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Abstract 

 

This paper considers neural representation through the lens of active inference, a normative 

framework for understanding brain function. It delves into how living organisms employ 

generative models to minimize the discrepancy between predictions and observations (as 

scored with variational free energy). The ensuing analysis suggests that the brain learns 

generative models to navigate the world adaptively, not (or not solely) to understand it. 

Different living organisms may possess an array of generative models, spanning from those 

that support action-perception cycles to those that underwrite planning and imagination; 

namely, from "explicit" models that entail variables for predicting concurrent sensations, like 

objects, faces, or people—to "action-oriented models" that predict action outcomes. It then 

elucidates how generative models and belief dynamics might link to neural representation and 

the implications of different types of generative models for understanding an agent’s cognitive 

capabilities in relation to its ecological niche. The paper concludes with open questions 

regarding the evolution of generative models and the development of advanced cognitive 

abilities – and the gradual transition from "pragmatic" to "detached" neural representations. 

The analysis on offer foregrounds the diverse roles that generative models play in cognitive 

processes and the evolution of neural representation. 
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Introduction 

 

“My thinking is first and last and always for the sake of my doing.”  

—William James  

 

The concept of "neural representation," which pertains to the idea that the brain represents 

elements of the external world, plays a prominent role in neuroscience, psychology, and 

philosophy. However, its interpretation remains a subject of discussion 1–9. The notion of 

representation is intricate, particularly when applied to brain science, where it necessitates a 

connection to specific brain activities or states. This engenders questions such as: What kind 

of neural state or activity would count as a “representation”, and how? What would be the 

entity out there that is “represented”? Does the brain really represent something or is the notion 

of neural representation misplaced? 

 

In this article, we approach the concept of neural representation through the lens of active 

inference: a normative framework for describing brain function and cognitive processes 10. 

Active inference proposes that the brain constructs a generative model encompassing the 

external world, the body, and action possibilities. This model underwrites sense making and 

purposeful interactions with the surroundings. For instance, it enables the apperception of the 

visual image in Figure 1, while also offering various affordances (e.g., catching the fishes — 

or not, in this instance). 

 

 
 

Figure 1.  Fishpond Mosaic designed by Gary Drostle and made by Gary Drostle and Rob 

Turner in 1996 for Croydon Council, south London. Source: Wikipedia. 

 

 

The connection between active inference and diverse philosophical concepts of representation 

has triggered substantial discussion. For instance, it intersects with internalist perspectives 11 

and action-centered viewpoints 12, alongside enactive theories that negate the idea of 
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representation 13. Adding complexity to the debate is the variance in implicit notions of 

representation among researchers, each accentuating distinct criteria 14.  

 

Here, we sidestep this debate and focus instead on how neural representations might emerge 

from the reciprocal exchanges between living organisms and the niches they inhabit; 

particularly, when viewed through the lens of active inference. Our focus is on elucidating the 

formal constructs employed by active inference to explain how living organisms solve 

cognitive problems. These constructs encompass generative models, probabilistic beliefs, and 

the concept of variational free energy. By delving into these constructs, we hope to naturalize 

the notion of neural representation under a first principles account of sentient behavior. 

 

Surprise minimization, active inference and action-perception loops 

 

Each living entity confronts the inherent challenge of adaptively regulating and managing 

essential parameters crucial for its existence, such as body temperature or glucose levels. From 

a formal perspective, the imperative for adaptive control can be conceptualized remaining in a 

limited array of potential states, or to inhabit an organism-specific niche that satisfies essential 

needs. An example of this imperative is the requirement to maintain body temperature at 

approximately 37°C. In terms of information theory, states that deviate from these acceptable 

bounds are deemed “surprising”. For instance, significantly higher or lower sensed body 

temperatures than 37°C fall under this technical concept of surprise (i.e., surprisal or self-

information). This underscores the vital importance for a living organism to minimize the 

surprise inherent in its sensory interactions with the environment. 

 

The notion of surprise, in turn, depends on two key factors: actively sampled sensory 

observations from the external world and internally generated predictions regarding these 

observations. More precisely, surprise increases with the discrepancy between predictions and 

observations, see Figure 2A. An organism can mitigate this discrepancy in two complementary 

ways: by adapting its predictions to anticipate forthcoming observations (perception) more 

accurately or by influencing its surroundings to ensure alignment of forthcoming observations 

with predictions (action).  

 

Active inference formalizes the reduction of surprise as the minimization of variational free 

energy—a quantity that places an upper bound on surprise 10. The two constituents of this 

measure—divergence and evidence—correspond to perception and action, respectively, see 

Figure 2B. Under certain simplifications, variational free energy reduces to (precision 

weighted) prediction error. This will prove significant in our subsequent discussion of 

predictive coding. 

 

The interaction between action and perception is vital to reduce the gap between what an animal 

predicts and what it actually experiences. This difference is measured as variational free 

energy. Having accurate perception is important because if an animal can't sense its 

surroundings correctly, it might struggle to choose the right actions. Likewise, if it doesn't take 

actions to satisfy its basic needs like thirst, it might not survive for long. 

 

Importantly, action is guided by an inherent optimism, described as a pre-existing preference 

(or just "prior") for outcomes that ensure survival; namely, the outcomes or states of being that 

are characteristic of the agent in question. Consider a creature under the midday sun. In such a 

scenario, if its predictions encompassed outcomes like sunburn and dehydration, it would fare 

poorly. Instead, a more successful animal might predict a constant temperature of 37°C, 
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prompting it to seek out shade 15. This illustration underscores that within active inference, 

certain priors, such as “my body temperature is around 37°C”, extend beyond the conventional 

scope in Bayesian statistics—typically indicating a priori knowledge about the external 

environment—and instead, assume a role akin to 'set points' in cybernetics. These priors encode 

task objectives as attractors within the organism's state space, enabling error correction and 

negative feedback control 16. That's because any difference between the expected and currently 

sensed body temperature would trigger adaptive adjustments (like vasodilation or finding 

shelter) to resolve the difference. 

 
 

Figure 2. Complementary Roles of Action and Perception in Variational Free Energy 

Minimization. (a) Action and perception play distinct yet interdependent roles in minimizing 

the discrepancy between an organism's predictions and the world. Perception reduces this 

discrepancy by shaping the organism's beliefs to align more closely with the world, enhancing 

predictive accuracy. On the other hand, action diminishes the discrepancy by modifying the 

external environment, making it better match the organism's beliefs. (b) Variational free energy 

mathematically captures the concept of “discrepancy”. The variational free energy F 

represents a functional (function of a function) dependent on both an approximate posterior 

distribution (Q) and sensory data (y). The approximate posterior probability Q(x) pertaining 

to hidden states (x) plays a crucial role in variational inference, serving as an approximation 

to the true and typically intractable posterior probability of hidden states given the observed 

data (P(x|y)). The process of free energy minimization involves two key components. The first 

(divergence) term involves minimizing the Kullback-Leibler (KL) divergence between the 

approximate posterior Q and the true posterior P, effectively updating beliefs to make Q 

converge as closely as possible to P. This divergence term reflects the adjustment of beliefs, 

akin to the perceptual role observed in biological systems. The second (evidence) term ensures 

the optimization of the marginal likelihood (P(y)), by aligning the model's predictions with the 

observed data and therefore avoiding “surprise”. While the first (divergence) term implies 

changing beliefs, the second (evidence) term implies changing the observed data, by acting. 

Therefore, the divergence and evidence terms map to perception and action, respectively. 

Further discussion about the technical details of free energy minimization can be found in 10. 
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The same feedback loop applies to controlling movement. Figure 3 gives a simple instance of 

active inference in posture control for a "finger." The finger's posture is determined by a single 

factor: its angle. Figure 3A displays perceptual inference—inferring the finger's angle from 

what is sensed. In this basic setup, the influence of both the prior (preferred angle) and action 

is absent, so the finger remains stationary. Initially, the actual angle of the finger (dark blue) is 

vertical, while the inferred angle, the average angle in the agent's beliefs (light blue), is 

mistakenly set as horizontal. The system's internal feedback doesn't match the inferred angle, 

leading to a difference (proprioceptive prediction error: propr pred err, shown in green) 

between the real and inferred angles. The system minimizes variational free energy (in this 

case, minimizing prediction error) by “changing its mind”, and after around 100 steps, the 

inferred angle aligns with the actual angle. 

 

 

 

Figure 3. Illustration of Active Inference for Postural Control of a "Finger". (A) Perception 

serves to minimize the discrepancy between the actual angle of the finger in the generative 

process (represented by the dark blue line) and the estimated angle, which corresponds to the 

agent's posterior belief (depicted in light blue). (B) Collaboratively, perception and action 

work to diminish the gap between the preferred angle (prior belief indicated by the dotted blue 

line) and the presently inferred angle (depicted in light blue) of the finger by adjusting the 

actual finger angle (dark blue). This alignment results from the finger being moved toward the 

preferred angle. (C) In the absence of action but when the prior belief is factored in, the 

inferred angle converges to an intermediate point between the actual position and the prior 
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belief. The "t" symbols signify discrete time steps in the simulation. Refer to the main text for a 

comprehensive explanation. 

