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Abstract 

Objectives 

Utility scores associated with preference based health-related quality of life instruments such as 

the EQ-5D-3L are reported as point estimates. In this study we develop methods for capturing the 

uncertainty associated with the valuation study of the UK EQ-5D-3L that arises from the 

variability inherent in the underlying data, which is tacitly ignored by point estimates. We derive 

a new tariff which properly accounts for this and assigns a specific closed-form distribution to the 

utility of each of the 243 health states of the EQ-5D-3L. 

Methods 

Using the UK EQ-5D-3L valuation study we use a Bayesian approach to obtain the posterior 

distributions of the derived utility scores.  We construct a hierarchical model which accounts for 

model-misspecification and the responses of the survey participants to obtain MCMC samples 

from the posteriors. The posterior distributions are approximated by mixtures of Normal 

distributions under the Kullback–Leibler (KL) divergence as the criterion for the assessment of the 

approximation. We consider the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to 

estimate the parameters of the mixture distributions.  

Results 

We derive an MCMC sample of total size 4,000×243. No evidence of non-convergence is found. 

Our model is robust to changes in priors and starting values. The posterior utility distributions of 

the EQ-5D-3L states are summarised as three-component mixtures of Normal distributions and the 

corresponding KL divergence values are low. 
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Conclusions 

Our method accounts for layers of uncertainty in valuation studies which is otherwise ignored. Our 

techniques can be applied to other instruments and countries’ populations.  

Keywords 

Health state utility, uncertainty quantification, Bayesian methods, mixture of Normal distributions, 

economic evaluation. 
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Highlights 

• Guidelines for health technology assessments typically require that uncertainty be 

accounted for in economic evaluations, but the parameter uncertainty of the regression 

model used in the valuation study of the health instrument is often tacitly ignored.  

• We consider the UK valuation study of the EQ-5D-3L and construct a Bayesian model 

which accounts for layers of uncertainty which would otherwise be disregarded, and we 

derive closed-form utility distributions. 

• The derived tariff can be used by researchers in economic evaluations, as it allows analysts 

to directly sample a utility value from its corresponding distribution, which reflects the 

associated uncertainty of the utility score.  
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Introduction 

Utility scores derived from preference based health related quality of life (HRQoL) instruments 

are typically used to represent the value associated with health states in health economic 

evaluations. HQRL can be measured by health state instruments, such as the popular generic 

instrument EQ-5D-3L 1, which measures health related quality of life for 5 dimensions (mobility, 

self-care, usual activities, pain/discomfort, anxiety/depression), where each dimension is measured 

in terms of severity, with three levels. Specifically, each feasible combination of answers given by 

an individual to an instrument’s questions corresponds to a certain health state, which is perceived 

to have a utility value reflecting the individual’s HRQoL.  

HRQoL instruments typically describe a large number of unique health states, based on the number 

of domains and levels of severity measured. The EQ-5D-3L has 35=243 unique health states , a 

combination of the three response levels of the five dimensions of the instrument, while the five-

level version, the EQ-5D-5L 2  defines 55=3,125 health states. Health states utility values are then 

estimated using techniques including Time-Trade Off (TTO), Standard Gamble (SG) or Discrete 

Choice Experiments (DCE). In a typical valuation study 3 a sample of the general population is 

asked to perform a valuation task where a subset of the possible health states is directly assessed. 

For example, in the UK valuation study of the EQ-5D-3L 4 2,997 respondents valued only 42 of 

243 states. This gives a sample of directly valued states. Using these directly valued states, 

estimates of the values of states not directly valued sample are generated using frequentist 

regression techniques, generating a tariff of all states which is then presented as corresponding 

point estimates. Valuation studies using these methods have been conducted around the world in 

order to derive tariffs of utility scores corresponding to all attainable states of a health instrument, 

such as the EQ-5D-3L 4. These tariffs are subsequently used in economic evaluations in order to 
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estimate quality-adjusted life-years (QALYs), which are a compound measure of HRQoL and 

quantity of life lived. 

These point estimates of mean health state utilities, although helpful to obtain, they do not contain 

information about the within-state variability; we believe that the information provided by a point 

estimate is not as useful as the description of a full probability distribution would be. Furthermore, 

while a point estimate can in general be considered more useful in cases when the data come from 

a symmetrical distribution such as the Normal distribution, in our case there are signs of skewness 

and sometimes of multimodality in directly valued states that warrant further analysis. For 

instance, Figure 1 illustrates the kernel density plot 5 of the utility scores which were assigned to 

state 11133 by participants of the UK valuation study of the EQ-5D-3L. Here we seek to 

understand the shape of the distribution of each health state index in order to acquire informative 

knowledge about the dispersion of state valuations by the population.  

