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Entanglement of magnetically levitated massive Schrödinger cat states by induced dipole interaction
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Quantum entanglement provides a novel way to test short-distance quantum physics in a nonrelativistic
regime. We provide entanglement-based protocols to potentially test the magnetically induced dipole-dipole
interaction and the Casimir-Polder potential between the two nanocrystals kept in a Schrödinger cat state. Our
scheme is based on the Stern-Gerlach (SG) apparatus, where we can witness the entanglement mediated by these
interactions for the nanocrystal mass m ∼ 10−19 kg with a spatial superposition size of order 0.1 µm in a trap
relying on diamagnetic levitation. We show that it is possible to close the SG interferometer in position and
momentum with a modest gradient in the magnetic field.
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Quantum entanglement is a critical observable that demar-
cates the classical from the quantum world [1]. Entanglement
provides a quantum signature that cannot be mimicked by
any classical operation between two quantum systems. The
theorem local operation and classical communication (LOCC)
prohibits entanglement formation between two quantum sys-
tems using only classical interactions [2]. The standard model
(SM) interactions are known to be quantum, and quantum
entanglement-based protocols allow us to test this in a labora-
tory setup [3]. At short distances, but still in the infrared (IR)
regime, we can test virtual photon-induced interactions [4],
such as Coulomb, Casimir-Polder [5], and magnetically in-
duced dipole-dipole interactions [6].

Gravitationally mediated entanglement has been proposed
as a key protocol to test the quantum nature of gravity in
the laboratory [7–9]). The scheme relies on two masses,
each prepared in a spatial superposition and placed such
that they couple solely gravitationally. If gravity is a quan-
tum interaction, and a classical-valued field, then the two
masses will entangle [8,10–14]. This requires heavy masses,
10−14–10−15 kg, large spatial superposition, 10–100 µm, and
long coherence times, 1–2 s. One can also test the quantum
origin of the gravitational interaction between quantum matter
and light [15], which will enable us to understand the spin
nature of the gravitational interaction. These protocols are
commonly known as quantum gravity-induced entanglement
of masses (QGEM) [8]. One crucial ingredient for these ex-
periments is to understand the entanglement generation from
the known photon-induced electromagnetic interactions. The
photon-induced entanglement will create a background which
must be characterized before we could perform the QGEM
experiment [4,16].

The aim of this Letter will be to present a method of doing
this characterization with neutral nanocrystals in the presence
of an external magnetic field. The external magnetic field,
which is required for trapping the nanocrystal, and creating

the quantum superposition, will induce a magnetic dipole to
the nanocrystal. The two nanocrystals in a quantum superpo-
sition will entangle through their electromagnetic interactions.

The use of a Stern-Gerlach (SG) apparatus is one of the
most promising approaches toward atomic and larger-scale
particle interferometry [17–27]. Such interferometers have
been realized using atom chips [19], for both half-loop [18]
and full-loop [20] configurations achieving a superposition
size of 3.93 and 0.38 µm in 21.45 and 7 ms, respectively.
Based on this SG scheme there have been studies to create
even more ambitious superposition sizes [25–27]. In all cases,
the idea is to manipulate the nitrogen vacancy (NV) center of
a nanodiamond. The NV center provides a spin defect, which
interacts with an external magnetic field. One can then use
these spins to witness the entanglement through spin correla-
tions [8,28].

One of the key challenges is to understand the numer-
ous sources of decoherence and noise [4,8,29–35]. They
arise from residual gas collisions and environmental photons,
which can be attenuated by vacuum and low tempera-
tures [36,37]. In addition, the Humpty-Dumpty effect [38],
internal cooling of the nanodiamond to improve the spin
coherence time [39–42], as well as to tackle the Majorana
spin flip, is under development [24]. There are also a series
of gravitational channels for dephasing [35,43]; the emission
of gravitons is negligible [44], gravity gradient noise (GGN)
can be mitigated with an exclusion zone [35], and relative
acceleration can be mitigated by improving the vacuum and
isolating the experiment.

In this Letter we propose a method for understating two
particular Electro-Magnetic (EM)-induced potentials which
will feature in future large mass entanglement experiments.
These will form an important consideration for future de-
vices even when the monopole contribution is neutralized,
as is experimentally feasible [45]. The two potentials are the
Casimir-Polder (CP) potential and the induced dipole-dipole
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(DD) potential due to the presence of an external magnetic
field. We will provide a superposition scheme in a levitating
setup to witness the entanglements due to these potentials. We
will show that with modest magnetic field gradients in the SG
setup, we can measure the entanglement witness for both CP
and DD potentials for a m ∼ 10−19 kg neutral nanodiamond
and a 0.1 µm spatial superposition.

