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Abstract
Buffer-aided cooperative networks (BACNs) 

have garnered significant attention due to their 
potential applications in beyond fifth generation 
(B5G) or sixth generation (6G) critical scenarios. 
This article explores various typical application 
scenarios of buffer-aided relaying in B5G/6G net-
works to emphasize the importance of incorporat-
ing BACN. Additionally, we delve into the crucial 
technical challenges in BACN, including stringent 
delay constraints, need for high reliability, imper-
fect channel state information (CSI), transmission 
security, and integrated network architecture. To 
address the challenges, we propose leveraging 
deep learning-based methods for the design and 
operation of B5G/6G networks with BACN, devi-
ating from conventional buffer-aided relay selec-
tion approaches. In particular, we present two case 
studies to demonstrate the efficacy of centralized 
deep reinforcement learning (DRL) and decentral-
ized DRL in buffer-aided non-terrestrial networks. 
Finally, we outline future research directions in 
B5G/6G that pertain to the utilization of BACN.

Introduction

B5G/6G Vision and Background of BACN
The beyond fifth generation (B5G) or sixth gen-
eration (6G) networks represent more than mere 
improvements or extensions of the 5G network; 
they signify remarkable paradigm shifts. The 
surge in mobile traffic is primarily driven by the 
rapid proliferation of new applications on mobile 
devices, including the Internet of things (IoT), 
the vehicle to everything (V2X), e-healthcare, 
machine-to-machine communications, and virtual/
augmented reality. These applications demand 
increased network throughput, stringent network 
latency, and enhanced network reliability. As a 
result, besides interconnecting communication 
nodes, 6G will facilitate ubiquitous connectivity, 
ensure high-quality of service (QoS), and incorpo-
rate intelligent capabilities [1].

To meet the QoS requirements and serve as 
many devices as possible, a cooperative network 
has been introduced. The critical feature of cooper-

ative transmission is to expand the coverage of the 
wireless network, enhance transmission reliability 
and increase user access. Besides, the relay and 
access points are commonly applied to enlarge 
the coverage of the terrestrial and non-terrestrial 
networks (NTNs). To further enhance the reliabil-
ity, spectrum utilization and coverage of the sys-
tem, the buffer-aided relaying was investigated as a 
promising technique in [2] and therein. The utiliza-
tion of buffers in buffer-aided cooperative networks 
(BACNs) enables relays to temporarily store data 
packets and transmit them in two non-consecutive 
time slots, thereby providing greater flexibility in 
system scheduling and allowing for the optimiza-
tion of network resources.

Typical Applications
IoT systems connect not just human users but 
also a multitude of sensors within family homes 
or medical facilities. Buffer-aided relaying can 
store shared information at the dedicator in 
advance, which can help transmit data between 
two remote IoT nodes. The V2X is a type of IoT 
that connects vehicles with surrounding entities 
such as roadside infrastructures, devices, pedes-
trians, grids, and nearby cars, which has become 
the backbone of the intelligent transportation sys-
tem and tries to make the driving process safer 
and more intelligent [3]. The mobile vehicles can 
transmit urgent information to the central node, 
which can be stored in buffers and broadcast to 
new vehicles entering the intersection, as shown 
in Fig. 1. However, V2X communication has high 
temporal-spatial dynamics, requiring buffers to 
update and replace information frequently due to 
the varying intrusions faced by vehicles at differ-
ent locations and time slots.

The NTNs provide wide coverage and mobile 
communication services through non-ground plat-
forms such as satellites, high-altitude balloons, or 
unmanned aerial vehicles (UAVs). For satellite 
communications, the authors in [4] investigated 
the relationship between QoS metrics, including 
buffer size, latency and transmit rate, and network 
configuration, by constructing a new tandem queu-
ing model to imitate the data arrival, forwarding, 
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and downloading processes in satellite data relay 
networks. The authors in [5] investigated a mobile 
relaying system assisted by a UAV with a finite buf-
fer size, where the delay constraints are consid-
ered. Buffer-aided UAVs can dynamically adjust the 
NTN topology according to service requirements 
and carry data around obstacles if necessary. On 
the other hand, buffer-aided UAVs can ensure data 
transmission to the best of their ability through 
encountering severe weather because UAVs can 
store data packets in buffers, when the channel 
condition is weak, and transmit data packets to 
users once the channel gets better. Therefore, 
ad-hoc networks, including satellites and UAVs, 
can be applied to rescue operations in earthquake, 
flood or remote areas.