Spiegelhalter et al 6 , Baio 7 , Grieve et al 8 , and O'Hagan and Stevens 9 among many advocate the 

use of Bayesian methods as a useful tool in the area of health economic evaluation. Previous work 

on the USA EQ-5D-3L value set in a Bayesian context has demonstrated the importance of 

quantifying the uncertainty of the utility values 10. Some researchers have worked on similar health 

instruments, such as the SF-6D 11, or on the EQ-5D-3L and EQ-5D-5L, with a focus on using the 

available valuation data in a more efficient way to produce value sets which are subject to less 

parameter uncertainty 12-16. Nevertheless, the utility distributions of the 243 unique EQ-5D-3L 

states have not been quantified as explicitly specified probability distributions. 

The aim of this study is to estimate the mean (over the general population) utility assigned to each 

state and derive an approach that captures the uncertainty arising from the sampling variation of 

the UK EQ-5D-3L scores by constructing a Bayesian model which assigns appropriate probability 
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distributions to each of the EQ-5D-3L health states instead of point estimates. This allows 

researchers to model each EQ-5D-3L state (e.g. in sensitivity analyses) by using specified closed 

form probability functions without the need of making any further assumptions. 

We build a hierarchical Bayesian model which accounts for the parameter uncertainty in the 

regression coefficients and also the uncertainty due to functional model-misspecification. 

Specifically, with the valuation study valuing directly only a subset of the total number of health 

states, the regression model is nonsaturated, meaning that the total number of regression 

parameters estimated is less than the total number of states valued by the respondents. Only a 

saturated model, which estimates as many regression parameters as the number of states valued, 

can be expected to fit the mean model correctly. Hence, consideration must be given to parameter 

uncertainty which exists due to using a nonsaturated functional form of the model.  

The derived MCMC samples are then considered in order to approximate the posterior 

distributions as three-component mixtures of Normal distributions. Numerical optimisation is 

required for this task; we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to derive 

the new tariff. Notably, although in this article we exhibit our techniques by using the EQ-5D-3L 

and the UK dataset, our methods can be applied to other health questionnaires and countries’ 

datasets too. 

Methods 

UK EQ-5D-3L Valuation Study 

The MVH group conducted the UK valuation study of the EQ-5D-3L by interviewing 3235 

individuals17-18. The state of “perfect health” was assumed to have a utility of 1 and the state of 

“death” was assumed to have a utility of 0. Each respondent valued 12 other health states which 

are a combination of different levels of the five dimensions of the instrument, and in total  across 
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all respondents 42 health states were directly valued. Health states can be abbreviated by the use 

of a five-digit number where each digit corresponds to the severity level of each of the EQ-5D-3L 

dimensions. For example, 11113 is the abbreviation for the health state corresponding to no 

problems at all for the first four dimensions and severe problems for the fifth dimension. For 

valuations of states considered worse than death by the respondents, a transformation was used 19 

so that all resulting scores lie between -1 and 1.   After the application of stringent exclusion criteria 

17, 2997 individuals contributed data to the valuation study.  The aforementioned data of the MVH 

project can be obtained from the UK Data Service 20. 

The regression model which was used for the computation of the frequentist tariff comprised 12 

dummy variables: 𝐴𝐿𝐿, 𝑁3, 𝑀2, 𝑀3, 𝑆2, 𝑆3, 𝑈2, 𝑈3, 𝑃2, 𝑃3, 𝐴2, 𝐴3; it is also known as the “𝑁3 

model”. The variable 𝐴𝐿𝐿 takes value of 1 for any state other than that of “perfect health”, whereas 

the variable 𝑁3 takes value of 1 if the state has at least one dimension in the third level of severity. 

𝑀2 and  𝑀3 are dummy variables indicating whether mobility was at level 2 or 3 (respectively), 

and similarly for self-care (𝑆2, 𝑆3), usual activities (𝑈2, 𝑈3), pain/discomfort (𝑃2, 𝑃3), and 

anxiety/depression (𝐴2, 𝐴3). We take the core principles of the MVH approach into consideration, 

and we extend it in a Bayesian setting whilst also accounting for model-misspecification.  

Specifying our Bayesian model 

For the purposes of specifying our model, we define function ℎ(𝑝, 𝑞), the codomain of which is 

{1,2, … ,242}, so that ℎ(𝑝, 𝑞) equals the index of the EQ-5D-3L health corresponding to the 𝑞-th 

EQ-5D-3L state (𝑞 = 1, … ,12) which was evaluated by the 𝑝-th survey respondent (𝑝 =

1, … ,2997). The actual range of this function consists of the specific 42 indexes which were chosen 

to valued in the MVH project.  