A diamagnetic material in a magnetic trapping potential
will evolve according to the Hamiltonian

Ĥ = p̂2

2m
+ h̄DŜz + gs

eh̄

2me
Ŝ · B + mgŷ − χρm

2μ0
B2, (1)

where p̂ is the momentum operator and m is the mass of
the nanodiamond. The second term represents the zero-field

splitting of the NV center with D = (2π ) × 2.8 GHz, h̄ is the
reduced Planck constant, and Ŝz is the NV axis aligned spin
component operator. The third term represents the interaction
energy of the NV electron spin magnetic moment with the
magnetic field B. The spin magnetic moment operator μ̂ =
−gsμBŜ, where gs ≈ 2 is the Landé g factor, μB = eh̄/2me is
the Bohr magneton, and Ŝ is the NV spin operator. The fourth
term is the gravitational potential energy, g ≈ 9.8 m/s2 is the
gravitational acceleration, and ẑ is the position operator along
the direction of gravity (z axis). The final term represents the
magnetic energy of a diamagnetic material in a magnetic field,
χρ = −6.2 × 10−9 m3/kg is the mass susceptibility, and μ0 is
the vacuum permeability.

For our scheme, we will make use of a trap profile BT given
by [46]
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⎡
⎢⎣3a4

√
35
π

x2y

8y3
0

+
3a4

√
35
π

y(x2 − y2)

16y3
0

−
a3

√
7

6π
x2

y2
0

+
a2

√
15
π

y

4y0
+

a3

√
7

6π
(−x2 − y2 + 4z2)

2y2
0

⎤
⎥⎦x̂

−

⎡
⎢⎣−

3a4

√
35
π

xy2

8y3
0

+
3a4

√
35
π

x(x2 − y2)

16y3
0

−
a3

√
7

6π
xy

y2
0

+
a2

√
15
π

x

4y0

⎤
⎥⎦ŷ −
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where y0 = 75 µm is the distance from the center of the trap
to the pole pieces which help generate the trap and a2 =
−1.3 T, a3 = 0.0183 T, and a4 = 0.72 T determine the mag-
netic field strength. We will take the particle at time t = 0 to
be at rest in the trapping potential, with an initial spin state

1√
2
(|+1〉 + |−1〉). The cooling of the zero point motion is re-

quired to avoid decoherence due to blackbody radiation. This
also helps ensure the position and the momentum overlaps are
significant. Furthermore, as the particles are coherent states
undergoing a series of approximately Gaussian evolutions,
with sufficiently precise timings we can ensure a good final
overlap is achieved. This zero point motion will also affect the
contrast of the interference, known as the Humpty-Dumpty
problem [38]. However, the contrast can be made large if
the overlap between the position and the momentum of the
two trajectories is sufficient, otherwise more repetition in the
experimental run will be needed.

The trapping potential is given by U = (χρmB2/2μ0) +
mgy, since χ < 0, the particle can be trapped at a frequency
ωζ =

√
−(χ/2ρμ0)(∂2B2/∂ζ 2), where ζ = x, y, z.

A linear magnetic field �BP is then pulsed on for a short time
relative to the total interferometry time (tp � T ). This creates
a momentum difference correlated with the internal spin state
of the particle. The particle then evolves in the weakly trap-
ping potential for some time tT before the large gradient linear
magnetic field is again turned on for a further time tP. At this
point, the particle should be returned to its initial position at
time 2tP + tT ≡ T , with the internal spin state now in the form

1√
2
(eiφ+|+1〉 + e−φ−|−1〉) where the phases φ± are a result of

the interactions with external sources including here, the other
interferometer.

To create (and close) the superposition we apply a pulsed
magnetic field with the profile

Bp = η[y(t = 0) − y]ŷ + ηzẑ, (3)

where η gives the magnetic field gradient and y(t = 0) is the
initial y position of the particle. We wish to start high in
the potential energy curve in the z direction to apply a large
momentum difference between the two spin states. With this
definition of the pulse field, it makes a minimal disruption to
the trapping field, being of zero magnitude (nonzero gradient)
at the particle’s location [x = 0, y ≈ y(t = 0), and z ≈ 0].

We control the average magnitude of the induced dipole
interaction by initializing the particle in the y direction in a
region of large magnetic field. The diamond will then oscillate
in the y direction according to the trapping frequency, ωy ∼
103 Hz. This trapping frequency is much faster than that in the
splitting (z) direction in which the particle is weakly confined
(here, ωz ∼ 102 Hz). The resulting dual oscillation is seen in
Fig. 1(b). See [47] for more information.

