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Abstract

Change-point analysis has been successfully applied to detect changes in multivariate

and high-dimensional data streams over time. However, many existing methods did not

consider the additional structures that data may possess. In this thesis, we study the

problem of high-dimensional change-point estimation under structural assumptions. We

mainly study two structures: group sparsity structure and network structure. For group

sparsity structure, we assume that coordinates in mean vectors are naturally divided into

groups and changes only occur in a small subset of groups. We propose groupInspect

which uses the group information to estimate a projection direction so as to aggregate

information across the component series to estimate the change-point in the mean under

this structure. For network structure, we assume that coordinates are connected into a

network, and changes start from a source coordinate and then spread out to the neigh-

bouring coordinates. We propose SpreadDetect to estimate the initial time of change as

well as the location of the source coordinate of change. For both algorithms, we provide

theoretical guarantees on our proposed estimators. We also demonstrate the performance

of the two algorithms using simulation studies and real-data examples.



Impact Statement

Streaming data has become an increasingly important data type since the advent of

the Internet of Things. In many applications, one is interested in estimating changes in

the data distribution in the data stream, for example, the amount of greenhouse gases in

the atmosphere, fMRI imaging data and stock prices. Many methods have been proposed

to estimate the changes in distributions for high-dimensional data. A common assumption

is sparsity where the changes only occur in a small subset of coordinates. However, this

assumption often does not capture the full structure of the data. In this thesis, we propose

change-point estimation algorithms that exploit two additional structures.

The first structure is the group sparsity structure (in Chapter 3) which assumes that

the coordinates are clustered into groups and only a small subset of the groups may

experience changes. We propose a new algorithm to estimate the change in the mean

vector under this structure which first seeks an optimal projection direction to project

the data into a one-dimensional series and then locate the change. The algorithm can be

combined with existing top-down methods to estimate multiple change-points recursively.

We provide theoretical guarantees on the change-point location estimator under both

single and multiple change-point cases. We also extend the theory to settings where data

follows sub-Gaussian distributions or has temporal dependence. The simulation studies

also demonstrate the good performance over other existing methods under this group

sparsity assumption. In addition, this algorithm can be used to solve real-world problems

when data exhibit group sparsity structure. This includes financial data streams where

changes are often grouped by industry sectors, and functional magnetic resonance imaging

data where temporal changes are clustered by voxel locations within the brain. In this

thesis, we also present a real-world example with an S&P 500 stock price dataset.

The second structure we consider in this thesis is the network structure (Chapter 4).

Although there are many existing methods for change-point analysis with network struc-

tures, we consider a different setting of spreading change in this work. To be more specific,

the coordinates in the mean vector are connected into a network and initially, the change

occurs in a single coordinate (source coordinate) and then spreads out to the neighbour-
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ing coordinates. As the change is quite sparse and the signal is weak initially, existing

methods may not be able to detect it. We proposed a new algorithm, SpreadDetect,

which can consistently estimate both the initial time of change and the location of the

source coordinate. We also provide the theoretical guarantees for the estimators and per-

form simulation studies to show the good performance of our method. This spreading

assumption is also of practical use, for example, locating the initial time point and the

individual (source coordinate) in the spread of infectious disease between individuals over

time. We also provide an example by applying our method to a US COVID-19 weekly

excess death data.
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Chapter 1

Introduction

Modern applications routinely generate time-ordered high-dimensional datasets, where

many covariates are simultaneously measured over time. Examples include climate data

that tracks the amount of greenhouse gases in the atmosphere (Reeves et al., 2007);

(Itoh and Kurths, 2010), wearable technologies recording the health state of individuals

from multi-sensor feedbacks (Hanlon and Anderson, 2009), internet traffic data collected

by tens of thousands of routers (Peng, Leckie and Ramamohanarao, 2004) and functional

Magnetic Resonance Imaging (fMRI) scans that record the time evolution of blood oxygen

level dependent (BOLD) chemical contrast in different areas of the brain (Aston and

Kirch, 2012). The explosion in the number of such high-dimensional data streams calls

for methodological advances for their analysis.

Change-point analysis is an essential statistical technique used in identifying abrupt

changes in a time series. Time points at which such abrupt change occurs are called

‘change-points’. By estimating the location of change-points, we can divide the time

series into shorter segments that can be analysed using methods designed for stationary

time series. Moreover, in many applications, the estimated change-points indicate specific

events that are themselves of great interest. In the examples mentioned in the previous

paragraph, they can be used to raise alarms about certain climate changes, abnormal

health events, detect distributed denial of service attacks on the network and pinpoint

the onset of certain brain activities.
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Classical change-point analysis focuses on univariate time series. The current state-

of-art methods including Killick, Fearnhead and Eckley (2012); Frick, Munk and Sieling

(2014); Fryzlewicz (2014). However, classical univariate change-point methods are often

inadequate for high-dimensional datasets that are routinely encountered in modern appli-

cations. When applied componentwise, they are often sub-optimal as signals can spread

over many components. Recently, several methodologies have been proposed to test and

estimate change-points in high-dimensional settings by borrowing strength across multiple

coordinates to detect and localise change-points at a higher accuracy than would otherwise

be possible using univariate change-point algorithms alone. These methods include ℓ2 or

ℓ∞ aggregation of the cumulative sums (CUSUMs) test statistics across different com-

ponents proposed by Horváth and Hušková (2012); Jirak (2015), the Sparsified Binary

Segmentation algorithm by Cho and Fryzlewicz (2015), the double CUSUM algorithm of

Cho (2016) and a projection-based approach by Wang and Samworth (2018).

However, in order to handle the high-dimensional nature of the problem, the mul-

tivariate or high-dimensional methods mentioned in the previous paragraph often make

simplifying assumptions such as all coordinates are exchangeable or that changes are

located in a sparse subset of coordinates. In reality, in many applications, there are ad-

ditional structures in the change-points that one can exploit to improve the estimation

accuracy. Examples include group structures where coordinates form natural groups and

changes tend to occur within the same group (Wang et al., 2021), and community struc-

tures where nodes belong to different (unknown) communities and may switch community

at the change-point (Wang, Yu and Rinaldo, 2021).

In this thesis, we focus on the high-dimensional change-point estimation problem under

structural assumptions. In Chapter 2, we first review some relevant literature on change-

point analysis, including classic offline change-point estimation procedures, recent de-

velopments on high-dimensional change-point analysis and online change-point detection

problems, as well as high-dimensional problems with structural assumptions. In Chap-

ter 3, we study the group sparsity structure that coordinates are naturally divided into

groups and only a small subset will undergo changes. We propose a new change-point esti-
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mation procedure, named groupInspect which uses the pre-specified group information to

estimate a projection direction and then locate the change-point by applying a univariate

change-point estimation method to the projected series. The algorithm can be combined

with a top-down method to identify multiple change-points. In Chapter 4, we consider

the structure where the coordinates represent nodes of a graph/network and the change

initially appears in one coordinate (the source coordinate of change) and then spreads

across the network gradually over time. We propose a method called SpreadDetect, that

can estimate both the source coordinate and the initial change-point time. The idea is

to aggregate the CUSUM statistics across multiple coordinates with suitable time lags

according to the given network structure information and we propose both quadratic and

linear test statistics.

1.1 Notations

We close this chapter by introducing the notations used in this thesis. For n ∈ N, we write

[n] = {1, . . . , n}. For a vector v = (v1, . . . , vn)
⊤ ∈ Rn, we define ∥v∥0 =

∑n
i=1 1{vi ̸=0},

∥v∥∞ = maxi∈[n] |vi| and ∥v∥q =
{∑n

i=1(vi)
q
}1/q

for any positive integer q, and let Sn−1 =

{v ∈ Rn : ∥v∥2 = 1}. For a matrix A ∈ Rp×n, we write ∥A∥∗ =
∑min(p,n)

i=1 σi(A) for its

nuclear norm, ∥A∥op = maxi σi(A) for its operator norm, where σ1, . . . , σmin(p,n)(A) are

its singular values. We write ∥A∥F =
√∑n

i=1

∑p
j=1A

2
ij for its Frobenius norm.