Relay Selection Schemes in BACNs
The traditional buffer-aided relay selection 
schemes are usually heuristically designed, con-
sidering both the wireless channel and buffer 
state. For instance, the classical max-link method 
selects the link among all available links with the 
best channel condition in each time slot, which 
achieves the full diversity order [6]. However, 
since the max-link scheme only concerns the 
empty or full buffer state, it has a large average 
packet delay that increases with the number of 
relays and the sizes of buffers. To address this, 
a buffer state-based relay selection scheme was 
proposed in [7], which considers both the chan-
nel quality and the buffer states. Furthermore, to 
achieve high reliability and low delay, a deviation 
value-based relay selection scheme was proposed 
in [8], where the allocation of deviation values 
depends on the disparity between instantaneous 
and predefined buffer state.

A favorable relay selection scheme design 
for BACNs needs to consider various aspects, 
including channel condition, buffer states, delay 
performance, and so on. However, these aspects 
are time-varying with environmental change, and 
the delay requirements often conflict with outage 
requirements in the relay selection. For example, 
selecting the link with the best channel condi-
tion may not satisfy the buffer state requirement 
or cause a long delay. Solving these time-varying 
problems is still an open issue, especially when the 
buffer size or the relay number is significant. There-
fore, the performance of the heuristically designed 
traditional buffer-aided relay selection schemes is 
far from the optimal bound.

This motivates researchers to investigate deep 
learning methods to solve relay selection in buf-
fer-aided cooperative networks, which have advan-
tages in solving high-dimensional and time-varying 
problems. Deep learning offers the advantage of 
being a data-driven tool, eliminating the need for 
pre-building mathematically model and allowing 
optimization based on a training data set. For 
example, in [9], two deep reinforcement learning 
(DRL) based relay selection methods were pro-
posed to solve a throughput maximization problem 
under strict delay constraints, which are different 
from most existing buffer-aided schemes usually 
considering average packet delay and achieve high 
throughput subject to delay constraints. Howev-
er, incorporating deep learning algorithms into a 
BACN with multiple targets and constraints, such 
as secure transmissions, latency-aware transmis-

sions, heterogeneous networks, and imperfect 
channel state information (CSI), is not a straight-
forward task. Furthermore, considering that the 
majority of current state-of-the-art deep learning 
techniques primarily focus on problems related 
to classification and natural language processing 
applications, the integration of complex targets and 
constraints into deep learning methods in general 
poses significant challenges.

Technical Challenges Behind BACNs
Despite the apparent applications of BACNs in 
recent systems, there are several critical challeng-
es in applying buffering to future wireless net-
works. The following section discusses some of 
these challenges.

Low Latency
To support the explosively growing demands of 
delay-sensitive wireless multimedia applications 
over the upcoming 6G wireless networks, the 
packet delay must be considered in BACN [10]. 
Given a specific delay constraint, the design issues 
of QoS provisioning for multimedia wireless ser-
vices have received considerable research atten-
tion. Because of the highly time-varying nature of 
wireless fading channels, deterministic delay-aware 
QoS constraints are no longer feasible to charac-
terize queuing behaviors of multimedia wireless 
services. toward this end, average and strict packet 
delay have been proposed to support delay-sensi-
tive wireless communications over 6G multimedia 
mobile wireless networks. The existing works on 
buffer-aided cooperative communication mainly 
consider the average packet delay. However, the 
strict delay constraint in specific 6G scenarios is 
necessary, because the average packet delay can 
not ensure the delay fairness of different data pack-
ets. Still, the strict delay constraints can ensure the 
delay fairness of other data packets. Therefore, 
the pursuit of lower delay is a general trend in 6G, 
regardless of whether it is average or strict delay.

