
generative models enable the inference and optimization of probabilistic beliefs about the
hidden state of the world based on observations. This process occurs for example during
perceptual inference, where the model infers the hidden state from observed data. Inference or
Bayesian belief updating corresponds to inverting the generative model in the inferential
direction.

The dual inferential and generative roles of generative models furnish mechanistic insights into
the fundamental cognitive functions of the brain. The processes of perception (via predictive
coding) and action (via active inference) can be effectively described in terms of inference. On
the other hand, tasks such as planning, and imagination necessitate the generation of



anticipatory (hypothetical or counterfactual) observations. In the following section, we delve
into illustrative instances of generative models that underpin these cognitive capacities,
exploring their implications for the concept of neural representation.

Generative models for action-perception loops

Both perception and action can be effectively conceptualized as inference processes. The
concept of perception as unconscious inference traces back to 3. Figure 5 illustrates a
biologically inspired generative model that supports perceptual learning and inference: a
hierarchical predictive coding network 343, The hierarchical structure is discernible in the
figure's layout, where neural populations are grouped from bottom (lower hierarchical level)
to top (higher hierarchical level). Notably, each hierarchical level encompasses distinct neural
populations that encode expectations (in deep cortical layers) and prediction errors (in
superficial cortical layers). The "expectation” nodes encode probabilistic beliefs or their
sufficient statistics (such as mean and variance for Gaussian distributions), which generate
predictions regarding observed content. Conversely, the "prediction error" nodes capture the
difference between predictions and observations. The process of inferring the most plausible
explanation for observations unfolds through the minimization of prediction errors, enabled by
reciprocal message exchange between units: top-down messages convey predictions, while
bottom-up messages convey prediction errors. Learning operates similarly, driven by
prediction error minimization: please see 33 for details.
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Figure 5. Predictive Coding and Active Inference Models for Action-Perception. (A) lllustration of
active inference as “predictive coding with motor reflexes” for movement control. Here, black and red
nodes denote expectation and prediction error nodes, respectively. Top-down and bottom-up edges
convey predictions and prediction errors, respectively, across levels, forming a predictive coding
hierarchy. Prediction error can be minimized by either revising prior beliefs or (if these priors are held
with high precision, as indicated in the figure by the blue node), by acting in the world. See the main
text for explanation. (B) Hierarchical generative model designed for the (multimodal) notion of a
jumping frog. This architecture frames the concept of a jumping frog as the underlying cause of
numerous sensory outcomes, spanning visual cues of something leaping and green, and auditory inputs
of croaking sounds. Some of these consequences can be contingent on actions, such as the visual input
changing when the frog is foveated. The inversion of this generative model supports perceptual
inference (e.g., recognizing a jumping frog) from its observed sensory manifestations (e.g., seeing
something green and leaping), incorporating information from multiple sensory modalities.



The example presented in Figure 5A revisits the process of inferring the "finger angle,” as
previously explained in Figure 3, through the lens of a predictive coding model. In this instance,
the (posterior) belief regarding the finger angle is encoded in the expectation node at the lower
hierarchical level, while its corresponding prior belief resides in the expectation node at the
level above. These two nodes are connected via prediction error nodes that convey
discrepancies with proprioceptive sensations and prior predictions. The lower section of Figure
5A illustrates the simplest manifestation of active inference, which demonstrates the potential
to engage in action (to counteract proprioceptive prediction errors) by merely equipping a
predictive coding network with a peripheral motor reflex arc 637, This predictive coding
architecture can be readily expanded by incorporating additional hierarchical levels. For
instance, predictive coding models for visual processing, such as those involving natural
images or MNIST letters, incorporate multiple hierarchical levels, where the expectations at
each level encode increasingly abstract features of the stimulus 343538,

Figure 5B offers a more sophisticated demonstration of a generative model, featuring a
multimodal concept—a jumping frog. The image presents a hierarchical generative model,
where peripheral nodes situated along the dotted circle denote sensations spanning diverse
modalities (such as visual, auditory, and interoceptive). Nodes within the circle are unimodal
hidden states, while the central node is a multimodal hidden state, which simultaneously
generates outcomes in multiple modalities. The notion of a jumping frog encompasses a set of
multimodal predictions: predictions about how a frog would appear, the sounds it would emit,
and the typical narratives involving frogs, for instance. Action is part and parcel of this concept,
enabling predictions about interactions with a frog (e.g., the sensations induced by palpating a
frog; either by touching it or visually through foveating it): in brief, all the affordances offered
by a frog. These predictions are grounded in the multifaceted experience of interacting with
frogs, in various modalities. The concept of a jumping frog encompasses perceptual
inference—recognizing a frog or comprehending a dialogue about one—active inference—
planning how to palpate a frog—and the ability to "mentally navigate" through the concept of
jumping frogs, generating hypothetical, "as-if" predictions regarding frogs, for instance. The
multimodal generative model illustrated in Figure 5B is shown only for illustrative purposes.
It includes several simplifications, such as dedicated neuronal populations for each particular
aspect of (interactions with) frogs and separate streams for the different modalities that are not
anatomically accurate — and hence should not be taken as a serious hypothesis about frog
concepts in the brain. Despite so, it illustrates the putative structure of a sophisticated
(multimodal and action-centric) generative model, which a living organism might acquire
through situated interactions with external entities (including frogs) and by generalizing from
interactions with — and discourses about — other similar entities.

Generative models, belief dynamics, and neural representation

With the introduction of a basic generative model for active inference and its inferential
dynamics (based prediction error minimization), we now explore the connection to neural
representation. Four key points warrant attention in this regard. Firstly, there exists a consistent
functional relationship between the (internal) hidden states within the hierarchical generative
model and the (external) hidden states in the world, like the "finger" angle or MNIST letters.
This connection is generally assumed (though not universally) to reflect the most commonly
embraced notion of neural representation in cognitive psychology and neuroscience. Key
aspects of this concept revolve around the structured nature of the connection, indicating a
causal link between internal and external hidden states, as opposed to a simple correlation. This
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underscores that internal hidden states encode beliefs about external hidden states, even though
a direct one-to-one mapping may be lacking. Furthermore, these hidden states serve as tools
for the organism to steer adaptive prediction and control, holding meaning, significance and
adaptive value for it in the process >'.

Secondly, it is crucial to distinguish between two concepts—generative models and
probabilistic beliefs—often linked to the idea of neural representation, though they manifest
through distinct neural mechanisms. The structure and parameters of the generative model, or
its hierarchical components, could be encoded in synaptic connectivity. This is where elements
like statistical regularities (like priors and likelihood functions) find their coding. On the other
hand, probabilistic beliefs (or their statistics, such as the mean and variance of Gaussian
distributions) might find their encoding in neuronal activity and the collective dynamics of
neuronal populations. Over time, neuronal activity reflects Bayesian belief updating under the
generative model. Significantly, the organism's (posterior) beliefs stem not solely from
immediate sensations, but from an inference process operating under the generative model.
These beliefs — which can be associated with neural representations — essentially blend sensory
input, memory, and predictions, rather than merely representing sensory input. As highlighted
in the example of the frog, generative models additionally enable what-if predictions about
hypothetical outcomes of actions. We will revisit this point later when we discuss planning (as
inference) and imagination.