For any S ⊆ [n], we write vS for the |S|-dimensional vector obtained by extracting

coordinates of v in S. For a matrix A ∈ Rp×n, J ∈ [p] and S ∈ [n], we write AJ,S for the

submatrix obtained by extracting rows and columns of A indexed by J and S respectively.

When S = [n], we abbreviate AJ,[n] by AJ . When S = {t} is a single element set, we

slightly abuse notation and write AJ,t instead of AJ,{t}.

We use ◦ to denote the Hadamard product. Given two sequences (an)n∈N and (bn)n∈N

such that an, bn > 0 for all n, we write an ≲ bn (or equivalently bn ≳ an) if an ⩽ Cbn

for some universal constant C. We denote j = ⌈p⌉ if j is the smallest integer such that

j ⩾ p and denote j = ⌊p⌋ if j is the largest integer such that j ⩽ p. We write an ≍ bn if

0 < lim infn→∞ |an/bn| ⩽ lim supn→∞ |an/bn| <∞.

9



Chapter 2

Literature review

In this chapter, we review relevant literature in change-point analysis, as well as other

high-dimensional problems where structural assumptions can also be exploited to improve

statistical inference. In change-point analysis, we will mainly emphasise on the literature

on offline change-point estimation as this is also the key focus of this thesis. We start

by revisiting some classic one-dimensional estimation procedures and then review some

more recent developments in high-dimensional change-point settings. In addition, we

will also give a brief overview of the literature on the online change-point problems.

Finally, we conclude this chapter by discussing some other high-dimensional problems

where structural assumptions are used to improve inference.

2.1 Univariate offline change-point estimation prob-

lem

In the offline change-point analysis, we usually have access to the entire dataset prior

to performing statistical analysis. In the general setup of the problem, we are presented

with a data sequence X = (X1, . . . , Xn), such that for some (unknown) time points

1 ⩽ z1 < z2 < · · · < zν ⩽ n−1, the marginal distributions of the elements in the sequence

satisfy

Xt ∼ Fi, for zi + 1 ⩽ t ⩽ zi+1.
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for i ∈ {0, . . . , ν} (by convention, we set z0 = 0 and zν+1 = n). We denote fi as the

density of Fi. The goal is to estimate z1, . . . , zν given data X.

2.1.1 CUSUM-based approaches

In this subsection, we assume that p = 1. In general, there are two types of methods

for univariate change-point estimation. The first is based on cumulative sum (CUSUM)

statistic. For a data sequence X = (Xt)t∈[n], its CUSUM transformation at time t between

the segment (s, e] (for s < t < e) is defined as:

T s,et (X) =

√
(t− s)(e− t)

e− s

(
1

e− t

e∑
r=t+1

Xt −
1

t− s

t∑
r=s+1

Xt

)
(2.1)

=

√
e− s

(t− s)(e− t)

(
t− s
e− t

e∑
r=s+1

Xt −
t∑

s=1

Xt

)
(2.2)

Equation (2.1) and (2.2) are two commonly used equivalent ways of defining the CUSUM

transformation. If X1, . . . , Xn are independent and identically distributed normal random

variables, |T 0,n
t (X)| can be viewed as the generalised likelihood ratio statistic for testing

the null hypothesis that there is no change against the alternative that there is a change

in mean at time t. In the single change-point case, we can detect a change-point if

max1⩽t⩽n−1 |T 0,n
t (X)| is above a certain threshold and consequently estimate its location

by the location of the maximum.

While the above CUSUM-based method is designed for estimating a single change-

point, it can be applied in conjunction with a top-down approach to estimate multiple

change-points recursively. Binary Segmentation (BS) proposed by Scott and Knott (1974)

is one of the most widely used top-down method for locating multiple change-points. It

starts by applying a single change-point procedure to the entire data sequence (Xt)t∈(0,n]

to test the existence of a change-point and, if present, estimate its location ẑ. It then

splits the original data into two subsequences (Xt)t∈(0,ẑ] and (Xt)t∈(ẑ,n] and repeats the

same process, until no more change-points can be detected in all the subsegments (see

Algorithm 1 for a pseudocode).

However, it should be noted that when used in conjunction with the BS approach to
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Algorithm 1: Pseudocode for binary segmentation

Input: data sequence X = (Xt)t∈[n], a single change-point test ψ : R∗ → {0, 1}

and a single change-point estimator η : R∗ → N

1 Set Ẑ ← ∅

2 Function BS(s, e):

3 if ψ((Xt)t∈(s,e]) = 1 then

4 ẑ ← η((Xt)t∈(s,e]) + s

5 Ẑ ← Ẑ ∪ {ẑ}

6 Run recursively BS(s, ẑ) and BS(ẑ, e).

7 Run BS(0, n)

Output: Ẑ

estimate multiple change-points, the CUSUM estimator is applied in a misspecified way.

This is because the mean of the CUSUM statistics (T s,et )t∈(s,e) is unimodal peaking at the

true change-point when there is only a single change-point present in the segment (s, e],

but when more than one change-points are present, neighbouring change-points may offset

each other in CUSUM calculation and the series may have a much less well-defined peak

at each of the true change-point locations. Such misspecification can lead to the sub-

optimality of BS in some scenarios. Figure 2.1 gives an illustration of this situation. We

randomly generated 300 independent random variables from a normal distribution with

a change in mean at t = 120, 150, 180. From the dotted curve, it can be seen that none

of the true change-points can be identified if we compute CUSUM statistics on the entire

series. However, if we look at the CUSUM curve calculated from a short interval around

150, the CUSUM statistics do appear to have an obvious peak at the true change-point

t = 150.

To remedy the problem of BS mentioned above, Fryzlewicz (2014) proposed a multiple

change-point estimation procedure, named Wild Binary Segmentation (WBS). The main

idea is that instead of computing global CUSUM statistics from the entire data sequence,

we first randomly draw a large number of intervals. Then for each interval, we apply

12
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Figure 2.1: Comparisons of CUSUM statistics calculated from the entire data series

(the dotted line) and a short window around t = 150 (the green curve). The dotted line

represents the absolute CUSUM statistics computed on the entire data series used for

binary segmentation. The true change points at 120, 150 and 180 are shown with vertical

dashed lines.

a single change-point algorithm to find a candidate change-point, which for a CUSUM-

based approach is the time point at which the absolute CUSUM statistic is maximise. We

then pick the best candidate change-point to be the one where the associated test statistic

is maximised. Provided that the test statistic associated with the best candidate change-

point is above a certain threshold, we admit it as an estimated change-point. We then

split the data from this point and repeat the process within each segment until no more

change-point can be detected (see Algorithm 2 for a pseudocode). By choosing M , the

number of random intervals, sufficiently large, it is guaranteed that with a high probability,

there exists an interval capturing each of the true change-points well inside its interior.

Theoretically, a choice of M ≍ 1/τ 2 is sufficient, where τ := mini∈{0,...,ν} n
−1(zi+1 − zi)
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(cf. proof of Theorem 3.5).

Algorithm 2: Pseudocode for wild binary segmentation

Input: data sequence X = (Xt)t∈[n], number of intervals M ∈ N, a single

change-point test statistic ψ : R∗ → R with a threshold λ ∈ R, and a

single change-point estimator η : R∗ → N

1 Set Ẑ ← ∅

2 Draw M pairs of integers (s1, e1), . . . , (sM , eM) uniformly at random from the set

{(ℓ, r) ∈ N2 : 0 ⩽ ℓ < r ⩽ n}.

