

Optic chiasm involvement in multiple sclerosis, aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein-associated disease

Journal:	Multiple Sclerosis Journal
Manuscript ID	MSJ-23-0852.R2
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	27-Feb-2024
Complete List of Authors:	Bianchi, Alessia; University of Siena, Department of Medicine, Surgery and Neuroscience; University College London, Institute of Neurology Department of Neuroinflammation Cortese, Rosa; University of Siena, Department of Medicine, Surgery and Neuroscience; University College London, Institute of Neurology Department of Neuroinflammation Prados, Ferran; University College London, Institute of Neurology Department of Neuroinflammation ; University College London, Centre for Medical Imaging Computing, Medical Physics and Biomedical Engineering; Universitat Oberta de Catalunya, E-health Centre Tur, Carmen; Vall d'Hebron Institute of Research, MS Centre of Catalonia (Cemcat); University College London, Institute of Neurology Department of Neuroinflammation Kanber, Baris; University College London, Institute of Neurology Department of Neuroinflammation; University College London, Centre for Medical Imaging Computing, Medical Physics and Biomedical Engineering Yiannakas, Marios; University College London, Institute of Neurology Department of Neuroinflammation; University College London, Centre for Medical Imaging Computing, Medical Physics and Biomedical Engineering Yiannakas, Marios; University College London, Institute of Neurology Department of Neuroinflammation Samson, Rebecca; University College London, Institute of Neurology Department of Neuroinflammation Jacob, Anu; Cleveland Clinic Abu Dhabi, Department of Neurology; The Walton Centre NHS Foundation Trust, Department of Neurology Brownlee, Wallace; University College London, Institute of Neurology Department of Neuroinflammation Jacob, Anu; Cleveland Clinic Abu Dhabi, Department of Neurology Brownlee, Wallace; University College London, Institute of Neurology Department of Neuroinflammation; University College London Hospitals NHS Foundation Trust, National Institute for Health Research (NIHR)

	Biomedical Research Centre Trip, Anand; University College London, Institute of Neurology Department of Neuroinflammation; University College London Hospitals NHS Foundation Trust, National Institute for Health Research (NIHR) Biomedical Research Centre Nicholas, Richard; Imperial College London, Division of Brain Sciences Department of Medicine Hacohen, Yael; Great Ormond Street Hospital For Children NHS Trust, Neurology ; University College London, Institute of Neurology Department of Neuroinflammation Barkhof, Frederik; University College London, Institute of Neurology Department of Neuroinflammation; University College London, Centre for Medical Imaging Computing, Medical Physics and Biomedical Engineering; University College London Hospitals NHS Foundation Trust, National Institute for Health Research (NIHR) Biomedical Research Centre; Amsterdam UMC Locatie AMC, Department of Radiology and Nuclear Medicine Ciccarelli, Olga; University College London, Institute of Neurology Department of Neuroinflammation; University College London Hospitals NHS Foundation Trust, National Institute for Health Research (NIHR) Biomedical Research Centre Toosy, Ahmed; University College London, Institute of Neurology Department of Neuroinflammation; University College London Hospitals
Keywords:	Optic chiasm, Optic neuritis, Multiple sclerosis, Aquaporin4-antibody neuromyelitis optica spectrum disorder, Myelin oligodendrocyte glycoprotein-antibody associated disease, Magnetization Transfer Ratio
	Background. Optic neuritis (ON) is a common feature of inflammatory demyelinating diseases (IDD) such as multiple sclerosis (MS), aquaporin 4-antibody neuromyelitis optica spectrum disorder (AQP4+NMOSD), and myelin oligodendrocyte glycoprotein-antibody disease (MOGAD). However, the involvement of the optic chiasm (OC) in IDD has not been fully investigated.
	and without ON (ON-) using magnetisation transfer ratio (MTR); to compare differences between MS, AQP4+NMOSD, and MOGAD, and understand their associations with other neuro-ophthalmological markers.
Abstract:	Methods. Twenty-eight relapsing-remitting MS (RRMS), 24 AQP4+NMOSD, 28 MOGAD patients, and 32 healthy controls (HCs) underwent clinical evaluation, MRI, and optical coherence tomography (OCT) scan. Multivariable linear regression models were applied.
	Results. ON+ IDD patients showed lower MTR than HCs (p=0.004). When compared with HCs, lower MTR was found in ON+ AQP4+NMOSD (p=0.020) and MOGAD (p=0.007), and in ON- AQP4+NMOSD (p=0.035). ON+ RRMS had lower MTR than ON- RRMS (p=0.038). Lower MTR was associated with higher number of ON (p=0.001), worse visual acuity (p=0.001), and lower peripapillary retinal nerve fibre layer (pRNFL) thickness (p=0.018) when considering the whole IDD group.
	Conclusion. OC microstructural damage indicates prior ON in IDD and is linked to reduced vision and thinner pRNFL.

SCHOLARONE[™] Manuscripts

http://mc.manuscriptcentral.com/multiple-sclerosis

Page 3 of 36

1 2 2		
5 4 5	1	Optic chiasm involvement in multiple sclerosis, aquaporin-4 antibody-
6 7	2	positive neuromyelitis optica spectrum disorder, and myelin
8 9	3	oligodendrocyte glycoprotein-associated disease
10 11 12	4	
13 14	5	Alessia Bianchi ^{1,2} , Rosa Cortese ^{1,2} , Ferran Prados ^{1,3,4} , Carmen Tur ^{1,5} , Baris Kanber ^{1,3} , Marios
15 16 17	6	C Yiannakas ¹ , Rebecca Samson ¹ , Floriana De Angelis ¹ , Lise Magnollay ¹ , Anu Jacob ^{6,7} ,
17 18 19	7	Wallace Brownlee ^{1,8} , Anand Trip ^{1,8} , Richard Nicholas ⁹ , Yael Hacohen ^{1,10} , Frederik
20 21	8	Barkhof ^{1,3,8,11} , Olga Ciccarelli ^{1,8} , Ahmed T Toosy ¹ .
22 23 24	9	
25 26	10	Affiliations:
27 28	11	1. Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square
29 30	12	Institute of Neurology, Faculty of Brain Science, University College London, London
31 32 33	13	(UK)
34 35	14	2. Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy)
36 37	15	3. Centre for Medical Imaging Computing, Medical Physics and Biomedical
38 39 40	16	Engineering, University College London, London, UK
41 42	17	4. E-health Centre, Universitat Oberta de Catalunya, Barcelona (Spain)
43 44	18	5. MS Centre of Catalonia (Cemcat), Vall d'Hebron Institute of Research, Vall d'Hebron
45 46 47	19	Barcelona Hospital Campus, Spain
48 49	20	6. Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool (UK)
50 51	21	7. Department of Neurology, The Cleveland Clinic Abu Dhabi (United Arab Emirates)
52 53	22	8. National Institute for Health Research (NIHR) University College London Hospitals
54 55 56	23	(UCLH) Biomedical Research Centre, London (UK)
57 58	24	9. Division of Brain Sciences, Department of Medicine, Imperial College London,
59 60	25	London (UK)

2		
3 4	26	10. Neurology, Great Ormond Street Hospital For Children NHS Trust, London (UK)
5 6	27	11. Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit
7 8	28	(the Netherlands)
9 10	29	
11 12 13	30	
14 15	31	Corresponding author: Alessia Bianchi
16	22	
17 18	32	Queen Square MS Centre, Department of Neuroinflammation,
19 20	33	UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
21 22	34	E-mail: a.bianchi@ucl.ac.uk
23 24		
24 25		
26		
27 28		
29		
30		
31 32		
33		
34		
35		
30 37		
38		
39		
40 41		
41		
43		
44 45		
45 46		
47		
48		
49 50		
50		
52		
53		
54 55		
56		
57		
58		
59 60		

Abstract

Background.