High Reliability
The trade-off between delay and reliability has 
also been investigated. With the increasing com-
plexity of wireless systems and the number of 
nodes, balancing delay and reliability is a criti-

FIGURE 1. Communication scenarios of B5G/6G networks with buffer-aided relaying.
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cal challenge. The expected massive number of 
devices of IoT in the network motivates 6G archi-
tecture to design a reliable transmission based 
on buffer-aided cooperative communication. The 
future network must satisfy a high packet/data 
rate and reliable data communication between 
real-time applications (such as V2X, digital intelli-
gent medical, etc.) and distributed edge devices. 
Specifically, the need for data reliability will be up 
to 99.9999 percent. The massive ultra-reliable low 
latency communication (mURLLC) services are 
required in 6G, and BACN faces reliability chal-
lenges when satisfying delay requirements.

Transmission with Imperfect CSI
Most existing works on BACN are developed 
based on instantaneous perfect CSI. However, 
obtaining instantaneous perfect CSI is difficult 
or impossible in large-scale networks due to the 
feedback delay and channel estimation errors 
[11]. When accounting for the imperfect CSI, 
most existing traditional relay selection schemes 
have a high probability to select unqualified links 
for transmission, and thus the system performance 
will deteriorate, such as increased outage prob-
ability, reduced throughputs and longer delays. 
Consequently, designing new relay selection 
schemes with imperfect CSI is imperative, which 
is also challenging since the decider needs to 
evaluate the impact of the imperfect CSI on the 
system performance.

Physical Layer Secure Transmission
Transmitting a large amount of data, massive com-
munication nodes, temporarily storing data in buf-
fers, and the presence of potential eavesdroppers 
raise concerns about data security. In particular, 
due to the propagation characteristics of the wire-
less communication environment, information 
is most likely to be leaked during transmission. 
Hence, appropriate buffer-aided relaying tech-
niques and protocols shall be designed to protect 
user privacy and data security. However, owing to 
the existence of eavesdroppers, the buffer-aided 
relaying scheme design is very challenging since 
some additional complicated factors may need to 
be jointly considered, such as the eavesdropping 
CSI, the secrecy throughput, and artificial noise, 
and so on. In this case, a favorable buffer-aided 
relaying scheme is hard to design and the anal-
ysis becomes very complex. Moreover, with the 
growth of the number of eavesdropping nodes 
in the communication system, the heuristically 
designed buffer-aided relaying schemes are not 
easy to ensure secure transmission.

Heterogeneous Network
A heterogeneous network is a type of network that 
consists of different types of nodes and devices 
such as vehicles and some IoT nodes, which can 
support various services and applications. The inte-
gration of different networks provides seamless 
connectivity and increased coverage and capacity, 
enabling users to access services regardless of their 
location or device. Therefore, the heterogeneous 
network management to connect various nodes 
should be investigated. One of the main difficulties 
is managing the integration of different types of 
nodes and devices to provide seamless connectiv-
ity, increased coverage, and capacity. Additionally, 

the massive number of devices in a heterogeneous 
network leads to interference, which affects the 
network’s performance. Therefore, buffer-aided 
relaying is an area that requires more investigation 
to improve the efficiency of data transmission in 
heterogeneous networks.

Note: BACN also presents additional engi-
neering challenges related to channel modeling, 
channel estimation, and the generation of real-
istic channel data. In demanding scenarios such 
as V2X, NTN, and drone communications, the 
channels exhibit high levels of dynamism, which 
poses difficulties in obtaining accurate channel 
information. Consequently, there is a crucial need 
for robust techniques that can efficiently gener-
ate and predict channel data with precision. One 
potential approach involves the fusion of ray-trac-
ing and artificial intelligence algorithms, enabling 
the development of a super-resolution modeling 
method that satisfies the requirements for real-
time simulation [12].

Potential Deep Learning Techniques
In this section, current deep learning technologies 
that have the potential to be used in BACN are 
presented.