3 Function WBS(s, e):

4 SetMs,e = {m ∈ [M ] : s ⩽ sm < em ⩽ e}

5 Compute Rm ← ψ((Xt)t∈(sm,em]) for each m ∈Ms,e

6 if maxm∈Ms,e Rm > λ then

7 m̂← argmaxm∈Ms,e
Rm

8 ẑ ← η((Xt)t∈(sm̂,em̂]) + sm̂

9 Ẑ ← Ẑ ∪ {ẑ}

10 Run recursively WBS(s, ẑ) and WBS(ẑ, e).

11 Run WBS(0, n)

Output: Ẑ

However, we remark that when applied with a CUSUM-based estimator, WBS is

choosing the interval with the maximum CUSUM statistic, and is not guaranteed that

the best candidate change-point belongs to an interval with a single true change-point.

If the interval contains more than one true change-points, it is still possible that the

estimated change-point may be away from any of the true change-points therein. To

guarantee that the chosen interval contains exactly one change-point, Baranowski et al.

(2019) further extended the idea of WBS and proposed the Narrowest-Over-Threshold

(NOT) algorithm. NOT also starts by drawing a large number of intervals and finding

the point with maximum CUSUM statistic within each interval. Unlike WBS, when

combined with the CUSUM-based estimator, it then searches for all the intervals which

14



have maximum absolute CUSUM statistics above a certain level and then picks up the

narrowest one to estimate the change-point. As NOT focuses on the narrowest intervals

in each step, it is guaranteed with a high probability that the interval we finally choose for

estimation at each recursion contains exactly one change-point (cf. proof of 3.5, proof of

Baranowski et al. (2019, Theorem 1)) . The generic form of NOT is stated in Algorithm 3.

Algorithm 3: Pseudocode for narrowest-over-threshold algorithm

Input: data sequence X = (Xt)t∈[n], number of intervals M ∈ N, a single

change-point test statistic ψ : R∗ → R with a threshold λ ∈ R, and a

single change-point estimator η : R∗ → N

1 Set Ẑ ← ∅

2 Draw M pairs of integers (s1, e1), . . . , (sM , eM) uniformly at random from the set

{(ℓ, r) ∈ N2 : 0 ⩽ ℓ < r ⩽ n}.

3 Function NOT(s, e):

4 SetMs,e = {m ∈ [M ] : s ⩽ sm < em ⩽ e}

5 Compute Rm ← ψ((Xt)t∈(sm,em]) for each m ∈Ms,e

6 Set Rs,e := {m ∈Ms,e : Rm > λ}

7 if Rs,e ̸= ∅ then

8 Find m̂ ∈ argminm∈Rs,e
|em − sm|

9 ẑ ← η((Xt)t∈(sm̂,em̂) + sm̂

10 Ẑ ← Ẑ ∪ {ẑ}

11 Run recursively NOT(s, ẑ) and NOT(ẑ, e)

12 Run NOT(0, n)

Output: Ẑ

To better understand the difference between the three top-down approaches mentioned

above. We now use the following simulation to compare BS, WBS and NOT. We randomly

generate a series from a normal distribution with two changes in mean at 100 and 200

respectively. Figure 2.2 gives the interval picked up by three algorithms in the first step.

Both BS and WBS fail to pick out the true change-point. However, as NOT is picking
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the narrowest interval, it avoids the influence from another change-point and estimates

the change-point correctly.

2.1.2 Piecewise model fitting with complexity penalties

Apart from CUSUM-based approaches, a separate line of works estimate the change-points

by fitting piecewise constant models to the data sequence with appropriate penalties

for model complexity. One common way to do this is by minimising the following cost

function:
ν∑
i=1

C(Xzi−1+1:zi) + βf(ν), (2.3)

where C is a cost function and βf(ν) is the penalty term to prevent overfitting. One

of the commonly used cost functions is the twice of negative log-likelihood (Horváth,

1993);(Chen and Gupta, 2000). For the penalty function, linear function in terms of ν is

commonly used, for example, AIC (Akaike, 1974) and BIC (Schwarz, 1978). The search

method Optimal partitioning (OP) proposed by Yao (1984) and Jackson et al (2005) was

aimed to solve the minimisation problem above with f(ν) = ν. Firstly, if we denote the

minimisation from 2.3 as F (s), then it can be shown that:

F (s) = min
s′
{F (s′) + C(X(s′+1):s) + β}, 0 ⩽ s′ < s.

The OP algorithm iterates from s = 1 to n. In each step, it calculates the minimum of

F (s′) for each s′ ∈ [0, s) and then find out s∗ = argmin0⩽s′<s{F (s′) + C(X(s′+1):n) + β}

which is the estimated change-point for data X1:s. Then, we record it into the estimated

change-point set cp(s) = (cp(s∗), s∗) and cp(n) is the set of estimated change-points for

the whole data. Although it has improved the computational efficiency to O(n2) compared

to previous work such as SN method (Auger and Lawrence, 1989), it is not competitive

to BS procedure which has a computational cost of O(n log n).

In order to improve the computational cost of the OP algorithm, Killick, Fearnhead

and Eckley (2012) proposed a modified algorithm which adds a pruning step (PELT

method). To be more precise, it adds an additional step after updating the estimated

change-point set cp(s) each iteration to remove the time points s that can never be a
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minimal based on the current minimisation. The cost in this case can be reduced to

O(n). In the worst case, the cost is O(n2) when no pruning is performed.

Another method we introduce here is through multiscale testing which can also be

seen as a penalisation method. Frick, Munk and Sieling (2014) proposed simultaneous

multiscale change-point estimator (SMUCE) for change-point estimation problems in ex-

ponential family. Here, we denote Fi = Fϑ(i/n) and Fθ, θ ∈ Θ comes from an exponential

family with densities fθ with ϑ : [0, 1) → Θ being a right continuous step function with

unknown number ν of change-points. Let S be the space of all right continuous step

functions with an arbitrary but finite number of jumps on the interval [0, 1) taking values

in Θ. The idea is to estimate an unknown step function by minimising the number of

change-points subject to a certain multiscale statistic below a chosen threshold. Let J (ϑ)

be the set of change-points. Initially, we want to solve the following optimisation problem:

inf
ϑ∈S
|J (ϑ)|, subject to Tn(X,ϑ) ⩽ q, (2.4)

where

Tn(X,ϑ) = max
1⩽i<j⩽n

ϑ(t)=θ for t∈[i/n,j/n]

{√
2T ji (X, θ)−

√
2 log

(
en

j − i+ 1

)}
(2.5)

T ji here is the local likelihood ratio test for testing H0 : θ = θ∗ against H1 : θ ̸= θ∗. Let

ν̂(q) be the estimated number of change-points. We denote the solution to (2.4) as:

C(q) = {ϑ ∈ S : |J (ϑ)| = ν̂(q) and Tn(X,ϑ) ⩽ q} (2.6)

This is the constructed confidence band for the true ϑ that we want to estimate. The es-

timator ϑ(q) is then the constrained maximum likelihood estimator within the confidence

set C(q) defined above:

ϑ̂(q) = argmax
ϑ∈C(q)

n∑
i=1

log(fϑ(i/n)(Xi)). (2.7)

SMUCE gives a good estimate of the number of change-points by balancing the probabil-

ities of both overestimating and underestimating |J (ϑ)|. It follows from equation (2.4)

that P(ν̂(q) > ν) ⩽ P(Tn(X,ϑ) > q). Therefore, we can control the probability of over-

estimating the number of change-points at level α by choosing q as the (1 − α)-quantile
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Figure 2.2: Comparisons of BS, WBS, NOT methods on a synthetic univariate data set

with 2 change-points. The dotted line represents the absolute CUSUM statistics com-

puted on the entire data series used for binary segmentation. The red curve represents

the CUSUM computed in the window with the largest test statistic in wild binary seg-

mentation. The locations of the peak of each of the curves are used as the first estimated

change point in each of the procedures respectively. The true change points at 100 and

200 are shown with vertical dashed lines.
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of the null distribution of Tn(X,ϑ). Also, Frick, Munk and Sieling (2014) proved an ex-

ponential bound for the probability of underestimating. Combining these two results, the

probability that ν̂ ̸= ν tends to 0 for a suitable choice of q.