10 11	3	Optic neuritis (ON) is a common feature of inflammatory demyelinating diseases (IDD) such
12 13	4	as multiple sclerosis (MS), aquaporin 4-antibody neuromyelitis optica spectrum disorder
14 15	5	(AQP4+NMOSD), and myelin oligodendrocyte glycoprotein-antibody disease (MOGAD).
16 17	6	However, the involvement of the optic chiasm (OC) in IDD has not been fully investigated.
18 19 20	7	
21 22 23	8	Aims.
24 25 26	9	To examine OC differences in non-acute IDD patients with (ON+) and without ON (ON-)
27 28	10	using magnetisation transfer ratio (MTR); to compare differences between MS,
29 30 31	11	AQP4+NMOSD, and MOGAD, and understand their associations with other neuro-
31 32 33	12	ophthalmological markers.
34 35 36	13	
37 38 30	14	Methods.
40 41	15	Twenty-eight relapsing-remitting MS (RRMS), 24 AQP4+NMOSD, 28 MOGAD patients,
42 43	16	and 32 healthy controls (HCs) underwent clinical evaluation, MRI, and optical coherence
44 45 46	17	tomography (OCT) scan. Multivariable linear regression models were applied.
47 48 49	18	
50 51 52	19	Results.
53 54	20	ON+ IDD patients showed lower OC MTR than HCs (28.87 ± 4.58 vs 31.65 ± 4.93 ; p=0.004).
55 56	21	When compared with HCs, lower OC MTR was found in ON+ AQP4+NMOSD (28.55 ± 4.18
57 58 59	22	vs 31.65 ± 4.93; p=0.020) and MOGAD (28.73 ± 4.99 vs 31.65 ± 4.93; p=0.007), and in ON-
60	23	AQP4+NMOSD (28.37 ± 7.27 vs 31.65 ± 4.93 ; p=0.035). ON+ RRMS had lower MTR than

2		
3 4	24	ON- RRMS (28.87 ± 4.58 vs 30.99 ± 4.76 ; p=0.038). Lower OC MTR was associated with
5 6	25	higher number of ON (RC: -1.15, 95%CI: -1.819 to -0.490, p=0.001), worse visual acuity
7 8	26	(RC: -0.026, 95%CI: -0.041 to -0.011, p=0.001), and lower pRNFL thickness (RC: 1.129,
9 10 11	27	95%CI: 0.199 to 2.059, p=0.018) when considering the whole IDD group.
12 13 14	28	
15 16 17	29	Conclusion.
18 19	30	OC microstructural damage indicates prior ON in IDD and is linked to reduced vision and
20 21 22	31	thinner pRNFL.
23 24	32	
25 26 27	33	
28 29 30	34	Keywords.
31 32	35	Optic chiasm, optic neuritis, multiple sclerosis, aquaporin4-antibody neuromyelitis optica
33 34 25	36	spectrum disorder, myelin oligodendrocyte glycoprotein-antibody associated disease,
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	37	Magnetization Transfer Ratio
58 59 60		

39 Introduction

40 Inflammatory demyelinating diseases (IDD) represent a spectrum of heterogeneous disorders
41 affecting the central nervous system. Multiple sclerosis (MS), aquaporin 4-antibody
42 neuromyelitis optica spectrum disorder (AQP4+NMOSD), and myelin oligodendrocyte
43 glycoprotein-antibody disease (MOGAD) are the most defined forms (1).

Optic neuritis (ON) is an acute, inflammatory condition primarily involving the optic nerve, and is frequently observed in IDD, although with different patterns (2–5). In MS, ON is often unilateral, characterised by short lesions and tends to recover well (6,7). In contrast, AQP4+NMOSD-associated ON can be unilateral or bilateral, more frequently associated with severe visual loss and limited recovery if untreated. AQP4+NMOSD optic nerve lesions are extensive, involving more than half of its length and posteriorly located. In MOGAD, ON is more frequently bilateral, and is associated with severe visual loss, yet there is potential for favourable clinical recovery (8). Optic nerve lesions in MOGAD patients are often long and anteriorly located, leading to the frequent observation of optic disc oedema in acute ON.

53 Additionally, perineural enhancement has been documented in some cases (6,9).

Magnetisation Transfer (MT) is an advanced magnetic resonance imaging (MRI) technique used to assess the exchange of proton magnetisation between tissue macromolecules and mobile water molecules, a phenomenon typically quantified by the MT ratio (MTR) (10). While MTR has been associated with myelin content, MTR changes may also reflect neuroaxonal loss (11). In the optic nerve, MTR has proven to be a valuable measure of early demyelination and predictor of axonal loss and remyelination after acute ON (12,13). We recently reported that MTR values can also help the discrimination between relapsing-remitting MS (RRMS) and AQP4+NMOSD (14).

The optic chiasm (OC) may be pathologically altered with acute ON through direct lesional involvement, which is more frequently observed in AQP4+NMOSD (2,15), or from secondary post-acute neurodegeneration from more anterior optic nerve lesions (16–18). These chiasmatic alterations can be related to visual impairment (9,19). However, the comprehensive quantification of OC involvement and its impact on visual outcomes in the context of these three IDDs has not been fully explored. We conducted a prospective study on a cohort of non-acute IDD patients both with (ON+) and without (ON-) previous ON to assess (1) microstructural OC MTR changes between ON+ and ON- patients; (2) whether the degree of the OC MTR changes differs between RRMS, AQP4+NMOSD, and MOGAD; (3) and if OC MTR is associated with residual visual/ophthalmic outcomes in these patients. **Patients and methods** From a previously described cohort (14), 80 patients and 32 healthy controls (HCs) were selected. Inclusion criteria for patients were: (1) diagnosis of RRMS according to 2017 revised criteria (20) or AQP4+NMOSD according to 2015 Wingerchuk's criteria (21) or MOGAD, defined as MOG-Ab positivity in the context of an acute demyelinating event in patients presenting with a MOGAD phenotype previously described (22); (2) no clinical relapses in the previous 6 months; (3) no ophthalmic conditions; (4) age above 18-years at the time of assessment; (5) no major contraindications to MRI. The study was conducted in accordance with the International Conference on Harmonisation guidelines for Good Clinical

Multiple Sclerosis Journal

Practice and the Declaration of Helsinki. All participants gave informed consent upon admission to the study, which was approved by the NRES Committee London Bloomsbury. All patients underwent detailed clinical evaluation, peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thickness measurements with optical coherence tomography (OCT) scanning, and MRI. Episodes of ON were identified by clinicians through clinical information collected from medical records. ON was defined as subacute, monocular visual loss associated with pain during eye movement, with objective evidence of an optic neuropathy (e.g., impaired best-corrected visual acuity, dyschromatopsia, relative afferent pupillary defect, and/or optic disc pallor/swelling) (2,23). The number of separate inflammatory events was determined for each eye of each patient. Visual assessment was performed for each eye separately with high contrast letter visual acuity using the retro-illuminated Early Treatment Diabetic Retinopathy Study chart at 4 metres with best correction. Higher logMAR scores reflect worse visual acuity; a score of 1.7 was assigned when no letters could be correctly identified by the patient. To test the association between MTR value in the optic chiasm and the clinical outcome, both (a) visual acuity as an average between the two eyes and (b) visual acuity in the worst eye were entered in separate analyses. Patients and controls underwent pRNFL and GCIPL OCT scanning using Heidelberg Eye Explore 1.10.2.0 (Spectralis version 6.9a, Heidelberg Engineering, Heidelberg, Germany). Optic nerve thicknesses at 3.4 mm ring scan were extracted. A quality check was performed

- 107 according to the international OSCAR-IB criteria (24).