Thirdly, there are multiple ways in which the brain might encode probabilistic quantities and
perform probabilistic computations over them — for example, to approximate the often-
intractable problem of inferring posterior probabilities. Here, we have emphasized a specific
(variational) form of approximate inference, related to parametric neural codes, in which neural
populations are supposed to encode the sufficient statistics of probability distributions, e.g., the
mean and variance of Gaussian distributions 1%3°. Other neural coding and inference schemes
have been proposed that use parametric codes (e.g., probabilistic population codes *°) or
sampling-based methods **; see %2 for a detailed comparison of these approaches.

Finally, it is important to recognize that the manner in which (predictive) coding occurs and
the dynamics of belief updating are profoundly influenced by the specific generative model in
play. Here, we have focused on simple generative models in the context of predictive coding,
which unfold in continuous time and encode variables—such as the finger angle in Figure 4—
as Gaussian distributions or their sufficient statistics (mean and variance). Nevertheless, a
broader realm of generative models could be found within the brains of both basic and more
advanced living creatures. These generative models might operate in continuous or discrete
time, or both. They could be structured into distinct factors that autonomously impact
observations (think of "where" and "how" in visual pathways). These models might also feature
hierarchical organization with temporal depth, involving hidden states about both the past and
future. Despite these variations, the overarching belief dynamics adhere to a common principle:
the minimization of free energy or (precision weighted) prediction errors. Different generative
models necessitate the transmission of "neural messages” (like predictions and prediction
errors) among nodes in distinct manners. Consequently, they result in different patterns of
connectivity and belief dynamics °. For instance, generative models explicitly encompassing
past and future hidden states enable the exchange of messages "from the past™ and "from the
future" to update beliefs concerning "the present." In the following sections, we provide a brief
overview of some illustrative examples and consider their standing in relation to neural
representation.
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Generative models to solve cognitive tasks that involve planning and imagination

Hitherto, our discourse has revolved around generative models that support perceptual and
active inference through the minimization of variational free energy. In this section, we
consider more expressive generative models, which have been employed to describe cognitive
tasks involving planning and imagination. These tasks demand generative capacities and the
ability to envision forthcoming scenarios and future observations.

Hierarchical generative model for memory-guided spatial alternation

Consider a two-level hierarchical generative model designed to solve memory-guided spatial
alternation tasks “3. These tasks require coordinated interactions within hippocampal (HC) and
prefrontal circuits (mPFC). A depiction of a memory-guided spatial alternation task is
presented in Figure 6A. In this scenario, within a W-maze arrangement, an organism (in this
case, a simulated rodent) must navigate alternating corridors adhering to a learned rule (like
center, left, center, right, center) to attain rewards 44,
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Figure 6. Hierarchical Generative Model for Memory-Guided Spatial Alternation Tasks,
adapted from 3. (A) Depiction of the spatial alternation task within the W-maze used by 44°,
The inbound decision refers to moving from one of the outside corridors to the center corridor,
while the outbound trajectory refers to moving from the center corridor to one of the outside
corridors. (B) Hierarchical generative model used to solve the spatial alternation task. This
model features two interconnected levels, each learning maps of physical space (level 1) and
task space (level 2), supporting hierarchical perceptual inference, planning, and action-
perception loops. (C) Collection of sensory observations encountered by the simulated rodent
during navigation. (D) Planning involves the selection of policies (action sequences, r) by
evaluating their expected free energy, denoted as G(r). Notably, the expected free energy
considers forthcoming observations (anticipated by pursuing particular policies) beyond
current and past observations, in contrast to variational free energy in ° (E) Simulation
outcomes illustrating the model's accuracy in spatial alternation performance. The results
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show that an agent selecting its actions using hierarchical active inference (HAI agent)
correctly solves the task, while randomly choosing actions (Random agent) is unable to
correctly select the next location of the sequence. Finally, an agent in which communication
between the two levels of the hierarchical generative model is hindered (HAI-disrupt agent)
shows impaired performance in challenging (outbound) decisions. Please see *® for details.

The hierarchical generative model shown in Figure 6B effectively solves the spatial alternation
task. In the process of exploring the maze, the two levels of this model learn "cognitive maps"
to handle both physical space (HC map °) and task space (mPFC map “°). Here, the term
"cognitive map" signifies a set of hidden variables united into a coherent structure, often
resembling a graph. This structure encodes the relationships between spatial positions within a
maze (or stages of a task) and facilitates a form of "mental navigation." For instance, it allows
predictions about the potential outcomes of traversing the maze (or progressing to the next task
stage).

The cognitive map of physical space encompasses the maze's layout and the feasible actions
within it. This map is constructed by learning the statistical relationships between sequences
of sensory observations encountered during navigation (as depicted in Figure 6C). Notably,
some observations are "aliased,” meaning they appear identical in multiple maze segments,
contributing to self-localization ambiguity. To address this, a statistical sequence learning
algorithm known as a clone structured cognitive graph (CSCG) ' is employed. This algorithm
resolves ambiguity and encodes trajectories as sequences of hidden states that mirror the
animal's positions. The outcome is a cognitive map that closely resembles the physical space
(as depicted in the Level 1 box of Figure 6B).

The cognitive map of task space captures the spatial alternation rule (e.g., center, left, center,
right, center). This map is learned on top of the cognitive map of physical space. To create it,
statistical dependencies between states (corridor endpoints)—where rewards are encountered
during navigation—are learned using a separate CSCG. The cognitive map derived from this
process encodes the sequences of goals the simulated creature must attain to secure rewards (as
depicted in the Level 2 box of Figure 6B). It is important to note that this map aligns with task
space rather than physical space. For instance, both nodes labeled "C" correspond to the same
physical location (the center corridor), but signify distinct task stages: specifically, reaching
the center after either visiting the left or right corridors.

Following the learning phase, the ensuing generative model enables the spatial alternation task
depicted in Figure 6A to be solved. This is achieved through a combination of hierarchical
perceptual inference for self-localization and hierarchical planning to determine the subsequent
course of action. During perceptual inference, the model combines its existing beliefs (“from
the past™) with its current observations (“from the present™) to infer its position within both the
cognitive and task-space maps. The incorporation of message passing "from the past” provides
the system with a working memory of previous contexts—an essential attribute for successfully
addressing spatial alternation tasks *+4°.

During the hierarchical planning phase, the model makes choices—regarding the upcoming
states to visit—in both the task and physical spaces to attain rewards. The process starts at the
higher level, where the model considers plans for the next state in the task space map (in
essence, determining which corridor to approach in alignment with the rule). Subsequently,
this goal is set as a prior within the lower-level model. Then, the lower-level model engages in
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spatial planning, selecting a sequence of actions within the physical space map. Despite
utilizing distinct maps at the two levels, the planning procedure remains internally consistent.
It involves selecting a sequence of actions (referred to more formally as control states)
anticipated to minimize expected free energy (G(n)), as depicted in Figure 6D.