2.2 High-dimensional change-point estimation

Here, we consider the following setup: X1, . . . Xn ∼ N(µ, σ2Ip) and the sequence of mean

vectors (µt)
n
t=1 undergoes changes at times zi ∈ {1, . . . , n − 1} for i ∈ {1, . . . , ν}, in the

sense that

µzi+1 = · · · = µzi+1
=: µ(i), ∀ i ∈ {0, . . . , ν}, (2.8)

where we use the convention that z0 = 0 and zν+1 = n.

2.2.1 Methods based on columnwise aggregation of CUSUM

matrices

The univariate change-point estimation methods we introduced so far can not be applied

directly to high-dimensional data. However, the idea can be adapted to high-dimensional

problems. One of the most frequently used quantities in high-dimensional change-point

analysis is the CUSUM statistic. We define the CUSUM transformation T : Rp×n →

Rp×(n−1) for a matrix M for t ∈ [n] as:

T (M)j,t =

√
t(n− t)

n

(
1

n− t

n∑
r=t+1

Mj,r −
t∑

r=1

1

t
Mj,r

)
. (2.9)

The methods we are going to review are mostly CUSUM-based algorithms. We will focus

our discussion on how they estimate a single change-point. For notational simplicity, we

write z = z1. Similar to the univariate case, top-down methods, can also be combined to

estimate multiple change-points in high-dimensional data.

Horváth and Hušková (2012) proposed the following test statistic based on the ℓ2

aggregation of CUSUM statistics to test whether there is a change in mean:

Ψℓ2 = max
1⩽t⩽n−1

p∑
i=1

(T (X)2j,t − 1) (2.10)
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under the condition that the coordinates are independent and p/n2 → 0, which allows the

number of coordinates to be larger than the sample size. Jirak (2015) proposed another

test statistic based on the ℓ∞ aggregation:

Ψℓ∞ = max
1⩽t⩽n−1

max
1⩽j⩽p

|T (X)j,t|. (2.11)

This method also allows for large p and small n, where n/p→ 0. Also, the construction of

the test is non-parametric and can be generalised to many popular models such as ARMA

and GARCH.

However, this kind of aggregation may fail in cases such as when the signals are sparse

and spread out the coordinates. In order to reduce the impact from the series which do

not contain a change, Cho and Fryzlewicz (2015) proposed sparsified binary segmentation

which only aggregates the coordinates with the CUSUM values above a certain threshold

πn under the sparsity assumption. Specifically, it uses the following statistic:

ΨSBS = max
1⩽t⩽n−1

p∑
j=1

|T (X)j,t|1|T (X)j,t|>πn (2.12)

Furthermore, Cho (2016) defines the following double CUSUM (DC) statistic to locate

the change-point. After performing a first CUSUM transform on the entire series in terms

of each time t, it performs a second CUSUM transformation on the coordinates:

Dϕs ({|T (X)(j),t|}pj=1)

=

{
s(2p− s)

2p

}ϕ(
1

s

s∑
j=1

|T (X)(j),t| −
1

2p− s

p∑
j=s+1

|T (X)(j),t|
)

=

{
s(2p− s)

2p

}ϕ

× 1

s

s∑
j=1

(
|T (X)(j),t| −

1

2p− s

p∑
j=s+1

|T (X)(j),t|
)
,

where j ∈ {1, . . . , p}, ϕ ∈ [0, 1] and |T (X)(j),t| is the ordered CUSUM statistic values

such that |T (X)(1),t| ⩾ |T (X)(2),t| ⩾ . . . ⩾ |T (X)(p),t| at each t. Then, the test statistic

is defined as:

Ψϕ
DC = max

1⩽t⩽n−1
max
1⩽s⩽p

Dϕs ({|T (X)(j),t|}pj=1). (2.13)
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If Ψϕ
DC is above a certain test criterion, the following time point ẑ is identified as a

change-point:

ẑ = argmax
1⩽t⩽n−1

max
1⩽s⩽p

Dϕs ({|T (X)(j),t|}pj=1).

The innovation here is that in the second aggregation Dϕs , the input is an ordering series.

This enables us to not only locate the time point with change but also the coordinates

with change. We can achieve this by finding

sϕẑ = argmax
1⩽s⩽p

Dϕs ({|T (X)(j),ẑ|}pj=1,

where ẑ is the estimated change-point location. The estimated number of coordinates

with change is given by sϕẑ and we can find out the exact coordinates according to the

sorted CUSUM statistics in the ẑth column. We remark that the double CUSUM statistic

can also be viewed as a columnwise aggregation. For each time point t, we input the

sorted CUSUM statistics and perform a second CUSUM transformation after combining

a zero matrix of p × (n − 1) dimension and then take the maximum. We can rewrite

equation (2.13) as:

Ψϕ
DC = max

1⩽t⩽n−1
∥T (sort(|T (X)t|), 0p)∥∞, (2.14)

where Tt denotes the CUSUM transformation of the tth column and sort(|T (X)|t) =

(|T (X)(1),t|, |T (X)(2),t|, . . . , |T (X)(p),t|)⊤.

Enikeeva and Harchaoui (2019) proposed linear and scan statistics to detect high

dimensional change-points under both sparse and dense regimes. The linear statistic is

identical to Ψℓ2 in equation (2.10) and the scan statistic is defined as:

Ψscan = max
1⩽t⩽n−1

max
1⩽s⩽p

∑s
j=1 T 2

(j),t − s√
2s

, (2.15)

where |T(1),t| ⩾ |T(2),t| ⩾ · · · ⩾ |T(s),t|. The decision rule is based on the combination of

two test statistics: Ψ∗ = 1{Ψℓ2 > H}
∨
1{Ψscan > T}, where H and T are pre-specified

thresholds chosen according to the significance level. We reject the null hypothesis if

Ψ∗ = 1. The performance of two tests depend on the sparsity level. Following Enikeeva

and Harchaoui (2019, Theorems 1 and 2), in the dense case when the sparsity level is

low (s is large), the linear statistic is more effective while in the sparse case (s is small),
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the scan statistic works better. In addition, we know that the scan statistic can detect

a change with a smaller magnitude comparing to linear statistic. The boundary between

two sparsity regimes is s ≍ p1/2.

2.2.2 The Inspect algorithm

So far, the test statistics we reviewed above are based on columnwise aggregation. We

now introduce a projection based estimation procedure: Informative Sparse Projection for

Estimation of Change-points algorithm (Inspect) by Wang and Samworth (2018) which

is based on the aggregation across columns and rows. The idea is to seek a projection

direction v so that the signal-to-noise ratio is maximised. In other words, we would like

to maximise v⊤θ/σ, where θ = µ(1)−µ(0) is the vector of mean change. Since σ is treated

as fixed, the optimal projection direction is v = θ/∥θ∥2. By linearity of the CUSUM

transformation defined in (2.9), we observe that T (X) = T (µ) + T (W ) and that T (µ)

has rank 1 with leading left singular vector parallel to θ. Viewing T (X) as a perturbation

of T (µ), Inspect estimates v by approximating the sparse leading left singular vector of

T (X) through a convex relaxation scheme. Once the projection direction v̂ was obtained,

Inspect estimates the location of the change-point by the peak of the univariate projected

CUSUM v̂⊤T (X). The full algorithm for estimating a single change-point is summarised

in Algorithm 4.

Algorithm 4: Single change-point estimation using the Inpsect algorithm

Input: X ∈ Rp×n, (Jg)g∈[G], and λ > 0

1 Compute T ← T (X) as in (2.9).

2 Set

M̂ =
soft(T, λ)

∥soft(T, λ)∥2
,

where soft(T, λ) = sgnmax{|Ti,j| − λ, 0} and λ ⩾ 0.