2	
3	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

109	All participants underwent MRI using a 3T Achieva system (Philips Medical Systems, Best,
110	Netherlands) and 32-channel head coil based at the NMR research unit, Queen Square,
111	London. Left and right optic nerves were acquired separately with: (1) coronal-oblique 2D
112	fat-suppressed turbo spin-echo T2-weighted (T2w) imaging with coronal oblique plane
113	orthogonal to the long axis of the optic nerve (number of slices 20, slice thickness 3 mm, no
114	slice gap, field-of-view [FOV] 160x160x160 mm ³ , voxel size 0.5x0.5 mm ²); and (2)
115	Magnetisation Transfer imaging (MTI), using identical scan geometry as above (number of
116	slices 20, FOV 160x160x60 mm ³ , acquisition voxel size 0.75x0.75x3 mm ³ , reconstruction
117	voxel 0.5x0.5x3 mm ³). MTI comprises of a 3D slab-selective fast field-echo sequence with
118	two echoes, performed with and without Sinc-Gaussian shaped MT saturating pulses (MTon
119	and MToff, respectively) of nominal angle $\alpha = 360^{\circ}$, offset frequency 1 kHz, duration 16 ms
120	Participants were asked to close their eyes during scanning. Two sets of MT images were
121	acquired for each eye to improve signal-to-noise and were pre-processed to generate MTon
122	average and MToff average then co-registered to native T2w space.
123	

124 The average number of slices for the OC was 1.73 slices (median = 1, range = 1-2). Chiasmal 125 MTR processing is described in Figure 1. Manually delineated Regions of Interest (ROIs) 126 were created slice-by-slice to encompass the right and left sections of the optic chiasm (optic 127 hemichiasms) independently on each T2w acquisition. OC ROIs were delineated on the T2w 128 coronal orbital MRI scans by two experienced raters (R.C. and A.B.) for left and right optic 129 nerve acquisitions using JIM 6.0 (Xinapse systems, http://www.xinapse.com). Raters were 130 blinded to diagnosis during ROI delineation. There was a high degree of consistency in inter-131 rater agreement in identifying the optic nerve ROIs, as indicated by a 95% Cohen's kappa 132 coefficient. ROIs were subsequently transferred from T2w images to the pre-registered MTon 133 and MToff average images and manually adjusted to ensure consistent delineation of the same

Page 11 of 36

1

area on T2w, MTon and MToff images. To additionally account for minor nerve motion, the

center-of-mass of the three ROIs was aligned slice-wise to a common space built on T2w and

registered average MTon and MToff images. The registered images were then utilised to

extract MTR values for both the left and right optic hemichiasms. Finally, the MTR values

from the hemichiasms were statistically averaged to obtain a single chiasmal MTR value.

Statistical analysis was performed using STATA/MP software version 17.0 (Copyright 1985-

To assess associations between chiasmal MTR values and ON, we categorised subjects in

(n=11) vs ON+ AOP4+NMOSD (n=15) vs ON+ MOGAD (n=22) vs HCs (n=32); 3) ON-

IDD with three or more previous ON (n=16) vs HCs (n=32).

IDD (n=32), vs IDD with one previous ON (n=22), vs IDD with two previous ON (n=10), vs

Clinical and demographic characteristics of groups were compared using t-tests or ANOVA

for continuous variables and Chi-square test for independence to compare the groups in

three different ways: 1) ON- IDD (n=32) vs ON+ IDD (n=48) vs HCs (n=32); 2) ON+ RRMS

2	
3	134
4 5 6	135
7 8	136
9 10	137
11 12	138
13 14	130
15 16	157
17 18	140
19 20	141
21 22 23	142
24 25	143
26 27	144
28 29 30	145
31 32	146
33 34	147
35 36 27	148
37 38 39	149
40 41	150
42 43	151
44 45 46	152
40 47 48	153
49 50	154
51 52	155
53 54	156
55 56	-
57 58	157
59 60	158

Statistical analysis

2021 StataCorp LLC).

categorical variables.

described above (25), adjusting for potential confounders, including age, sex, disease
duration, and MRI scanner software upgrade which occurred during the study.
7
http://mc.manuscriptcentral.com/multiple-sclerosis

Multivariable linear regression models were fitted to estimate the associations between OC

MTR as the continuous response variable and different clinical categorical predictors

2 3 4	159	
5 6	160	We also tested associations between 1) OC MTR versus visual acuity and 2) OC MTR versus
7 8 0	161	pRNFL and GCIPL independently. Linear regression models were fitted with logMAR acuity,
9 10 11	162	pRNFL thickness, or GCIPL thickness as outcomes in two ways; a) average logMAR and
12 13	163	average pRNFL/GCIPL across both eyes or b) worse logMAR and thinner pRNFL/GCIPL
14 15 16	164	between both eyes for each individual. OC MTR and other potential confounders were
17 18	165	entered as independent variables.
19 20	166	All inferences used a type I error rate of $p < 0.05$ for clear statistical significance.
21 22 23	167	
23 24 25	168	
26 27 28	169	Results
20 29 30	170	Participant characteristics
31 32	171	Eighty patients with IDD, including 28 RRMS (18 females, mean [±SD] age: 45.5 [±11.8]
33 34 35	172	years), 24 AQP4+NMOSD (18 females, mean age: 49.9 [±12.7] years), and 28 MOGAD (19
36 37	173	females, mean age: 36.4 [±17.1] years) patients, and 32 HCs were enrolled in the study. IDD
38 39	174	patients were older than HCs (43.6 years \pm 15.0 vs 35.2 years \pm 12.4; p=0.007), whilst no
40 41 42	175	significant differences were found for gender (females: 68.75% vs 68.75%). The age and
43 44	176	gender distributions were similar between ON+ IDD and ON- IDD patients. Demographic
45 46	177	characteristics of the different groups are summarised in Table 1 and Table 2.
47 48 49	178	
50 51	179	IDD patients had average disease duration of 8.2 ± 7.1 years. Disease duration did not differ
52 53	180	significantly between ON+ IDD and ON- IDD. Forty-eight patients (60%) experienced at
54 55 56	181	least one previous ON, and among them, ON affected both eyes in 21/48 (43.75%) and was
57 58	182	relapsing in 21/48 (39.58%). The average number of inflammatory events was 2.52 ± 2.32 ,
59 60	183	with 22/48 (45.83%) patients reporting a single episode, 10/48 (20.83%) having experienced

3	184
- 5 6	185
7 8	186
9 10	187
11 12 12	188
13 14 15	189
16 17	190
18	170
19 20	191
21 22	192
23 24 25	193
25 26 27	194
28 29	195
30 31	196
32 33	197
34 35 36	198
37 38	199
39 40	200
41 42 42	201
43 44 45	202
46 47	203
48 49	204
50 51	
51 52 53	205
55 54 55	206
56 57	207
58 59	208

60

two previous ON, and 16/48 (33.33%) reporting three or more previous ON. The average
time-gap from the first ON was 87.5 ± 76.2 months, while the time-gap from the last one was
51.1 ± 52.5 months.
Clinical characteristics of the different disease groups are summarised in Table 1. The
prevalence of previous ON and the mean number of ON were higher in MOGAD and
AQP4+NMOSD when compared with RRMS (both p<0.001). The same groups reported
higher percentages of bilateral ON (p=0.011) and relapsing ON episodes (p=0.002).

194 Effect of previous ON on OC MTR in IDD

Chiasmal MTR values in ON- and ON+ patients are reported in Table 3. ON+ IDD patients
showed lower MTR values compared with HCs (regression coefficient [RC]: -3.33, 95%
confidence interval [CI]: -5.56 to -1.111, p=0.004) and slightly lower MTR values compared
with ON- IDD patients although non-significant (Figure 2). OC MTR values were not
significantly different between HCs and ON- IDD patients.

