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exome-sequenced UK Biobank participants characterises
effects on hyperlipidaemia risk
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A previous study of 200,000 exome-sequenced UK Biobank participants investigating the association between rare coding variants
and hyperlipidaemia had implicated four genes, LDLR, PCSK9, APOC3 and IFITM5, at exome-wide significance. In addition, a further
43 protein-coding genes were significant with an uncorrected p value of <0.001. Exome sequence data has become available for a
further 270,000 participants and weighted burden analysis to test for association with hyperlipidaemia was carried out in this
sample for the 47 genes highlighted by the previous study. There was no evidence to implicate IFITM5 but LDLR, PCSK9, APOC3,
ANGPTL3, ABCG5 and NPC1L1 were all statistically significant after correction for multiple testing. These six genes were also all
exome-wide significant in the combined sample of 470,000 participants. Variants impairing function of LDLR and ABCG5 were
associated with increased risk whereas variants in the other genes were protective. Variant categories associated with large effect
sizes are cumulatively very rare and the main benefit of this kind of study seems to be to throw light on the molecular mechanisms
impacting hyperlipidaemia risk, hopefully supporting attempts to develop improved therapies.
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INTRODUCTION
A previous weighted burden analysis of rare coding variants
observed in 200,000 exome-sequenced UK Biobank participants
implicated four protein-coding genes as being involved in risk
of hyperlipidaemia at exome-wide significance: LDLR, PCSK9,
ANGPTL3 and IFITM5 [1]. The report of that study also reviewed
the broader contribution of genetic variation to hyperlipidaemia
risk and that discussion will not be repeated here. For all of
these four genes except LDLR, rare variants predicted to impair
gene functioning were associated with lower risk of hyperlipi-
daemia. It was noted that overall 55 genes, of which 47 were
protein-coding, had uncorrected p values significant at p < 0.001
whereas only 23 would be expected by chance and a number of
these genes seemed to be plausible biological candidates.
Exome sequence data for a full set of 470,000 participants
has now been released and a follow-up study was carried out
in order to determine if any of these 47 genes of interest
demonstrated evidence for association in the 270,000 newly
available samples. For such genes, further analyses were
performed in the whole sample to investigate the overall
evidence for association and the contributions from different
types of variant.
Most of this exome sequence data has also been used in two

previous studies which tested for gene-wise associations with very
large numbers of phenotypes, including some hyperlipidaemia-
related phenotypes [2, 3]. It was recognised that results from the
current investigation would need to be considered in this context
of these studies.

METHODS
In order to maintain compatibility with the previous study, the same
methods were used for the genetic analyses and for phenotype definition.
The description is repeated here for convenience.

UK Biobank dataset
UK Biobank participants are volunteers intended to be broadly representa-
tive of the UK population and are not selected on the basis of having any
health condition. UK Biobank had obtained ethics approval from the North
West Multi-centre Research Ethics Committee which covers the UK (approval
number: 11/NW/0382) and had obtained informed consent from all
participants. The UK Biobank approved an application for use of the data
(ID 51119) and ethics approval for the analyses was obtained from the UCL
Research Ethics Committee (11527/001). The UK Biobank Research Analysis
Platform was used to access the Final Release Population level exome OQFE
variants in PLINK format for 469,818 exomes which had been produced
at the Regeneron Genetics Center using the protocols described here:
https://dnanexus.gitbook.io/uk-biobank-rap/science-corner/whole-exome-
sequencing-oqfe-protocol/protocol-for-processing-ukb-whole-exome-seque
ncing-data-sets [3]. All variants were then annotated using the standard
software packages VEP, PolyPhen and SIFT [4–6]. To obtain population
principal components reflecting ancestry, version 2.0 of plink (https://
www.cog-genomics.org/plink/2.0/) was run with the options --maf 0.1 --pca
20 approx [7, 8].