Deep Reinforcement Learning
A widely used solution in optimization problems 
of wireless communications is DRL. DRL algo-
rithms are based on the idea of Markov Decision 
Processes (MDPs), which is a mathematical frame-
work which uses states, actions, transitions and 
rewards to describe an environment, as shown in 
Fig. 2a. In MDPs, an agent is used to interact with 
the environment to learn the optimal decisions, 
this process is called reinforcement learning, as 
the agent learns from rewards received from the 
environment. Compared to traditional optimiza-
tion methods and deep learning algorithms, DRL 
is more flexible to solve complex problems in 
dynamic environments such as BACNs.

Graph Neural Network
On the other hand, graph neural networks 
(GNNs) are a type of deep learning, specifically 
designed to process graph-structured data [13]. 
In wireless communications, nodes in the graph 
represent devices in the network, and edges 
represent the relationships between devices, as 
shown in Fig. 2b. The matrix captures the rela-
tionships between different devices in BACNs and 
the neural network is used to process the related 
information to generate models to describe the 
relationships between devices in BACNs. More-
over, matrix and neural networks in GNN can 
process large amounts of data, which are very 
important in future large-scale BACNs.

Meta Learning
Recently, meta learning has been a widely used 
tool in the machine learning field [14]. In tradi-
tional machine learning algorithms, a learning 
model is trained for a specific dataset to address a 
particular problem. However, the learned experi-
ence may not be suitable for new tasks anymore. 
Thus, meta learning is proposed to learn how to 
adjust the learning model from previous tasks to 
improve its adaptability to new tasks. In BACNs, 
meta learning can adjust the existing learning 

The integration of 
different networks 
provides seamless con-
nectivity and increased 
coverage and capac-
ity, enabling users to 
access services regard-
less of their location 
or device. Therefore, 
the heterogeneous net-
work management to 
connect various nodes 
should be investigated. 
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models for new tasks faster than training a new 
one. Therefore, meta learning can potentially 
improve the efficiency and flexibility of machine 
learning-based systems, enabling it to be import-
ant in future large-scale BACNs.

Transformer
Transformer is another important algorithm 
in current deep learning works. The key idea 
behind the transformer is self-attention, which 
allows it to simultaneously consider all positions 
of a sequence and learn contextual relationships 
between the tokens in the sequence. The Trans-
former model is utilized for learning long-term 
dependencies within the training dataset, this 
capability of sequential modeling enables it to 
infer the relationships between preceding and 
succeeding states more effectively in BACNs. 
Thus, it can optimize decision-making processes 
and enhances decision stability.

Centralized and Distributed Learning
In addition, centralized learning is a strategy for 
utilizing deep learning in wireless communica-
tions. Specifically, data from other devices in the 
network is collected in the control node and used 
to train a learning model for making decisions. 
The trained model in the control node is then 
used to make decisions and take actions for the 
whole network. This approach allows using large 
amounts of data to train a highly accurate model 
while avoiding transmitting large amounts of data 
between devices in the network during training.

On the other hand, in distributed learning, 
the computational resources of all devices in the 
network can be utilized, and the computational 
resources required at each device are reduced. 
Furthermore, distributed learning allows developing 
the optimization solution in large-scale networks, as 
each device can make decisions locally to reduce 
the amount of data transmitted in the network. 
Finally, distributed learning can improve privacy 
for the wireless network, as sensitive data does not 
need to be transmitted between devices.

Proposed Frameworks for  
Deep Learning-Empowered BACNs

The main idea of deep learning is to use multi-
ple layers of artificial neurons to learn the repre-
sentation of data, one of the key advantages of 
using deep learning in wireless networks is that 
deep learning can learn the relationships between 
variables in the data, this allows deep learning to 
make accurate decisions about network optimi-
zation. In addition, deep learning algorithms can 
be trained by using historical data, which allows 
them to adapt to changes in the wireless network 
continuously. Moreover, the buffer-aided relay 
selection process can be modelled as an MDP 
[15], and reinforcement learning algorithms can 
be applied to learn the solution from the MDP 
elements. Reinforcement learning focuses on 
mapping the situations to actions to maximize a 
reward. Thus, DRL algorithms can be utilized to 
optimize the trade-off between the throughput 
and the delay in buffer-aided relay systems. More-
over, to improve the convergence performance 
of DRL in NTNs, meta-learning is a promising tool 
for adjusting the training model in DRL.