Higher numbers of previous ON episodes were associated with lower chiasmal MTR (RC: -1.15, 95%CI: -1.819 to -0.490, p=0.001) (Figure 3). We observed that IDD patients with two previous ON and those with at least three previous ON episodes had lower chiasmal MTR values than HCs (*two ON vs HCs*: RC: -3.58, 95%CI: -6.892 to -0.170, p=0.040; *three or more ON vs HCs*: RC: -4.62, 95%CI: -7.558 to -1.674, p=0.002) (Figure 4). Patients with three or more previous ON episodes also showed lower MTR values when compared with ON- patients (RC: -3.38, 95%CI: -6.374 to -0.384, p=0.027) (Figure 4).

1 2		
3 4	209	
5 6	210	Differences in OC MTR between RRMS, AQP4+NMOSD, MOGAD, and HCs
7 8 0	211	ON+ RRMS patients had lower MTR values than ON- RRMS patients (RC: -2.994, 95%CI: -
) 10 11	212	5.812 to -0.177, p=0.038), whilst no significant difference was observed comparing ON+ vs
12 13	213	ON- AQP4-NMOSD and ON+ vs ON- MOGAD.
14 15 16	214	
10 17 18	215	For ON+ patients, AQP4+NMOSD and MOGAD demonstrated lower OC MTR than HCs
19 20	216	(respectively: RC: -3.547, 95%CI: -6.527 to -0.567, p=0.020; RC: -3.900, 95%CI: -6.707 to -
21 22	217	1.092, p=0.007), whilst no differences were found between RRMS and HCs (Figure 5).
23 24 25	218	
26 27	219	In AQP4+NMOSD, ON- patients had lower chiasmal MTR than HCs (RC: -3.870, 95%CI: -
28 29	220	7.468 to -0.272, p=0.035), whilst no difference was found comparing ON- RRMS and ON-
30 31 32	221	MOGAD patients with HCs.
33 34	222	
35 36	223	Combining both ON+ and ON- patients and adjusting for the number of previous ON
37 38 30	224	episodes, we observed that AQP4+NMOSD and MOGAD exhibited lower OC MTR values
40 41	225	than HCs (respectively: RC: -3.215, 95% CI: -5.998 to -0.432, p=0.024; RC: -2.938, 95% CI:
42 43	226	-5.850 to -0.026, p=0.048). However, no significant differences were found between RRMS
44 45 46	227	and HCs. Furthermore, our results indicated that AQP4+NMOSD had lower MTR values
40 47 48	228	compared to RRMS (RC: -2.923, 95% CI: -5.483 to -0.363, p=0.026), while the difference
49 50	229	between MOGAD and RRMS was non-significant.
51 52	230	
53 54 55	231	
56 57 58 59 60	232	Associations between OC MTR and OCT pRNFL

1	
2 3	~
4	4
5 6	2
7 o	-
9	-
10 11	2
12	
13 14	_
15	2
16 17	2
18 10	
20	2
21 22	2
23	_
24 25	4
26 27	2
27 28	,
29 30	4
31	2
32 33	-
34	-
35 36	2
37 29	2
30 39	_
40 41	2
42	2
43 44	
45	2
46 47	2
48 ⊿o	_
50	4
51 52	2
53	,
54 55	4
56	2
57 58	
59 60	
00	

233	Both ON+ and ON- IDD patients had lower pRNFL thicknesses than HCs (ON+ IDD vs HCs:
234	74.03 μm \pm 20.75 vs 102.07 μm \pm 9.95, RC: -28.584, 95%CI: -38.257 to -18.910, p<0.001;
235	<i>ON- IDD vs HCs</i> : 92.76 μ m ± 8.47 vs 102.07 μ m ± 9.95, RC: -11.411, 95%CI: -21.592 to -
236	1.231, p=0.029). We also found that ON+ IDD had lower pRNFL thickness compared with
237	ON- IDD (<i>average pRNFL</i> : 74.03 μ m ± 20.75 vs 92.75 μ m ± 8.47, RC-17.7172, 95%CI: -
238	25.248 to -9.096, p<0.001).
239	
240	For the overall IDD group, lower chiasmal MTR was associated with lower pRNFL thickness
241	measured both as (a) average pRNLF between the two eyes (RC: 0.881, 95%CI: 0.001 to
242	1.760, p=0.050) (Figure 6) and (b) thinner pRNLF (RC: 1.129, 95%CI: 0.199 to 2.059,
243	p=0.018).
244	
245	
246	Anne intime between OC MTD and OCT meaning CCIDI
246	Associations between UC WIIK and UCI macular GCIPL
246 247	ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs
246 247 248	Associations between OC MTR and OCT macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33
246247248249	Associations between OC MTR and OCT macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst
 246 247 248 249 250 	Associations between OC MTR and OCT macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs.
 246 247 248 249 250 251 	Associations between OC MTR and OCT macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs.
 246 247 248 249 250 251 252 	Associations between OC MTR and OC T macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs. No significant associations were detected between GCIPL and OC MTR for the whole IDD
 246 247 248 249 250 251 252 253 	Associations between OC MTR and OC T macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs. No significant associations were detected between GCIPL and OC MTR for the whole IDD group (RC: 0.554, 95%CI: -0.371 to 1.480, p=0.235) nor within each disease group.
 246 247 248 249 250 251 252 253 254 	Associations between OC MTR and OCT macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs. No significant associations were detected between GCIPL and OC MTR for the whole IDD group (RC: 0.554, 95%CI: -0.371 to 1.480, p=0.235) nor within each disease group.
 246 247 248 249 250 251 252 253 254 255 	Associations between OC MTR and OCT macular GCIPL ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs. No significant associations were detected between GCIPL and OC MTR for the whole IDD group (RC: 0.554, 95%CI: -0.371 to 1.480, p=0.235) nor within each disease group.
 246 247 248 249 250 251 252 253 254 255 256 	Associations between OC MTR and OCT macular GCIPL ON+IDD patients had lower macular GCIPL thicknesses than HCs (71.33 µm ± 15.77 vs 94.18 µm ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 µm ± 15.77 vs 90.82 µm ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs. No significant associations were detected between GCIPL and OC MTR for the whole IDD group (RC: 0.554, 95%CI: -0.371 to 1.480, p=0.235) nor within each disease group. Associations between OC MTR and visual acuity
 246 247 248 249 250 251 252 253 254 255 256 	Associations between OC MTR and OCT macular GCIPE ON+ IDD patients had lower macular GCIPL thicknesses than HCs (71.33 μ m ± 15.77 vs 94.18 μ m ± 11.12, RC: -22.873, 95%CI: -32.769 to -12.977, p<0.001) and ON- IDD (71.33 μ m ± 15.77 vs 90.82 μ m ± 4.67, RC: -19.027, 95%CI: -27.354 to -10.699, p<0.001); whilst we observed no differences between ON- IDD and HCs. No significant associations were detected between GCIPL and OC MTR for the whole IDD group (RC: 0.554, 95%CI: -0.371 to 1.480, p=0.235) nor within each disease group.