Hyperlipidaemia phenotype
The hyperlipidaemia phenotype was determined in the same way as
previously from four sources in the dataset: self-reported high cholesterol;
reporting taking cholesterol lowering medication; reporting taking a
named statin; having an ICD10 diagnosis for hyperlipidaemia in hospital
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records or as a cause of death [9]. Participants in any of these categories
were deemed to be cases with hyperlipidaemia while all other subjects
were taken to be controls. As previously described, the UK Biobank sample
does contain some subjects who are related to each other [10]. These
subjects were not excluded as including them is not theoretically expected
to cause major difficulties for the methods of analysis used and using them
in previous similar analyses of this dataset had proved unproblematic.
When carrying out the original study a deliberate decision had been made
to attempt to identify clinically defined cases of hyperlipidaemia without
including information on measured lipid levels in the blood, since these
levels would likely be influenced by medication. In the primary analyses to
implicate specific genes, attention was restricted to participants not
included in the earlier study, consisting of 62,066 cases and 207,216
controls. For the subsequent analyses using the whole sample there were
106,091 cases and 363,674 controls.

Variant weighting
The SCOREASSOC program was used to carry out a weighted burden
analysis to test whether, in each gene, sequence variants which were rarer
and/or predicted to have more severe functional effects occurred more
commonly in cases than controls [11–13]. Attention was restricted to rare
variants with minor allele frequency (MAF) ≤0.01 in cases or controls or
both. As previously described in detail, variants were weighted by overall
MAF so that variants with MAF= 0.01 were given a weight of 1 while very
rare variants with MAF close to zero were given a weight of 10. This is done
by taking the weight to be a parabolic function of MAF passing through
the points (0, 10) and (0.01, 1). Variants were also weighted according to
their functional annotation using the GENEVARASSOC program, which was
used to generate the input files for weighted burden analysis by
SCOREASSOC. Variants predicted to cause complete loss of function
(LOF) of the gene were assigned a weight of 100. Nonsynonymous variants
were assigned a weight of 5 but if PolyPhen annotated them as possibly or
probably damaging then 5 or 10 was added to this and if SIFT annotated
them as deleterious then 20 was added. The full set of weights and
categories is displayed in Table 1 of the previous study [1]. This means that
each variant is assigned a weight according to its MAF and a weight
according to its functional annotation. As described previously, the weight
due to MAF and the weight due to functional annotation were multiplied
together to provide an overall weight for each variant. Variants were
excluded if there were more than 10% of genotypes missing in the
controls and cases or if the heterozygote count was smaller than both
homozygote counts in controls and cases. If a subject was not genotyped
for a variant then they were assigned the subject-wise average score for
that variant. For each subject a gene-wise weighted burden score was
derived as the sum of the variant-wise weights, each multiplied by the
number of alleles of the variant which the given subject possessed.

Logistic regression analysis
Analyses were restricted to the 47 protein-coding genes significant at
p < 0.001 in the previous study. For each gene, logistic regression analysis
was carried out with hyperlipidaemia as the dependent variable including
the first 20 population principal components and sex as covariates and a
likelihood ratio test was performed comparing the likelihoods of the
models with and without the gene-wise burden score. This is a test for
association between the gene-wise burden score and caseness and the
statistical significance was summarised as a signed log p value (SLP), which
is the log base 10 of the p value given a positive sign if the score is higher
in cases and negative if it is higher in controls. Since only 47 genes were
analysed, after correcting for multiple testing a gene could be declared
statistically significant if it achieved an SLP with absolute value greater
than -log10(0.05/47)= 2.97 using the new samples.

Follow-up analyses
Follow-up analyses were performed on all genes individually achieving this
significance level and also ANGPTL4. For this subset of genes the weighted
burden analysis described above was carried out using the whole sample
of 106,091 cases and 363,674 controls. Additionally, for each subject a
count was obtained of the number of variants they carried falling into
particular broad annotation categories, such as LOF, protein altering, etc.
The full list of these categories is shown in Supplementary Table 1. These
counts were entered into a multiple logistic regression analysis with
hyperlipidaemia as the dependent variable and again including sex and 20
principal components as covariates in order to elucidate the contribution

of different types of variant to the overall evidence for association. The
odds ratios (ORs) associated with each category were estimated along with
their standard errors and the Wald statistic was used to obtain a p value.
This p value was converted to an SLP, again with the sign being positive if
the OR was greater than 1, indicating that variants in that category tended
to increase risk.

Software
Data manipulation and statistical analyses were performed using
GENEVARASSOC, SCOREASSOC and R [12–14].