Expected free energy—crucial to the planning process—is distinct from the variational free
energy introduced in Figure 2. Unlike variational free energy, which considers only past and
present observations, expected free energy factors in future observations, expected under each
policy (n). The ability to forecast future, policy-dependent (and counterfactual) observations
enables the evaluation of policies based on two terms outlined in Figure 6D: “epistemic value”
(or expected “information gain”) and “pragmatic value” (or “expected value”). The first,
“epistemic value” term considers the extent to which the approximate posterior over hidden
states (Q(x)) changes, if one gathers novel policy-dependent observations (y). This corresponds
to (an expectation E over) the Kullback-Leibler (KL) divergence between approximate
posteriors with and without the novel observations y that one expects to gather by following a
policy m. The tilde (~) symbol indicates that the equation considers sequences of hidden states
(x) or observations (y). This criterion gauges the extent to which policy-dependent observations
could modify the organism's posterior beliefs, favoring policies that offer informative
observations. While navigating the W-maze shown in Figure 6A, this emphasizes policies
leading to unambiguous states, like the bottom-center of the maze where observation 16 is
available.

The second, “pragmatic value” (or “expected value”) term assesses (in expectation E) how
effectively policy-dependent observations (y) align with the organism's preferred observations,
represented as a prior over observations (C), prioritizing policies that achieve prior preferences.
In the context of our spatial navigation illustration, this implies favoring policies leading to
rewarding states; i.e., plans that realize the prior belief that securing rewards is characteristic
of the agent question. Note that the two terms of expected free energy (epistemic and pragmatic
values) share some correspondences with the two terms of variational free energy (divergence
and evidence) discussed above. The epistemic value term can be considered as an expected
divergence, given future observations. However, here instead of minimising the divergence we
want to select policies that maximise the expected divergence — or in other words, policies that
keep options open. The pragmatic value term is closely related to the evidence term, when one
considers “surprising” those observations that differ from those that the agent prefers a priori,
denoted as C (e.g., in this example, being in rewarding corridor endpoints).

The simulations presented in *® offer a compelling demonstration of the effectiveness of
hierarchical planning in solving the spatial alternation task, as depicted in Figure 6E. Moreover,
experimental evidence from studies disrupting hippocampal activity ** concurs with these
simulations, revealing that performance deteriorates at challenging decision points
(specifically, within the center corridor), when communication between the two hierarchical
levels of the model is interrupted. This breakdown occurs because communication interruption
prevents distinguishing between the two nodes labeled “C” in Figure 6B. The same model is
also capable of mastering more intricate tasks, necessitating rule switches intermittently.
Notably, the model accurately replicates the empirical finding that interrupting communication
between the two hierarchical levels hampers rule switching and promotes perseverative
behavior, in accordance with studies conducted by 8.

Generative replay
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In addition to planning, generative dynamics can support other functions. Substantial evidence
indicates that during periods of inactivity, distinct brain regions—including the hippocampus,
prefrontal cortex, ventral striatum, and visual cortex—engage in "replay” revisiting sequences
of experienced content like past navigation trajectories. Importantly, this replay process also
involves the generalization and novel recombination of encountered content “°°8 The
phenomenon of replay activity, along with the inherent activation of neuronal assemblies, can
be explained as the intrinsic dynamics of a generative model. This dynamic activity serves to
optimize the model during periods of rest, such as when novel observations are absent. This
mechanism allows the brain to optimize its generative model for future use, even in the absence
of external input %,

A further illustrative instance of hierarchical generative modelling emerges from a study that
addressed the formation of spatial maps using a probabilistic mixture model as depicted in
Figure 7A ®1. While this model is similar to the model showcased in Figure 6, it explicitly
encodes maps and sequences. At the highest level, the model acquires various spatial maps
corresponding to distinct mazes or segments within a single maze, alongside an associated
probability distribution allowing to identify the currently most plausible map. The lower levels
capture sequences of spatial positions and individual spatial locations. In this framework, self-
localization involves inferring the current map, sequence within the map, and position in the
sequence. This inference task entails the fusion of top-down and bottom-up information. For
instance, determining the current location relies on integrating sensory observations from
below and the top-down information derived from the inferred sequence and map. This process
utilizes a message-passing structure akin to that found in hierarchical predictive coding
networks.

When subjected to a continuous learning task that involves acquiring multiple spatial maps (as
illustrated in Figure 7B), the model developed distinct maps for individual mazes, as depicted
in Figure 7C. Notably, the model's performance in the ongoing learning demonstrates
improvement when employing a technique known as "generative replay.” This entails
generating fictitious sequences of observations by sampling from the learned maps at the
highest level and propagating this information down to the lower layers. These replayed
sequences are then utilized to facilitate the self-training of the model. Given that the maps
encode probability distributions over locations, and significant sites like goal locations and
bottlenecks are assigned higher probabilities, generative replay naturally favors these
prominent positions: a tendency confirmed through empirical observations. Moreover, it is
important to note that the replayed sequences are not mere replicas of experienced sequences
but can recombine them in novel ways, as evidenced by prior studies .. The outcomes
presented in Figure 7D reveal that the deployment of generative replay not only enhances map
learning but also allows the model to outperform baseline models that do not employ replay,
as well as models that engage in self-training through experiences stored in external “verbatim”
memory sources (referred to as experience replay). These findings highlight the efficacy of
generative replay—and the offline reactivation of content originating from the generative
model—in optimizing the model even when no new observations are available. It is worth
noting that this same technique of generative replay could potentially find application in
training other models, such as semantic memories ® or action controllers 2,
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Figure 7. Hierarchical Generative Model for Spatiotemporal Sequences, adapted from 5.
(A) The hierarchical generative model encompasses three distinct sets of hidden states: maps,
sequences, and items (e.g., spatial locations), to explain sensory observations. (B) The training
process alternates between real-life navigation experiences and "generative replay"”. (C) This
strategy facilitates continuous learning by acquiring multiple maps, thereby mitigating
catastrophic forgetting. The colors denoting learned maps denote probability distributions
across locations, peaking at salient points like bottlenecks or goal locations. (D) Comparative
analysis of different versions of the same hierarchical model, encompassing baseline without
replay, experience replay (exper. rep), and two forms of generative replay (gener. rep and pr.
gen. rep), demonstrates the efficacy of generative replay in enhancing map learning. See ° for
details.

Generative models, belief dynamics, and neural representation

The generative models featured in this section offer valuable insights into the concept of neural
representation. These examples help differentiate between two potential interpretations of
neural representation. First, generative models might encode "cognitive maps" that pertain to
physical space or task space. These maps could have their parameters encoded in synaptic
weights that change gradually with learning over time. Second, the (approximate) posterior
beliefs, whose parameters could be encoded by changing neural activity within neuron
assemblies, could stand for the organism's current best assessment of its position within these
cognitive maps.