 

 

Figure 3B serves as a follow-up to Figure 3A, introducing the influences of both the prior and 

action. Here, the image exemplifies the cooperative dynamic between action and perception, 

guiding movement toward the preferred (horizontal) angle. Initially, the finger's real and 

inferred angles align with the vertical position. However, the system leans towards a prior 

preference for a horizontal finger angle, predicting it consistently. As a result, there's a 

mismatch (prior pred err, shown in violet) between the prior and inferred angles. This prompts 

the inferred angle (light blue) to shift towards the favored (prior) angle, leading to a second 

discrepancy (propr pred err, depicted in green) between the real and inferred angles. This time, 

the difference can be bridged by acting (red line), by physically moving the real finger (dark 

blue). The system reduces variational free energy by merging action and perception, causing 

both real and inferred angles to converge with the preferred (prior) angle, after about 100 steps. 

Notably, active inference differentiates from predictive coding in that it allows for acting on 

the world to fulfill predictions, such as moving to a preferred state. It is worth remarking that 

the usage of the term “prior” in this example differs from the most typical usage in Bayesian 

statistics; and this might create some confusion. In this example, the prior is not a distribution 

over all the “typical” finger angles (in fact, the horizontal angle could be unlikely a-priori) but 

rather stands for a prior preference. If the role of the prior were only to infer the true position 

of the finger, this (incorrect) prior would lead to a poor inference: namely, the inference – or 

perhaps the “delusion” – that the finger is more horizontal that it really is. However, in active 

inference, the role of priors (or at least some of them) is computing a good course of action, for 

which the agent needs to determine a “good next angle” or set point, as an intermediate step 

towards the preferred (horizontal) angle. The “delusion” that the finger is more horizontal than 

it really is therefore helps moving the finger towards the desired (horizontal) position, specified 

in the prior. In this perspective, the inferred angle position could be considered a “prescription” 

for movement rather than the agent’s best hypothesis about the true state of the world, as more 

common in Bayesian statistics. It's also worth mentioning that this is a simple example. Later 

we will see how this framework can be extended to encompass a more complex notion of 

purposeful action—where organisms can envision future movement targets, establish them as 

priors, and finally attain them through planned action. 

 

Lastly, Figure 3C offers an alternative extension of Figure 3A, incorporating the influence of 

the prior while excluding action. Here, following Bayes' rule, observations and priors are 

merged, causing the inference of the angle's position to gravitate toward a midpoint between 

the real position and the prior belief. (note that in this simulation, both prior and observations 

carry the same weight. In active inference, this weight is contingent upon the precision or 

reciprocal variance of the comparative information streams—a topic we will address in more 

depth later.) 

 

To recap, we have introduced the fundamental imperative for living organisms as the 

minimization of the discrepancy between predictions and observations (technically, variational 

free energy). Additionally, we clarified that both perception and action play a concerted role in 

achieving this minimization. This viewpoint underscores the brain's nature as a predictive 

apparatus, continually generating predictions about the external world to steer both perceptual 

understanding and action regulation. This stands in contrast to viewing the brain as a 

mechanism primarily focused on converting external stimuli into internal representations and 

subsequent motor responses. However, we have yet to elaborate on the neural mechanisms that 
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living entities employ to formulate their predictions and conduct their inferences. This brings 

us to our next section. 

 

Generative models  

 

How do organisms generate their predictions? In order to generate predictions and draw 

inferences, organisms rely on acquired generative models of the causes of their sensations. A 

generative model is a statistical description of how observations stem from unobserved (hidden 

or latent) states. For instance, it explains how a visual object, like an apple, produces an image 

on the retina. This concept of a generative model aligns with the influential perspective in 

cognitive science, suggesting that living entities carry small-scale models or cognitive maps of 

the external world 17,18, such as for example allocentric maps of space in the hippocampus 19. 

It further resonates with the notion of "world models" in artificial intelligence 20,21. 

 

While generative models are often associated with "models of the external world," this notion 

extends to encompass a broader scope: it includes models not only of the external world but 

also of the body (e.g., the "body schema"), the internal milieu (e.g., the "interoceptive 

schema"), emotional aspects, social dynamics, self-related constructs, and more 22–28. The 

crucial point is that for survival, the generative models for living entities must not only provide 

ways to comprehend the world but also prescribe methods for action – thus attributing agency 

to organisms. In other words, the brain learns generative models to interact with the world, not 

(or not just) to understand it. Consequently, models that include potential actions and implicit 

affordances 29 become pivotal in the context of living organisms. 

 

Figure 4 illustrates the key distinction between the brain's "generative model" of the external 

world and the actual external world (referred to as the "generative process" responsible for an 

organism's observations). The figure highlights several key aspects. Firstly, a generative model 

captures the statistical relations between observables (y) and states (x) that are hidden from 

direct observation. This equates formally to the joint probability distribution over unobservable 

causes and observable consequences P(x,y). Secondly, it's crucial to note that a generative 

model doesn't equate to reality itself; rather, it represents an organism's interpretation of reality 

— which it can realize or author through action. Both the generative model and the generative 

process incorporate "hidden states," but these states need not necessarily correspond or even 

resemble each other. The hidden states within the organism's generative model (x) support 

Bayesian beliefs, representing probability distributions over latent states that are used to predict 

sensory consequences, including, crucially, the consequences of our movements and 

physiology that can be realized by motor and autonomic reflexes, respectively.  

 

However, the hidden states used to generate predictions are not isomorphic with hidden 

variables in the external world (x*) — they can be distinct variables, such as categorical versus 

continuous. For example, I may have the Bayesian belief that I am writing this sentence. 

However, in reality, my movements are the result of electromechanical forces exerted by my 

musculature that are trying to minimize proprioceptive prediction errors; thereby fulfilling the 

proprioceptive predictions entailed by my beliefs (much in the spirit of ideomotor theory). This 

distinction between internal hidden states (of the generative model) and external hidden states 

(of the generative process) gains significance as we deconstruct the concept of neural 

representation.  

 

The relationship between the agent and the world is interactive, forming loops between action 

and perception. The generative model influences the generative process via actions, while the 
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generative process shapes the generative model through observations. This dynamic implies 

that internal hidden states and external hidden states are statistically separate and cannot 

directly impact each other. This statistical separation is formally articulated through the concept 

of a Markov blanket. Those interested in exploring this concept and its potential ramifications 

for the notion of representation may refer to 11. 

 

 
Figure 4. Differences between the Generative Model and the Generative Process in Active 

Inference. Under active inference, the generative model and the generative process encompass 

distinct sets of hidden states (x and x* respectively). These two components form 

interconnected action-perception loops: the generative model can exert influence over the 

generative process through action (u), while the generative process can affect the model 

through observations (y). The generative model is expressed mathematically as the joint 

probability distribution P(x,y). This model can generate hypothetical observations — i.e., 

predictions — (y) based on an inferred state (x). The generative model can be "inverted" for 

Bayesian inference – estimating the value of x after observing y (which may itself have been 

caused by the estimated value of x, as a self-fulfilling prediction). The outcome of this inference 

is a posterior or Bayesian belief. To update Bayesian beliefs, active inference employs a 

variational approximation, leading to an approximate posterior belief denoted by Q(x), which 

approximates the true posterior, labeled as P(x|y). See main text for further elaboration. 

 

 

An essential point to note is that generative models can be employed in two distinct directions: 

from x to y and vice versa. In the first direction, known as the generative direction, these models 

facilitate the generation of potential observations from inferred hidden states. Essentially, this 

means that the models can be used to create predictions and imaginative content, resulting in 

the designation "generative" models. This capacity is notably demonstrated by contemporary 

generative AI models that capture statistical patterns from extensive curated datasets and 

subsequently produce synthetic text (e.g., BERT, GPT) or images (e.g., Midjourney, DALL-

E) 30–32. When employed in the second direction, called the inferential direction, from y to x, 

generative models enable the inference and optimization of probabilistic beliefs about the 

hidden state of the world based on observations. This process occurs for example during 

perceptual inference, where the model infers the hidden state from observed data. Inference or 

Bayesian belief updating corresponds to inverting the generative model in the inferential 

direction. 

 

The dual inferential and generative roles of generative models furnish mechanistic insights into 

the fundamental cognitive functions of the brain. The processes of perception (via predictive 

coding) and action (via active inference) can be effectively described in terms of inference. On 

the other hand, tasks such as planning, and imagination necessitate the generation of 
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anticipatory (hypothetical or counterfactual) observations. In the following section, we delve 

into illustrative instances of generative models that underpin these cognitive capacities, 

exploring their implications for the concept of neural representation. 

 

Generative models for action-perception loops 

 

Both perception and action can be effectively conceptualized as inference processes. The 

concept of perception as unconscious inference traces back to 33. Figure 5 illustrates a 

biologically inspired generative model that supports perceptual learning and inference: a 

hierarchical predictive coding network 34,35. The hierarchical structure is discernible in the 

figure's layout, where neural populations are grouped from bottom (lower hierarchical level) 

to top (higher hierarchical level). Notably, each hierarchical level encompasses distinct neural 

populations that encode expectations (in deep cortical layers) and prediction errors (in 

superficial cortical layers). The "expectation" nodes encode probabilistic beliefs or their 

sufficient statistics (such as mean and variance for Gaussian distributions), which generate 

predictions regarding observed content. Conversely, the "prediction error" nodes capture the 

difference between predictions and observations. The process of inferring the most plausible 

explanation for observations unfolds through the minimization of prediction errors, enabled by 

reciprocal message exchange between units: top-down messages convey predictions, while 

bottom-up messages convey prediction errors. Learning operates similarly, driven by 

prediction error minimization: please see 34,35 for details. 