RESULTS
Table 1 shows the results of the primary analysis. Three of the four
protein-coding genes which reach exome-wide significance in the
earlier study show convincing evidence of association with
hyperlipidaemia, LDLR, PCSK9 and ANGPTL3, with SLPs of 87.28,
−29.08 and −7.48 respectively. However the other gene, IFITM5,
shows no evidence of association, with SLP of only 0.44, so it
seems reasonable to conclude that the original results for this
gene represented a type 1 error. Of the remaining genes which
were originally significant at p < 0.001, most show no evidence of
association in this new sample and can be dismissed as chance
findings. However ABCG5, APOC3 and NPC1L1 all produce SLPs
which are statistically significant after correcting for testing 47
genes, with values of 5.08, −11.01 and −3.42. These six genes
were carried forward for secondary analyses along with ANGPTL4
which was considered to be of interest because of its similarity to
ANGPTL3, even though it achieved SLPs of only −3.66 in the first
sample and −1.95 in the second.
The original study considered 22,642 genes, meaning that for a

gene-wise result to be considered exome-wide significant the
magnitude of the SLP obtained should exceed -log10(0.05/
22642)= 5.66. For the seven genes carried forward, the results
of weighted burden analysis in the entire sample of 106,091 cases
and 363,674 controls are also shown in Table 1 and it can be seen
that all six of the genes which produced results which were
statistically significant after multiple testing in the second sample
also produce results which would be regarded as exome-wide
significant in the full sample. However the SLP for ANGPTL4 in the
combined sample is only −4.79.
In order to gain insights into the effects of different categories

of variant within these seven genes of interest, counts for variants
of each category in each subject were entered into multiple
logistic regression analysis along with sex and 20 principal
components as covariates. These results are shown in Tables 2–4
and are summarised briefly as follows.
Variants in LDLR (SLP= 156.81) and ABCG5 (SLP= 6.95) increase

risk of hyperlipidaemia and results for each variant category are
shown in Table 2. Table 2A shows the results for LDLR and it can be
seen that LOF variants are associated with hyperlipidaemia risk with
OR > 20. 113 participants carry a LOF variant and all but 16 of these
are cases. Of note, there are also 19 subjects who carry an inframe
indel and all but 2 of these are also cases, again yielding an OR over
20 though with a wide confidence interval. Detailed inspection of
these results reveals that they are driven by two inframe deletions,
19:11105556ATGG > A (rs121908027) which is carried by 8 partici-
pants who are all cases and 19:11116925ACGG > A (rs1221971156)
which is carried by 7 participants, 6 of whom are cases. The first of
these, rs121908027, is reported to the be most common familial
hyperlipidaemia (FH) mutation in Ashkenazi Jews and was found in
35% of FH families in Israel [15]. As well as the large effect of these
LOF and indel variants there is statistically significant evidence for
an overall small effect on risk of the much commoner variants in the
“Protein altering” category (consisting mostly of nonsynonymous
variants) with OR of 1.12 and a further modest increase in risk if
these are annotated as deleterious by SIFT and/or possibly or
probably damaging by PolyPhen, with ORs of 1.44, 1.27 and 1.61.
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Table 1. Genes with absolute value of SLP exceeding 3 (equivalent to p < 0.001) for association with hypertension in previous study showing the SLP
obtained in the new sample