3 Let v̂ be the leading left singular vector of M̂

4 Estimate z by ẑ = argmax1⩽t⩽n−1 |v̂⊤Tt|, where Tt is the tth column of T .

Output: ẑ, T̄max = |v̂⊤Tẑ|
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2.2.3 Simulations for comparison of high-dimensional change-

point estimation methods

In this subsection, we compare the methods surveyed in the last section. Specifically,

ℓ2 and ℓ∞ aggregation, SBS, scan statistic from Enikeeva and Harchaoui (2019), Double

CUSUM and Inspect. Here, we randomly generated a data set with n = 500, p = 1000

and the change is located at z = 400. We compare two settings according to the sparsity:

sparse regime, s = 2 and dense regime s = 100. We take ∥θ∥2 = 0.8 in sparse regime

and ∥θ∥2 = 1 in dense regime. For the threshold in SBS, we randomly generate 1000 of

N(0, 1) matrices and take the maximum for each of them. The threshold is then the 95th

quantile of the maximum.

From Figure 2.3 and Figure 2.4, we see that ℓ2 aggregation and Doule CUSUM work

well for dense signal but not sparse signal. For ℓ2 aggregation, this is due to the fact

that for sparse signals, we add up, for each time point, squares of the CUSUM statistics

at both the signal and noise coordinates, which means that the sparse signal could be

diluted by the large noise variance when the dimension is high. For Double CUSUM, the

problem lies in the fact that for sparse signal, the second CUSUM transformation along the

spatial direction has a change-point at s at the population level. The fact that the second

CUSUM has a change near 0 means that the CUSUM magnitude is relatively small and

easily affected by noise, resulting in inaccurate estimates. On the other hand, both the ℓ∞

aggregation and SBS work well for sparse signals but behaves poorly in dense signals. For

ℓ∞ aggregation, this is due to the fact that ℓ∞ aggregation only looks at the maximum

CUSUM statistics in each column and does not accumulate evidence across multiple signal

coordinates. For SBS, this is likely a result of the hard thresholding operation being too

aggressive when the signal is spread across multiple coordinates. Finally, both the scan

statistic based approach and the Inspect algorithm appear to be robust to the sparsity

level. This is because both methods can be viewed as approximating an ℓ2 aggregation

over only the signal coordinates and so should behave like an oracle estimator, where we

have removed all the noise coordinates from the data. The Inspect algorithm achieves

this by first estimating a projection direction v̂ that is close to θ/∥θ∥, which has support
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Figure 2.3: Comparisons of aggregated CUSUM statistics of ℓ2, ℓ∞, scan statistics, SBS,

double CUSUM and Inspect under sparse case when s = 2. Other parameters used:

p = 500, n = 1000, ∥θ∥2 = 0.8
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Figure 2.4: Comparisons of aggregated CUSUM statistics of ℓ2, ℓ∞, scan statistics, SBS,

double CUSUM and Inspect under dense case when s = 100. Other parameters used:

p = 500, n = 1000, ∥θ∥2 = 1
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in the signal coordinates. The scan statistics approach achieves this if the maximum over

t in (2.15) is equal to the sparsity level s.

2.3 Online change-point estimation problem

While the main focus of this thesis is on offline change-point estimation with structural

constraints, we include this section for review of the online change-point detection problem

for completeness.

2.3.1 Classic methods

In this subsection, we review the univariate online change-point estimation problem. Un-

like offline change-point problem which obtains the entire dataset over all the time points,

online change-point analysis works on real-time series and aims to detect the change as

soon as it occurs. To be more specific, we have that X1 . . . Xz follow distribution F0 with

density f0 and Xz+1, Xz+2, . . . follow distribution F1 with density f1. We want to find z

as soon as it occurs. Online change-point detection can date back to the last century and

is often used in quality control in manufacturing. Shewhart (1931) introduced control

charts, which is to plot the statistics as well as control limits on the chart, and actions

are taken once the points fall outside the control limits. We first introduce some common

control charts. Shewhart (1931) used X̄ chart which uses µ0 ± CσX̄ as the control limit,

where µ0 is the mean of X̄ and σX̄ is the standard deviation of X̄. In many applications,

taking C = 3 is enough to detect the change without taking actions unnecessarily. How-

ever, the detection is slow if the shifts in the mean are small. Therefore, various tests have

been used to supplement the Shewhart test so as to increase sensitivity to small changes,

for example, taking action if there are a few consecutive points on one side of the central

line or using multiple supplementary tests to speed the detection (Roberts, 1966).

The moving average chart plots the following term at time i ⩾ k for a moving average

of index k:

X̄
(k)
i =

∑k−1
j=0 X̄i−j

k
,
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with the limits µ0±CσX̄/
√
k. At time i, we plot X̄

(i)
i =

∑i
j=1 X̄j/i and use µ0±CσX̄/

√
i as

limits. Based on the moving average chart, the geometric moving average chart considers

plotting the following term:

Zi = (1− r)Zi−1 + rX̄i = (1− r)iZ0 + r
i−1∑
j=0

(1− r)jX̄i−j,

with Z0 = µ0, r ∈ (0, 1]. The limits in this control chart is µ0±CrσX̄
√
r/(2− r). Zi here

is a combination of all the points before i, and the closer the point is to i, the higher the

weight.

Page (1954) proposed the cumulative sum chart. Let Si =
∑i

j=1 xj, where xj is

a score, for example X̄j − µ0. The action is taken once Sn − min0⩽i<n Si ⩾ c. Let

S ′
n = max(S ′

n−1 + xn, 0) with S
′
0 = 0, Page (1954) also showed that the criteria above is

equivalent to S ′
n ⩾ c. The likelihood ratio score xi = log{f1(Xi)/f0(Xi)} is often used in

change-point problem.

The main criteria for online change-point detection are detection delay and false alarm.

We denote N as the stopping time which is the estimated time that a change occurs. The

false alarm is usually measured by 1/E∞(N), where E∞(N) is the average run length until

the false alarm. Page’s procedure using the likelihood ratio score is to seek the following

stopping time:

N = inf

{
n : max

1⩽k⩽n

n∑
i=k

log

(
f1(Xi)

f0(Xi)

)
⩾ c

}
. (2.16)

Lorden (1971) proposed the following minimax type criteria, which corresponds to the

worst case detection delay:

Ē1(N) = sup
z⩾0

ess supEz[(N − z)+|X1, . . . , Xz] (2.17)

The intuition behind is that, if z is the true change-point, the conditional expectation

of N − z given X1, . . . , Xz when N ⩾ z should be small. The expectation is maximised

over all pre-change observations and all possible change-point locations. Lorden (1971)

proved that Page’s procedure is asymptotically minimax optimal as γ →∞. Furthermore,

Moustakides (1986) proved that Page’s procedure is optimal in terms of minimising this

worst case detection delay subject to E∞(N) ⩾ γ, where γ is predetermined.
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Under the Bayesian framework, the location of change-point is random with some

prior distributions. In the special case of geometric prior distribution, the change-point

z with value n has the probability: P(z = n) = p(1 − p)n−1, for n = 1, 2, . . .. Shiryaev

(1963) proposed the following stopping time :

Np(γ) = inf

{
n ⩾ 1 :

n∑
k=1

n∏
i=k

f1(Xi)

(1− p)f0(Xi)
⩾ γ

}
. (2.18)

Roberts (1966) modified the rule as:

N(γ) = inf{n ⩾ 1 : Rn ⩾ γ},

where Rn =
∑n

k=1

∏n
i=k

f1(Xi)
f0(Xi)

.

In addition to the worst case detection delay, Pollak (1985) proposed the following

supremum conditional average delay:

Ē1(N) = sup
z⩾0

Ez(N − z|N ⩾ z).

The stopping rule from Roberts (1966) and Shiryaev (1963) have shown to be asymp-

totically optimal in the sense of controlling the conditional average delay stated above.