It is crucial to recognize that the "representational content” of these beliefs hinges on the

variables inherent to the generative model. For instance, in the hierarchical generative model
in Figure 6, the system accomplishes self-localization in both physical and task space. This
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means that it maintains probabilistic beliefs regarding its present location within the maze at
the lower level, and simultaneously keeps track of the current stage within the spatial
alternation task at the higher level. On the other hand, the model depicted in Figure 7 offers a
slightly different perspective: it implies the representation of a broader spatiotemporal context,
encompassing the ongoing sequence and map. This effectively combines sensations,
predictions, and memories. Of course, it is important to note that both of these models are
considerably simplified in comparison to the intricate operations of hippocampal, prefrontal,
and other brain circuits. For related insights into hippocampal dynamics, including factorized
representations of "what" and "when", interested readers are referred to %

Importantly, both planning and generative replay extend beyond mere self-localization, giving
rise to beliefs and observations that potentially encompass the present, past, and future. Beliefs
regarding the future cannot be directly inferred from current observations; instead, they
necessitate the engagement of the generative model to internally generate (or imagine) future
observations. These internally generated dynamics showcase forms of cognition that are
"detached” from the immediate context, going beyond the constraints of the present moment
(c.f., the specious present of James and Husserl). These types of cognitive processes align with
the conventional sense of representation in cognitive science: the capacity to represent objects
or events even in their absence °. The ability to represent things in their absence is especially
valuable for advanced cognitive functions that involve foresight and planning for the future.
This concept could be instrumental in understanding brain reactivations and replay phenomena.
For instance, one could speculate that generative dynamics occurring just before navigation
resemble a form of "local replay,” optimizing the next plan, while generative dynamics during

periods of rest could be likened to "remote replay,” optimizing the model for future interactions
66-68

In terms of evolutionary advantage, the capacity of generative models to "detach™ from
immediate circumstances could have conferred substantial benefits ®°. This ability to engage in
internally generated simulations and predictions, thereby envisioning scenarios beyond the
immediate context, might have played a significant role in the adaptive success of organisms
throughout evolution. Active inference—an application of the free energy principle—licenses
this kind of teleological (or perhaps teleonomic) account; in the sense that to minimize
variational free energy is to maximize the marginal likelihood of sensory exchanges with the
eco-niche, which scores the adaptive success of a phenotype.

Lastly, a brief consideration on how generative models acquire "meaning" and the ability to
represent something is useful. The two aforementioned studies on cognitive map formation
depict generative models as templates or predefined frameworks of maps or schemas %70,
Initially, these templates lack inherent meaning, serving as vessels for encoding experiences
and generating predictions. The acquisition of meaning happens when these templates
accumulate sensorimotor experiences. In essence, these generative models transition from
being meaningless to acquiring meaning, such as signifying specific spatial locations or
positions within task spaces. This transition occurs as they become linked to the external world
through action: a process that * aptly describes as the journey from the realm of the
meaningless to that of meaning through interaction with the environment.

Abstraction and distortion in generative models and beliefs

Until now, our focus has centered on generative models of the external world, particularly
models read as cognitive maps. However, it is important to acknowledge that models are never
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"perfect replicas” of reality. A principled reason for this divergence lies in the principles of
active inference, sometimes referred to as self-evidencing "% to minimize free energy is to
maximize marginal likelihood or model evidence. Crucially, log evidence can always be
decomposed into accuracy and complexity. This means that generative model learning achieves
a balance between accuracy—encompassing data reconstruction and prediction—and
complexity, considering factors like the number of model parameters or degrees of freedom.
The process of penalizing complexity results in generative models whose hidden states
incorporate only relevant details that enhance accuracy.

In essence, the most effective generative model tends to retain sufficient detail to accurately
represent observations and achieve task success (in the case of action-guiding models), while
discarding redundant information that does not bring an increase in accuracy. Consequently,
learning leads to the development of parsimonious models that abstract away from irrelevant
details, forming compressed latent spaces or manifolds °>73-". This is evident in the cognitive
maps discussed earlier. However, it is worth noting that the implicit geometry can diverge from
the true geometry of the external world. Such distortions are also present in the brain's
generative models. For instance, studies have indicated that hippocampal cognitive maps are
not uniformly distributed across the environment. Instead, a greater number of place cells are
typically found in locations tied to goals and other significant features "5-"8. Moreover, spatial
locations with equal value tend to cluster more closely in the latent or hidden state space, further
exemplifying these distortions 7.

One plausible computational explanation for these distortions is found within the realm of
model reduction: a process applied after a model is learned to fine-tune the tradeoff between
accuracy and complexity. After model learning, model reduction assesses whether each model
parameter (c.f., synaptic connections) contributes a commensurate level of accuracy to
outweigh its complexity costs. Parameters that do not meet this criterion are pruned, effectively
removing them from the model's architecture (and by pruning synapses) °°. This practice
inevitably entails the potential loss of certain information, especially concerning infrequent
observations. However, it simultaneously results in more efficient models that offer improved
generalization by avoiding overfitting.

Rate distortion theory " and algorithmic complexity 88! furnish convergent perspectives on
the interplay between accuracy and complexity during model learning. See also 8278, Unlike
model reduction, which tends to be a post-learning procedure, rate distortion theory operates
during learning itself. It formalizes how a model with a fixed capacity—with finite degrees of
freedom—can optimally compress information, mirroring the statistical distribution of
observations and their functional relevance. This process engenders systematic distortions in
the representation, whereby frequently encountered observations and those most pertinent to a
particular task are encoded with higher fidelity, while less crucial observations are compressed
to a greater extent.

To illustrate this concept, let's consider a generative model commonly used for dimensionality
reduction in machine learning; namely, the B-variational autoencoder 8. We will use this model
to learn a set of 500,000 “spatial maps,” which are 13x13 black and white images containing
two vertically oriented, noisy "corridors.” These corridors are positioned either in the upper or
lower portion of the image. In Figure 8A, we present 21 example maps, each labeled based on
the pixel positions of the centers of the two corridors. For instance, the label (0,12) indicates
that the center of the upper corridor corresponds to pixel O, while the center of the lower
corridor aligns with pixel 12. Our analysis involves a comparison of four different versions of
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the B-variational autoencoder, each possessing distinct characteristics. The first two models
(Model 1 and Model 2) are B-variational autoencoders with standard unsupervised learning
objectives. These objectives have the functional form of variational free energy but include a
hyperprior B, called capacity that scales the complexity (i.e., rate) in relation to accuracy (i.e.,
distortion). The difference between these models lies in their capacity: Model 1 has a high
capacity, while Model 2 has a low capacity (as depicted in Figure 8B). The remaining models
(Models 3 and 4) are also B-variational autoencoders, but they incorporate supervised learning.
In particular, this second objective pertains to the accuracy of binary classification. The task is
to recognize whether the input image features aligned corridors (classified as class 0) or non-
aligned corridors (classified as class 1). Although the learning objectives are consistent across
Models 3 and 4, they diverge due to their capacity: Model 3 possesses high capacity, whereas
Model 4 has low capacity.
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Figure 8. Abstraction and Distortion in Generative Models. This illustration presents latent
codes acquired through p-variational autoencoders (Higgins et al., 2016), designed to encode
and compress spatial map images. (A) Depicts 21 samples from 500,000 spatial maps utilized
for learning, featuring two noisy vertical "corridors™ placed in the upper and lower image
portions. Map labels signify the upper and left corridor centers spanning 13 pixels (0 to 12).
(B) Details the employed objective (loss) functions during training. The first two lines delineate
terms for unsupervised learning in Models 1 and 3. These correspond to a (negative) free
energy, which is decomposed here into accuracy and complexity terms (not into evidence and
divergence as in Figure 2). These two terms align with the distortion (i.e., accuracy) and rate
(i.e., complexity) facets of rate-distortion theory °. The parameter p in the second line adjusts
model capacity; Models 1 and 2 have higher capacity, while Models 3 and 4 have lower
capacity. The third line pertains to supervised (classification accuracy) terms used solely by
Models 2 and 4. This supervised objective involves binary classification, distinguishing
alignment (class 0) or misalignment (class 1) of the two corridors in the input image. (C)
Charts latent codes generated by the four models. Each dot corresponds to one image's position
in the generative model's low-dimensional latent space; certain images are labeled (e.g., 6,6
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at the center) for clarity. Dot colors reflect image class in the classification task (green for
class 1, orange for class 0).