Symbol SLP in original
sample

Name SLP in new
sample

SLP in combined
sample

LDLR 50.08 Low Density Lipoprotein Receptor 87.28 156.81

G6PC 5.55 Glucose-6-Phosphatase Catalytic Subunit 0.67

SULT1E1 4.63 Sulfotransferase Family 1E Member 1 0.57

SLC35G1 4.38 Solute Carrier Family 35 Member G1 −0.06

PLA2G5 4.15 Phospholipase A2 Group V 1.05

CMTM7 3.99 CKLF Like MARVEL Transmembrane Domain
Containing 7

−0.34

DEFB131A 3.66 Defensin Beta 131A 0.43

OTULIN 3.62 OTU Deubiquitinase With Linear Linkage Specificity −1.10

FAM122C 3.51 Family With Sequence Similarity 122C 0.36

CMIP 3.48 C-Maf Inducing Protein 0.02

EIF4B 3.45 Eukaryotic Translation Initiation Factor 4B 0.52

PPP2R3B 3.41 Protein Phosphatase 2 Regulatory Subunit B“Beta 0.17

HNRNPAB 3.38 Heterogeneous Nuclear Ribonucleoprotein A/B −0.30

PREB 3.37 Prolactin Regulatory Element Binding 0.93

PEX12 3.36 Peroxisomal Biogenesis Factor 12 −0.12

FAM167A 3.35 Family With Sequence Similarity 167 Member A 0.84

ABCG5 3.31 ATP Binding Cassette Subfamily G Member 5 5.08 6.95

ABCD1 3.26 ATP Binding Cassette Subfamily D Member 1 0.18

PRAF2 3.21 PRA1 Domain Family Member 2 −0.45

CTHRC1 3.16 Collagen Triple Helix Repeat Containing 1 −0.33

SLC25A37 3.14 Solute Carrier Family 25 Member 37 0.26

CT62 3.11 Cancer/Testis Associated 62 0.41

L1TD1 3.09 LINE1 Type Transposase Domain Containing 1 0.02

PIK3R6 3.09 Phosphoinositide-3-Kinase Regulatory Subunit 6 1.16

FOXO3B 3.08 Forkhead Box O3B −0.24

FAM47A 3.06 Family With Sequence Similarity 47 Member A 0.19

GCK 3.04 Glucokinase 1.42

MAPKAPK2 3.02 MAPK Activated Protein Kinase 2 −0.21

PCSK9 −10.42 Proprotein Convertase Subtilisin/Kexin Type 9 −29.08 −43.57

IFITM5 −5.86 Interferon Induced Transmembrane Protein 5 0.44

ANGPTL3 −5.67 Angiopoietin Like 3 −7.48 −12.68

APOC3 −4.89 Apolipoprotein C3 −11.01 −13.19

PPP1R3G −4.25 Protein Phosphatase 1 Regulatory Subunit 3G −0.67

TBC1D8 −3.93 TBC1 Domain Family Member 8 −0.90

CTXN2 −3.91 Cortexin 2 −0.64

NPC1L1 −3.7 NPC1 Like Intracellular Cholesterol Transporter 1 −3.42 −7.60

ANGPTL4 −3.66 Angiopoietin Like 4 −1.95 −4.79

SNX17 −3.62 Sorting Nexin 17 −0.73

SV2B −3.29 Synaptic Vesicle Glycoprotein 2B 0.23

ITM2B −3.23 Integral Membrane Protein 2B 0.40

UBR4 −3.23 Ubiquitin Protein Ligase E3 Component N-Recognin 4 0.82

TXNL4A −3.22 Thioredoxin Like 4A 0.11

TTR −3.16 Transthyretin −0.38

GFPT1 −3.1 Glutamine--Fructose-6-Phosphate Transaminase 1 0.09

APPBP2 −3.08 Amyloid Beta Precursor Protein Binding Protein 2 0.29

CRYZL1 −3.06 Crystallin Zeta Like 1 −0.70

HLA-A 3.01 Major Histocompatibility Complex, Class I, A 0.46

SLPs significant after correction for multiple testing are shown in bold. For all genes achieving an absolute value of SLP exceeding 2.97 and for GUCY1B1, the
SLP obtained for combined sample is also shown
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While all these categories of variant are associated with increased
risk of hyperlipidaemia, the category “Splice region” is actually
associated with reduced risk, with OR of 0.82 and SLP of −19.81.
This result is driven by 19:11120527 G > A (rs72658867), which has
MAF 0.0126 in controls and 0.0096 in cases and which has
previously been reported to lower HDL cholesterol and to be
protective against coronary artery disease [16].
Table 2B shows the results for ABCG5 and it can be seen that

although a few hundred participants carry LOF variants these do
not appear to have any strong effect on hyperlipidaemia risk with
an OR of 1.2 which is not statistically significant. Instead, the signal
for this gene seems to be driven largely by the “Splice region
category”, with OR of 1.44 and SLP of 6.20. Although there are 74
variants in this category, the result seems to be mainly driven by
three variants which are somewhat commoner in cases,
2:43813316 A > C (rs114780578), 2:43822939 G > C (rs370895243)
and 2:43825025 A > T (rs201469377). The category “Protein
altering” yields an OR of 1.05 and an SLP of 2.07 but there is
no suggestion that nonsynonymous variants recognised as more
severe by SIFT or PolyPhen are associated with increased
risk. This result may be largely driven by 2:43813208 T > C
(rs140374206) which had frequency 0.006049 in controls and

0.006246 in cases and which has previously been reported to be
associated with raised non-HDL cholesterol and increased risk of
gallstones [17].
Variants in PCSK9 (SLP=−48.57), NPC1L1 (SLP=−7.60) and