On the other hand, future wireless network 
could be a large-scale heterogenous system which 
leads to a more complex optimization problem. 
GNN is a promising tool for solving this problem 
by representing the graph structure as a matrix and 
processing this matrix by using a neural network. 
However, it is hard to obtain training data sets for 
GNN in NTNs. Thus, using GNN in combination 
with DRL can optimize the resource based on the 
decisions from DRL, where GNN help extract fea-
tures of the network for training DRL.

As shown in Fig. 3, deep learning-based BACNs 
utilizes the power of deep learning algorithms to 
optimize the resource in BACNs. The system state 
information, which includes buffer state, CSI and 
optimization constraints, has the potential to tran-
sition to multiple states in the subsequent time 
period, thus forming a Markov chain. Besides, the 
system state is regarded as the input of the deep 
learning framework, which is designed as the opti-
mizer in BACNs. The deep learning algorithms 
mentioned above is combined and used to form 
the deep learning framework to train a neural net-
work model for making decisions in BACNs. The 
pre-trained model helps the deep learning frame-
work to optimize the outputs as the decisions 
variables for BACNs, such as buffer-aided relay 
selection and routing strategy.

Moreover, most of the existing buffer-aided relay 
selection schemes assume that there is a central 
control node to receive all required information in 
the network and make global decisions. Howev-
er, considering the communication cost, the relay 
nodes may only receive the required information 
from neighbor nodes, or the limitations of the hard-
ware cannot allow the central node to receive all 
information and calculate a solution. Therefore, a 
DRL algorithm, multi-agent proximal policy optimiza-
tion (MAPPO), is introduced to solve this problem. 
In that case, each agent works on a communica-
tion node, and all the agents could learn to obtain 
a solution through their interactions and the local 
environment. Then all agents cooperate in a dis-
tributed way to improve the sum throughput with 

FIGURE 2. The structure of deep learning algorithms: a) The framework of reinforcement 
learning; b) The structure of a graph neural network; c) The structure of meta learning; d) 
The structure of transformer learning. 

a) b)

c) d)
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delay constraints. Moreover, GNN is utilized to 
model network graphs to captures the relationships 
between different devices in the proposed network 
to help optimize DRL decisions. Considering the 
outdated CSI in the proposed NTN and the high 
convergence complexity in MAPPO, meta-learning 
is embedded in the proposed MAPPO algorithm to 
adjust the training model. Specifically, meta-learning 
can learn the relationship between the previously 
trained models and their predictions and then build 
a meta-model for adjusting the hyperparameters in 
the decision model.

To give the performance of the deep learn-
ing-based optimization in buffer-aided NTNs, we 
assume a low Earth orbit satellite as the source, 
multiple HAPs, UAVs and base stations as the relay 
nodes, and a ground user as the destination. Each 
relay node is equipped with a buffer and operates 
in half-duplex mode. Thus, a relay node cannot 
transmit and receive simultaneously in the multi-
hop network. All channels are assumed to experi-
ence Rician fading. An untrusted user is assumed 
to be an eavesdropper who can eavesdrop on 
the signals in the buffer-aided NTN to present the 
challenge of physical layer secure transmission. 
Besides, the strict delay constraint is considered in 
the throughput performance to present the chal-
lenge of low latency. Moreover, the outdated CSI 
in the proposed network brings the challenge of 
imperfect CSI in wireless transmissions. In the face 
of these constraints and challenges, it is crucial to 
leverage the proposed deep learning framework 
to maximize system throughput and ensure reliable 
transmission.