2	
3	25
4	
5	25
7	
, 8	25
9	
10	26
11	
12	26
13	
14 15	26
16	
17	26
18	-0
19	26
20	20
21	26
22	20
23	26
24 25	20
25	26
27	20
28	26
29	20
30	20
31	20
32 22	27
34	21
35	
36	27
37	
38	27
39	_,
40 41	27
41	_,
43	27
44	
45	27
46	_,
47	27
48 70	_,
50	27
51	_,
52	27
53	- /
54	27
55	- '
50 57	28
57	20
59	$\gamma \varphi$
60	20

257	LogMAR acuity was worse in ON+ IDD than in ON- IDD patients (0.32 ± 0.47 vs $0.13 \pm$
258	0.19; RC: -0.207, 95%CI: -0.352 to -0.062, p=0.005).
259	
260	For the whole IDD group, lower chiasmal MTR was associated with lower logMAR acuity
261	measured both as (a) average visual acuity between the two eyes (RC: -0.026, 95%CI: -0.041
262	to -0.011, p=0.001) (Figure 7) and (b) visual acuity of the more affected eye (RC: -0.037,
263	95%CI: -0.059 to -0.015, p=0.001).
264	
265	Finally, we found that in AQP4+NMOSD there was a strong association between the visual
266	acuity and MTR measures (RC: -0.036, 95%CI: -0.068 to -0.003, p=0.032), whilst for
267	MOGAD the associations were not significant (RC: -0.003, 95%CI: -0.028 to 0.021,
268	p=0.795).
269	
270	
270 271	Discussion
270 271 272	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without
270271272273	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON-
 270 271 272 273 274 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR.
 270 271 272 273 274 275 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR. In our study population, chiasmal involvement was more pronounced in patients with
 270 271 272 273 274 275 276 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR. In our study population, chiasmal involvement was more pronounced in patients with AQP4+NMOSD and MOGAD than in those with MS. Additionally, lower OC MTR values
 270 271 272 273 274 275 276 277 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR. In our study population, chiasmal involvement was more pronounced in patients with AQP4+NMOSD and MOGAD than in those with MS. Additionally, lower OC MTR values correlated with reduced pRNFL thickness and poorer visual outcomes.
 270 271 272 273 274 275 276 277 278 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR. In our study population, chiasmal involvement was more pronounced in patients with AQP4+NMOSD and MOGAD than in those with MS. Additionally, lower OC MTR values correlated with reduced pRNFL thickness and poorer visual outcomes.
 270 271 272 273 274 275 276 277 278 279 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR. In our study population, chiasmal involvement was more pronounced in patients with AQP4+NMOSD and MOGAD than in those with MS. Additionally, lower OC MTR values correlated with reduced pRNFL thickness and poorer visual outcomes. The strong association between the number of previous ON episodes and chiasmal MTR
 270 271 272 273 274 275 276 277 278 279 280 	Discussion This study provides insights into the mechanisms of OC damage in IDD with and without previous ON. ON+ IDD patients showed lower MTR values compared with HCs and ON- IDD patients, with a higher number of previous ON episodes associated with lower OC MTR. In our study population, chiasmal involvement was more pronounced in patients with AQP4+NMOSD and MOGAD than in those with MS. Additionally, lower OC MTR values correlated with reduced pRNFL thickness and poorer visual outcomes. The strong association between the number of previous ON episodes and chiasmal MTR aligns with previous research on post-acute changes following inflammatory optic nerve

Page 17 of 36

1

Multiple Sclerosis Journal

2	
3 4	2
5 6	2
7 8	2
9 10 11	2
12 13	2
14 15	2
16 17 19	2
18 19 20	2
21 22	2
23 24	2
25 26 27	2
27 28 29	2
30 31	2
32 33	2
34 35 36	2
37 38	2
39 40	2
41 42	2
43 44 45	3
46 47	3
48 49	3
50 51 52	3
53 54	3
55 56	3
57 58	3
59 60	2

282	which can result from both demyelination and inflammatory-related changes during the acute
283	phase of ON (13,27), whilst correlate with demyelination, remyelination, and neuroaxonal
284	loss in the long-term (28–30), representing a useful marker of chronic damage and repair (13).
285	In our study, we observed that OC MTR values were lower in ON+ IDD patients, compared
286	with HCs. We also noted weak evidence for lower OC MTR in ON+ IDD compared with ON-
287	patients. A previous study by Juenger et al. (19) investigated the role of chiasmal measures as
288	an imaging marker for anterior optic pathway damage. The authors demonstrated significant
289	group differences between NMOSD patients and HCs, and strong associations of OC
290	measures with structural and clinical factors, indicating that OC dimensions could
291	discriminate patients with ON from controls. Our results align with those previously reported
292	confirming that OC metrics are strongly associated with the number of previous ON episodes.
293	The process of visual recovery following an inflammatory episode may involve several
294	factors, including the resolution of acute inflammatory processes, the accumulation of new
295	sodium channels in demyelinated axons, and the plasticity of central synaptic networks. These
296	intricate mechanisms may interact with the microstructural integrity of the OC, as reflected by
297	MTR values, and play a role in determining the extent of visual restoration or impairment in
298	individuals with IDD and a history of ON. (16). However, these processes may be incomplete
299	and the occurrence of new acute ON episodes could progressively exhaust the mechanisms
300	responsible for recovery. Therefore, we hypothesise that the greater reduction in OC MTR
301	following multiple ON episodes could result from two related factors: direct axonal
302	transection and degeneration caused by multiple inflammatory attacks and/or a progressive
303	impairment of the post-inflammatory recovery processes due to the accumulation of damage
304	associated with relapsing ON. This hypothesis gains support from the correlation we observed
305	between OC MTR values and pRNFL thickness, a well-recognised marker of neuroaxonal
306	loss in the anterior visual pathways. pRNFL has been extensively used to investigate the optic

nerve in IDD, showing robust associations with brain atrophy, neurophysiological measures, and clinical outcomes (31-33). The association we observed between OC MTR values and pRNFL in our study underscores the role of MTR as a measure of chronic biological damage in the anterior optic pathway. Interestingly, we did not observe significant relationships between GCIPL and chiasmal metrics. However, GCIPL data were available for only 49 out of 80 patients. It is likely, therefore, that this analysis was underpowered to be able to establish significance, possibly as a consequence of high standard errors even though the association was in a physiologically plausible direction (RC 0.554, 95%CI: -0.371 to 1.480, p=0.235).

Our study also revealed an association between lower OC MTR values and poorer visual acuity. The OC is recognised as a region with high axonal density, and its damage has been linked to a decline in visual function (19). Our results suggest that microstructural damage occurring in both the optic nerve and OC following ON indicates a broader pattern of microstructural damage. This damage appears to contribute to a reduction in overall visual function, in line with previous studies (9,19). The linear association we observed between OC MTR measures and visual acuity further emphasises the role of chiasmal MTR as a useful measure for assessing both biological and clinical damage in the anterior visual pathway. Of note, we observed that in MOGAD there was no association between visual acuity and MTR measures. This finding is consistent with the observation that, despite significant microstructural damage of the anterior visual pathway, MOGAD patients exhibit better functional recovery compared with AQP4+NMOSD (7,8). Further studies will be necessary to better understand the mechanisms underlying this function-structure discordance.

Page 19 of 36

1

Multiple Sclerosis Journal

2	
3	221
1	331
4	
5	332
6	552
7	
8	333
0	
9	
10	334
11	
12	225
13	335
1.4	
14	226
15	330
16	
17	337
10	557
18	
19	338
20	550
21	
21	339
22	557
23	
24	340
25	
25	
20	341
27	
28	2 4 2
29	342
20	
50	212
31	343
32	
33	3//
34	544
25	
35	345
36	510
37	
38	346
20	
39	
40	347
41	
42	2.40
42	348
43	
44	240
45	549
46	
17	350
47	550
48	
49	351
50	551
51	
51	352
52	
53	a = -
54	353
55	
55	254
50	554
57	
58	255
59	222