APOC3 (SLP=−13.19) are protective against hyperlipidaemia and
their results detailed are shown in Table 3. As can be seen in
Table 3A, LOF variants in PCSK9 reduce hyperlipidaemia risk, with
OR of 0.39. On average, protein altering variants in general have a
mild effect on lowering risk, with OR of 0.92, but those which are
additionally annotated as deleterious by SIFT have a larger effect,
with OR 0.69, whereas there is no additional effect associated
with being characterised as possibly or probably damaging by
PolyPhen.
The results in Table 3B show that the overall signal for NPC1L1 is

mainly due to LOF variants, with OR 0.64 and SLP of −5.20, with
possibly some additional contribution from variants annotated as
deleterious by SIFT, which have OR 0.89 and SLP −1.76. A similar
scenario is seen for APOC3 in Table 3C, with LOF variants have OR
of 0.68 and SLP of −11.22 but with other categories not showing
clear evidence of association.
Variants in ANGPTL3 (SLP=−12.68) and ANGPTL4 (SLP=−4.79)

also appear to be protective against hyperlipidaemia, although the

Table 2. Results from logistic regression analysis showing the contribution different categories of variant within each gene make to risk of
hyperlipidaemia

A

Results for LDLR.

Variant category Number of
separate
variants

Total count
in controls

Mean count
in controls

Total
count in
cases

Mean count
in cases

OR (95%
confidence
interval)

SLP

Intronic, etc 1116 62789 0.172651 18763 0.176854 1.03 (1.01–1.04) 2.80

5 prime UTR 46 172 0.000473 44 0.000415 0.89 (0.63–1.26) −0.30

Synonymous 283 5947 0.016353 1639 0.015449 0.93 (0.88–0.98) −2.02

Splice region 81 15506 0.042638 4022 0.037911 0.82 (0.79–0.86) −19.81

3 prime UTR 27 1248 0.003433 342 0.003225 0.95 (0.84–1.08) −0.39

Protein altering 624 11496 0.031611 4287 0.040409 1.12 (1.06–1.19) 4.43

Indel, etc 6 2 0.000005 17 0.000160 25.66 (5.67–116.17) 8.96

LOF 44 16 0.000044 97 0.000914 23.48 (13.63–40.46) 30.39

SIFT deleterious 329 1736 0.004774 1148 0.010821 1.44 (1.26–1.65) 7.15

PolyPhen possibly
damaging

123 964 0.002651 472 0.004449 1.27 (1.10–1.46) 3.16

PolyPhen probably
damaging

197 1299 0.003572 898 0.008465 1.61 (1.39–1.86) 9.80

B

Results for ABCG5.

Intronic, etc 1370 30573 0.084068 9093 0.085713 1.01 (0.99–1.03) 0.49

5 prime UTR 77 517 0.001422 158 0.001489 0.99 (0.83–1.19) −0.03

Synonymous 222 3828 0.010526 1218 0.011481 1.04 (0.97–1.11) 0.52

Splice region 74 674 0.001854 271 0.002555 1.44 (1.24–1.66) 6.20

3 prime UTR 7 18 0.000049 2 0.000019 0.35 (0.08–1.56) −0.55

Protein altering 520 17153 0.047166 5476 0.051619 1.05 (1.01–1.09) 2.07

Indel, etc 1 0 0.000000 2 0.000019 1.29

LOF 58 368 0.001012 128 0.001207 1.20 (0.98–1.48) 1.12

SIFT deleterious 290 5381 0.014797 1831 0.017259 1.08 (0.96–1.23) 0.69

PolyPhen possibly
damaging

96 2104 0.005785 694 0.006542 0.98 (0.85–1.13) −0.10

PolyPhen probably
damaging

161 2321 0.006382 813 0.007663 1.05 (0.92–1.21) 0.33

Odds ratios for each category are estimated including principal components and sex as covariates
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result for ANGPTL4 is not exome-wide significant. Nevertheless, as
the products of both genes modulate the activity of lipoprotein
lipase and as inactivating variants in both genes have previously
been shown to be associated with hypolipidaemia, it seems
appropriate to present the detailed results for both, as shown in
Table 4 [18, 19]. For ANGPTL3 the signal is again mainly due to LOF
variants, with OR of 0.59 and SLP of −8.36, but it can be seen that

splice region variants also have OR of 0.69 and SLP of −4.70. This
latter result is driven by 1:62598067 T > C (rs372257803) which has
MAF 0.00100 in controls and 0.00069 in cases and which has been
previously reported to be associated with lower non-HLD
cholesterol and triglycerides [20]. The results for ANGPTL4 are
not statistically significant after correction for multiple testing
but it can be seen that they are consistent with the possibility that

Table 3. Results of variant category analysis for PCSK9, NPC1L1 and APOC3

A

Results for PCSK9.