The four panels of Figure 8C offer a visualization of the 2D projections of latent codes learned
by the four distinct B-variational autoencoders. Each dot corresponds to the position of a
specific example image within the low-dimensional latent space of the generative model. For
clarity, certain images are labeled with positions, such as "6,6" in the center. Additionally, the
color of the dots indicates the class to which the image belongs in the classification task: green
denotes class 1, while orange signifies class 0. In the case of Model 1 (top-left panel of Figure
8B), the latent codes expand across the factors of variation (namely, the positions of the upper
and lower corridors) in an orthogonal manner. Model 2 (bottom-left panel of Figure 8B)
demonstrates similar latent codes, yet certain regions are more densely clustered, resulting in a
loss of resolution. Models 3 and 4 exhibit latent codes wherein inputs belonging to class O are
pushed towards the periphery, leading to improved discrimination. This phenomenon is
particularly pronounced in Model 4, where the latent codes are binarized, causing them to span
the factors of variation unequally. These examples underscore the influence of balancing
accuracy (i.e., distortion) against complexity (i.e., rate). In active inference, the capacity per se
is optimized in terms of precisions that are inferred in the usual way (see below).

To summarize, the above numerical studies show that generative model learning favors low-
dimensional latent spaces or manifolds ”. These latent state spaces or manifolds are shaped by
the statistical characteristics of the observations and, in the case of task-driven models, the
nature of the task itself. However, the trade-off between accuracy and complexity implies that
these latent spaces are distorted in an optimal way. For instance, latent spaces might emphasize
the most frequent inputs. Moreover, this implies that within living organisms, where
observations are contingent upon actions—and not predetermined as in typical machine
learning scenarios—the learning history plays a role in shaping the geometry of latent spaces.

Distortions in beliefs and precision control

Not only the structure of generative models but also Bayesian beliefs can exhibit distortions.
Interestingly, this can occur even when there's a direct one-to-one correspondence between the
internal hidden state of the generative model and the external hidden state of the world. For
instance, consider the case of the "finger angle" discussed in Figure 3, where the angle is the
defining characteristic. Even in this scenario, an organism's posterior belief regarding the finger
angle might deviate from the true angle. This divergence can stem from various factors. For
example, the inference process might converge toward an incorrect value due to noisy or
misleading observations. This situation is akin to perceptual illusions or instances of
“misrepresentation.”

A principled account of this kind of optimal “misrepresentation” is that, in the context of active
inference—and Bayesian inference more broadly—the outcomes of inference are determined
by the interplay of two significant factors: observations and priors. In active inference, these
priors represent an organism's preferred states, leading to the possibility that an agent's
posterior beliefs might not accurately represent the external reality. Instead, these beliefs could
be biased due to the incorporation of preferences, giving rise to a form of "optimism bias." For
a deeper discussion on this concept in relation to representation, the reader can refer to 3. This
concept is demonstrated in Figure 3C, which highlights how the inference process concerning
angle position tends to converge towards a midpoint between the true finger position and the

20



prior when actions are precluded. This example underscores a fundamental distinction between
active inference and other frameworks, wherein the relationship between perceptual inference
and action is not considered.

The simulation presented in Figure 3C assumes that priors and observations carry equal weight,
but in reality, this isn't a general rule. In predictive coding and active inference frameworks,
the weighting of information sources is determined based on their precision (or inverse
variance, in the case of a Gaussian distribution). This means that information with higher
precision, indicating lower uncertainty, is given more weight and consequently has a stronger
influence on the inference process. This precision-weighting mechanism plays a crucial role in
both perceptual inference and movement control. Incorrect assignment of precision values can
lead to disorders in both domains. For instance, some disorders associated with schizophrenia,
such as hallucinations and persistent distortions of perception, might result from overly precise
priors, causing the inference process to disregard sensory observations and rely excessively on
internal models . This mechanism can extend to various other psychopathological conditions
and motor disorders where the misalignment between precision settings of priors and sensory
inputs can lead to impairments 227839 Collectively, these studies emphasize the importance
of precision-weighting within generative models, as it plays a critical role in fine-tuning an
organism's posterior beliefs and their alignment with (largely self-generated) reality.

Finally, while in this and the previous section we considered distortions of generative models
and of beliefs from an information-theoretic perspective, another complementary perspective
is that under certain circumstances, these distortions might be related to motivational and
emotional factors and might have adaptive value for the organism, i.e., they might be “useful”
misrepresentations %%, Generative models and beliefs can include a mixture of epistemic
(accuracy-preserving) and motivational (utility-realizing) components and therefore the result
of the inference privileges the best mixture of accuracy and utility, not (or not necessarily) the
most accurate explanation of the data. This might lead to distortions of inference in the direction
of the preferred alternative, which in cognitive psychology is linked to motivated reasoning
and wishful thinking %. One example of this is finding a positive and a negative review of one’s
preferred restaurant, and considering only on the positive one. Another case in which the trade-
off between accuracy and utility becomes evident is when favoring one alternative is
significantly riskier than favoring the other one. For example, upon feeling chest pain, it is
safer to misinterpret a dangerous heart attach for an innocuous heartburn, rather than vice versa.
In these situations, considering the utility and not just the accuracy of the alternatives can
promote adaptive action. However, in some cases the mixture of epistemic and motivational
components could also lead to psychopathological conditions, such as delusional beliefs *°.

Action-oriented generative models: neural representation with an enactive flavor

“In a true sense, for example, the frog does not detect flies—it detects small, moving, black
spots of about the right size. Similarly, the housefly does not really represent the visual world
about it—it merely computes a couple of parameters...which it inserts into a fast torque

generator and which cause it to chase its mate with sufficiently frequent success.”
— David Marr, 1982.

So far, we have considered a rather classical concept of representation, in which the organism’s
generative model plays the role of a “small scale” model or cognitive map of something out
there (for example, a maze) and neural activity represents some entity in the map (e.g., one’s
current location or a future predicted location in the map). While a cognitive map does not
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include every detail and can be distorted, it still features a correspondence between hidden
variables in the brain (e.g., locations in a cognitive map) and in the external world (e.g.,
locations in a maze). This is a standard assumption in “representational” cognitive science,
which assumes that models encode hidden variables isomorphic to things like objects or places
in the external world, in order to infer them.