 

 

 
Figure 5. Predictive Coding and Active Inference Models for Action-Perception. (A) Illustration of 

active inference as “predictive coding with motor reflexes” for movement control. Here, black and red 

nodes denote expectation and prediction error nodes, respectively. Top-down and bottom-up edges 

convey predictions and prediction errors, respectively, across levels, forming a predictive coding 

hierarchy. Prediction error can be minimized by either revising prior beliefs or (if these priors are held 

with high precision, as indicated in the figure by the blue node), by acting in the world. See the main 

text for explanation. (B) Hierarchical generative model designed for the (multimodal) notion of a 

jumping frog. This architecture frames the concept of a jumping frog as the underlying cause of 

numerous sensory outcomes, spanning visual cues of something leaping and green, and auditory inputs 

of croaking sounds. Some of these consequences can be contingent on actions, such as the visual input 

changing when the frog is foveated. The inversion of this generative model supports perceptual 

inference (e.g., recognizing a jumping frog) from its observed sensory manifestations (e.g., seeing 

something green and leaping), incorporating information from multiple sensory modalities. 
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The example presented in Figure 5A revisits the process of inferring the "finger angle," as 

previously explained in Figure 3, through the lens of a predictive coding model. In this instance, 

the (posterior) belief regarding the finger angle is encoded in the expectation node at the lower 

hierarchical level, while its corresponding prior belief resides in the expectation node at the 

level above. These two nodes are connected via prediction error nodes that convey 

discrepancies with proprioceptive sensations and prior predictions. The lower section of Figure 

5A illustrates the simplest manifestation of active inference, which demonstrates the potential 

to engage in action (to counteract proprioceptive prediction errors) by merely equipping a 

predictive coding network with a peripheral motor reflex arc 36,37. This predictive coding 

architecture can be readily expanded by incorporating additional hierarchical levels. For 

instance, predictive coding models for visual processing, such as those involving natural 

images or MNIST letters, incorporate multiple hierarchical levels, where the expectations at 

each level encode increasingly abstract features of the stimulus 34,35,38. 

 

Figure 5B offers a more sophisticated demonstration of a generative model, featuring a 

multimodal concept—a jumping frog. The image presents a hierarchical generative model, 

where peripheral nodes situated along the dotted circle denote sensations spanning diverse 

modalities (such as visual, auditory, and interoceptive). Nodes within the circle are unimodal 

hidden states, while the central node is a multimodal hidden state, which simultaneously 

generates outcomes in multiple modalities. The notion of a jumping frog encompasses a set of 

multimodal predictions: predictions about how a frog would appear, the sounds it would emit, 

and the typical narratives involving frogs, for instance. Action is part and parcel of this concept, 

enabling predictions about interactions with a frog (e.g., the sensations induced by palpating a 

frog; either by touching it or visually through foveating it): in brief, all the affordances offered 

by a frog. These predictions are grounded in the multifaceted experience of interacting with 

frogs, in various modalities. The concept of a jumping frog encompasses perceptual 

inference—recognizing a frog or comprehending a dialogue about one—active inference—

planning how to palpate a frog—and the ability to "mentally navigate" through the concept of 

jumping frogs, generating hypothetical, "as-if" predictions regarding frogs, for instance. The 

multimodal generative model illustrated in Figure 5B is shown only for illustrative purposes. 

It includes several simplifications, such as dedicated neuronal populations for each particular 

aspect of (interactions with) frogs and separate streams for the different modalities that are not 

anatomically accurate – and hence should not be taken as a serious hypothesis about frog 

concepts in the brain. Despite so, it illustrates the putative structure of a sophisticated 

(multimodal and action-centric) generative model, which a living organism might acquire 

through situated interactions with external entities (including frogs) and by generalizing from 

interactions with – and discourses about – other similar entities. 

 

Generative models, belief dynamics, and neural representation 

 

With the introduction of a basic generative model for active inference and its inferential 

dynamics (based prediction error minimization), we now explore the connection to neural 

representation. Four key points warrant attention in this regard. Firstly, there exists a consistent 

functional relationship between the (internal) hidden states within the hierarchical generative 

model and the (external) hidden states in the world, like the "finger" angle or MNIST letters. 

This connection is generally assumed (though not universally) to reflect the most commonly 

embraced notion of neural representation in cognitive psychology and neuroscience. Key 

aspects of this concept revolve around the structured nature of the connection, indicating a 

causal link between internal and external hidden states, as opposed to a simple correlation. This 
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underscores that internal hidden states encode beliefs about external hidden states, even though 

a direct one-to-one mapping may be lacking. Furthermore, these hidden states serve as tools 

for the organism to steer adaptive prediction and control, holding meaning, significance and 

adaptive value for it in the process 5,7. 

 

Secondly, it is crucial to distinguish between two concepts—generative models and 

probabilistic beliefs—often linked to the idea of neural representation, though they manifest 

through distinct neural mechanisms. The structure and parameters of the generative model, or 

its hierarchical components, could be encoded in synaptic connectivity. This is where elements 

like statistical regularities (like priors and likelihood functions) find their coding. On the other 

hand, probabilistic beliefs (or their statistics, such as the mean and variance of Gaussian 

distributions) might find their encoding in neuronal activity and the collective dynamics of 

neuronal populations. Over time, neuronal activity reflects Bayesian belief updating under the 

generative model. Significantly, the organism's (posterior) beliefs stem not solely from 

immediate sensations, but from an inference process operating under the generative model. 

These beliefs – which can be associated with neural representations – essentially blend sensory 

input, memory, and predictions, rather than merely representing sensory input. As highlighted 

in the example of the frog, generative models additionally enable what-if predictions about 

hypothetical outcomes of actions. We will revisit this point later when we discuss planning (as 

inference) and imagination. 

 

Thirdly, there are multiple ways in which the brain might encode probabilistic quantities and 

perform probabilistic computations over them – for example, to approximate the often-

intractable problem of inferring posterior probabilities. Here, we have emphasized a specific 

(variational) form of approximate inference, related to parametric neural codes, in which neural 

populations are supposed to encode the sufficient statistics of probability distributions, e.g., the 

mean and variance of Gaussian distributions 10,39. Other neural coding and inference schemes 

have been proposed that use parametric codes (e.g., probabilistic population codes 40) or 

sampling-based methods 41; see 42 for a detailed comparison of these approaches.  

 

Finally, it is important to recognize that the manner in which (predictive) coding occurs and 

the dynamics of belief updating are profoundly influenced by the specific generative model in 

play. Here, we have focused on simple generative models in the context of predictive coding, 

which unfold in continuous time and encode variables—such as the finger angle in Figure 4—

as Gaussian distributions or their sufficient statistics (mean and variance). Nevertheless, a 

broader realm of generative models could be found within the brains of both basic and more 

advanced living creatures. These generative models might operate in continuous or discrete 

time, or both. They could be structured into distinct factors that autonomously impact 

observations (think of "where" and "how" in visual pathways). These models might also feature 

hierarchical organization with temporal depth, involving hidden states about both the past and 

future. Despite these variations, the overarching belief dynamics adhere to a common principle: 

the minimization of free energy or (precision weighted) prediction errors. Different generative 

models necessitate the transmission of "neural messages" (like predictions and prediction 

errors) among nodes in distinct manners. Consequently, they result in different patterns of 

connectivity and belief dynamics 10. For instance, generative models explicitly encompassing 

past and future hidden states enable the exchange of messages "from the past" and "from the 

future" to update beliefs concerning "the present." In the following sections, we provide a brief 

overview of some illustrative examples and consider their standing in relation to neural 

representation. 
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Generative models to solve cognitive tasks that involve planning and imagination 

 

Hitherto, our discourse has revolved around generative models that support perceptual and 

active inference through the minimization of variational free energy. In this section, we 

consider more expressive generative models, which have been employed to describe cognitive 

tasks involving planning and imagination. These tasks demand generative capacities and the 

ability to envision forthcoming scenarios and future observations. 

 

Hierarchical generative model for memory-guided spatial alternation 

 

Consider a two-level hierarchical generative model designed to solve memory-guided spatial 

alternation tasks 43. These tasks require coordinated interactions within hippocampal (HC) and 

prefrontal circuits (mPFC). A depiction of a memory-guided spatial alternation task is 

presented in Figure 6A. In this scenario, within a W-maze arrangement, an organism (in this 

case, a simulated rodent) must navigate alternating corridors adhering to a learned rule (like 

center, left, center, right, center) to attain rewards 44,45.  

  

 
 

Figure 6. Hierarchical Generative Model for Memory-Guided Spatial Alternation Tasks, 

adapted from 43. (A) Depiction of the spatial alternation task within the W-maze used by 44,45. 

The inbound decision refers to moving from one of the outside corridors to the center corridor, 

while the outbound trajectory refers to moving from the center corridor to one of the outside 

corridors. (B) Hierarchical generative model used to solve the spatial alternation task. This 

model features two interconnected levels, each learning maps of physical space (level 1) and 

task space (level 2), supporting hierarchical perceptual inference, planning, and action-

perception loops. (C) Collection of sensory observations encountered by the simulated rodent 

during navigation. (D) Planning involves the selection of policies (action sequences, π) by 

evaluating their expected free energy, denoted as G(π). Notably, the expected free energy 

considers forthcoming observations (anticipated by pursuing particular policies) beyond 

current and past observations, in contrast to variational free energy in 10 (E) Simulation 

outcomes illustrating the model's accuracy in spatial alternation performance. The results 
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show that an agent selecting its actions using hierarchical active inference (HAI agent) 

correctly solves the task, while randomly choosing actions (Random agent) is unable to 

correctly select the next location of the sequence. Finally, an agent in which communication 

between the two levels of the hierarchical generative model is hindered (HAI-disrupt agent) 

shows impaired performance in challenging (outbound) decisions. Please see 43 for details. 