Variant category Number of
separate
variants

Total count
in controls

Mean count
in controls

Total
count in
cases

Mean count
in cases

OR (95%
confidence
interval)

SLP

Intronic, etc 695 13345 0.036694 4024 0.037926 1.03 (1.00–1.07) 1.21

5 prime UTR 48 657 0.001807 186 0.001753 0.98 (0.83–1.16) −0.09

Synonymous 230 16789 0.046165 4999 0.047120 0.99 (0.96–1.03) −0.15

Splice region 55 698 0.001919 223 0.002102 1.06 (0.91–1.24) 0.36

3 prime UTR 40 5701 0.015676 1719 0.016206 1.02 (0.97–1.08) 0.34

Protein altering 537 7905 0.021737 1891 0.017824 0.92 (0.86–0.98) −1.93

Indel, etc 10 2620 0.007205 758 0.007145 1.00 (0.92–1.08) −0.03

LOF 72 862 0.002370 94 0.000886 0.39 (0.31–0.48) −17.41

SIFT deleterious 244 3354 0.009223 655 0.006174 0.69 (0.59–0.81) −5.46

PolyPhen possibly
damaging

70 616 0.001694 177 0.001668 1.18 (0.98–1.43) 1.12

PolyPhen probably
damaging

157 2408 0.006621 475 0.004477 1.01 (0.85–1.21) 0.05

B

Results for NPC1L1.

Intronic, etc 1197 30977 0.085178 9035 0.085162 1.00 (0.97–1.02) −0.13

5 prime UTR 24 853 0.002346 275 0.002592 1.14 (0.99–1.31) 1.19

Synonymous 442 11147 0.030651 3218 0.030333 0.98 (0.94–1.02) −0.54

Splice region 74 605 0.001664 164 0.001546 0.94 (0.79–1.13) −0.30

3 prime UTR 31 954 0.002624 282 0.002659 0.96 (0.84–1.10) −0.25

Protein altering 926 28236 0.077642 7764 0.073184 0.98 (0.96–1.00) −0.94

Indel, etc 13 43 0.000118 16 0.000151 1.31 (0.72–2.38) 0.44

LOF 100 661 0.001818 123 0.001160 0.64 (0.53–0.78) −5.20

SIFT deleterious 507 8949 0.024607 2366 0.022302 0.89 (0.80–0.98) −1.76

PolyPhen possibly
damaging

143 5970 0.016416 1532 0.014441 1.00 (0.90–1.11) −0.01

PolyPhen probably
damaging

325 2798 0.007694 817 0.007701 1.15 (1.01–1.30) 1.52

C

Results for APOC3.

Intronic, etc 134 10194 0.028031 2817 0.026555 0.95 (0.91–1.01) −1.13

5 prime UTR 2 1 0.000003 1 0.000009 3.51 (0.20–62.29) 0.4

Synonymous 31 207 0.000569 48 0.000452 0.81 (0.59–1.12) −0.7

Splice region 11 119 0.000327 37 0.000349 1.06 (0.72–1.55) 0.11

3 prime UTR 33 199 0.000547 56 0.000528 1.01 (0.75–1.37) 0.03

Protein altering 69 568 0.001562 136 0.001282 1.06 (0.77–1.45) 0.13

Indel, etc 2 48 0.000132 8 0.000075 0.58 (0.27–1.25) −0.81

LOF 10 1993 0.005480 402 0.003789 0.68 (0.61–0.76) −11.22

SIFT deleterious 30 416 0.001144 89 0.000839 0.47 (0.22–1.02) −1.29

PolyPhen possibly
damaging

14 40 0.000110 18 0.000170 2.77 (1.15–6.68) 1.69

PolyPhen probably
damaging

10 325 0.000894 66 0.000622 1.35 (0.63–2.92) 0.37
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LOF variants lower hyperlipidaemia risk modestly, with OR 0.78
and SLP −1.84.