331	The involvement of the OC in ON lesions has been well-documented in cases of
332	AQP4+NMOSD, but it is less common in MS and MOGAD (2,15). Despite these differences,
333	in our population we observed that ON+ AQP4+NMOSD and MOGAD had lower MTR
334	values when compared to HCs. In contrast, ON+ RRMS showed MTR values that were non-
335	significantly lower than those of the control group. These findings align with recent research
336	which challenges the conventional assumption that the frequency of OC involvement in
337	AQP4+NMOSD and MOGAD significantly differs (15). While the percentage of OC
338	involvement in these two antibody-mediated diseases is not dissimilar (20% in
339	AQP4+NMOSD vs. 16% in MOGAD), Tajfirouz et al. noted that the characteristics of OC
340	damage seem to vary between these conditions (15). Specifically, the authors proposed that
341	OC involvement in MOGAD could be attributed to an "extension" of long anterior lesions,
342	whereas in AQP4+NMOSD the damage may be more directly associated with the posterior
343	localisation of the lesion (15). Interestingly, in both disorders, the damage appears to be
344	secondary to an inflammatory process within the optic nerve. Our findings support this
345	hypothesis, by revealing that the higher number of ON episodes recorded in MOGAD and
346	AQP4+NMOSD patients (with a mean of 2.93 and 1.13, respectively) resulted in more severe
347	damage of the OC, as indicated by lower MTR values. However, we also observed that in
348	MOGAD and AQP4+NMOSD patients, OC MTR values remained lower than those of HCs,
349	even after accounting for the number of previous ON episodes. This observation might
350	suggest (a) the existence of damage independent from relapse which could subtly contribute
351	to the decline in microstructural integrity within the OC and/or (b) the occurrence of
352	subclinical ON. This phenomenon is notably pronounced in AQP4+NMOSD, who reported
353	lower MTR values than those of RRMS patients. Additionally, in this group, ON- patients
354	showed lower MTR values compared with HCs. Jünger et al. have previously reported a
355	reduction in chiasmal dimensions in ON- NMOSD, suggesting that microstructural changes

could occur in the optic pathway of NMOSD patients independent of previous ON (19). Our
results corroborate this hypothesis, underscoring the complex relationship between ON, OC
involvement, and the distinct characteristics of IDD subtypes, and emphasising the
importance of considering these factors when assessing the impact of these diseases on visual
function and structural integrity.

Our study has limitations: first, it adopts a cross-sectional design, and we acknowledge that a longitudinal, prospective cohort approach would better assess damage and repair processes during the post-acute phase. Secondly, the absence of images acquired for the evaluation of optic nerve lesions during the acute phase limited our ability to assess the influence of these lesions on chronic optic nerve damage. However, we addressed this second limitation by building robust statistical models and creating associations based on the available data. including OCT and visual data and volume of brain white matter lesions. Finally, we recognise that the OC is a small structure, as is the optic nerve, making investigation of the anterior visual pathway challenging. Nonetheless, compared with the optic nerve, the OC is less susceptible to motion artefact, less variable in morphology and possesses larger in dimensions, reinforcing its viability as a target for quantitative MRI. In addition, the fact that our results, demonstrate significant associations between previous optic neuritis and OC damage, along with strong associations between OCT and clinical data, support the proposition that this structure could play an important role as an accessible target for assessing the visual pathway in inflammatory diseases.

In conclusion, our findings suggest that OC damage in ON, as demonstrated by MTR, is
linked to the number of inflammatory ON episodes experienced by IDD patients, and reflects
pathological changes occurring in the anterior visual pathways within IDD. As optic nerve

1		
2 3 4	381	MRI remains challenging due to its small dimensions, mobility, and susceptibility to artifacts,
5 6	382	MTR OC imaging could provide additional information for evaluating the anterior visual
7 8 0	383	pathways in IDDs.
9 10 11		
11 12 13		
13 14 15		
15 16 17		
17 18 19		
20 21		
22 22 23		
23 24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

2	
3	
Δ	
5	
6	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
17	
40	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

Funding 384

385	The study has been supported by National Institute for Health Research (NIHR), Biomedical
386	Research Centre (BRC) initiative at University College London Hospitals (UCLH). ATT is
387	supported by recent grants from the MRC (MR/S026088/1) and RoseTrees Trust
388	(PGL21/10079).
389	
390	
391	Data Availability Statement
392	Data are available from Alessia Bianchi (a.bianchi@ucl.ac.uk) or Rosa Cortese
393	(<u>r.cortese@ucl.ac.uk</u>) with the permission of the co-authors. The data that support the findings
394	of this study are available from the corresponding author, AB, upon reasonable request.
395	
396	
397	Disclosure
398	Alessia Bianchi has received a research grant from the Italian Society of Neurology; she has
399	been awarded a MAGNIMS-ECTRIMS fellowship in 2023.
400	Ferran Prados received a Guarantors of Brain fellowship 2017-2020.
401	Wallace Brownlee has received speaker honoraria and/or acted as a consultant for Biogen,
402	Merck, Novartis, Roche, Sandoz, Sanofi and Viatris.
403	Frederik Barkhof is Steering committee or Data Safety Monitoring Board member for Biogen,
404	Merck, ATRI/ACTC and Prothena. He is consultant for Roche, Celltrion, Rewind
405	Therapeutics, Merck, IXICO, Jansen, Combinostics. He has research agreements with Merck,
100	
406	Biogen, GE Healthcare, Roche. Co-founder and shareholder of Queen Square Analytics L1D.
406	Biogen, GE Healthcare, Roche. Co-founder and shareholder of Queen Square Analytics LID.

Page 23 of 36

2 3	407	Ahme	ed Toosy has received speaker honoraria from Biomedia, Sereno Symposia International
4 5 6	408	Found	dation, Bayer and meeting expenses from Biogen Idec and Novartis. He serves on
7 8 9 10 11 12 13 14 15	409	editor	rial boards for Multiple Sclerosis Journal, Neurology and Frontiers in Neurology. He was
	410	the U	K PI for two clinical trials sponsored by MEDDAY pharmaceutical company (MD1003
	411	in op	tic neuropathy [MS-ON - NCT02220244] and progressive MS [MS-SPI2 -
	412	NCT	02936037]).
16 17 18	413		
18 19 20	414		
20 21 22 23 24 25	415	Ref	erences
	416	1.	Touma L, Muccilli A. Diagnosis and Management of Central Nervous System
26 27 28	417		Demyelinating Disorders. Neurol Clin. 2022;40(1):113-31.
28 29 30 31 32 33 34	418	2.	Toosy AT, Mason DF, Miller DH. Optic Neuritis. Lancet Neurol [Internet]. 2014 Jan 1
	419		[cited 2018 Dec 12];13(1):83–99. Available from:
	420		https://www.sciencedirect.com/science/article/pii/S147444221370259X?via%3Dihub
35 36 37	421	3.	Pisa M, Pansieri J, Yee S, Ruiz J, Leite IM, Palace J, et al. Anterior optic pathway
38 39	422		pathology in CNS demyelinating diseases. Brain. 2022.
40 41	423	4.	Chen JJ, Flanagan EP, Jitprapaikulsan J, Lòpez-Chiriboga A (Sebastian) S, Fryer JP,
42 43	424		Leavitt JA, et al. Myelin Oligodendrocyte Glycoprotein Antibody (MOG-IgG)-Positive
44 45 46	425		Optic Neuritis: Clinical Characteristics, Radiologic Clues and Outcome. Am J
47 48	426		Ophthalmol. 2018;195:8–15.
49 50	427	5.	Lin CW, Lin IH, Chen TC, Jou JR, Woung LC. Clinical course and treatment response
51 52 53	428		of neuromyelitis optica spectrum disease: An 8-year experience. Asia-Pacific J
54 55	429		Ophthalmol. 2019;8(3):206–10.
56 57	430	6.	Caron-Cantin M, Cestari DM, Fortin E. Clinical and radiologic approach to "typical"
58 59 60	431		versus antibody-related optic neuritis. Curr Opin Ophthalmol. 2019;30(6):412-7.