 

 

The hierarchical generative model shown in Figure 6B effectively solves the spatial alternation 

task. In the process of exploring the maze, the two levels of this model learn "cognitive maps" 

to handle both physical space (HC map 19) and task space (mPFC map 46). Here, the term 

"cognitive map" signifies a set of hidden variables united into a coherent structure, often 

resembling a graph. This structure encodes the relationships between spatial positions within a 

maze (or stages of a task) and facilitates a form of "mental navigation." For instance, it allows 

predictions about the potential outcomes of traversing the maze (or progressing to the next task 

stage). 

 

The cognitive map of physical space encompasses the maze's layout and the feasible actions 

within it. This map is constructed by learning the statistical relationships between sequences 

of sensory observations encountered during navigation (as depicted in Figure 6C). Notably, 

some observations are "aliased," meaning they appear identical in multiple maze segments, 

contributing to self-localization ambiguity. To address this, a statistical sequence learning 

algorithm known as a clone structured cognitive graph (CSCG) 47 is employed. This algorithm 

resolves ambiguity and encodes trajectories as sequences of hidden states that mirror the 

animal's positions. The outcome is a cognitive map that closely resembles the physical space 

(as depicted in the Level 1 box of Figure 6B). 

 

The cognitive map of task space captures the spatial alternation rule (e.g., center, left, center, 

right, center). This map is learned on top of the cognitive map of physical space. To create it, 

statistical dependencies between states (corridor endpoints)—where rewards are encountered 

during navigation—are learned using a separate CSCG. The cognitive map derived from this 

process encodes the sequences of goals the simulated creature must attain to secure rewards (as 

depicted in the Level 2 box of Figure 6B). It is important to note that this map aligns with task 

space rather than physical space. For instance, both nodes labeled "C" correspond to the same 

physical location (the center corridor), but signify distinct task stages: specifically, reaching 

the center after either visiting the left or right corridors. 

 

Following the learning phase, the ensuing generative model enables the spatial alternation task 

depicted in Figure 6A to be solved. This is achieved through a combination of hierarchical 

perceptual inference for self-localization and hierarchical planning to determine the subsequent 

course of action. During perceptual inference, the model combines its existing beliefs ("from 

the past") with its current observations ("from the present") to infer its position within both the 

cognitive and task-space maps. The incorporation of message passing "from the past" provides 

the system with a working memory of previous contexts—an essential attribute for successfully 

addressing spatial alternation tasks 44,45. 

 

During the hierarchical planning phase, the model makes choices—regarding the upcoming 

states to visit—in both the task and physical spaces to attain rewards. The process starts at the 

higher level, where the model considers plans for the next state in the task space map (in 

essence, determining which corridor to approach in alignment with the rule). Subsequently, 

this goal is set as a prior within the lower-level model. Then, the lower-level model engages in 
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spatial planning, selecting a sequence of actions within the physical space map. Despite 

utilizing distinct maps at the two levels, the planning procedure remains internally consistent. 

It involves selecting a sequence of actions (referred to more formally as control states) 

anticipated to minimize expected free energy (G(π)), as depicted in Figure 6D. 

 

Expected free energy—crucial to the planning process—is distinct from the variational free 

energy introduced in Figure 2. Unlike variational free energy, which considers only past and 

present observations, expected free energy factors in future observations, expected under each 

policy (). The ability to forecast future, policy-dependent (and counterfactual) observations 

enables the evaluation of policies based on two terms outlined in Figure 6D: “epistemic value” 

(or expected “information gain”) and “pragmatic value” (or “expected value”). The first, 

“epistemic value” term considers the extent to which the approximate posterior over hidden 

states (Q(x)) changes, if one gathers novel policy-dependent observations (y). This corresponds 

to (an expectation E over) the Kullback-Leibler (KL) divergence between approximate 

posteriors with and without the novel observations y that one expects to gather by following a 

policy . The tilde (~) symbol indicates that the equation considers sequences of hidden states 

(x) or observations (y). This criterion gauges the extent to which policy-dependent observations 

could modify the organism's posterior beliefs, favoring policies that offer informative 

observations. While navigating the W-maze shown in Figure 6A, this emphasizes policies 

leading to unambiguous states, like the bottom-center of the maze where observation 16 is 

available. 

 

The second, “pragmatic value” (or “expected value”) term assesses (in expectation E) how 

effectively policy-dependent observations (y) align with the organism's preferred observations, 

represented as a prior over observations (C), prioritizing policies that achieve prior preferences. 

In the context of our spatial navigation illustration, this implies favoring policies leading to 

rewarding states; i.e., plans that realize the prior belief that securing rewards is characteristic 

of the agent question. Note that the two terms of expected free energy (epistemic and pragmatic 

values) share some correspondences with the two terms of variational free energy (divergence 

and evidence) discussed above. The epistemic value term can be considered as an expected 

divergence, given future observations. However, here instead of minimising the divergence we 

want to select policies that maximise the expected divergence – or in other words, policies that 

keep options open. The pragmatic value term is closely related to the evidence term, when one 

considers “surprising” those observations that differ from those that the agent prefers a priori, 

denoted as C (e.g., in this example, being in rewarding corridor endpoints). 

 

The simulations presented in 43 offer a compelling demonstration of the effectiveness of 

hierarchical planning in solving the spatial alternation task, as depicted in Figure 6E. Moreover, 

experimental evidence from studies disrupting hippocampal activity 44 concurs with these 

simulations, revealing that performance deteriorates at challenging decision points 

(specifically, within the center corridor), when communication between the two hierarchical 

levels of the model is interrupted. This breakdown occurs because communication interruption 

prevents distinguishing between the two nodes labeled “C” in Figure 6B. The same model is 

also capable of mastering more intricate tasks, necessitating rule switches intermittently. 

Notably, the model accurately replicates the empirical finding that interrupting communication 

between the two hierarchical levels hampers rule switching and promotes perseverative 

behavior, in accordance with studies conducted by 48. 

 

Generative replay 
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In addition to planning, generative dynamics can support other functions. Substantial evidence 

indicates that during periods of inactivity, distinct brain regions—including the hippocampus, 

prefrontal cortex, ventral striatum, and visual cortex—engage in "replay" revisiting sequences 

of experienced content like past navigation trajectories. Importantly, this replay process also 

involves the generalization and novel recombination of encountered content 49–58. The 

phenomenon of replay activity, along with the inherent activation of neuronal assemblies, can 

be explained as the intrinsic dynamics of a generative model. This dynamic activity serves to 

optimize the model during periods of rest, such as when novel observations are absent. This 

mechanism allows the brain to optimize its generative model for future use, even in the absence 

of external input 59,60. 

 

A further illustrative instance of hierarchical generative modelling emerges from a study that 

addressed the formation of spatial maps using a probabilistic mixture model as depicted in 

Figure 7A 61. While this model is similar to the model showcased in Figure 6, it explicitly 

encodes maps and sequences. At the highest level, the model acquires various spatial maps 

corresponding to distinct mazes or segments within a single maze, alongside an associated 

probability distribution allowing to identify the currently most plausible map. The lower levels 

capture sequences of spatial positions and individual spatial locations. In this framework, self-

localization involves inferring the current map, sequence within the map, and position in the 

sequence. This inference task entails the fusion of top-down and bottom-up information. For 

instance, determining the current location relies on integrating sensory observations from 

below and the top-down information derived from the inferred sequence and map. This process 

utilizes a message-passing structure akin to that found in hierarchical predictive coding 

networks. 

 

When subjected to a continuous learning task that involves acquiring multiple spatial maps (as 

illustrated in Figure 7B), the model developed distinct maps for individual mazes, as depicted 

in Figure 7C. Notably, the model's performance in the ongoing learning demonstrates 

improvement when employing a technique known as "generative replay." This entails 

generating fictitious sequences of observations by sampling from the learned maps at the 

highest level and propagating this information down to the lower layers. These replayed 

sequences are then utilized to facilitate the self-training of the model. Given that the maps 

encode probability distributions over locations, and significant sites like goal locations and 

bottlenecks are assigned higher probabilities, generative replay naturally favors these 

prominent positions: a tendency confirmed through empirical observations. Moreover, it is 

important to note that the replayed sequences are not mere replicas of experienced sequences 

but can recombine them in novel ways, as evidenced by prior studies 51. The outcomes 

presented in Figure 7D reveal that the deployment of generative replay not only enhances map 

learning but also allows the model to outperform baseline models that do not employ replay, 

as well as models that engage in self-training through experiences stored in external “verbatim” 

memory sources (referred to as experience replay). These findings highlight the efficacy of 

generative replay—and the offline reactivation of content originating from the generative 

model—in optimizing the model even when no new observations are available. It is worth 

noting that this same technique of generative replay could potentially find application in 

training other models, such as semantic memories 62 or action controllers 63. 
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Figure 7. Hierarchical Generative Model for Spatiotemporal Sequences, adapted from 61. 

(A) The hierarchical generative model encompasses three distinct sets of hidden states: maps, 

sequences, and items (e.g., spatial locations), to explain sensory observations. (B) The training 

process alternates between real-life navigation experiences and "generative replay". (C) This 

strategy facilitates continuous learning by acquiring multiple maps, thereby mitigating 

catastrophic forgetting. The colors denoting learned maps denote probability distributions 

across locations, peaking at salient points like bottlenecks or goal locations. (D) Comparative 

analysis of different versions of the same hierarchical model, encompassing baseline without 

replay, experience replay (exper. rep), and two forms of generative replay (gener. rep and pr. 

gen. rep), demonstrates the efficacy of generative replay in enhancing map learning. See 61 for 

details. 