Pollak and Tartakovsky (2009) further proved that they are exactly optimal in terms of

minimising the following integral average delay subject to E∞(N) ⩾ γ:

Ē1(N) =
∞∑
z=1

Ez(N − z)+.

2.3.2 Multivariate and high-dimensional setting

High-dimensional online change-point detection problem has also been studied where we

have a sequence of p dimensional vectors: X1,i, . . . , Xp,i for i ∈ [n]. For example, Mei

(2010) proposed a method based on CUSUM statistic by Page (1954). We now briefly

go through the idea here. We first define the following local CUSUM statistic of the kth

coordinate.

W j
n = max

{
0,Wn−1 + log

f j1 (Xj,n)

f j0 (Xj,n)

}
,
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where f j0 and f j1 are densities for the jth coordinate before and after change and W j
0 = 0.

The proposed stopping time is:

N = inf{n ⩾ 1 :

p∑
j=1

W j
n ⩾ c}

The statistic here is a summation over all the coordinates. Here, we assume that we do

not know the number of coordinates with a change. Therefore, it is quite natural to use

the sum of the CUSUM statistics over all the coordinates and a large value indicates a

possible change.

We list here some other existing methodologies for multivariate and high dimensional

online change-point estimation: Xie and Siegmund (2013),Chan (2017),Tartakovsky et al.

(2006). In addition, there are also some methods proposed for the structural change in

covariances, for example: Li and Li (2023).

2.4 Related problems where structural assumptions

are used in inference

This thesis primarily concerns with how structural assumptions can be exploited to im-

prove statistical inference in high-dimensional change-point settings. In this section, we

survey some existing results in the literature, where similar structural assumptions have

been successfully used in inferential tasks.

In high-dimensional problems, one typically assumes sparsity on problem parameters

to effectively reduce the complexity of the problem. However, high-dimensional data may

possess other structures in addition to sparsity. For example, the coordinates may be

naturally clustered into groups or connected in a network. We now review how such addi-

tional structures can be exploited in the context of high-dimensional regression. Consider

the following setup:

Y = Xβ + ϵ, ϵ ∼ N(0, σ2Ip),

where X is a p × n data matrix, Y and β are vectors of length n and p respectively.

The well-known lasso (Tibshirani, 1996) regression minimises ∥Y −Xβ∥22 + λ∥β∥1, which
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induces sparsity on the coefficient vector by ℓ1 penalty to avoid overfitting. Yuan and

Lin (2006) generalises lasso to the group lasso, which assumes that the parameters can

be divided into groups and the penalty is summed by group index so that it can drive the

entire group of parameters to 0 if this group is not significant. To be more specific, for a

vector η ∈ Rd with d ⩾ 1, and a symmetric positive definite matrix K ∈ Rd×d, we first

define the following quantity:

∥η∥K = (η⊤Kη)1/2.

Then, given a sequence of positive definite matrices K1, . . . KG, where Kg ∈ Rpg×pg , pg is

the group size for group g, the group lasso is to minimise the following quantity:

1

2
∥Y −Xβ∥22 + λ

G∑
g=1

∥βg∥Kg , (2.19)

where λ ⩾ 0 is the tuning parameter and βg is the vector of coefficients belonging to

group g. One reasonable choice of Kj is pgIpg , which was also used by Yuan and Lin

(2006) in their implementation. The second term in equation (2.19) is the group lasso

penalty, it calculates the sum of ℓ2 norms of parameters within each group and puts the

weights of the square root of group size for each group. There are two special cases for

the group lasso: if all groups are of size 1, it then reduces to the original lasso regression.

On the other hand, if there is only one group, it becomes ridge regression. Based on the

group lasso, Simon et al. (2013) proposed sparse group lasso which not only considers the

sparsity between but also the sparsity within the group. It adds an additional ℓ1 penalty

as follow:

1

2n
∥Y −Xβ∥22 + λ

G∑
g=1

∥βg∥Kg + (1− λ)
p∑
j=1

|βj|, (2.20)

where λ ∈ [0, 1]. It forms a convex combination between group lasso and lasso.

In addition to the group structure, Tibshirani et al. (2005) proposed fused lasso to

exploit the spatial dependence between covariates. The fused lasso minimises the following

objective:

1

2
∥Y −Xβ∥22 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1|. (2.21)
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The first penalty term is to induce the sparsity on the covariates, and the second one is to

penalise the difference between two adjacent covariates. Motivated by the gene clustering

problem, She (2010) proposed clustered lasso, which is a generalisation of the fused lasso,

but does not require the covariates to be ordered:

1

2
∥Y −Xβ∥22 + λ1

p∑
j=1

|βj|+ λ2

p∑
i<j

|βi − βj|. (2.22)

In regression problems mentioned above, we have assumed that parameters have ad-

ditional structures. Similarly, we can also make assumptions on the coordinates in high-

dimensional change-point data. For example, the coordinates are naturally grouped into

clusters. In this case, we can aggregate the information from each coordinate by groups

which is motivated from the idea of group lasso. We will see the details in the next Chap-

ter. Regarding the network structure, the fused lasso sums over the differences between

two consecutive parameters. In fact, we can view the parameters as the coordinates that

are connected in a network. |βj − βj−1| is the distance between two coordinates that are

connected directly with each other, and the summation is an aggregation over the net-

work. This motivates us to aggregate the information along a certain path with suitable

time lags in terms of time series data. We will see the details in Chapter 4.
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Chapter 3

High-dimensional change-point

estimation under group sparsity

structure

3.1 Introduction

In this chapter, we provide a new high-dimensional change-point methodology that ex-

ploits the group sparsity structure of the changes. As mentioned in Chapter 1, existing

high-dimensional change-point methods often assume that the signal of change possesses

some form of sparsity such as the difference in mean before and after a change-point is

nonzero only in a small subset of coordinates. However, it often does not capture the

full extent of the structure in the vector of change available in real data applications.

For instance, in many applications, the coordinates of the high-dimensional vectors are

naturally clustered into groups and coordinates within the same group tend to change to-

gether. At each change-point, only a small number of groups will undergo a change. This

is what we mean by group sparsity structure. Such a group sparsity change-point struc-

ture is useful in modelling many practical applications. Examples include financial data

streams where changes are often grouped by industry sectors and a small number of sectors

may experience virtually simultaneous market shocks. Also, in functional magnetic reso-
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nance imaging data, voxels belonging to the same brain functional regions tend to change

simultaneously over time. We have summarised some problems with similar group spar-

sity assumptions in Section 2.4. The algorithm we proposed here, named groupInspect

(standing for group-based informative sparse projection estimator of change-points),

will use the given pre-specified grouping information of all the coordinates to first esti-

mate a vector of projection that is closely aligned with the true vector of change at each

change-point. It will then project the high-dimensional data series along this estimated

direction and apply a univariate change-point method on the projected series to identify

the location of the change. The above procedure can be combined with the narrowest-

over-threshold algorithm of Baranowski et al. (2019) to identify multiple change-points

recursively. We show that, in a single change-point setting, the projection direction esti-

mator employed in groupInspect has a minimax optimal dependence, up to logarithmic

factors, on both the ℓ0 sparsity parameter and the group-sparsity parameter, representing

respectively the number of nonzero elements and the number of nonzero groups in the

vector of change. Furthermore, under appropriate conditions, groupInspect achieves a

minimax optimal log log(n)/(nϑ2) rate of convergence for the estimated location of a sin-

gle change-point and a log(n)/(nϑ2) rate of convergence for multiple change-points, where

ϑ denotes the ℓ2 norm of the vector of change.