However, active inference introduces a novel angle, suggesting that the brain's generative
models are primarily developed to enable adaptive action in the world, rather than just
understanding it. This aligns with the "good regulator” theorem, which asserts that an effective
regulator of a system needs to possess a model of that system . In this context, the hidden
variables within action-controlling models do not necessarily mirror the hidden variables of the
external world. In fact, the key purpose is to guide appropriate actions, with precise
representation being secondary. This means that the level of detail or accuracy in how a
generative model corresponds to external reality becomes less crucial, if the model is effective
in guiding adaptive action. As long as the model supports successful decision-making and
response to changes in the environment, the extent to which it faithfully represents the external
world becomes less important within the framework of active inference. This perspective shift
underscores the functional and pragmatic aspects of representation, where accuracy in
mirroring external reality is not a strict requirement as long as the model serves its purpose in
facilitating adaptive behavior.

Acknowledging the pragmatic function of generative models in facilitating interactions opens
up enactive interpretations of active inference, which prioritize adaptive action above mere
representation and occasionally even challenge the concept of internal representation. An
intriguing aspect is that, in contrast to traditional philosophical dichotomies between classical
cognitive theories and enactive theories, active inference does not mandate the exclusion of
one for the other. This is due to the fact that active inference reconciles the pursuit of interacting
with and representing the world. Consequently, a pertinent query emerges: to what extent
should an organism's generative model mirror the external world for optimal efficacy?

In a range of tasks, a spectrum of generative models are effective, spanning from "explicit" or
"environmental™ models — exemplified by cognitive map models in Figures 6-7 — to "action-
oriented” or "sensorimotor" models, which prioritize interaction, while sidestepping the
encoding of external world variables 1214190101 "It js important to bear in mind that generative
models encode the underlying causes of observations. The key distinction between explicit and
action-oriented generative models lies in their explanations for observable sensations: the
former attribute these sensations to the consequences of external states of affairs (e.g., an image
on the retina arising from an external object), while the latter attribute them to the outcomes of
actions (e.g., touch sensations stemming from whisking movements).

Despite their differences, both types of generative models can effectively support the same
tasks. For instance, consider the scenario where a rodent needs to gauge the distance from an
object. It has the option of employing an explicit generative model, which provides detailed
descriptions of external elements; encompassing object identities and spatial distances. This
model enables distance (and object) estimation by inferring the most probable values of its
hidden states, akin to how the finger control model infers finger angles or the spatial navigation
model infers the animal's likely location.

On the other hand, the rodent has the option of utilizing an action-oriented model that
exclusively captures relationships between whisker movements and touch sensations, without
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explicitly incorporating variables representing external entities like objects. A prime
illustration of this concept is the active whisking model presented by %2, which replicates
empirical observations of anticipatory whisker control 1%, as depicted in Figure 9. Within this
generative model, the magnitude of whisker oscillation depends on a hidden state, which
combines contributions from both a fixed central pattern generator and a prior about the desired
amplitude. Significantly, this model predicts a touch sensation when the whisker is protracted,
with both prior beliefs and whisker dynamics governed by the minimization of prediction errors
until this prediction is fulfilled. In cases where the anticipated touch sensation at the
protraction’'s conclusion does not materialize, the prior is adjusted, resulting in an increased
whisker amplitude in subsequent cycles. Conversely, an unpredicted touch sensation leads to
an update of the prior in the opposite direction, resulting in a reduced whisker amplitude in the
ensuing cycles. Upon convergence and subsequent minimization of prediction error, the
animal-object distance can be read out from the hidden state encoding whisker amplitude,
despite the model not inherently encoding distance: c.f., perceptual control theory and related
formulations 104105,
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Figure 9. Active Inference Model of Whisker Movements, adapted from %2, (A) Displays a
schematic representation of the generative model with a prior over the desired amplitude,
hidden variables governing whisker amplitude and generating somatosensory (touch) and
proprioceptive predictions. (B) Illustrates the putative neural underpinnings of the generative
model responsible for guiding whisker movements (see 1% for details). (C) Depicts the
temporal evolution of several model variables when the whisker unexpectedly contacts an
object (horizontal black line) and when the object disappears. In Panel a, the actual whisker
amplitude is shown, halting upon encountering an object. Panel b illustrates the inferred
amplitude; during initial contact, it surpasses the object but swiftly converges to the object's
distance in subsequent cycles. Panels ¢ and d illustrate proprioceptive observations and
prediction errors, respectively. Panel e showcases action dynamics, increasing amplitude prior
to touching an object and reducing it after unexpected contact.
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This example underscores the potential to regulate actions using action-oriented generative
models, which encapsulate sensorimotor contingencies, occasionally being characterized as
non-representational %1%, Other action-oriented generative models can also be employed to
implement diverse embodied strategies. For instance, strategies that enable rodents to navigate
a maze without constructing a representation of it, instead altering their course when
encountering obstacles 1°, or strategies supporting the selection of appropriate action policies
(affordances) to interact with different object categories 1%. Similarly, strategies could be
devised for a baseball outfielder to catch a ball by choosing a running path that counteracts the
optical acceleration of the ball, without necessitating the prediction of its trajectory 12109112,

Another instance of an action-oriented generative model can be observed in the nervous system
of a very simple organism: Caenorhabditis elegans. Multiple studies have demonstrated that a
significant portion of the brain activity of C. elegans encompasses sequences of locomotion
behaviors, including forward and reverse locomotion, as well as ventral turns, which scaffold
the animal’s action selection 3. Dimensionality reduction analyses suggest that these
behavioral sequences are arranged into stable cycles. The points at which these cycles bifurcate
might correspond to decisions between alternative behavioral sequences. For instance, a
decision point could involve choosing between forward locomotion and reverse locomotion
after executing a ventral turn, as depicted in Figure 10, taken from 14, These findings indicate
that a substantial portion of C. elegans' brain activity is structured to facilitate sequential
interactions with the external environment, without explicitly encoding the external world's
state. Notably, the same stable cycles of behavioral sequences can be observed even when the
worm is immobilized, suggesting that neural population dynamics are primarily internally
driven and might represent sequences of descending motor commands 3. This evidence might
be interpreted as a biological example of action-oriented generative model, which proves
sufficient for C. elegans to navigate its surroundings without building an internal representation
of it. Similarly, this model could potentially utilize feedback sensations to make adaptive
locomotion decisions at bifurcation points, for example, increasing the likelihood of a reverse
movement after a ventral turn if an object is detected in the front, or decreasing it if an object
is sensed from behind. This mechanism would conceptually resemble the adjustment of
whisker amplitude following an unexpected touch sensation (or an increase following a lack of
expected touch sensation) as observed in the active whisking model proposed by 12,
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Figure 10. Neural Population Activity Representation in Caenorhabditis elegans, adapted
from 4. A low-dimensional depiction of neural population activity in the Caenorhabditis
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elegans, showcasing cycles of locomotion behaviors, color-coded to represent forward
locomotion, reverse locomotion, ventral turns, and more. The diagram captures bifurcation
points that could signify decisions between distinct behavioral patterns. See 14 for details.