 

 

Generative models, belief dynamics, and neural representation 

 

The generative models featured in this section offer valuable insights into the concept of neural 

representation. These examples help differentiate between two potential interpretations of 

neural representation. First, generative models might encode "cognitive maps" that pertain to 

physical space or task space. These maps could have their parameters encoded in synaptic 

weights that change gradually with learning over time. Second, the (approximate) posterior 

beliefs, whose parameters could be encoded by changing neural activity within neuron 

assemblies, could stand for the organism's current best assessment of its position within these 

cognitive maps. 

 

It is crucial to recognize that the "representational content" of these beliefs hinges on the 

variables inherent to the generative model. For instance, in the hierarchical generative model 

in Figure 6, the system accomplishes self-localization in both physical and task space. This 
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means that it maintains probabilistic beliefs regarding its present location within the maze at 

the lower level, and simultaneously keeps track of the current stage within the spatial 

alternation task at the higher level. On the other hand, the model depicted in Figure 7 offers a 

slightly different perspective: it implies the representation of a broader spatiotemporal context, 

encompassing the ongoing sequence and map. This effectively combines sensations, 

predictions, and memories. Of course, it is important to note that both of these models are 

considerably simplified in comparison to the intricate operations of hippocampal, prefrontal, 

and other brain circuits. For related insights into hippocampal dynamics, including factorized 

representations of "what" and "when", interested readers are referred to 64 

 

Importantly, both planning and generative replay extend beyond mere self-localization, giving 

rise to beliefs and observations that potentially encompass the present, past, and future. Beliefs 

regarding the future cannot be directly inferred from current observations; instead, they 

necessitate the engagement of the generative model to internally generate (or imagine) future 

observations. These internally generated dynamics showcase forms of cognition that are 

"detached" from the immediate context, going beyond the constraints of the present moment 

(c.f., the specious present of James and Husserl). These types of cognitive processes align with 

the conventional sense of representation in cognitive science: the capacity to represent objects 

or events even in their absence 65. The ability to represent things in their absence is especially 

valuable for advanced cognitive functions that involve foresight and planning for the future. 

This concept could be instrumental in understanding brain reactivations and replay phenomena. 

For instance, one could speculate that generative dynamics occurring just before navigation 

resemble a form of "local replay," optimizing the next plan, while generative dynamics during 

periods of rest could be likened to "remote replay," optimizing the model for future interactions 
66–68. 

 

In terms of evolutionary advantage, the capacity of generative models to "detach" from 

immediate circumstances could have conferred substantial benefits 69. This ability to engage in 

internally generated simulations and predictions, thereby envisioning scenarios beyond the 

immediate context, might have played a significant role in the adaptive success of organisms 

throughout evolution. Active inference—an application of the free energy principle—licenses 

this kind of teleological (or perhaps teleonomic) account; in the sense that to minimize 

variational free energy is to maximize the marginal likelihood of sensory exchanges with the 

eco-niche, which scores the adaptive success of a phenotype. 

 

Lastly, a brief consideration on how generative models acquire "meaning" and the ability to 

represent something is useful. The two aforementioned studies on cognitive map formation 

depict generative models as templates or predefined frameworks of maps or schemas 61,70. 

Initially, these templates lack inherent meaning, serving as vessels for encoding experiences 

and generating predictions. The acquisition of meaning happens when these templates 

accumulate sensorimotor experiences. In essence, these generative models transition from 

being meaningless to acquiring meaning, such as signifying specific spatial locations or 

positions within task spaces. This transition occurs as they become linked to the external world 

through action: a process that 71 aptly describes as the journey from the realm of the 

meaningless to that of meaning through interaction with the environment. 

 

Abstraction and distortion in generative models and beliefs 

 

Until now, our focus has centered on generative models of the external world, particularly 

models read as cognitive maps. However, it is important to acknowledge that models are never 
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"perfect replicas" of reality. A principled reason for this divergence lies in the principles of 

active inference, sometimes referred to as self-evidencing 72: to minimize free energy is to 

maximize marginal likelihood or model evidence. Crucially, log evidence can always be 

decomposed into accuracy and complexity. This means that generative model learning achieves 

a balance between accuracy—encompassing data reconstruction and prediction—and 

complexity, considering factors like the number of model parameters or degrees of freedom. 

The process of penalizing complexity results in generative models whose hidden states 

incorporate only relevant details that enhance accuracy.  

 

In essence, the most effective generative model tends to retain sufficient detail to accurately 

represent observations and achieve task success (in the case of action-guiding models), while 

discarding redundant information that does not bring an increase in accuracy. Consequently, 

learning leads to the development of parsimonious models that abstract away from irrelevant 

details, forming compressed latent spaces or manifolds 59,73–75. This is evident in the cognitive 

maps discussed earlier. However, it is worth noting that the implicit geometry can diverge from 

the true geometry of the external world. Such distortions are also present in the brain's 

generative models. For instance, studies have indicated that hippocampal cognitive maps are 

not uniformly distributed across the environment. Instead, a greater number of place cells are 

typically found in locations tied to goals and other significant features 76–78. Moreover, spatial 

locations with equal value tend to cluster more closely in the latent or hidden state space, further 

exemplifying these distortions 74. 

 

One plausible computational explanation for these distortions is found within the realm of 

model reduction: a process applied after a model is learned to fine-tune the tradeoff between 

accuracy and complexity. After model learning, model reduction assesses whether each model 

parameter (c.f., synaptic connections) contributes a commensurate level of accuracy to 

outweigh its complexity costs. Parameters that do not meet this criterion are pruned, effectively 

removing them from the model's architecture (and by pruning synapses) 59. This practice 

inevitably entails the potential loss of certain information, especially concerning infrequent 

observations. However, it simultaneously results in more efficient models that offer improved 

generalization by avoiding overfitting. 

 

Rate distortion theory 79 and algorithmic complexity 80,81 furnish convergent perspectives on 

the interplay between accuracy and complexity during model learning. See also 82–86. Unlike 

model reduction, which tends to be a post-learning procedure, rate distortion theory operates 

during learning itself. It formalizes how a model with a fixed capacity—with finite degrees of 

freedom—can optimally compress information, mirroring the statistical distribution of 

observations and their functional relevance. This process engenders systematic distortions in 

the representation, whereby frequently encountered observations and those most pertinent to a 

particular task are encoded with higher fidelity, while less crucial observations are compressed 

to a greater extent. 

 

To illustrate this concept, let's consider a generative model commonly used for dimensionality 

reduction in machine learning; namely, the β-variational autoencoder 87. We will use this model 

to learn a set of 500,000 “spatial maps,” which are 13x13 black and white images containing 

two vertically oriented, noisy "corridors." These corridors are positioned either in the upper or 

lower portion of the image. In Figure 8A, we present 21 example maps, each labeled based on 

the pixel positions of the centers of the two corridors. For instance, the label (0,12) indicates 

that the center of the upper corridor corresponds to pixel 0, while the center of the lower 

corridor aligns with pixel 12. Our analysis involves a comparison of four different versions of 
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the β-variational autoencoder, each possessing distinct characteristics. The first two models 

(Model 1 and Model 2) are β-variational autoencoders with standard unsupervised learning 

objectives. These objectives have the functional form of variational free energy but include a 

hyperprior β, called capacity that scales the complexity (i.e., rate) in relation to accuracy (i.e., 

distortion). The difference between these models lies in their capacity: Model 1 has a high 

capacity, while Model 2 has a low capacity (as depicted in Figure 8B). The remaining models 

(Models 3 and 4) are also β-variational autoencoders, but they incorporate supervised learning. 

In particular, this second objective pertains to the accuracy of binary classification. The task is 

to recognize whether the input image features aligned corridors (classified as class 0) or non-

aligned corridors (classified as class 1). Although the learning objectives are consistent across 

Models 3 and 4, they diverge due to their capacity: Model 3 possesses high capacity, whereas 

Model 4 has low capacity. 

 

 

 
 

 

Figure 8. Abstraction and Distortion in Generative Models. This illustration presents latent 

codes acquired through β-variational autoencoders (Higgins et al., 2016), designed to encode 

and compress spatial map images. (A) Depicts 21 samples from 500,000 spatial maps utilized 

for learning, featuring two noisy vertical "corridors" placed in the upper and lower image 

portions. Map labels signify the upper and left corridor centers spanning 13 pixels (0 to 12). 

(B) Details the employed objective (loss) functions during training. The first two lines delineate 

terms for unsupervised learning in Models 1 and 3. These correspond to a (negative) free 

energy, which is decomposed here into accuracy and complexity terms (not into evidence and 

divergence as in Figure 2). These two terms align with the distortion (i.e., accuracy) and rate 

(i.e., complexity) facets of rate-distortion theory 79. The parameter β in the second line adjusts 

model capacity; Models 1 and 2 have higher capacity, while Models 3 and 4 have lower 

capacity. The third line pertains to supervised (classification accuracy) terms used solely by 

Models 2 and 4. This supervised objective involves binary classification, distinguishing 

alignment (class 0) or misalignment (class 1) of the two corridors in the input image. (C) 

Charts latent codes generated by the four models. Each dot corresponds to one image's position 

in the generative model's low-dimensional latent space; certain images are labeled (e.g., 6,6 
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at the center) for clarity. Dot colors reflect image class in the classification task (green for 

class 1, orange for class 0).  