Considering that central control is infeasible in a 
decentralized NTN, we employ MAPPO as shown 
in Fig. 4a to optimize the multi-hop routing strategy 
in the NTN with buffer relaying by interacting with 
the MDP environment for 5000 time slots. In Fig. 5, 
it is clear that although the presence of the eaves-
dropper decreases the performance of throughput, 
the proposed MAPPO-based algorithm still can 
optimize the solution to maximize the throughput 
with delay and secrecy constraints. Besides, consid-
ering each agent can only obtain knowledge from 
adjacent nodes, all agents learn from their local 
environment and cooperate to build a joint solu-
tion. Moreover, compared to a deep Q-Learning 
network (DQN), MAPPO could converge better 
by using the improved trust region update strategy.

Figure 6 shows the performance of DRL algo-
rithms in a centralized buffer-aided NTN. In the cen-
tralized scenario, we assume a central controller 
which could be any node which is strategically posi-
tioned to receive global information optimally in the 
practical network. The structure of the proposed 
centralized DRL algorithm is shown in Fig. 4b. The 
results indicate that the target delay strongly impacts 
the throughput with delay constraints in the NTN. 
Buffer technology improves the transmission reliabil-
ity for low signal-to-noise ratio (SNR) channels, but 
using a buffer usually leads to the cost of delay. The 
proposed MAPPO-based algorithm could interact 
with the environment to determine the impact of 
the delay constraint and learn to find the solutions 
for each system state. Thus, the MAPPO-based 
algorithm could optimize the solution with different 
target delays. Besides, considering the presence 
of an eavesdropper, the MAPPO-based algorithm 
needs to consider the secrecy rate while choosing 
relays for transmission. Thus, the performance slight-
ly decreases because the agent may avoid selecting 
relay nodes around the eavesdropper. In addition, 
the centralized approach outperforms the distribut-
ed one under various delay constraints. The reason 
is that in a centralized wireless communication envi-
ronment, a central controller has access to all infor-
mation to achieve enhanced optimization results 
through learning from the comprehensive data. In 
contrast, in a distributed setting, it is challenging to 
transmit information from every node to a central 
node for optimal global control. Thus, each node 
has to optimize the strategy based on its judgement 
and information received from adjacent nodes, 
resulting in suboptimal performance compared to 
centralized systems.

Future Research Directions
Although BACN in 6G communication is an excit-
ing area of interest for the research community, the 
research on relay selection and buffer state man-
agement in BACN is still in its early stages. There-
fore, we highlight the main research directions for 
adopting buffer-aided relaying into 6G networks.

Future Deep Learning in BACN
In the future, deep learning will play an important 
role in BACN. However, considering BACN will 
be more complex (such as massive relay nodes, 
the dynamic feature of relay nodes’ appearing 

FIGURE 3. Deep learning framework for BACNs.
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and disappearing, and energy consumption at 
relays) and connected to other networks such as 
satellite networks in the future 6G communica-
tions, existing deep learning methods may suffer 
from the high difficulty of generating training data 
set and large decision space of the system. Thus, 
some other new technologies in deep learning 
could be introduced in BACN to address these 
challenges for future 6G networks. For example, 
the double cascade correlation network can be 
utilized to generate training data set, while Wolp-
ertinger architecture is designed to reduce the 
cost of evaluating actions in MDPs. Moreover, 
considering the BACN scenarios can be changed 
in real communication systems, to build an adap-
tive decision system for BACN, the metaheuristic 
algorithm which can further optimize the deep 
learning-based decision systems could be utilized 
to improve the convergence performance for dif-
ferent BACN scenarios.

Compatible with the Reconfigurable Intelligent Surface
The buffer-aided relaying could also connect with 
the reconfigurable intelligent surface (RIS) to 
improve the wireless environment. Beyond the 
inherent challenges behind BACNs, there are 
some new challenges. Firstly, optimizing the per-
formance of complicated channels, such as those 
involving RIS to active BSs/buffer-aided relays in 
hybrid wireless networks, is a critical issue that 
needs to be addressed. Secondly, designing the 
passive beamforming elements for RIS contains 
discrete amplitude and phase-shift levels. The 
exhaustive search is impractical; some existing 
works relax constraints and obtain the approx-
imate values. However, it may lead to perfor-
mance loss due to quantization errors. To further 
improve the performance, the heuristic alternating 
optimization technique can be applied to itera-
tively optimize the discrete amplitude/phase-shift 
values. Then the optimized results can be utilized 
as training data set for deep learning-based meth-
ods. Moreover, considering the computational 
complexity of heuristic alternating optimization 
and DRL methods for practical RIS coefficients, 
the double cascade correlation network can be 
introduced to speed up the convergence and 
improve the performance.