To ensure the spatial wave function completely matches
at time t = T , ωy must be an integer multiple of ωz. It is
also necessary that each pulse of the magnetic field matches
in both magnitude and pulse time, with deviations leading
to reduced contrast in the form of decoherence in the final
spin states.

The pulse time tp is fixed by the magnetic field gradient η

to maximize the induced momentum difference between the
two masses. This requires tp/4 = π/(2ω), a quarter of the os-
cillation period, where the frequency is the trapping frequency
of the linear magnetic field. Thus ω = √

k/m, where k is the
spring constant determined by the effective potential of the
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FIG. 1. (a) Schematic representation of the arrangement of the two interferometers, offset by a distance d in the x direction to enable the
generation of entanglement. (b) Shows the space-time trajectory for a single interferometer with the sz = +1 state initially oscillating in the
positive z direction. (c) The same trajectory in the x-y plane showing the interferometer separation distance d = 20 µm. (d) Also shows the same
trajectory in the z-y plane and the trapping magnetic field. Parameters used are m = 3.8 × 10−19 kg, tp ≈ 160 µs, and y(t = 0) = −1.11 µm.

crystal, U±(y) = −(χρm/2μ0)η2y2, giving

tp = π

2η

√
−μ0

2χρ

, (4)

ensuring that tp � T will simplify the motion as the particle
can be treated as receiving a momentum kick from the pulsed
magnetic field while oscillating freely in the trapping poten-
tial. We here use tp ≈ 160 µs � T ≈ 0.08 s which requires
η = 105 T m−1. More modest magnetic field gradients can
also be employed at the cost of a longer pulse time. The ramp
sequence used to switch the field on and off with sufficient
precision will have to be designed to ensure a good final
overlap is achieved.

We can estimate the required precision in the switching
times by the zero point motion, which is given by δx ∼√

h̄
mω

∼ 10−9 m. Note this is significantly smaller than the
interferometer separation and superposition size, so it has
a negligible effect on the interaction strength. Given the
trapping frequency ωz ∼ 102 Hz and the superposition size
we propose is �x ∼ 10−5 m, we require �xωδt

2δx � 1, giving
δt � 10−6 s.

The results presented are numerical simulations of the
classical equations of motion derived from Eq. (1). The mag-
netic profile used was B = BT + Bp(t ), where BT is given by
Eq. (2) and Bp(t ) = 0 any time the linear gradient pulse is
switched off, otherwise it is given by Eq. (3). Thus, the pulsed
magnetic field was taken to be switched on and off instantly.

As shown in Fig. 1(d), due to the downward shift of the
rest position of the mass in the background magnetic field
due to the downward pull of gravity, the zero-field region of
the magnetic field can be avoided by simply initializing the
mass away from it. This serves the dual purpose of generating
the induced diamagnetic field in the particle and naturally
avoiding Majorana spin flips.

Once we have created one superposition in a trapping
potential given by Eq. (2), we can imagine bringing two
such trapping potentials, hence two interferometers, close to
each other at a distance d shown in Fig. 1(a). This gives
the parallel setup of the original QGEM proposal, studied in
Refs. [3,32,48].

If two such interferometers are placed near one another,
separated in the x direction by a distance d with the direction
of the spatial splitting parallel as shown in Fig. 1(a), we expect
the joint state to evolve to

|�〉 = 1

2
(|+1,+1〉 + |−1,−1〉)

+ ei�φ

2
(|+1,−1〉 + |−1,+1〉), (5)

where �φ = φ+− − φ++ and φi j is the phase due to the inter-
action between the i and j arms of the interferometer. We refer
to this phase difference �φ as the entanglement phase, which
is actually the summation of all particle-particle interactions,
considered separately in the following.
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FIG. 2. Entanglement phase and witness value comparisons between different signal sources (a) with �φDD > �φCP for larger separation
distances, and as a function of the total decoherent  (b) showing smaller separation distances yielding more negative results. Here,
m = 3.8 × 10−19 kg, T ≈ 0.077 s, and tp ≈ 160 µs.

The use of the Stern-Gerlach effect in generating the su-
perposition leads to the spatially dependent entangling phase
being written onto the internal spin degrees of freedom [22].
Therefore, standard NV-center spin readout methods are used
to characterize the entanglement.