 

 

The four panels of Figure 8C offer a visualization of the 2D projections of latent codes learned 

by the four distinct β-variational autoencoders. Each dot corresponds to the position of a 

specific example image within the low-dimensional latent space of the generative model. For 

clarity, certain images are labeled with positions, such as "6,6" in the center. Additionally, the 

color of the dots indicates the class to which the image belongs in the classification task: green 

denotes class 1, while orange signifies class 0. In the case of Model 1 (top-left panel of Figure 

8B), the latent codes expand across the factors of variation (namely, the positions of the upper 

and lower corridors) in an orthogonal manner. Model 2 (bottom-left panel of Figure 8B) 

demonstrates similar latent codes, yet certain regions are more densely clustered, resulting in a 

loss of resolution. Models 3 and 4 exhibit latent codes wherein inputs belonging to class 0 are 

pushed towards the periphery, leading to improved discrimination. This phenomenon is 

particularly pronounced in Model 4, where the latent codes are binarized, causing them to span 

the factors of variation unequally. These examples underscore the influence of balancing 

accuracy (i.e., distortion) against complexity (i.e., rate). In active inference, the capacity per se 

is optimized in terms of precisions that are inferred in the usual way (see below).  

 

To summarize, the above numerical studies show that generative model learning favors low-

dimensional latent spaces or manifolds 73. These latent state spaces or manifolds are shaped by 

the statistical characteristics of the observations and, in the case of task-driven models, the 

nature of the task itself. However, the trade-off between accuracy and complexity implies that 

these latent spaces are distorted in an optimal way. For instance, latent spaces might emphasize 

the most frequent inputs. Moreover, this implies that within living organisms, where 

observations are contingent upon actions—and not predetermined as in typical machine 

learning scenarios—the learning history plays a role in shaping the geometry of latent spaces. 

 

Distortions in beliefs and precision control 

 

Not only the structure of generative models but also Bayesian beliefs can exhibit distortions. 

Interestingly, this can occur even when there's a direct one-to-one correspondence between the 

internal hidden state of the generative model and the external hidden state of the world. For 

instance, consider the case of the "finger angle" discussed in Figure 3, where the angle is the 

defining characteristic. Even in this scenario, an organism's posterior belief regarding the finger 

angle might deviate from the true angle. This divergence can stem from various factors. For 

example, the inference process might converge toward an incorrect value due to noisy or 

misleading observations. This situation is akin to perceptual illusions or instances of 

“misrepresentation.” 

 

A principled account of this kind of optimal “misrepresentation” is that, in the context of active 

inference—and Bayesian inference more broadly—the outcomes of inference are determined 

by the interplay of two significant factors: observations and priors. In active inference, these 

priors represent an organism's preferred states, leading to the possibility that an agent's 

posterior beliefs might not accurately represent the external reality. Instead, these beliefs could 

be biased due to the incorporation of preferences, giving rise to a form of "optimism bias." For 

a deeper discussion on this concept in relation to representation, the reader can refer to 13. This 

concept is demonstrated in Figure 3C, which highlights how the inference process concerning 

angle position tends to converge towards a midpoint between the true finger position and the 
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prior when actions are precluded. This example underscores a fundamental distinction between 

active inference and other frameworks, wherein the relationship between perceptual inference 

and action is not considered. 

 

The simulation presented in Figure 3C assumes that priors and observations carry equal weight, 

but in reality, this isn't a general rule. In predictive coding and active inference frameworks, 

the weighting of information sources is determined based on their precision (or inverse 

variance, in the case of a Gaussian distribution). This means that information with higher 

precision, indicating lower uncertainty, is given more weight and consequently has a stronger 

influence on the inference process. This precision-weighting mechanism plays a crucial role in 

both perceptual inference and movement control. Incorrect assignment of precision values can 

lead to disorders in both domains. For instance, some disorders associated with schizophrenia, 

such as hallucinations and persistent distortions of perception, might result from overly precise 

priors, causing the inference process to disregard sensory observations and rely excessively on 

internal models 88. This mechanism can extend to various other psychopathological conditions 

and motor disorders where the misalignment between precision settings of priors and sensory 

inputs can lead to impairments 25,27,89–94. Collectively, these studies emphasize the importance 

of precision-weighting within generative models, as it plays a critical role in fine-tuning an 

organism's posterior beliefs and their alignment with (largely self-generated) reality. 

 

Finally, while in this and the previous section we considered distortions of generative models 

and of beliefs from an information-theoretic perspective, another complementary perspective 

is that under certain circumstances, these distortions might be related to motivational and 

emotional factors and might have adaptive value for the organism, i.e., they might be “useful” 

misrepresentations 95–97. Generative models and beliefs can include a mixture of epistemic 

(accuracy-preserving) and motivational (utility-realizing) components and therefore the result 

of the inference privileges the best mixture of accuracy and utility, not (or not necessarily) the 

most accurate explanation of the data. This might lead to distortions of inference in the direction 

of the preferred alternative, which in cognitive psychology is linked to motivated reasoning 

and wishful thinking 98. One example of this is finding a positive and a negative review of one’s 

preferred restaurant, and considering only on the positive one. Another case in which the trade-

off between accuracy and utility becomes evident is when favoring one alternative is 

significantly riskier than favoring the other one. For example, upon feeling chest pain, it is 

safer to misinterpret a dangerous heart attach for an innocuous heartburn, rather than vice versa. 

In these situations, considering the utility and not just the accuracy of the alternatives can 

promote adaptive action. However, in some cases the mixture of epistemic and motivational 

components could also lead to psychopathological conditions, such as delusional beliefs 99. 

 

Action-oriented generative models: neural representation with an enactive flavor 

 

“In a true sense, for example, the frog does not detect flies—it detects small, moving, black 

spots of about the right size. Similarly, the housefly does not really represent the visual world 

about it—it merely computes a couple of parameters…which it inserts into a fast torque 

generator and which cause it to chase its mate with sufficiently frequent success.”  

– David Marr, 1982.  

 

So far, we have considered a rather classical concept of representation, in which the organism’s 

generative model plays the role of a “small scale” model or cognitive map of something out 

there (for example, a maze) and neural activity represents some entity in the map (e.g., one’s 

current location or a future predicted location in the map). While a cognitive map does not 
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include every detail and can be distorted, it still features a correspondence between hidden 

variables in the brain (e.g., locations in a cognitive map) and in the external world (e.g., 

locations in a maze). This is a standard assumption in “representational” cognitive science, 

which assumes that models encode hidden variables isomorphic to things like objects or places 

in the external world, in order to infer them.  

 

However, active inference introduces a novel angle, suggesting that the brain's generative 

models are primarily developed to enable adaptive action in the world, rather than just 

understanding it. This aligns with the "good regulator" theorem, which asserts that an effective 

regulator of a system needs to possess a model of that system . In this context, the hidden 

variables within action-controlling models do not necessarily mirror the hidden variables of the 

external world. In fact, the key purpose is to guide appropriate actions, with precise 

representation being secondary. This means that the level of detail or accuracy in how a 

generative model corresponds to external reality becomes less crucial, if the model is effective 

in guiding adaptive action. As long as the model supports successful decision-making and 

response to changes in the environment, the extent to which it faithfully represents the external 

world becomes less important within the framework of active inference. This perspective shift 

underscores the functional and pragmatic aspects of representation, where accuracy in 

mirroring external reality is not a strict requirement as long as the model serves its purpose in 

facilitating adaptive behavior. 

 

Acknowledging the pragmatic function of generative models in facilitating interactions opens 

up enactive interpretations of active inference, which prioritize adaptive action above mere 

representation and occasionally even challenge the concept of internal representation. An 

intriguing aspect is that, in contrast to traditional philosophical dichotomies between classical 

cognitive theories and enactive theories, active inference does not mandate the exclusion of 

one for the other. This is due to the fact that active inference reconciles the pursuit of interacting 

with and representing the world. Consequently, a pertinent query emerges: to what extent 

should an organism's generative model mirror the external world for optimal efficacy? 

 

In a range of tasks, a spectrum of generative models are effective, spanning from "explicit" or 

"environmental" models – exemplified by cognitive map models in Figures 6-7 – to "action-

oriented" or "sensorimotor" models, which prioritize interaction, while sidestepping the 

encoding of external world variables 12,14,100,101. It is important to bear in mind that generative 

models encode the underlying causes of observations. The key distinction between explicit and 

action-oriented generative models lies in their explanations for observable sensations: the 

former attribute these sensations to the consequences of external states of affairs (e.g., an image 

on the retina arising from an external object), while the latter attribute them to the outcomes of 

actions (e.g., touch sensations stemming from whisking movements). 

 

Despite their differences, both types of generative models can effectively support the same 

tasks. For instance, consider the scenario where a rodent needs to gauge the distance from an 

object. It has the option of employing an explicit generative model, which provides detailed 

descriptions of external elements; encompassing object identities and spatial distances. This 

model enables distance (and object) estimation by inferring the most probable values of its 

hidden states, akin to how the finger control model infers finger angles or the spatial navigation 

model infers the animal's likely location. 