In summary, both extrinsic and action-oriented models, or even hybrid models combining
aspects of both, have the potential to support cognitive tasks. However, only the extrinsic
models would additionally involve the reconstruction of the external environment. If
reconstructing the external environment aligns with the traditional notion of representation,
then it becomes an empirical inquiry to determine which species or tasks entail a neural
representation in the conventional sense. This leads to two methodological considerations.
Firstly, as previously discussed, identifying neural representations in an organism means
disclosing the generative model it employs for making inferences. Secondly, the mere ability
to read out certain information, such as distance details, from an organism's behavioral or
neural variable does not automatically indicate that the organism is representing this
information, at least not in the classical understanding of representation. A diagnostic query
arises: whether the distance information is utilized by the same neural area or downstream
circuits, for instance, to make decisions.

Discussion

In this article, we have explored the concept of neural representation through the lens of active
inference, a normative framework that offers insights into brain function and cognition °. We
conclude by reviewing five key discussion points concerning the mechanisms of active
inference. We then underscore the implications of these points for the concept of neural
representation.

First, a fundamental imperative, guiding living organisms, is the minimization of the
discrepancy between their predictions and observations. This imperative is realized through
action and perception, which jointly minimize variational free energy (or prediction error under
certain conditions). Second, the generation of predictions and requisite inferences hinges on
the acquisition and use of generative models; namely, statistical models that describe how
observations are generated from unobservable (hidden or latent) causes, e.g., how a visual
object, such as an apple, generates an image on the retina. Generative models support predictive
and inferential processes both within perception (predictive coding) and action (active
inference). Third, more advanced generative models afford planning, imagination, and
forward-thinking cognition. Planning necessitates the utilization of the generative model to
envision future observations 1118 enabling the assessment of potential action plans by
gauging their capacity to minimize expected free energy. Consequently, planning embodies a
form of cognition detached from the present moment. Fourth, the acquisition of generative
models balances accuracy and complexity. Optimal generative models embody a trade-off
between these constituents of model evidence, fostering abstraction while introducing apparent
"distortions™ relative to reality. Fifth, within the framework of active inference, generative
models serve the purpose of enabling adaptive action. While providing a comprehensive or
even veridical depiction of the external world might prove beneficial on occasion, it is not an
absolute necessity. This implies that various organisms can effectively employ diverse types
of generative models. These range from "explicit models" encompassing variables for entities
such as objects, faces, or individuals, to "action-oriented models" that facilitate adaptive action
solely by predicting the consequences of actions without encoding external entities like objects.
Notably, different approaches to the study of cognition and behavior emphasize different kinds
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of models: in cognitive neuroscience, it is more common to consider explicit models (e.g.,
allocentric maps of space in the hippocampus 1°), whereas in enactive accounts it is more
common to consider action-oriented models (e.g. catching strategies used by baseball
outfielders ). Active inference can encompass agents endowed with both kinds of models
(and others). It can potentially help finding points of contact between these approaches, which
are typically considered as antithetical — and help assess their empirical predictions, by
comparing alternative models of cognitive phenomena.

Each of the five points listed above has implications for the notion of neural representation, as
we briefly discuss below.

Free energy minimization operates at multiple timescales

When highlighting the significance of free energy minimization, it is important to acknowledge
that this process operates across multiple temporal scales within the brain's mechanisms (e.g.,
rapid neural firing rates versus gradual synaptic updates) and is intertwined with action, which
unfolds over diverse timescales (e.g., basic movements versus complex action sequences aimed
at achieving distant goals) '°. During the action-perception loop, the minimization of free
energy changes the organism's beliefs about the world and guides actions to shape the world.
This pertains to the timescale of neuronal firing rates. On the other hand, learning mechanisms
and the adjustment of model parameters operate at a slower timescale relative to the action-
perception loop, manifesting as synaptic updates. Moreover, learning processes also manifest
during periods of rest, during which the brain potentially optimizes the generative model for
future use via model reduction and synaptic pruning 9. The optimization of generative
models also extends to the slower temporal scales of development and evolution. One can
conceivably interpret these gradual adaptations of generative models to an organism's
ecological niche as a form of very gradual Bayesian model selection 120122,

Conversely, planning and imagination might operate at a faster timescale relative to the action-
perception cycle. In the context of planning, an organism can refine its beliefs concerning
future actions and the latent states it will encounter (and retrospectively modify beliefs about
the past). This domain is characterized by the timescale of "replay” events. Lastly, the process
of free energy minimization encompasses modifications that extend beyond the confines of the
brain, such as joint action and cultural dynamics 12127, However, these aspects are not covered
within the current discussion.

Recognizing the diverse timescales at which free energy minimization operates is pivotal for
contextualizing neural representation within a broader framework that extends beyond the
immediate operations of the brain. As far as neural representation is linked with beliefs and
generative models (as detailed below), it's noteworthy that these elements are optimized
through intricate nested processes, unfolding at varying temporal scales, from neuronal activity
through to evolution. This perspective is important to naturalize the notion of neural
representation: namely, recognize that it might be an inherent adaptation that empowers
organisms to minimize their free energy—or to maximize the evidence for their existence 11,

Generative models, belief dynamics, and neural representation
The concepts of a generative model and belief dynamics are inherently intertwined with the

notion of representation, since the inception of cognitive science "8, However, the idea of
representation can be approached in at least two distinct ways. On one hand, the generative
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model itself, whose parameters could be encoded within synaptic weights, could align with the
concept of neural representation. This interpretation is akin to referring to the "representation”
of a "cognitive map." Conversely, the dynamics of beliefs, which might correspond to neural
firing rates, could also be conceived as "neural representations” of the subject matter of those
beliefs—such as the position of a finger or the multimodal concept of a leaping frog. The latter
perspective is more closely associated with the traditional attributes of (neural) representation:
they are about something and are employed by the organism to accomplish specific tasks, like
predicting the sensory outcomes of actions or guiding adaptive behaviors. Consequently, they
bear meaning and significance for the organisms themselves 1358,

Planning, imagination and detachment

A fundamental distinction exists between variational free energy, foundational to action and
perception, and expected free energy, which forms the basis of planning. The former solely
relies on past and present observations, while the latter necessitates the utilization of the
generative model to endogenously generate (or imagine) counterfactual observations that could
arise from a particular sequence of actions. This mechanism has implications not only for
planning but also for various manifestations of future-oriented cognition, encompassing
concepts like “as-if” simulation, re-enactment, and imagination; as well as the re-enactment of
past episodes or the construction of counterfactual events. It's worth highlighting the term
"endogenous," as this generative capacity hinges on temporarily detaching from the immediate
action-perception loop, thereby disregarding sensory inputs and prediction errors.