2			
3 4	432	7.	Sechi E, Cacciaguerra L, Chen JJ, Mariotto S, Fadda G, Dinoto A, et al. Myelin
5 6	433		Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of
7 8	434		Clinical and MRI Features, Diagnosis, and Management. Front Neurol. 2022;13(June).
9 10 11	435	8.	Banwell B, Bennett JL, Marignier R, Kim HJ, Brilot F, Flanagan EP, et al. Diagnosis
12 13	436		of myelin oligodendrocyte glycoprotein antibody-associated disease: International
14 15	437		MOGAD Panel proposed criteria. Lancet Neurol. 2023;22(3):268-82.
16 17 18	438	9.	Winter A, Chwalisz B. MRI Characteristics of NMO, MOG and MS Related Optic
19 20	439		Neuritis. Semin Ophthalmol [Internet]. 2020;35(7-8):333-42. Available from:
21 22	440		https://doi.org/10.1080/08820538.2020.1866027
23 24 25	441	10.	van der Weijden CWJ, García DV, Borra RJH, Thurner P, Meilof JF, van Laar PJ, et
25 26 27	442		al. Myelin quantification with MRI: A systematic review of accuracy and
28 29	443		reproducibility. Neuroimage. 2021;226(October 2020).
30 31	444	11.	Moccia M, Van De Pavert S, Eshaghi A, Haider L, Pichat J, Yiannakas M, et al.
32 33 34	445		Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Vol. 95,
35 36	446		Neurology. 2020. 2965–2976 p.
37 38	447	12.	Silbermann E, Wooliscroft L, Bourdette D. Using the Anterior Visual System to Assess
39 40 41	448		Neuroprotection and Remyelination in Multiple Sclerosis Trials [Internet]. Vol. 18,
42 43	449		Current Neurology and Neuroscience Reports. Springer US; 2017 [cited 2019 Mar 14].
44 45	450		p. 49. Available from: http://link.springer.com/10.1007/s11910-018-0858-y
46 47	451	13.	Nguyen MNL, Zhu C, Kolbe SC, Butzkueven H, White OB, Fielding J, et al. Early
48 49 50	452		predictors of visual and axonal outcomes after acute optic neuritis. Front Neurol.
51 52	453		2022;13(1).
53 54	454	14.	Cortese R, Carrasco FP, Tur C, Bianchi A, Brownlee W, De Angelis F, et al.
55 56 57	455		Differentiating Multiple Sclerosis From AQP4-Neuromyelitis Optica Spectrum
57 58 59 60	456		Disorder and MOG-Antibody Disease With Imaging. Neurology. 2022;100(3):e308-

457		23.
458	15.	Tajfirouz D, Padungkiatsagul T, Beres S, Moss HE, Pittock S, Flanagan E, et al. Optic
459		chiasm involvement in AQP-4 antibody-positive NMO and MOG antibody-associated
460		disorder. Mult Scler J. 2022;28(1):149–53.
461	16.	Hickman SJ, Toosy AT, Jones SJ, Altmann DR, Miszkiel KA, MacManus DG, et al.
462		Serial Magnetization Transfer Imaging in Acute optic neuritis. Brain.
463		2004;127(3):692–700.
464	17.	Tur C, Goodkin O, Altmann DR, Jenkins TM, Miszkiel K, Mirigliani A, et al.
465		Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis.
466		Brain. 2016;139(3):816–28.
467	18.	Puthenparampil M, Federle L, Poggiali D, Miante S, Signori A, Pilotto E, et al. Trans-
468		Synaptic Degeneration in the Optic Pathway. A Study in Clinically Isolated Syndrome
469		and Early Relapsing-Remitting Multiple Sclerosis With or Without Optic Neuritis.
470		PLoS One. 2017;12(8):e0183957.
471	19.	Juenger V, Cooper G, Chien C, Chikermane M, Oertel FC, Zimmermann H, et al.
472		Optic Chiasm Measurements May Be Useful Markers of Anterior Optic Pathway
473		Degeneration in Neuromyelitis Optica Spectrum Disorders. Eur Radiol. 2020;
474	20.	Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al.
475		Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet
476		Neurol [Internet]. 2018 Feb [cited 2018 Dec 12];17(2):162–73. Available from:
477		http://www.ncbi.nlm.nih.gov/pubmed/29275977
478	21.	Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al.
479		International consensus diagnostic criteria for neuromyelitis optica spectrum disorders
480		[Internet]. Vol. 85, Neurology. Wolters Kluwer Health, Inc. on behalf of the American
481		Academy of Neurology; 2015 [cited 2019 Jan 31]. p. 177-89. Available from:
	 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 	45745815.45946046116.46216.46317.46517.46617.46518.46618.46718.46819.47019.47119.47220.47320.47511.47420.47521.47821.480481

Multiple Sclerosis Journal

1

Page 26 of 36

2			
3 4	482		http://www.ncbi.nlm.nih.gov/pubmed/26092914
5 6	483	22.	Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel AK, Aktas O, Alexopoulos H, et al.
7 8	484		Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol.
9 10 11	485		2021;20(9):762–72.
12 13	486	23.	Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, et al.
14 15	487		Diagnosis and classification of optic neuritis. Lancet Neurol. 2022;21(12):1120-34.
16 17 19	488	24.	Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, et al. The OSCAR-IB
18 19 20	489		consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7(4):1-7.
21 22	490	25.	Williams RA. Ordinal Independent Variables. SAGE Res Methods Found. 2020;
23 24	491	26.	Pawlitzki M, Horbrügger M, Loewe K, Kaufmann J, Opfer R, Wagner M, et al. MS
25 26 27	492		optic neuritis-induced long-term structural changes within the visual pathway. Vol. 7,
28 29	493		Neurology(R) neuroimmunology & neuroinflammation. 2020.
30 31 32 33 34 35 36 37 38	494	27.	Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR. Magnetization transfer and
	495		multicomponent T2 relaxation measurements with histopathologic correlation in an
	496		experimental model of MS. J Magn Reson Imaging. 2000;11(6):586-95.
	497	28.	Zheng Y, Lee JC, Rudick R, Fisher E. Long-Term Magnetization Transfer Ratio
39 40	498		Evolution in Multiple Sclerosis White Matter Lesions. J Neuroimaging [Internet]. 2018
41 42 43	499		Mar 1 [cited 2019 Mar 14];28(2):191-8. Available from:
44 45	500		http://doi.wiley.com/10.1111/jon.12480
46 47	501	29.	Trip S, Schlottmann P, Jones S, Li W-Y, Garway-Heath D, Thompson A, et al. Optic
48 49 50	502		Nerve Magnetization Transfer Imaging and Measures of Axonal Loss and
50 51 52	503		Demyelination in Optic Neuritis. Mult Scler J [Internet]. 2007 Aug 27 [cited 2019 Feb
53 54	504		1];13(7):875–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17468442
55 56	505	30.	Klistorner A, Chaganti J, Garrick R, Moffat K, Yiannikas C. Magnetisation transfer
57 58 59 60	506		ratio in optic neuritis is associated with axonal loss, but not with demyelination.

Page 27 of 36

2 3	507		Neuroimage [Internet]. 2011;56(1):21–6. Available from:
4 5 6	508		http://dx.doi.org/10.1016/j.neuroimage.2011.02.041
0 7 8	509	31.	Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, et al. Optical
9 10	510		coherence tomography in multiple sclerosis: A systematic review and meta-analysis
11 12	511		Lancet Neurol $2010.9(9).921_32$
13 14	510	22	Martinez Lanizzing FH, Sanchada M, Tarmas Tarmas D, Alba Ashalat S, Llafin S
15 16	512	32.	Marunez-Lapiscina EH, Sepuiveda M, Torres-Torres K, Alba-Arbaiat S, Liuriu S,
17 18	513		Blanco Y, et al. Usefulness of optical coherence tomography to distinguish optic
19 20	514		neuritis associated with AQP4 or MOG in neuromyelitis optica spectrum disorders.
21 22	515		Ther Adv Neurol Disord. 2016;9(5):436–40.
23 24 25	516	33.	Cagol A, Fuertes NC, Stoessel M, Barakovic M, Schaedelin S, D'Souza M, et al.
25 26 27	517		Optical coherence tomography reflects clinically relevant gray matter damage in
28 29 30 31 32 33	518		patients with multiple sclerosis. J Neurol [Internet]. 2023;270(4):2139-48. Available
	519		from: https://doi.org/10.1007/s00415-022-11535-8
	520	34.	Petzold A, Balcer L, Calabresi PA, Costello F, Frohman T, Frohman E, et al. Retinal
35 36	521		layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet
37 38	522		Neurol. 2017;16(10):797-812.
39 40	523		
41 42	524		
43 44			
45 46			
47 48			
49 50			
51 52			
53 54			
55			
56 57			
58 59			
60			
			2