 

On the other hand, the rodent has the option of utilizing an action-oriented model that 

exclusively captures relationships between whisker movements and touch sensations, without 
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explicitly incorporating variables representing external entities like objects. A prime 

illustration of this concept is the active whisking model presented by 102, which replicates 

empirical observations of anticipatory whisker control 103, as depicted in Figure 9. Within this 

generative model, the magnitude of whisker oscillation depends on a hidden state, which 

combines contributions from both a fixed central pattern generator and a prior about the desired 

amplitude. Significantly, this model predicts a touch sensation when the whisker is protracted, 

with both prior beliefs and whisker dynamics governed by the minimization of prediction errors 

until this prediction is fulfilled. In cases where the anticipated touch sensation at the 

protraction's conclusion does not materialize, the prior is adjusted, resulting in an increased 

whisker amplitude in subsequent cycles. Conversely, an unpredicted touch sensation leads to 

an update of the prior in the opposite direction, resulting in a reduced whisker amplitude in the 

ensuing cycles. Upon convergence and subsequent minimization of prediction error, the 

animal-object distance can be read out from the hidden state encoding whisker amplitude, 

despite the model not inherently encoding distance: c.f., perceptual control theory and related 

formulations 104,105. 

 

 
Figure 9. Active Inference Model of Whisker Movements, adapted from 102. (A) Displays a 

schematic representation of the generative model with a prior over the desired amplitude, 

hidden variables governing whisker amplitude and generating somatosensory (touch) and 

proprioceptive predictions. (B) Illustrates the putative neural underpinnings of the generative 

model responsible for guiding whisker movements (see 102 for details).  (C) Depicts the 

temporal evolution of several model variables when the whisker unexpectedly contacts an 

object (horizontal black line) and when the object disappears. In Panel a, the actual whisker 

amplitude is shown, halting upon encountering an object. Panel b illustrates the inferred 

amplitude; during initial contact, it surpasses the object but swiftly converges to the object's 

distance in subsequent cycles. Panels c and d illustrate proprioceptive observations and 

prediction errors, respectively. Panel e showcases action dynamics, increasing amplitude prior 

to touching an object and reducing it after unexpected contact.  
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This example underscores the potential to regulate actions using action-oriented generative 

models, which encapsulate sensorimotor contingencies, occasionally being characterized as 

non-representational 106,107. Other action-oriented generative models can also be employed to 

implement diverse embodied strategies. For instance, strategies that enable rodents to navigate 

a maze without constructing a representation of it, instead altering their course when 

encountering obstacles 10, or strategies supporting the selection of appropriate action policies 

(affordances) to interact with different object categories 108. Similarly, strategies could be 

devised for a baseball outfielder to catch a ball by choosing a running path that counteracts the 

optical acceleration of the ball, without necessitating the prediction of its trajectory 12,109–112.  

 

Another instance of an action-oriented generative model can be observed in the nervous system 

of a very simple organism: Caenorhabditis elegans. Multiple studies have demonstrated that a 

significant portion of the brain activity of C. elegans encompasses sequences of locomotion 

behaviors, including forward and reverse locomotion, as well as ventral turns, which scaffold 

the animal’s action selection 113. Dimensionality reduction analyses suggest that these 

behavioral sequences are arranged into stable cycles. The points at which these cycles bifurcate 

might correspond to decisions between alternative behavioral sequences. For instance, a 

decision point could involve choosing between forward locomotion and reverse locomotion 

after executing a ventral turn, as depicted in Figure 10, taken from 114. These findings indicate 

that a substantial portion of C. elegans' brain activity is structured to facilitate sequential 

interactions with the external environment, without explicitly encoding the external world's 

state. Notably, the same stable cycles of behavioral sequences can be observed even when the 

worm is immobilized, suggesting that neural population dynamics are primarily internally 

driven and might represent sequences of descending motor commands 113. This evidence might 

be interpreted as a biological example of action-oriented generative model, which proves 

sufficient for C. elegans to navigate its surroundings without building an internal representation 

of it. Similarly, this model could potentially utilize feedback sensations to make adaptive 

locomotion decisions at bifurcation points, for example, increasing the likelihood of a reverse 

movement after a ventral turn if an object is detected in the front, or decreasing it if an object 

is sensed from behind. This mechanism would conceptually resemble the adjustment of 

whisker amplitude following an unexpected touch sensation (or an increase following a lack of 

expected touch sensation) as observed in the active whisking model proposed by 102. 

 

 
 

Figure 10. Neural Population Activity Representation in Caenorhabditis elegans, adapted 

from 114. A low-dimensional depiction of neural population activity in the Caenorhabditis 
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elegans, showcasing cycles of locomotion behaviors, color-coded to represent forward 

locomotion, reverse locomotion, ventral turns, and more. The diagram captures bifurcation 

points that could signify decisions between distinct behavioral patterns. See 114 for details.  

 

 

In summary, both extrinsic and action-oriented models, or even hybrid models combining 

aspects of both, have the potential to support cognitive tasks. However, only the extrinsic 

models would additionally involve the reconstruction of the external environment. If 

reconstructing the external environment aligns with the traditional notion of representation, 

then it becomes an empirical inquiry to determine which species or tasks entail a neural 

representation in the conventional sense. This leads to two methodological considerations. 

Firstly, as previously discussed, identifying neural representations in an organism means 

disclosing the generative model it employs for making inferences. Secondly, the mere ability 

to read out certain information, such as distance details, from an organism's behavioral or 

neural variable does not automatically indicate that the organism is representing this 

information, at least not in the classical understanding of representation. A diagnostic query 

arises: whether the distance information is utilized by the same neural area or downstream 

circuits, for instance, to make decisions. 

 

Discussion 

 

In this article, we have explored the concept of neural representation through the lens of active 

inference, a normative framework that offers insights into brain function and cognition 10. We 

conclude by reviewing five key discussion points concerning the mechanisms of active 

inference. We then underscore the implications of these points for the concept of neural 

representation. 

 

First, a fundamental imperative, guiding living organisms, is the minimization of the 

discrepancy between their predictions and observations. This imperative is realized through 

action and perception, which jointly minimize variational free energy (or prediction error under 

certain conditions). Second, the generation of predictions and requisite inferences hinges on 

the acquisition and use of generative models; namely, statistical models that describe how 

observations are generated from unobservable (hidden or latent) causes, e.g., how a visual 

object, such as an apple, generates an image on the retina. Generative models support predictive 

and inferential processes both within perception (predictive coding) and action (active 

inference). Third, more advanced generative models afford planning, imagination, and 

forward-thinking cognition. Planning necessitates the utilization of the generative model to 

envision future observations 115–118, enabling the assessment of potential action plans by 

gauging their capacity to minimize expected free energy. Consequently, planning embodies a 

form of cognition detached from the present moment. Fourth, the acquisition of generative 

models balances accuracy and complexity. Optimal generative models embody a trade-off 

between these constituents of model evidence, fostering abstraction while introducing apparent 

"distortions" relative to reality. Fifth, within the framework of active inference, generative 

models serve the purpose of enabling adaptive action. While providing a comprehensive or 

even veridical depiction of the external world might prove beneficial on occasion, it is not an 

absolute necessity. This implies that various organisms can effectively employ diverse types 

of generative models. These range from "explicit models" encompassing variables for entities 

such as objects, faces, or individuals, to "action-oriented models" that facilitate adaptive action 

solely by predicting the consequences of actions without encoding external entities like objects. 

Notably, different approaches to the study of cognition and behavior emphasize different kinds 
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of models: in cognitive neuroscience, it is more common to consider explicit models (e.g., 

allocentric maps of space in the hippocampus 19), whereas in enactive accounts it is more 

common to consider action-oriented models (e.g. catching strategies used by baseball 

outfielders 111). Active inference can encompass agents endowed with both kinds of models 

(and others). It can potentially help finding points of contact between these approaches, which 

are typically considered as antithetical – and help assess their empirical predictions, by 

comparing alternative models of cognitive phenomena. 

 

Each of the five points listed above has implications for the notion of neural representation, as 

we briefly discuss below. 

 

Free energy minimization operates at multiple timescales 

 

When highlighting the significance of free energy minimization, it is important to acknowledge 

that this process operates across multiple temporal scales within the brain's mechanisms (e.g., 

rapid neural firing rates versus gradual synaptic updates) and is intertwined with action, which 

unfolds over diverse timescales (e.g., basic movements versus complex action sequences aimed 

at achieving distant goals) 119. During the action-perception loop, the minimization of free 

energy changes the organism's beliefs about the world and guides actions to shape the world. 

This pertains to the timescale of neuronal firing rates. On the other hand, learning mechanisms 

and the adjustment of model parameters operate at a slower timescale relative to the action-

perception loop, manifesting as synaptic updates. Moreover, learning processes also manifest 

during periods of rest, during which the brain potentially optimizes the generative model for 

future use via model reduction and synaptic pruning 59,60. The optimization of generative 

models also extends to the slower temporal scales of development and evolution. One can 

conceivably interpret these gradual adaptations of generative models to an organism's 

ecological niche as a form of very gradual Bayesian model selection 120–122. 

 

Conversely, planning and imagination might operate at a faster timescale relative to the action-

perception cycle. In the context of planning, an organism can refine its beliefs concerning 

future actions and the latent states it will encounter (and retrospectively modify beliefs about 

the past). This domain is characterized by the timescale of "replay" events. Lastly, the process 

of free energy minimization encompasses modifications that extend beyond the confines of the 

brain, such as joint action and cultural dynamics 123–127. However, these aspects are not covered 

within the current discussion. 

 

Recognizing the diverse timescales at which free energy minimization operates is pivotal for 

contextualizing neural representation within a broader framework that extends beyond the 

immediate operations of the brain. As far as neural representation is linked with beliefs and 

generative models (as detailed below), it's noteworthy that these elements are optimized 

through intricate nested processes, unfolding at varying temporal scales, from neuronal activity 

through to evolution. This perspective is important to naturalize the notion of neural 

representation: namely, recognize that it might be an inherent adaptation that empowers 

organisms to minimize their free energy—or to maximize the evidence for their existence 10,11. 