In Section 3.2, we describe the formal setup of our problem. The groupInspect

methodology is then introduced in Section 3.3, with its theoretical performance guarantees

provided in Section 3.4. We illustrate the empirical performance of groupInspect via

simulations and a real-data example in Section 3.5. The extensions to sub-Gaussian and

temporal dependence settings are given in Section 3.6 and Section 3.7. Proofs of all

theoretical results are deferred to Section 3.8, and ancillary results and their proofs are

given in Section 3.9.
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3.2 Problem set up

We now formally describe the data generating mechanism, which is described in Sec-

tion 3.1. Let X1, . . . , Xn be independent random vectors with distribution:

Xt ∼ Np(µt,Σ), 1 ⩽ t ⩽ n, where ∥Σ∥op ⩽ B (3.1)

for some B ∈ (0,∞). We remark that the main focus of the current chapter is to under-

stand the effect of group sparsity structure on the change-point estimation accuracy, and

as such, to simplify exposition, we have assumed here that observations are independent

normal random vectors. All our theoretical results can be extended to the case where

the observations are sub-Gaussian or have short-ranged temporal dependence (see Sec-

tion 3.6 and 3.7 for details). We can combine into a single data matrix X ∈ Rp×n and

mean vectors undergo changes as described in equation (2.8). We assume that consecutive

change-points are sufficiently separated in the sense that

min{zi+1 − zi : 0 ⩽ i ⩽ ν} ⩾ nτ.

Suppose further that each of the p coordinates belongs to (at least) one of the G groups.

Specifically, let Jg denotes the set of indices associated with the gth group for g ∈

{1, . . . , G}, we have that
G⋃
g=1

Jg = [p]. (3.2)

We assume that coordinates in the same group will tend to change together. We will

consider both the case of overlapping and non-overlapping groups. In the latter scenario,

we have Jg ∩ J ′
g = ∅ so that each coordinate belongs to a unique group and (Jg)g∈[G]

forms a partition of [p].

Our goal is to estimate the locations of change z1, . . . , zν from the data matrix X

and the pre-specified grouping information (Jg)g∈[G]. Motivated by Wang and Samworth

(2018), when the coordinates are independent, the best way to aggregate the component

series so as to maximise the signal-to-noise ratio around the ith change-point is to project

the data along a direction close to the vector of change θ(i) = µ(i)−µ(i−1). Let v(i) be the

34



unit vector parallel to θ(i):

v(i) = θ(i)/∥θ(i)∥2.

In our setting, we would like to maximise the signal-to-noise ratio: v⊤θ
(v⊤Σv)1/2

and the

optimiser is Σ−1θ. However, as Σ is usually difficult to estimate, we still consider es-

timating θ. If we use the optimiser Σ−1θ, the square of the signal-to-noise ratio is

∥Σ−1/2θ∥22 ⩽ ∥θ∥22/λmin(Σ). On the other hand, if we use θ instead, the square of signal-

to-noise ratio becomes: ∥θ4∥/∥Σ1/2θ∥22 ⩾ ∥θ∥22/λmax(Σ), where λmax(Σ) and λmin(Σ) are

maximum and minimum eigenvalues of Σ respectively. Therefore, if Σ is well-conditioned

in the sense that the maximum and minimum eigenvalues of Σ are bounded away from 0,

using θ instead of Σ−1θ incurs a loss of efficiency of at most a factor of λmax(Σ)/λmin(Σ).

If the fraction between the maximum and minimum eigenvalues is of order 1, then the

signal-to-noise ratios obtained from actual optimiser Σ−1 and θ are of the same order. We

measure the quality of any estimated projection direction v̂ with the Davis–Kahan sin θ

loss (Davis and Kahan, 1970)

L(v̂, v(i)) =
√
1− (v̂⊤v(i))2

and measure the quality of the subsequent location estimator ẑi by E|ẑi − zi|.

The difficulty of the estimation task depends on both the noise level σ and the vector

of change θ(i) = µ(i) − µ(i−1). More precisely, we assume that the change is localised

in a small number of the G groups as defined in (3.2). Define ϕ : Rp → RG such that

ϕ(x) = (∥xJ1∥2, ∥xJ2∥2, . . . , ∥xJG
∥2)⊤, we assume that

∥ϕ(θ(i))∥0 ⩽ s,
∑

g∈[G]:θ
(i)
Jg

̸=0

|Jg| ⩽ k, and ∥θ(i)∥2 ⩾ ϑ. (3.3)

3.3 Methodology

3.3.1 Single change-point estimation

Initially, we will consider the estimation of a single change-point, where ν = 1. This can

be extended to estimate multiple change-points in conjunction with top-down approaches
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such as wild binary segmentation and narrowest-over-threshold approach of Baranowski

et al. (2019), which we will discuss in Section 3.3.2.

We compute the CUSUM transformation of X: T = T (X) as defined in equation (2.9)

of Chapter 1. As discussed in Section 3.2, our general strategy is to use the matrix T

to estimate a projection direction that is well-aligned with the direction of change, and

then project the data along this direction to estimate the change-point location from the

univariated projected series. More precisely, we would like to solve for:

v̂ ∈ argmax
u∈Sp−1,∥ϕ(u)∥0⩽s

∥u⊤T∥2. (3.4)

However, the above optimisation problem is non-convex due to the group-sparsity con-

straint. Consequently, we perform the following convex relaxation of the above problem.

We first note that the set of optimisers of (3.4) is equal to the set of leading left singular

vectors of

argmax
M∈Rp×(n−1):∥M∥∗=1,rank(M)=1∑

g∈[G] 1{∥MJg
∥F ̸=0}⩽s

⟨M,T ⟩,

We relax the above matrix-variate optimisation problem by dropping the combinatorial

rank constraint, and replacing the nuclear norm constraint set by the larger Frobenius

norm set of S = {M ∈ Rp×(n−1) : ∥M∥F ⩽ 1}. The constraint that M has at most s

groups of non-zero rows can be written as an ℓ0 constraint on the vector of Frobenius

norms of such submatrices, i.e. ∥(∥MJg∥F : g ∈ {1, . . . , G})∥0 ⩽ s. Motivated by the

group lasso penalty (Yuan and Lin, 2006), we replace this group sparsity constraint with

a group norm penalty, where the group norm for a matrix M ∈ Rp×(n−1) is defined as

∥M∥grp =
G∑
g=1

p1/2g ∥MJg∥2,1, (3.5)

where ∥MJg∥2,1 is the sum of column ℓ2 norms of the submatrix MJg and pg = |Jg|.

Overall, we obtain the following optimisation problem:

M̂ ∈ argmax
M∈S

{
⟨T,M⟩ − λ∥M∥grp

}
, (3.6)

where λ ∈ [0,∞) is a regularisation parameter.
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If the groups are non-overlapping, in the sense that Jg ∩ Jg′ = ∅ for all g ̸= g′, then

we see from Proposition 3.12 that (3.6) has a closed form solution

M̂ =
T −R∗

∥T −R∗∥F
, (3.7)

where R∗
Jg ,t

= TJg ,tmin
{ λp

1/2
g

∥TJg,t∥2
, 1
}
. Overall, equation (3.7) reveals a soft-thresholding

process between each column ℓ2 norm in each of the g th group with λp
1/2
g .

For overlapping groups, (3.6) can be optimised using Frank–Wolfe algorithm (Frank

and Wolfe, 1956), as described in Algorithm 5. We first compute the gradient of the

objective function which is the step 4 in Algorithm 5. We then project the M̂ back onto

S.

After solving the optimisation problem, we can obtain the estimated projection direc-

tion v̂ by computing the leading left singular vector of M̂ . Then, we project the data along

v̂ to obtain a univariate series for which existing one-dimensional change-point estimation

methods apply. Specifically, we perform the CUSUM transformation over the projected

data series, and locate the change-point by the maximum absolute value of the CUSUM

vector. The full procedure is described in Algorithm 6.