Our model can be written as: 
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1 − 𝑦𝑝𝑞~𝑁(𝜇ℎ(𝑝,𝑞)𝑝𝑞 , 𝜎𝜀𝜎𝜀
2), 

𝜇ℎ(𝑝,𝑞)𝑝𝑞 = 𝜲ℎ(𝑝,𝑞)𝑝𝑞
𝛵 𝜷 + 𝜔𝑝 + 𝜉ℎ(𝑝,𝑞){𝑞−𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝−𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡}, 

{
𝜉ℎ(𝑝,𝑞){𝑞−𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝−𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡} = 0, 𝑓𝑜𝑟  "𝑝𝑒𝑟𝑓𝑒𝑐𝑡 ℎ𝑒𝑎𝑙𝑡ℎ"

𝜉ℎ(𝑝,𝑞){𝑞−𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝−𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡}~𝑁(0, 𝜎𝜉𝜎𝜉
2),                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜔𝑝~𝑁(0, 𝜎𝜔𝜎𝜔
2 ), 

where 𝑦𝑝𝑞is the utility value of the 𝑞-th EQ-5D-3L state (𝑞 = 1, … ,12) which was evaluated by 

the 𝑝-th survey respondent (𝑝 = 1, … ,2997), whereas 𝜔𝑝 is a subject-specific random effect and 

𝜲𝑝𝑞
𝛵  is a horizontal vector consisting of the following entries, which are defined as in the case of 

the 𝑁3 model: 𝐴𝐿𝐿ℎ(𝑝,𝑞)𝑝𝑞,  𝑁3ℎ(𝑝,𝑞)𝑝𝑞, 𝑀2ℎ(𝑝,𝑞)𝑝𝑞, 𝑀3ℎ(𝑝,𝑞)𝑝𝑞, 𝑆2ℎ(𝑝,𝑞)𝑝𝑞, 𝑆3ℎ(𝑝,𝑞)𝑝𝑞, 

𝑈2ℎ(𝑝,𝑞)𝑝𝑞, 𝑈3ℎ(𝑝,𝑞)𝑝𝑞, 𝑃2ℎ(𝑝,𝑞)𝑝𝑞, 𝑃3ℎ(𝑝,𝑞)𝑝𝑞, 𝐴2ℎ(𝑝,𝑞)𝑝𝑞, 𝐴3ℎ(𝑝,𝑞)𝑝𝑞. It should also be stated that, 

throughout this paper, the parameters of the Normal distribution are its mean and standard 

deviation. Notably, 𝜉𝑠 is related to the 𝑠-th distinct EQ-5D-3L health state, and it is the term which 

accounts for functional model-misspecification; each “{𝑞 − 𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝 −

𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡}” corresponds to a specific value of 𝑠 (i.e. one of those 42 states which were 

valued by the respondents). The importance of accounting for model-misspecification is discussed 

by Pullenayegum et al 10.  

The computation of the utility score 𝑢𝑠 of the 𝑠-th distinct EQ-5D-3L health state (𝑠 = 1, … ,243) 

is done as follows: 𝑢𝑠 = 1 − 𝜲𝑠
𝛵𝜷 − 𝜉𝑠

𝑛𝑒𝑤,  where the elements of the horizontal vector 𝜲𝑠
𝛵 =

(𝐴𝐿𝐿𝑠,  𝑁3𝑠 , 𝑀2𝑠, 𝑀3𝑠 , 𝑆2𝑠, 𝑆3𝑠 , 𝑈2𝑠, 𝑈3𝑠, 𝑃2𝑠 , 𝑃3𝑠, 𝐴2𝑠 , 𝐴3𝑠) are the dummy variables as 

defined in the case of the 𝑁3 model. Furthermore, 𝜉𝑠
𝑛𝑒𝑤~𝑁(0, 𝜎𝜉𝜎𝜉

2), so that the mean of the 

utilities is 𝜲𝑠
𝛵𝜷, but with a variance standard deviation that better reflects the true uncertainty in 

the data. 
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In Bayesian analysis, many of the distributions which we attempt to compute are not analytically 

tractable. However, we can simulate the random variable and obtain a sample of values originating 

from that variable, using Markov Chain Monte Carlo (MCMC) techniques 21-24. Using JAGS 25, 

MCMC simulations are obtained from the posterior  

The following priors are used: 

𝛽𝑑~𝑁(0,10), 𝑓𝑜𝑟 𝑑 = 0,1, 

𝛽𝑑~𝑁(0,1), 𝑓𝑜𝑟 𝑑 = 2,3, … ,11, 

𝜎𝜉~𝑈(0,1), 

𝜎𝜀~𝑈(0,1), 

𝜎𝜔~𝑈(0,1). 