From a neurological standpoint, the ability to detach and replay statistical patterns encoded
within the generative model, revisiting past experiences or envisioning future scenarios, finds
clear parallels in neuronal reactivations and replay “>*°. Theoretically, this phenomenon aligns
with the classic notion that representation serves to represent something “in its absence” .
Nevertheless, not all agents engaged in active inference partake in planning or expected free
energy minimization. Thus, if the capacity for detachment and the representation of something
"in its absence” differentiates between organisms that possess or lack representation (or
cognition), it potentially underscores a categorical division between active inference agents
exclusively minimizing variational free energy and those additionally minimizing expected
free energy 28, Consequently, inquiries about an organism's capacity to represent, the manner
in which it does so—and whether it engages in such activity—again rests on the identification
of its underlying generative model.

Abstraction and distortion in generative models

Even when adhering to the conventional definition of a model as a representation of the external
world, it is important to acknowledge that no model can perfectly mirror reality, and some
degree of information loss is inevitable. However, paradigms such as active inference and rate
distortion theory " go beyond this obvious consideration and underscore the significance of
optimal information compression within generative models. Within the active inference
framework, generative models must strike a balance between accuracy and complexity. This
balance aims to facilitate optimal learning from data, ensuring both efficiency and the ability
to generalize. As depicted in Figure 8, distinct constraints on model learning—such as
variations in data statistics and learning objectives—Ilead to diverse geometries and alterations
in the latent states that generative models acquire.
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Recent research into the geometries of neuronal responses across various brain regions has
gained momentum 7374129 To the extent that these geometries reflect how we perceive the
world, it becomes evident that not only the generative model itself but also the specifics of its
learning statistics play a crucial role in determining what it represents and how it does so.

Explicit and action-oriented generative models

The brain learns generative models to navigate the world adaptively, not (or not solely) to
understand it. Different living organisms may possess an array of generative models, spanning
from "explicit" models that involve variables for inferring external entities like objects, faces,
or people, to "action-oriented models™ that prioritize predicting action outcomes, omitting the
need to encode external entities. These models can offer varied solutions to shared biological
challenges, such as estimating distance from an object. Therefore, the specific model an
organism employs for a particular task remains a matter of empirical investigation.

This perspective licenses "enactive” or "pragmatic” viewpoints concerning the role of
generative models, which emphasize that the role of generative models whose main role is
mediating interaction and not representing the external world veridically. From a theoretical
stance, this notion can be interpreted in several ways. One interpretation could suggest that
action-oriented generative models still facilitate neural representations, though these might be
understood as "pragmatic representations” conveying affordances and potential actions.
Another interpretation might assert that models of sensorimotor contingencies do not
necessitate the concept of representation %7, While resolving this debate is beyond our scope,
one can note that diverse generative models (explicit or action-focused, with varying hidden
variables) equip living organisms with distinct capabilities. For instance, as previously
discussed, generative models in active inference enable adaptive action-perception loops, but
only certain models support detached cognitive operations such as planning or imagination.

This observation has a significant consequence: assuming that "meaning" and "understanding"
are inherently connected to agentive action through generative models, the array of generative
models described above imparts diverse forms of "understanding” of an organism's ecological
niche. This spans from the "meaning-in-interaction™ foregrounded by enactive theories to the
"representation-in-the-absence-of-the-reference" accentuated by cognitive theories. Similarly,
generative Al models that lack engagement in agentive interactions with their surroundings
would lack the essential grounding in reality necessary for fostering genuine understanding
(Pezzulo et al., 2023).

The symbol detachment problem: from pragmatic to descriptive representations

The preceding discourse raises a crucial, yet unresolved query: how did the relatively simpler
generative models, enabling action control in our early evolutionary ancestors (as exemplified
by C. elegans in Figure 10), evolve into those that also facilitate detached cognition? Various
researchers 48°130-134 haye proposed a plausible transition from "pragmatic" to more "detached"
and "descriptive" representations, which can be condensed into two pivotal steps.

Initially, meaningful activity patterns could emerge within the context of an organism's
capacity to predict and control simple behavioral strategies. These could be deemed
"pragmatic” neural representations if they are about something: for example, they provide
predictions about sensory feedback ensuing from object interactions, albeit only in restricted
contexts. These patterns are more than mere correlations—they exhibit a systematic and
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"exploitable relation” with external elements (whether explicitly encoded or not encoded within
the model's hidden variables). This enables them to guide adaptive actions, imbuing them with
meaning and adaptive significance. These representations are grounded in the organism’s
capacity for adaptive prediction and control, but they are not detached: they are context-bound,
and only activated in the context of—and proximally coupled to—the action-perception loop
and the current state of the organism. An instance highlighted by *** involves the response to
food-related visual cues in the insula, which arises solely when the creature is hungry **°. In
this instance, the presumed neural representation of food cues and their valence is context-
specific and inaccessible beyond this context; such as to depict food's absence or in situations
where hunger isn't present.

Subsequently, the organism acquires the capacity to endogenously generate its pragmatic
neural representations. This endogenous generation detaches and abstracts these
representations from their initial sensorimotor context, divorcing them from mandatory links
with external sensory inputs, action execution, or the organism's initial behavioral state that
facilitated their emergence. However, these representations retain their original grounding:
they are still about something, can be utilized to evaluate and select alternative actions (whether
executed or imagined), and hold meaning and significance for the organism. Importantly, their
detachment equips organisms with the cognitive capacity to envision and contemplate "what is
not there"; be it potential actions, desired yet non-existent entities, or communicable concepts.
Detachment thus fuels advanced cognitive functions, particularly future-oriented cognition like
planning and imagination, potentially explaining the evolutionary benefits of detachment itself.
Most cognitive theories suggest that genuine "mental life" arises when an organism can
endogenously generate neural representations of the world; be it for shaping it under personal
preferences or for contemplation. Expanding upon the example of food-related cues, detached
representations enable pondering or conversing about food even in the absence of food or
hunger. Additionally, knowledge gained about food (or navigation or similar subjects) could
be abstracted to support novel capabilities, such as understanding narratives or envisioning
rewarding journeys. These instances illustrate how detachment engenders a fundamental
enhancement or shift from pragmatic to epistemic or descriptive objectives in neural
representations. In essence, detached representation corresponds to the "descriptive"
representations often associated with our mental experiences. And which become enriched
through social interaction and linguistic communication 3612,

Remarkably, this perspective unveils an intriguing bidirectional interplay between the two key
functions of generative models that have been emphasized throughout this paper: engaging
with the lived world and understanding it. Conventional cognitive theory often posits that, in
order to interact effectively with the world, an organism must first achieve a level of
understanding about it. Simultaneously, we've underscored here that comprehending the world
— and generating meaning from it — necessitates active interaction 2. In active inference, these
two processes are intimately entwined. In a manner analogous to how the minimization of
variational free energy across short timescales sets in motion reciprocal loops between
immediate perception and action, the same minimization across longer timescales fosters
reciprocal loops between the act of understanding the world and actively engaging with it.

Numerous researchers have proposed diverse iterations of this narrative, yet much remains
speculative. One challenge is reconciling the notion of detachment with a gradualist perspective
of brain evolution. Future investigations should explore whether delineating the evolution of
generative models for active inference across simple-to-complex organisms might elucidate
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the development of detached and future-oriented cognitive abilities from action-control loops
69
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