We are able to experimentally probe various particle-
particle interactions mediated by photons by witnessing the
entanglement phase. These include Casimir-Polder (CP), and
induced dipole-dipole (DD), provided the crystals are neu-
trally charged [45]. Depending on the chosen experimental
parameters, it is likely that at least one of these interactions
will be negligible, and indeed, we will consider a situation
where only the DD interaction is significant, with the CP
interaction serving as the primary background. The potentials
for each interaction are

UCP(d ) = − 23h̄c

4π

ε − 1

ε + 2

(
3m

4πρ

)2

d7
, (6)

UDD(d ) = 2χ2
ρ m2| �B(x)|2
4πμ0d3

, (7)

where m, ρ, χρ , and ε are the particle’s mass, density,
and magnetic mass susceptibility, respectively, and d is the
center-of-mass distance between the particles. We consider
the magnetic field to be approximately constant across the
particles. These interactions i will each give rise to an entan-
glement phase given by

�φi = 1

h̄

∫ T

0
dt Ui[d1(t )] − Ui[d2(t )], (8)

where d1(t ) [d2(t )] is the furthest (closest) separation distance
between the two superposed spatial states.

The entanglement can then be evidenced by measuring an
entanglement witness [35], such as

Wi = 1 − (
2e− 1

2 (n+d ) sin (�φi ) + 1
2

(
e−2n−d + 1

))
, (9)

where d and n are the damping and noise decoherence,
respectively. Note that as defined here, this decoherence is
defined as the decoherence rate multiplied by interferom-
eter time. We plot the witness WDD with regard to total
decoherence and damping:  = d + n [see Fig. 2(b)]. En-
tanglement is seen when W < 0 [28]. Figure 2(a) shows how

the entanglement phase from each particle-particle differs
with regard to the separation between the two matter-wave
interferometers for both the external magnetic field-induced
dipole-dipole entanglement and the CP-induced entangle-
ment. We can see that the entanglement witness due to the
magnetic dipole-dipole interaction dominates, as expected, at
distances d > 6 µm [see Fig. 2(b)]. Below this CP-induced
entanglement dominates, due to the differing interaction
strength scaling with distance d . In Fig. 2(b), we have taken
the range of decoherence rates and shown that the dominant
entanglement is due to the induced magnetic dipole-dipole
interaction. Here, we have taken the mass to be similar in
both the interferometers, m = 3.8 × 10−19 kg, and the largest
superposition we are generating around ∼1.1 µm.

We could further modify induced dipole strength, particle
charge, mass, and interferometer separation to select optimal
regions in which only one interaction dominates. This allows
the exploration of the Casimir, dipole, or other interactions
independently of one another given their differing dependence
on d . To gain more precise information about the interactions
we need to modify the interaction strength in a controlled
fashion. This could involve applying a constant bias magnetic
field which would have a negligent effect on the motion, but
modify the induced dipole strength, and alternatively slight
changes in trap strength, particle mass, or interferometer sep-
aration. Each of these will present their own unique challenges
in practice.

We should also mention that the time duration of coherence
for the NV spin is one of the limiting factors, but the spin co-
herence times are perpetually increasing (approaching 1s [39],
and even 30s [40]), but adapting to our scenario remains an
open challenge [49]. We will also have to ensure the external
temperature and pressure is below 1 K and O(10−15) Pa.
We have assumed that the NV spin is not wobbling due to
external torque, but in reality, the NV spin will precess, and
future analysis has to take this into account [50]. The nan-
odiamond can also wobble in the presence of the external
magnetic field [51]. However, this can be suppressed before
being released from the trap by using anisotropically shaped
nanoparticles, which can be aligned with any given direction
in space by using linearly polarized lasers or electric [51]
or magnetic fields [52]. In addition, there will be vibrational
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excitations from the breathing mode of the nanodiamond
which will also need to be analyzed for this experiment. The
phonon vibration can be suppressed for any state manipulation
that does not excite the phonons in resonance. It has already
been shown that the internal degrees of freedom (phonons) do
not pose a problem [53].

To conclude, we have characterized an entanglement for
any matter-wave interferometers which relies on creating
the macroscopic quantum superposition with the help of a
neutral diamagnetic nano-object in the presence of an ex-
ternal magnetic field. We have shown an explicit scheme to
create a small-scale spatial superposition to test the known
electromagnetic-induced entanglements; the dominant effect
arises from external magnetic field-induced dipole-dipole en-
tanglement where the external magnetic field is O(1) T, with
a separation of O(10) µm and a mass of 10−19 kg.

Figures 2(a) and 2(b) show the entanglement is generated
via the external magnetic field induced in the nanodiamond,

which is essential to create the trapping potential and the
superposition. The witness depends on the total decoher-
ence rate and the separation distance d . Such a system
also allows the characterization of the background effects
in gravitational mediated entanglement experiments. Indeed,
we have shown how optimizing the distance and trajecto-
ries can have a profound effect on the various entangling
interactions.
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