Here, we use “minimally informative” uniform priors for the dispersion parameters, which, while 

stabilising the inference within a reasonable range of values, does not induce overly-strong reliance 

on prior assumptions. Furthermore, the 𝛽 coefficients are centred around 0 to encode the 

assumption that initially we do not know the sign of each of these coefficients, even though in the 

absence of any logical inconsistencies each one of them will have a positive sign. The prior 

variance standard deviation of the 𝛽 's associated with all indicator variables except 𝐴𝐿𝐿 and 𝑁3 

is chosen to be 1 to reflect the prior uncertainty about the coefficients which are related to one 

dimension of the EQ-5D-3L. Conversely, the prior variance standard deviation of the coefficients 

of the 𝐴𝐿𝐿 and 𝑁3 variables, which are related to multiple EQ-5D-3L dimensions is chosen to be 

10 because of the underlying wider uncertainty. The values of the 𝛽 coefficients are used to 

compute the EQ-5D-3L utility scores deterministically; since the values of the utility scores are 

expected to be between -1 and 1, the assigned prior distributions for the 𝛽 coefficients do not 
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provide strong prior information. Moreover, our priors are in agreement with those used in other 

research work related to EQ-5D-3L modelling 10. 

Sensitivity analysis of our Bayesian model 

We also use different priors to do sensitivity analysis and examine the robustness of the model. A 

different choice of priors for the dispersion 𝜎 parameters is as follows: 

𝑙𝑜𝑔(𝜎𝜉)~𝛮(0,1000106), 

𝑙𝑜𝑔(𝜎𝜀)~𝛮(0,1000106), 

𝑙𝑜𝑔(𝜎𝜔)~𝛮(0,1000106). 

This time, Normal distributions are assigned to the natural logarithms of the 𝜎 parameters, where 

the corresponding standard deviations 1000106 are quite large. Alternatively, we also consider the 

following priors: 

1/𝜎𝜉~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 

1/𝜎𝜀~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 

1/𝜎𝜔~𝐺𝑎𝑚𝑚𝑎(0.001,0.001). 

The motivation behind this is that the prior should be similar to the improper distribution 

1/σ~Gamma(0,0), but the prior 1/σ~Gamma(0.001,0.001) actually favours small values of the 

standard deviation σ. 

In terms of alternative priors for the 𝛽 coefficients, we use different Normal distributions with 

even larger standard deviations, as follows: 

𝛽𝑑~𝑁(0,1000106), 𝑓𝑜𝑟 𝑑 = 0,1, … ,11. 

These distributions are even less-informative compared to the original choice of prior distributions. 
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Approximation of the posterior distributions as mixtures of Normal distributions 

An MCMC sample of size 𝐶 can be obtained, for the posterior utility 𝑢𝑠 of the 𝑠-th EQ-5D-3L 

state, coming from its posterior distribution 𝑓𝑢𝑠
(∙), the parametric form of which is not known 

directly, because our model is not a conjugate or simplistic one. We aspire to approximate these 

derived distributions with suitable parametric distributions 𝑓𝑢𝑠
̂ (∙), and, due to evidence of multi-

modality, it is reasonable to approximate them using mixtures of distributions which are expected 

to be capable of approximating the target distributions well. Specifically, the use of an algorithm 

for the approximation of multi-modal distributions with the use of standard probability 

distributions, such as normal, is a suitable solution to the problem of approximating the mixtures 

26. These distributions are approximated as mixtures of normal probability functions  with 𝑍 finite 

components: 

𝑓𝑢𝑠
̂ (∙) = ∑ 𝑤𝑧 𝑁(∙ |𝑎𝑧, 𝑏𝑧)

𝑍

𝑧=1

. 

The weights 𝑤𝑧 's of the components as well as the components' means 𝑎𝑧 's, and their 

corresponding standard deviations 𝑏𝑧 's will have to be estimated separately. There is a trade-off 

between the quality of the approximation, which is increased by having further components, and 

the complexity of the algorithm as adding further components is associated with practical 

inconveniences, it brings further computational intensity as well as difficulties for the algorithm 

to reach convergence. Similar work of Schmidli et al 27 argued that a parsimonious and convenient 

approximation is a three-component 𝑍 = 3 mixture which satisfactory approximates the target 

distribution.  

In order to attain a close approximation of the real distribution the Kullback–Leibler (KL) 

divergence is regarded, which is considered the standard measure in inference problems 28. The 
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KL divergence between the target distribution 𝑓𝑢𝑠
(𝑥),  and the approximate (mixture) distribution 

𝑓𝑢𝑠
̂ (𝑥) is defined as:   

𝐾𝐿 (𝑓𝑢𝑠
(𝑥), 𝑓𝑢𝑠

̂ (𝑥)) = ∫ 𝑙𝑜𝑔 (𝑓𝑢𝑠
(𝑥)) 𝑓𝑢𝑠

(𝑥) 𝑑𝑥 − ∫ 𝑙𝑜𝑔 (𝑓𝑢𝑠
̂ (𝑥)) 𝑓𝑢𝑠

(𝑥) 𝑑𝑥. 