1 Table 1. Clinical characteristics of the population of study

Demographic	RRMS	AQP4+NMOSD	MOGAD	HCs	p-value
characteristics	(n = 28)	(n = 24)	(n = 28)	(n = 32)	
Gender, M / F	10 / 18	6 / 18 (25.0%)	9 / 19	10 / 22	p = 0.872 ^
(male %)	(35.7%)		(32.1%)	(31.3%)	
Age, years (mean ±	45.5 ± 11.8	49.9 ± 12.7	36.4 ± 17.1	35.2 ± 12.4	p = 0.002 *
SD)					
Age at disease onset,	34.6 ± 10.0	41.7 ± 13.7	31.0 ± 18.2	//	p = 0.032 *
years (mean ± SD)					
Disease duration,	10.9 ± 7.0	8.2 ± 7.7	5.5 ± 5.6	//	p = 0.014 *
months (mean ± SD)					
Volume of brain	9507.57 ±	2843.68 ±	10493.41 ±	//	p = 0.039 *
white matter lesions,	8823.45	4986.48	19640.88		
mm ³ (mean ± SD)					
ON provalance (%)	11 / 28	15 / 24 (62.5%)	22 / 28	//	p = 0.011 ^
On, prevalence (70)	(39.3%)	0	(78.6%)		
Bilateral ON,	1 / 11	6 / 15 (40.0%)	14 / 22	//	p = 0.011 ^
prevalence in	(9.1%)		(63.6%)		
patients with ON					
(%)					
Relapsing ON,	0 / 11	5 / 15 (33.3%)	14 / 22	//	p = 0.002 ^
prevalence in	(0.0%)		(63.6%)		
patients (%)					
ON number (mean ±	0.43 ± 0.57	1.13 ± 1.19	2.93 ± 2.98	//	p < 0.001 *
SD)					
Time from first ON,	89.6 ± 70.2	107.8 ± 87.4	73.8 ± 72.2	//	p = 0.456 *
months (mean ± SD)					

	Time from last ON,	68.6 ± 51.0	72.0 ± 68.2	29.8 ± 35.9	//	p = 0.047 *
	months (mean ± SD)					
2	Abbreviations: RRMS = rel	lapsing-remitting	g multiple sclerosis;	AQP4+NMOSD	= aquaporin 4-	-antibody
3	neuromyelitis optica spectr	um disorder; MC	DGAD = myelin olig	odendrocyte glyc	coprotein-antib	ody disease; HCs
1	= healthy controls					
5	* p-value using ANOVA (A	nalysis of Varian	nce) test to compare	the groups		
6	^ Chi-square test for indepe	endence to comp	are the groups			

Demographic	ON+ IDD	ON- IDD	HCs	p-value
characteristics	(n = 48)	(n = 32)	(n = 32)	
Gender, M / F (male %)	13 / 32 (40.6%)	12 / 48 (25.0%)	10 / 22 (31.3%)	$p = 0.336^{-2}$
Age, years (mean ± SD)	42.2 ± 16.0	45.7 ± 13.4	35.2 ± 12.4	p = 0.015 ⁻¹
Age at disease onset,	33.6 ± 15.9	38.3 ± 13.0	//	p = 0.074 ¹
years (mean ± SD)				
Disease duration, months	8.7 ± 7.3	7.5 ± 6.8	//	p = 0.448 ¹
(mean ± SD)	\sim			
Volume of brain white	6885.86 ±	7159.35 ±	//	p = 0.920 ⁻¹
matter lesions, mm ³	11710.45	7792.89		
(mean ± SD)				

8 Table 2. Clinical characteristics of the population of study

Abbreviations: ON+ IDD = patients with inflammatory demyelinating diseases and at least a previous optic

neuritis episode; ON- IDD = patients with inflammatory demyelinating diseases without history of previous

Lien

optic neuritis episode; HCs = healthy controls

12 ¹*p*-value using ANOVA (Analysis of Variance) test to compare the groups.

13 ²Chi-square test for independence to compare the group.

15 Table 3. Chiasmal MTR values in the different diseases according to the number of

16 previous optic neuritis (ON)

Subgroup	IDD (n =	RRMS	AQP4+NM	MOGAD	HCs
	81)	(n = 28)	OSD	(n = 28)	(n = 32)
			(n = 24)		
Subjects without	(n = 32)	(n = 17)	(n = 9)	(n = 6)	(n = 32)
ON	30.99 ± 4.76	32.90 ± 2.59	28.37 ± 7.27	29.49 ± 2.65	31.65 ± 4.93
Subjects with	(n = 48)	(n = 11)	(n = 15)	(n = 22)	//
previous ON	28.87 ± 4.58	29.60 ± 4.58	28.55 ± 4.18	28.73 ± 4.99	
Subjects with 1 ON	(n = 22)	(n = 10)	(n = 8)	(n = 4)	//
	29.80 ± 4.08	29.64 ± 4.83	30.25 ± 4.10	29.31 ± 2.57	
Subjects with 2 ON	(n = 10)	(n = 1)	(n = 3)	(n = 6)	//
	28.75 ± 2.39	29.19 ± 0.00	27.52 ± 4.23	29.29 ± 1.35	
Subjects with ≥ 3	(n = 16)	(n = 0)	(n = 4)	(n = 12)	//
ON	27.68 ± 6.02		25.93 ± 3.54	28.26 ± 6.67	

Abbreviations: IDD = inflammatory demyelinating diseases; RRMS = relapsing-remitting multiple sclerosis;

AQP4+NMOSD = aquaporin 4-antibody neuromyelitis optica spectrum disorder; MOGAD = myelin

19 oligodendrocyte glycoprotein-antibody disease; HCs = healthy controls

Figure 1. The Figure illustrates the processing pipeline for the magnetisation transfer ratio (MTR) optic pathway analysis. (A) Two MTR acquisitions (2 echo-times) were obtained for each eye and they were pre-processed to generate two MTon and two MToff images. From these two different echo time MT images, average MToff and average MTon images were created, which were subsequently pre-registered to the native T2w image. (B) Regions of interest (ROIs) were manually delineated slice-by-slice to cover the right and left section of the optic chiasm independently on each T2w acquisition. Afterwards, these ROIs were transposed onto the pre-registered MTon and MToff average images and manually adapted to delineate the same area on the preregistered MTon and MToff average. Subsequently, to correct for small nerve motion, the three ROIs' center-of-mass slice-wise were aligned to a common space (T2w and registered average MTon and MToff). (C) MTR values for both left and right optic hemichiasms were obtained from the registered images. For each patient, right and left MTR values were averaged to obtain a single averaged chiasmal MTR value that was then impute into the statistical analysis.

Figure 3. Association between magnetisation transfer ratio (MTR) values and number of

32 chiasm (OC) and number of previous optic neuritis (ON) episodes in inflammatory

33 demyelinating diseases (IDD).

Figure 5. Comparison of magnetisation transfer ratio (MTR) in the optic chiasm (OC) between relapsing-remitting multiple sclerosis (RRMS) patients (n=11), aquaporin 4antibody neuromyelitis optica spectrum disorder (AQP4+NMOSD) (n=15) and myelin oligodendrocyte glycoprotein-antibody disease (MOGAD) (n=22) with previous optic

Figure 7. Association between visual acuity (VA) and magnetisation transfer ratio
(MTR) values in the optic chiasm (OC). VA is reported as average visual acuity between
the two eyes. Adjusted predictions of visual acuity from chiasmal MTR values from the
linear regression model adjusted for age, sex, and MRI upgrade.