DISCUSSION
As mentioned above, this dataset has been used for previous two
studies testing for association between exome sequence variance
with a very large number of phenotypes, which for convenience
we can refer to as the Regeneron and AstraZeneca studies [2, 3].
The Regeneron study carried out a variety of single variant and
gene-wise burden tests on 3994 health-related traits to produce a
total of about 2.3 billion tests, yielding a critical p value of
2.18 × 10−11 (corresponding to SLP= 10.66)) and reported
8865 significant associations which are presented in their
Supplementary Data 2 [3]. This reports significant gene-wise
associations of measured cholesterol and/or LDL levels for all
seven of the genes implicated in the present study. However the
only genes reported to be associated with clinical hyperlipidae-
mia, as indicated by taking lipid lowering medication or having a
hyperlipidaemia diagnosis recorded, were LDLR, PCSK9 and APOC3.
For the AstraZeneca study, all gene-wise and variant-wise
associations with 17,361 binary and 1419 quantitative phenotypes
are reported on the AstraZeneca PheWAS Portal at https://
azphewas.com/ [2]. This was accessed to find the most significant

p value for any analysis of each of these genes with the phenotype
which on the website is labelled “Union#E78#E78 Disorders of
lipoprotein metabolism and other lipidaemias” and Table 5 shows
the results obtained compared with those for the current study.
This shows that, for every gene, the AstraZeneca results provide

Table 4. Results of variant category analysis for ANGPTL3 and ANGPTL4

A

Results for ANGPTL3.

Variant category Number of
separate
variants

Total count
in controls

Mean count
in controls

Total
count in
cases

Mean count
in cases

OR (95%
confidence
interval)

SLP

Intronic, etc 347 8024 0.022064 2585 0.024370 1.02 (0.96–1.08) 0.29

5 prime UTR 25 3604 0.009909 1104 0.010408 0.99 (0.87–1.14) −0.04

Synonymous 103 4397 0.012091 1322 0.012461 0.96 (0.86–1.08) −0.28

Splice region 22 803 0.002208 161 0.001518 0.69 (0.58–0.82) −4.70

3 prime UTR 34 2019 0.005550 560 0.005280 0.97 (0.88–1.06) −0.32

Protein altering 265 10476 0.028806 2945 0.027759 0.94 (0.85–1.03) −0.77

Indel, etc 6 93 0.000256 20 0.000189 0.69 (0.42–1.15) −0.84

LOF 56 835 0.002296 143 0.001348 0.59 (0.49–0.70) −8.36

SIFT deleterious 137 6886 0.018935 1930 0.018192 0.97 (0.86–1.08) −0.26

PolyPhen possibly
damaging

41 7682 0.021123 2175 0.020501 1.07 (0.94–1.23) 0.54

PolyPhen probably
damaging

69 708 0.001947 193 0.001819 1.00 (0.81–1.24) 0.01

B

Results for ANGPTL4.

Intronic, etc 354 13934 0.038315 4030 0.037985 1.00 (0.96–1.03) −0.04

5 prime UTR 38 1469 0.004039 406 0.003827 0.95 (0.83–1.08) −0.38

Synonymous 146 7038 0.019353 2036 0.019191 1.03 (0.97–1.09) 0.47

Splice region 28 1623 0.004463 482 0.004543 1.01 (0.93–1.09) 0.11

3 prime UTR 41 3410 0.009375 939 0.008852 0.93 (0.84–1.03) −0.77

Protein altering 321 9388 0.025814 2634 0.024828 0.97 (0.90–1.05) −0.34

Indel, etc 1 2 0.000005 0 0.000000 0

LOF 43 528 0.001452 121 0.001141 0.78 (0.64–0.96) −1.84

SIFT deleterious 174 3928 0.010801 985 0.009284 0.89 (0.75–1.05) −0.83

PolyPhen possibly
damaging

52 2618 0.007199 783 0.007380 1.08 (0.97–1.21) 0.82

PolyPhen probably
damaging

113 3211 0.008829 808 0.007616 1.01 (0.84–1.22) 0.04

Table 5. Comparison of results from current study to those reported
for the AstraZeneca study