The lower the KL divergence (between the proposed and the actual distribution), the better the 

approximation. The ideal approximation (which theoretically is 0) is derived by selecting such 

weights and hyper-parameters (using numerical optimisation) to have a maximum in the second 

right term, i.e.: ∫ 𝑙𝑜𝑔 (𝑓𝑢𝑠
̂ (𝑥)) 𝑓𝑢𝑠

(𝑥) 𝑑𝑥. Using the MCMC sample 𝑢𝑠
(1)

, 𝑢𝑠
(2)

, … , 𝑢𝑠
(𝐶)

 generated 

from the posterior distribution of 𝑢𝑠, we can deduce the Monte-Carlo estimate of this integral as: 

1

𝐶
∑ 𝑙𝑜𝑔 (𝑓𝑢𝑠

̂ (𝑢𝑠
(𝐶)

))𝐶
𝑐=1 . Moreover, this is the same as the mean log-likelihood of the parameters 

of the mixture 𝑓𝑢𝑠
̂ (∙) given the observed MCMC sample. Hence, this implies that in order to 

minimise the KL divergence, we have to maximise this log-likelihood. 

The problem of finding a good approximate distribution is simplified to deriving the maximum 

likelihood estimates, because KL divergence is optimal when the weights and the hyper-

parameters are equal to the maximum likelihood estimates. Having a multivariate case, numerical 

optimisation is required for the successful estimation of these parameters. We consider the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which was proposed by Broyden 29, 

Fletcher 30, Goldfarb 31, and Shanno 32 independently; it is the most efficient of the quasi-Newton 

methods 33. 

Note: Regarding theImpact of correlation between states 

In other words, once we obtain our MCMC sample of utility values of size  𝐶 × 243, we will use 

it and consider the BFGS algorithm to eventually summarise each health state utility 

distribution as a mixture of Normal distributions. Given the way our Bayesian model was 
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defined, one would expect the existence of some correlation between different EQ-5D-3L 

state utilities; indeed, at the 𝑐-th iteration of MCMC, all the state utilities 𝑢𝑠 are actually 

computed by using the same 𝑐-th instances of the 𝛽 coefficients. Nevertheless, the use of the 

subsequently derived mixture distributions means that, in a sense, utilities of different health states 

are treated like they are independent. If no strong dependence exists here, though, then there is not 

much difference between using values sampled from the mixture distributions and those from the 

joint posterior of utility values. 

The impact of this correlation can be examined by the consideration of a hypothetical two-

arms randomised trial which runs for one year, at the end of which the EQ-5D-3L is 

administered. Let 𝜽𝒋
𝑻 = (𝜃1𝑗 , … , 𝜃𝑆𝑗) capture the probabilities of individuals of the 𝑗-th group 

of the trial (for 𝑗 = 1,2) falling into each of the EQ-5D-3L health states, where is the 

probability of an individual in group failing into health state 𝑠 (for 𝑠 = 1, … ,243). Then, 𝜟𝜽 =

𝜽𝟏 − 𝜽𝟐 and let 𝒖̅𝑻 = (𝑢̅1, … , 𝑢̅𝑆), where 𝑢̅𝑠 is the mean utility for the 𝑠-th EQ-5D-3L state. 

Moreover,  Pullenayegum et al 10 report that if 𝛥𝑒 is the difference in mean QALYs between the 

groups, then we have: 𝛥𝑒 = 𝜟𝜽
𝑻 ∙ 𝒖̅. Furthermore, for the variance of 𝛥𝑒 given 𝜟𝜽 we have 

𝑣𝑎𝑟(𝛥𝑒|𝜟𝜽) = 𝜟𝜽
𝑻 ∙ 𝑣𝑎𝑟(𝒖̅) ∙ 𝜟𝜽, where 𝑣𝑎𝑟(𝒖̅) can beis computed by using the matrix of 

posterior utility values of size 𝐶 × 243. Specifically, the aforementioned impact of the corelation 

can beis examined by comparing VAR1 and VAR2 where VAR1= 𝜟𝜽
𝑻 ∙ 𝑣𝑎𝑟(𝒖̅) ∙ 𝜟𝜽 and VAR1=

𝜟𝜽
𝑻 ∙ 𝑑𝑖𝑎𝑔(𝑣𝑎𝑟(𝒖̅)) ∙ 𝜟𝜽 , while 𝑑𝑖𝑎𝑔(𝑣𝑎𝑟(𝒖̅)) is a diagonal matrix with the same dimensions and 

diagonal entries as matrix 𝑣𝑎𝑟(𝒖̅). 