Security and Privacy Issues

For buffer-aided relaying, existing works mainly 
focus on efficiently transmitting data. However, 
some users may refuse to assist other users in trans-
mitting information due to privacy concerns about 
sharing sensitive information that could result in a 
security breach or technical difficulties. The privacy 
and security have gained more and more attention 
in B5G/6G, where users may need to keep their 
data locally and prevent eavesdropping. On the 
other hand, training data in the artificial intelligence 
model should also attach security issues. Therefore, 
the distributed training architecture must fully con-
sider the data allocation, computing capability, and 
network. Thus, the new machine-learning-driven 
buffer-aided relay selection methods, for example, 
federated learning, can assure privacy and security 
in demand. Moreover, deep learning algorithms 
can be used to encrypt data, making it more diffi-
cult for attackers to intercept and access sensitive 
information in BACN.

Hybrid Buffer and Cache Selection Technology
Wireless caching is an emerging technology that 
enables storing popular content in caches, allow-
ing for direct transmission from the cache instead 
of the remote cloud. To further enhance trans-
mission efficiency, buffer-aided selection schemes 
can be combined with caching technology. Deep 
learning algorithms can be employed to tackle the 
challenges associated with the design and optimi-
zation of such hybrid buffer and cache schemes, 
which possess the ability to handle complex and 
high-dimensional data and the potential for dis-
covering intricate patterns and relationships within 
the data. By leveraging deep learning algorithms, 
hybrid buffer and cache selection technologies 
can be developed to efficiently manage content 
delivery in 6G networks.

BACN in Future 6G SAGIN
The space-air-ground integrated networks (SAGINs) 
contain a large number of dynamic nodes in their 
wide connection range, the buffer-aided relay 
selection in SAGIN is promising. Firstly, a future 
direction is to deal with the complex nature of 
dynamic devices, such as UAVs and satellites in 

FIGURE 4. The structure of decentralized DRL and centralized DRL in non-terrestrial networks (NTNs) with buffer relaying: a) Decentralized DRL in NTN; b) 
Centralized DRL in NTN.

a) b)
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SAGIN. Some existing works have investigated buf-
fer-aided relaying in UAV networks. However, the 
rapid mobility issue of UAVs remains unresolved. 
On the other hand, communication constraints 
among different communication layers and high 
overhead exist caused by the highly dynamic envi-
ronment of SAGIN are critical challenges. In addi-
tion, it is difficult to obtain channel information in 
a dynamic environment. Therefore, the deep-learn-
ing-driven methods such as inverse reinforcement 
learning for buffer-aided relaying represents may 
effectively manage resource and channel acquisi-
tion for flexible SAGIN.

Conclusions
This article has highlighted the potential for 
improvement in existing relay selection schemes 
for buffer-aided cooperative systems to meet 
emerging demands. The challenges associated 
with using BACNs have been identified, and it has 

been demonstrated that deep learning-based solu-
tions hold promise in addressing these challenges. 
To achieve secure communication with ultra-re-
liable and low latency requirements, considering 
imperfect CSI and heterogeneous networks, a 
clear understanding of the intrinsic characteristics 
of BACN is crucial. In contrast to conventional 
buffer-aided relay selection methods, this article 
has proposed deep learning-driven approaches 
applicable to both centralized and decentral-
ized scenarios. Through simulation results, the 
performance of DRL has been demonstrated in 
a centralized buffer-aided NTN, along with the 
effectiveness of the multi-agent DRL algorithm in 
a decentralized NTN. The proposed deep learn-
ing-driven methods have the potential for gener-
alization across various BACNs and offer valuable 
insights for future research directions.
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