Gene SLP for combined sample
in current study

SLP for AstraZeneca
study

LDLR 156.81 70.73

ABCG5 6.95 3.94

PCSK9 −43.57 −17.12

NPC1L1 −7.60 5.21

APOC3 −13.19 −12.47

ANGPTL3 −12.68 −11.66

ANGPTL4 −4.79 −2.08

The results for the AstraZeneca study are displayed as the equivalent SLP for
the most significant result reported for that gene with the phenotype
“Union#E78#E78 Disorders of lipoprotein metabolism and other lipidaemias”
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less support for association than the present study and in
particular both ABCG5 and NPC1L1 would be regarded as
exome-wide significant in the present study. While, these two
genes were both previously shown to influence lipid levels, the
current study implicates variants in these genes as impacting the
risk of developing clinically relevant hyperlipidaemia, suggesting
that such variants could be included when drawing up genetically
informed individual risk profiles.
Of the four genes in which variants impairing function are

associated with reduced risk of hyperlipidaemia, two are already
established drug targets. The product of NPC1L1, which is essential
for intestinal sterol absorption, is the molecular target of
ezetimibe, a cholesterol absorption inhibitor that lowers blood
cholesterol [21]. The product of ANGPTL3 is the target of
evinacumab, a human monoclonal antibody designed to treat
hypercholesterolaemia [18, 22]. The therapeutic role of ANGPTL3
inhibition has recently been reviewed [23]. The well-established
evidence for PCSK9 and APOC3 variants as being protective is
fuelling research into developing strategies to find novel ways to
antagonise PCSK9 and lower apoC-III [24, 25].
The detailed analyses of variant categories provide insights into

the magnitude of effects of different kinds of variant in different
genes, along with information about their cumulative frequencies.
One feature of note is the heterogeneity of effects between genes.
For example, for LDLR nonsynonymous variants classified as
probably damaging by PolyPhen are more strongly implicated and
have a larger effect size than variants classified as deleterious by
SIFT, but for PCSK9 this is not the case and only SIFT deleterious
variants have an effect. For ANGPTL3 neither SIFT nor PolyPhen is
helpful for identifying risk-associated variants. For most genes LOF
variants have the largest effect size but this is not the case for
ABCG5 in which LOF variants do not clearly have any effect and
the signal is instead driven by specific splice region variants. This
inconsistency of effects of different methods for weighting across
different genes has been noted in a previous study [26]. A total of
43 different methods of predicting the pathogenic effect of
nonsynonymous variants were compared across ten different
genes associated with common phenotypes, including LDLR,
PCSK9 and ANGPTL3. These results showed that while SIFT and
PolyPhen performed reasonably well for some genes, other
methods were better for other genes. However no single
prediction method performed consistently well across all genes.
Using additional prediction methods would introduce complica-
tions around correcting for multiple testing and interpretation of
results but it seems that there is no single weighting system which
would be optimal for all genes.
Using biobank data to identify genes influencing complex traits

contrasts with the strategy of concentrating on individuals and
families with extreme phenotypes who may harbour variants with
quasi-Mendelian effects [27]. Ascertaining cases from biobank
data can yield large sample sizes but with less severe and less
well-defined phenotypes. The present study quantifies the effect
on clinically relevant hyperlipidaemia risk of naturally occurring
variation within the identified genes, along with their cumulative
frequencies in a sample broadly representative of the population.
The fact that people with severe, early onset cardiovascular
disease might have been less likely to survive to be recruited into
UK Biobank may mean that the magnitude of effect of some
variants on risk is somewhat underestimated, but this does not
seem likely to be a major consideration. Variants with large effect
sizes are very rare. Around 10,000 participants carry a variant in a
category with a moderate effect on risk, i.e. with OR below 0.7 or
above 1.4, but it is debatable how relevant such effects would be
for quantifying individual risk in the context of personalised
medicine. Additionally, we may note that, although formal
analyses were not carried out, the individual allele frequencies
of these variants would be too low to have an appreciable effect
of any common variants which might be in linkage disequilibrium

with them, such as could be detected in genome-wide association
studies. It seems that the main value of identifying coding variants
associated with risk is to clarify the pathophysiological mechan-
isms influencing risk of hyperlipidaemia in order to support the
development of novel therapeutic approaches.

DATA AVAILABILITY
The raw data is available on application to UK Biobank. Detailed results with variant
counts cannot be made available because they might be used for subject
identification. Relevant derived variables including principal components and variant
annotations will be deposited in UK Biobank. Scripts and software used to carry out
the analyses are available at https://github.com/davenomiddlenamecurtis.
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