Since the probability vectors 𝜽𝟏 and 𝜽𝟐 will vary from one trial to another, 1,000,000 pairs of 𝜽𝟏 

and 𝜽𝟐 are simulated from the Dirichlet distribution, where the concentration parameters are 

1/243,…,1/243. Thus, we obtain 1,000,000 pairs of VAR1 and VAR2. 
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Note: dealing with utility values different than [−𝟏, 𝟏] 

We have already stated that the utility scores are assumed to be bounded by -1 and 1. As we derive 

“unbounded” distributions, when sampling from them, it is theoretically possible to sample a value 

from the tails of those distributions which falls outside of the interval [−1,1]. If that occurs, we 

merely convert the sampled value to the corresponding endpoint of the interval [−1,1], before any 

further use of this value in an economic evaluation. Furthermore, the specifications of our model 

imply that for the case of the state of “perfect health”, its utility is assumed to always be equal to 

1. Thus, ultimately, we end up dealing with utility values which lie in [−1,1]. 

Results 

Derivation of the posterior distributions 

The MCMC algorithm is run using R and JAGS. Initially, the Raftery and Lewis's diagnostic 34 is 

considered from a pilot MCMC run: the number of iterations required in order to estimate the 25th 

permille to within an accuracy of +/- 0.005 with probability 0.95 is less than 4,000. We run two 

MCMC chains; the first 4,000 iterations of each chain are discarded as burn-in, and then a further  

𝐶 = 4,000 iterations are used in total for making inference on the posterior distributions of the 

parameters of interest. In the Appendix, Table 1 provides a summary of posterior statistics of the 

𝛽's. In order to assess potential lack of convergence of the MCMC run, we calculate the Geweke 

statistic 35, the Gelman and Rubin statistic 36, and the effective sample size. The aforementioned 

table illustrates for each of the 𝛽's the corresponding p-value of the Geweke statistic, the Gelman 

and Rubin statistic (also known as 𝑅̂) and the effective sample size (the values are rounded to the 

nearest 100) which is calculated using the R2jags package 37. Large p-values of the Geweke 

statistic suggest no evidence of non-convergence; no evidence was found in favour of non-
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convergence at 𝑎 = 5%. Regarding the Gelman and Rubin statistic, if the value of the statistic is 

large (as a rule of thumb if it is greater than 1.1), then this suggests that there is no-convergence; 

all the computed 𝑅̂ values are very small and thus there is no evidence of non-convergence. The 

higher the decay of the autocorrelation with the increased number of simulations used, the higher 

the effective sample size; the values of the computed effective sample sizes are high and thus there 

is no suggestion of having autocorrelation issues. In overall, the aforementioned diagnostics did 

not find evidence of non-convergence; thus the assumption is that the 4,000 iterations are 

considered sufficient for the model to converge. 

Moreover, the results of the derived MCMC samples are also robust to changes in priors using the 

alternative prior distributions which were previously stated. When different starting values for the 

MCMC method or different priors are used, in the end we still obtain similar results for the 

posterior statistics. In other words, the parameters are estimated precisely enough that the 

inferences of this study are not sensitive to the starting MCMC values or the particular choice of 

prior distributions.  

The mean squared prediction error (MSE) and the mean absolute error (MAE) of the observed 

versus the posterior means were calculated as 0.0021 and 0.0369 in respect. The predictive 

performance of the model can be reviewed by considering leave-one-out-cross-validation. 

Specifically, each of the 42 health states which were evaluated by the MVH survey participants is 

removed in turn, and the model is used without the data from the that state in order to predict the 

mean utility for that specific health state. The leave-one-out-cross-validation MSE and MAE are 

0.0046 and 0.0538 in respect. The observed means utilities and the corresponding predicted means 

and 99% credible intervals which were derived under leave-one-out-cross-validation are shown in 

Figure 2. The predictive performance of the model is quite satisfactory; all but one of the observed 
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means fall within their 99% credible intervals derived under leave-one-out-cross-validation, and 

even the single observed mean which does not fall within the corresponding 99% credible interval 

is just slightly above the interval’s upper endpoint.            

Derivation of the mixtures of Normal distributions  

Each posterior distribution is described as a mixture of normal distributions. The MASS package 

38 was used in order to apply the BFGS algorithm and to estimate the parameters of the mixture 

components; relevant R code for the case of estimating the parameters of a three-component 

mixture of Normals can be found in the Appendix. For instance, Figure 3 illustrates the kernel 

density plot of state 31113 for the MCMC simulations, and the superimposed probability density 

functions of its approximation as a one, three, and five components mixture of normal density 

functions. It can be seen that the KL divergence value is small, and that a satisfactory 

approximation has been achieved. Figure 4 provides a visual inspection for the improvement of 

the approximation (in terms of the KL divergence value) of the distribution of state 31113 for the 

case of one, three, and five components. We observe that fewer than three components may not 

provide a totally satisfactory approximation to the original distribution. On average, the inclusion 

of three components reduces the KL values by approximately 40% and the highest KL valued that 

is observed is only 0.00346. However, if more than three components are used, then the algorithm 

allows for a minimally better approximation, but the computational complexity increases.  