 

Generative models, belief dynamics, and neural representation 

 

The concepts of a generative model and belief dynamics are inherently intertwined with the 

notion of representation, since the inception of cognitive science 17,18. However, the idea of 

representation can be approached in at least two distinct ways. On one hand, the generative 
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model itself, whose parameters could be encoded within synaptic weights, could align with the 

concept of neural representation. This interpretation is akin to referring to the "representation" 

of a "cognitive map." Conversely, the dynamics of beliefs, which might correspond to neural 

firing rates, could also be conceived as "neural representations" of the subject matter of those 

beliefs—such as the position of a finger or the multimodal concept of a leaping frog. The latter 

perspective is more closely associated with the traditional attributes of (neural) representation: 

they are about something and are employed by the organism to accomplish specific tasks, like 

predicting the sensory outcomes of actions or guiding adaptive behaviors. Consequently, they 

bear meaning and significance for the organisms themselves 1,3,5–8. 

 

Planning, imagination and detachment 

 

A fundamental distinction exists between variational free energy, foundational to action and 

perception, and expected free energy, which forms the basis of planning. The former solely 

relies on past and present observations, while the latter necessitates the utilization of the 

generative model to endogenously generate (or imagine) counterfactual observations that could 

arise from a particular sequence of actions. This mechanism has implications not only for 

planning but also for various manifestations of future-oriented cognition, encompassing 

concepts like “as-if” simulation, re-enactment, and imagination; as well as the re-enactment of 

past episodes or the construction of counterfactual events. It's worth highlighting the term 

"endogenous," as this generative capacity hinges on temporarily detaching from the immediate 

action-perception loop, thereby disregarding sensory inputs and prediction errors. 

 

From a neurological standpoint, the ability to detach and replay statistical patterns encoded 

within the generative model, revisiting past experiences or envisioning future scenarios, finds 

clear parallels in neuronal reactivations and replay 49,50. Theoretically, this phenomenon aligns 

with the classic notion that representation serves to represent something “in its absence” 65. 

Nevertheless, not all agents engaged in active inference partake in planning or expected free 

energy minimization. Thus, if the capacity for detachment and the representation of something 

"in its absence" differentiates between organisms that possess or lack representation (or 

cognition), it potentially underscores a categorical division between active inference agents 

exclusively minimizing variational free energy and those additionally minimizing expected 

free energy 128. Consequently, inquiries about an organism's capacity to represent, the manner 

in which it does so—and whether it engages in such activity—again rests on the identification 

of its underlying generative model. 

 

Abstraction and distortion in generative models 

 

Even when adhering to the conventional definition of a model as a representation of the external 

world, it is important to acknowledge that no model can perfectly mirror reality, and some 

degree of information loss is inevitable. However, paradigms such as active inference and rate 

distortion theory 79 go beyond this obvious consideration and underscore the significance of 

optimal information compression within generative models. Within the active inference 

framework, generative models must strike a balance between accuracy and complexity. This 

balance aims to facilitate optimal learning from data, ensuring both efficiency and the ability 

to generalize. As depicted in Figure 8, distinct constraints on model learning—such as 

variations in data statistics and learning objectives—lead to diverse geometries and alterations 

in the latent states that generative models acquire.  
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Recent research into the geometries of neuronal responses across various brain regions has 

gained momentum 73,74,129. To the extent that these geometries reflect how we perceive the 

world, it becomes evident that not only the generative model itself but also the specifics of its 

learning statistics play a crucial role in determining what it represents and how it does so. 

 

Explicit and action-oriented generative models 

 

The brain learns generative models to navigate the world adaptively, not (or not solely) to 

understand it. Different living organisms may possess an array of generative models, spanning 

from "explicit" models that involve variables for inferring external entities like objects, faces, 

or people, to "action-oriented models" that prioritize predicting action outcomes, omitting the 

need to encode external entities. These models can offer varied solutions to shared biological 

challenges, such as estimating distance from an object. Therefore, the specific model an 

organism employs for a particular task remains a matter of empirical investigation. 

 

This perspective licenses "enactive" or "pragmatic" viewpoints concerning the role of 

generative models, which emphasize that the role of generative models whose main role is 

mediating interaction and not representing the external world veridically. From a theoretical 

stance, this notion can be interpreted in several ways. One interpretation could suggest that 

action-oriented generative models still facilitate neural representations, though these might be 

understood as "pragmatic representations" conveying affordances and potential actions. 

Another interpretation might assert that models of sensorimotor contingencies do not 

necessitate the concept of representation 107. While resolving this debate is beyond our scope, 

one can note that diverse generative models (explicit or action-focused, with varying hidden 

variables) equip living organisms with distinct capabilities. For instance, as previously 

discussed, generative models in active inference enable adaptive action-perception loops, but 

only certain models support detached cognitive operations such as planning or imagination. 

 

This observation has a significant consequence: assuming that "meaning" and "understanding" 

are inherently connected to agentive action through generative models, the array of generative 

models described above imparts diverse forms of "understanding" of an organism's ecological 

niche. This spans from the "meaning-in-interaction" foregrounded by enactive theories to the 

"representation-in-the-absence-of-the-reference" accentuated by cognitive theories. Similarly, 

generative AI models that lack engagement in agentive interactions with their surroundings 

would lack the essential grounding in reality necessary for fostering genuine understanding 

(Pezzulo et al., 2023). 

 

The symbol detachment problem: from pragmatic to descriptive representations 

 

The preceding discourse raises a crucial, yet unresolved query: how did the relatively simpler 

generative models, enabling action control in our early evolutionary ancestors (as exemplified 

by C. elegans in Figure 10), evolve into those that also facilitate detached cognition? Various 

researchers 4,69,130–134 have proposed a plausible transition from "pragmatic" to more "detached" 

and "descriptive" representations, which can be condensed into two pivotal steps. 

 

Initially, meaningful activity patterns could emerge within the context of an organism's 

capacity to predict and control simple behavioral strategies. These could be deemed 

"pragmatic" neural representations if they are about something: for example, they provide 

predictions about sensory feedback ensuing from object interactions, albeit only in restricted 

contexts. These patterns are more than mere correlations—they exhibit a systematic and 
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"exploitable relation" with external elements (whether explicitly encoded or not encoded within 

the model's hidden variables). This enables them to guide adaptive actions, imbuing them with 

meaning and adaptive significance. These representations are grounded in the organism’s 

capacity for adaptive prediction and control, but they are not detached: they are context-bound, 

and only activated in the context of—and proximally coupled to—the action-perception loop 

and the current state of the organism. An instance highlighted by 133 involves the response to 

food-related visual cues in the insula, which arises solely when the creature is hungry 135. In 

this instance, the presumed neural representation of food cues and their valence is context-

specific and inaccessible beyond this context; such as to depict food's absence or in situations 

where hunger isn't present. 

 

Subsequently, the organism acquires the capacity to endogenously generate its pragmatic 

neural representations. This endogenous generation detaches and abstracts these 

representations from their initial sensorimotor context, divorcing them from mandatory links 

with external sensory inputs, action execution, or the organism's initial behavioral state that 

facilitated their emergence. However, these representations retain their original grounding: 

they are still about something, can be utilized to evaluate and select alternative actions (whether 

executed or imagined), and hold meaning and significance for the organism. Importantly, their 

detachment equips organisms with the cognitive capacity to envision and contemplate "what is 

not there"; be it potential actions, desired yet non-existent entities, or communicable concepts. 

Detachment thus fuels advanced cognitive functions, particularly future-oriented cognition like 

planning and imagination, potentially explaining the evolutionary benefits of detachment itself. 

Most cognitive theories suggest that genuine "mental life" arises when an organism can 

endogenously generate neural representations of the world; be it for shaping it under personal 

preferences or for contemplation. Expanding upon the example of food-related cues, detached 

representations enable pondering or conversing about food even in the absence of food or 

hunger. Additionally, knowledge gained about food (or navigation or similar subjects) could 

be abstracted to support novel capabilities, such as understanding narratives or envisioning 

rewarding journeys. These instances illustrate how detachment engenders a fundamental 

enhancement or shift from pragmatic to epistemic or descriptive objectives in neural 

representations. In essence, detached representation corresponds to the "descriptive" 

representations often associated with our mental experiences. And which become enriched 

through social interaction and linguistic communication 136–139. 

 

Remarkably, this perspective unveils an intriguing bidirectional interplay between the two key 

functions of generative models that have been emphasized throughout this paper: engaging 

with the lived world and understanding it. Conventional cognitive theory often posits that, in 

order to interact effectively with the world, an organism must first achieve a level of 

understanding about it. Simultaneously, we've underscored here that comprehending the world 

– and generating meaning from it – necessitates active interaction 32. In active inference, these 

two processes are intimately entwined. In a manner analogous to how the minimization of 

variational free energy across short timescales sets in motion reciprocal loops between 

immediate perception and action, the same minimization across longer timescales fosters 

reciprocal loops between the act of understanding the world and actively engaging with it. 

 

Numerous researchers have proposed diverse iterations of this narrative, yet much remains 

speculative. One challenge is reconciling the notion of detachment with a gradualist perspective 

of brain evolution. Future investigations should explore whether delineating the evolution of 

generative models for active inference across simple-to-complex organisms might elucidate 
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the development of detached and future-oriented cognitive abilities from action-control loops 
69. 
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