Given the objective to use enough components to obtain good approximations without having too 

many of them, the decision was to use three components. This is in agreement with the conclusions 

of Schmidli et al 27. For instance, the three-component mixture of state 31113 is: 0.27864 

N(0.04702,0.06881) + 0.52051 N(0.08374,0.04617) + 0.20085 N(0.16007,0.05238), where the 

parameters of each Normal distribution are its mean and standard deviation.  The table with the 
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three-component Normal distributions of all of the utility scores of the UK EQ-5D-3L is given in 

the appendix. Moreover, the appendix contains the Kernel density plots for the MCMC simulations 

of all relevant health states and their corresponding probability density functions of their 

approximation as three-component mixtures of Normals.  

Note: Reviewing VAR1 and VAR2 

Since the probability vectors 𝜽𝟏 and 𝜽𝟐 will vary from one trial to another, 1,000,000 pairs of 𝜽𝟏 

and 𝜽𝟐 are simulated from the Dirichlet distribution, where the concentration parameters are 

1/243,…,1/243. Thus, we obtain 1,000,000 pairs of VAR1 and VAR2. The summary statistics of 

VAR2/VAR1 and VAR1-VAR2, as well as their corresponding kernel density plots are provided in 

the Appendix. From the summary statistics and the density plots we can see that the values of 

VAR1 and VAR2 are similar for most of the cases. Hence, whilst there are a few times where VAR1 

and VAR2 are not very similar, these could be extreme examples that we are unlikely to encounter 

in practice, and for the vast majority of the times we can see that three-component mixtures 

produce similar results compared to those produced by the full joint distribution of utilities. 

Discussion 

We have developed a Bayesian hierarchical model to obtain a new tariff which fully captures the 

uncertainty from sample variation of the UK EQ-5D-3L scores. Specifically, the MCMC samples 

of the posterior utility distributions were approximated as three-component mixtures of Normal 

distributions by regarding the KL divergence and by applying the Broyden-Fletcher-Goldfarb-

Shanno algorithm. Moreover, the model was found to be robust to changes in priors and initial 

values. The derived tariff can be used in economic evaluations.  

The method we developed here can be applied to valuations for preference-based instruments such 

as EQ-5D or SF-6D conducted using TTO or SG methods. In TTO exercises we can 
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deterministically conclude for each evaluation-survey participant the exact utility value which they 

assigned to each of the states they were asked to evaluate. This is also the case for SG exercises. 

However, for DCE’s in general this information is not known at the individual level of each subject 

of the evaluation-survey. 

Researchers have two subsequent options about how to sample from the utility distributions of the 

health states of the EQ-5D-3L. The first option is to sample directly from our derived MCMC 

samples of the posterior distributions of our Bayesian model. In fact, these MCMC samples of 

total size 4,000 × 243 could be incorporated in an R package so that researchers can have direct 

access to them for their research, if they do not want to re-run the model. The second option is to 

avoid the use of the MCMC samples and to use the approximate mixture distributions. Clearly, in 

terms of accessibility it is easier to describe the EQ-5D-3L health state utilities by presenting the 

derived utility distributions, and then sample from them (if needed), instead of presenting a large 

number of value sets. Another advantage of this option is that, theoretically, there is no upper limit 

to how many times a researcher can choose to sample values from the derived mixture 

distributions, which is useful if the objective is to use more values than the fixed number of 

published values. Although there are multiple advantages of using the mixtures of Normal 

distributions, the reader should be reminded that the mixture distributions remain an 

approximation. In any case, we recommend that the researcher uses the approaches described in 

this article, instead of a tariff which was derived under frequentist techniques, and then sample 

utility scores either from the derived MCMC samples or from the corresponding mixture 

distributions. 

In fact, the approximate distributions are appealing as all the associated KL divergence values are 

actually less than or equal to 0.00346. Specifically, on average the KL divergence values decrease 
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by approximately 40% when we use three components, whereas the corresponding KL divergence 

decrease is minimal when adding further components. Similarly to the conclusions of Schmidli et 

al 27, we recommend using three component mixtures as they seem to provide a good 

approximation while still keeping the complexity of the algorithm relatively low compared to the 

increasing computational complexity of having more components. 

Our model respects the core principles of the framework of the UK EQ-5D-3L valuation study and 

extends it in Bayesian setting where further layers of uncertainty are also taken into consideration. 

Some assumptions of the UK EQ-5D-3L valuation study (as well as the valuation studies of other 

instruments and populations around the world) could be considered imperfect and debated. These 

include the use of TTO as an appropriate method for eliciting utilities, the concept of cardinal 

utility and its application for health states. Nevertheless, although not all the concepts of the UK 

EQ-5D-3L are ideal, the derived MVH tariff has been broadly used in economic evaluations. Thus, 

our model improves our knowledge about the EQ-5D-3L state utilities by accounting for the 

uncertainty due to the variability inherent in the data.  

Guidelines for health technology assessments in the UK request that uncertainty be accounted for 

in economic evaluations 39. Whilst some researchers might use bootstrap to account for sampling 

uncertainty or they make further probabilistic assumptions for the distribution of the benefits, when 

conducting sensitivity analysis, we actually provide a certain closed-form distribution for the 

utility value of each health state. By making this new tariff available to researchers, these 

distributions could be used as a known reference point which eases the situation when having to 

deal with different assumptions made in separate economic evaluations. Unlike the point estimates 

derived by frequentist methods, the distributions we have derived provide a direct representation 

of the perception of the associated uncertainty of the utility score of each particular health state, 
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making it possible to directly sample a utility value from its corresponding distribution. Moreover, 

in addition to accounting for the uncertainty related to parameter estimates for regression 

coefficients, our model also accounts for functional model-misspecification, the importance of 

which has been highlighted by Pullenayegum et al 10. In overall, by using our tariff in order to 

properly account for further levels of uncertainty, which would otherwise be tacitly ignored by 

other approaches, the inference of economic evaluations can be made on a certain level of 

certainty. Moreover, in some cases the conclusions of economic evaluations based on our approach 

could be potentially different compared to the conclusions had these important levels of 

uncertainty been improperly disregarded and not taken into account.  

Pullenayegum et al 10 have argued the importance of quantifying the uncertainty of the utility 

values of the USA EQ-5D-3L value set in a Bayesian perspective. Some research work is focused 

on using the data available from other countries for the valuation of the EQ-5D-3L or similar health 

instruments in a more efficient way in order to produce value sets which are subject to less 

parameter uncertainty 12-16; for instance they found evidence that incorporating spatial correlation 

among health states improves predictive accuracy. In our case we have demonstrated that most of 

the times our derived posterior distributions perform similarly to the full joint distribution of 

utilities and thus that it is acceptable to use the three-component mixtures of Normals. 

Furthermore, whilst we used 𝜉𝑠
𝑛𝑒𝑤 for the computation of every state utility 𝑢𝑠, Shams and 

Pullenayegum 15 did that only for the states which were not evaluated in the US evaluation study 

of EQ-5D-3L, and they used 𝜉𝑠 for those states that were captured in the evaluation study, which 

resulted in having less uncertainty. Others have attempted to use a bootstrap approach for dealing 

with the underlying uncertainty 40. Nevertheless, our principal objective was to focus on reporting 

the utility distributions of the distinct UK EQ-5D-3L states as explicitly specified probability 
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distributions, whilst accounting for the underlying uncertainty. Moreover, whilst researchers are 

welcome to use the approximate distributions which we derived, these remain approximations, and 

so researchers anyway also have the option to run the full Bayesian model and use the 4,000 × 243 

MCMC values of posterior utilities, instead.  

Notably, the need to propagate uncertainty in the value set is not unique to the UK valuation study, 

nor to the EQ-5D-3L, which was considered due to its widespread use. We have used the UK 

valuation study as an example to illustrate how to use our methods to derive a new tariff because 

of their courtesy to share the data and because of their pioneering research in this field. 

Nevertheless, our techniques can be applied to the valuation studies of other countries and health 

instruments. For instance, our techniques can be applied to the EQ-5D-5L; the process needed to 

would be similar to that described in this paper, but this time vectors 𝜲𝑠
𝛵 and 𝜷 would have more 

entries because the EQ-5D-5L  has five response levels for each of its dimensions while EQ-5D-

3L only has three response levels. Furthermore, our methods are also relevant in the area of 

mapping across health instruments and in the context of model-based economic evaluations.  

Ara and Wailoo 41 note that uncertainty around health state utility values is usually underreported, 

whereas frequently only mean values are used in decision analytic models. Probability 

distributions can be assigned to utility scores in the context of probabilistic sensitivity analysis but 

the choice of the parameters of the distributions is made by considering trial-sampling variation 

whereas in such a case the parameter uncertainty of the regression model of the valuation study is 

ignored. However, our derived distributions account for multiple layers of uncertainty and they 

allow researchers to use them without the need to make other assumptions on the forms of such 

distributions. Therefore, we support the extension of the methods of this study in model-based 

economic evaluations in order to properly assess the impact of this approach. Future work should 
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focus on the application of our derived distributions in model- or trial-based economic evaluations 

in order to properly assess the impact of our approach. 

Conclusions 

In conclusion, we have derived a new tariff for the UK EQ-5D-3L, which represents the utility 

score of each health state by a three-mixture Normal distribution. This was achieved by using a 

Bayesian hierarchical model which also accounts for mode-misspecification, whereas numerical 

optimisation was used for the approximation of the posterior distributions. Unlike its point-

estimates counterparts, this tariff propagates the uncertainty due to the variability inherent in the 

data, as we now have closed-form distributions. Thus, we recommend the use of this tariff in 

economic evaluations. We believe that this approach should also be used for the valuation studies 

of other instruments and countries, as well as in the context of model-based economic evaluations.  
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