3.3.2 Multiple change-point estimation

When the data matrix possesses multiple change-points, we may combine Algorithm 6

with a top-down approach (Fryzlewicz, 2014; Baranowski et al., 2019, e.g), to recursively

identify all the change-points. Specifically, in Algorithm 7, we adopt the narrowest-over-

threshold approach of Baranowski et al. (2019). We start by drawing a large number of

random intervals [s1, e1], . . . , [sQ, eQ] and perform a test in each of these intervals to find

windows that contain at least one change-point (Line 5 of Algorithm 7, with justification

given by Corollary 3.4 in Section 3.4). We then select the narrowest interval for which the

test rejects the null and apply Algorithm 6 to estimate a change-point within that window.

We then partition the data into two submatrices to the left and right of this identified

change-point and repeat the above procedures until no windows within the segmented

submatrices contain any change-point.
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Algorithm 5: Frank–Wolfe algorithm for optimising (3.6)

Input: T ∈ Rp×(n−1), grouping (Jg)g∈[G], λ > 0 and ϵ > 0.

1 Initialise M̂ [0] = T/∥T∥F and i = 0.

2 repeat

3 i← i+ 1

4 Compute G[i] = (G
[i]
1 , . . . , G

[i]
p )⊤ ∈ Rp×(n−1) such that

G
[i]
j,t ← Tj,t −

∑
g:j∈Jg

λg
M

[i−1]
j,t

∥M [i−1]
Jg,t
∥F
,

where λg = p
1/2
g λ

5 if G[i] = 0 then break

6 Compute

M̃ [i] =
i

i+ 2
M [i−1] +

2

i+ 2

G[i]

∥G[i]∥F
,

7 Normalise M̂ [i] ← M̃ [i]/∥M̃ [i]∥F

8 until ∥M̂ [i+1] − M̂ [i]∥F ⩽ ϵ;

Output: M̂ [i]

Algorithm 6: Single change-point estimation procedure for data with group

structure
Input: X ∈ Rp×n, (Jg)g∈[G], and λ > 0

1 Compute T ← T (X) as in (2.9).

2 Solve

M̂ ∈ argmax
M∈S

{
⟨T,M⟩ − λ∥M∥grp

}
using either the closed-form solution in (3.7) if groups are non-overlapping, or

Algorithm 5.

3 Let v̂ be the leading left singular vector of M̂ .

4 Estimate z by ẑ = argmax1⩽t⩽n−1 |v̂⊤Tt|, where Tt is the tth column of T .

Output: ẑ, T̄max = |v̂⊤Tẑ|

38



Algorithm 7: Multiple change-point estimation procedure

Input: X ∈ Rp×n, (Jg)g∈[G], λ > 0, β, M ∈ N

1 Set Ẑ ← ∅

2 Draw M pairs of integers (s1, e1), . . . , (sM , eM) uniformly at random from the set

{(ℓ, r) ∈ Z2 : 0 ⩽ ℓ < r ⩽ n}

3 Function NOT(s, e)

4 SetMs,e = {m ∈ [M ] : s ⩽ sm < em ⩽ e}

5 Set Rs,e := {m ∈Ms,e : ∥T (X(sm+β,em−β])∥grp∗ > λ}, where X(a,b] is the

submatrix of X obtained using columns indexed in (a, b]

6 if Rs,e ̸= ∅ then

7 Find m∗ ∈ argminm∈Rs,e
|em − sm|

8 Set ẑ[m
∗] as the output from Algorithm 6 with inputs X(sm∗ ,em∗ ] and λ

9 b← ẑ[m
∗] + sm∗

10 Ẑ ← Ẑ ∪ {b}

11 Run recursively NOT(s, b) and NOT(b, e)

Output: Ẑ
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3.4 Theoretical results

In this section, we provide theoretical guarantees to the performance of the groupInspect

algorithm. As we have noted in Section 3.2, a key to the successful change-point estimation

in the current problem is a good estimator of the oracle projection direction v = θ/∥θ∥2.

The following theorem controls the sine angle risk of the estimated projection direction

v̂ in Step 3 of Algorithm 6 when data has a single change. We define the following set to

be the set of data distribution that satisfying our data generating mechanism:

Definition 1. Suppose that data X = (X1, . . . , Xn) is generated from a probability dis-

tribution P . We say that P ∈ P(ν)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]) if it satisfies (3.1), (2.8), (3.2)

and (3.3). For any P ∈ P(ν)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]), we write v(P ) = θ/∥θ∥2 where θ is

the difference between post-change and pre-change means.

Theorem 3.1. For a given grouping (Jg)g∈[G], let p∗ = ming∈[G] |Jg| and suppose further

that there exists a universal constant C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ⩽ C1.

Let X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]) be a p × n data matrix, let θ be the vector

of change and let v̂ be as in Step 3 of Algorithm 6 with input X, (Jg)g∈[G] and λ ⩾

B1/2(1 +
√

8 log(nG)/p∗). Then there exists C > 0, depending only on C1, such that

sup
P∈P(1)

n,p(s,k,τ,ϑ,B,(Jg)g∈[G])

PP
{
sin∠(v̂, v) >

Cλk1/2

n1/2τϑ

}
⩽

1

(nG)3
. (3.8)

We remark that the condition maxj∈[p] |{g : j ∈ Jg}| ⩽ C1 is to control the extent of

overlapping between different groups. Specifically, it requires that each coordinate can

belong to at most C1 groups. In the special case when all groups Jg are disjoint, which

is often true in practical applications, then it suffices to take C1 = 1.

To understand the probabilistic bound in (3.8), we consider the optimal tuning param-

eter λ = B1/2(1 +
√

8 log(nG)/p∗), for which the upper bound on the sine angle loss is of

order
√
Bk(1 + log(nG)/p∗)/(nτ 2ϑ2). The upper bound reveals an interesting interaction

between the ℓ0-sparsity k and the group sparsity s when all groups are of comparable size.

Specifically, assuming that maxg∈[G] pg ≲ p∗, from (3.8) we can derive for this particular
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choice of λ that if ϑ ≲ n5/2, then

E{sin∠(v̂, v)} ⩽ Cλk1/2

n1/2τθ
+

1

(nG)3
≲

√
B{k + s log(nG)}

nτ 2ϑ2
.

In other words, when the number of coordinates per group is at least of order log(nG), the

risk upper bound is of order
√

Bs log(nG)
nτ2ϑ2

. On the other hand, when number of coordinates

per group is smaller than this order, the risk upper bound is of order
√

Bk
nτ2ϑ2

. Similar

phase transitions have been previously observed in the context of high-dimensional linear

model where the regression coefficients satisfy a group sparsity assumption (see, e.g. Cai et

al., 2019, Theorem 3). We also note that when G = p, each group only has one element,

and the modelling assumption is identical to that in Wang and Samworth (2018) and

s = k in this case. The upper bound of the sine angle loss has the order of
√

Bk log(pn)
nτ2ϑ2

,

which could be slightly worse comparing to the
√

Bk log(p logn)
nτ2ϑ2

bound achieved in (Wang

and Samworth, 2018, Proposition 1) if log n ≫ log p. However, if the group structure is

nontrivial in the sense that each group has at least log(nG) elements, then the projection

direction estimator in groupInspect is closer to the truth compared to that from the

Inspect algorithm.

We now turn our attention to a minimax lower bound of the estimation risk of the

oracle projection direction. Theorem 3.2 below shows that the phase transition observed

in Theorem 3.1 is not due to the specific proof techniques employed but rather an intrinsic

feature of the problem.

Theorem 3.2. Suppose s > 0, k > 0 and a grouping (Jg)g∈[G] satisfy that Jg ∩ Jg′ = ∅

for all g ̸= g′ , min{k, (s − 1) log(G/s)} ⩾ 20, and
∑s

r=1 p(G−r+1) ⩾ k/2, where p(1) ⩽

p(2) ⩽ · · · ⩽ p(G) are order statistics of p1, . . . , pG. Let Σ = BIp. Then for some universal

constant c > 0, we have

inf
ṽ

sup
P∈P(1)

n,p(s,k,τ,ϑ,B,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ⩾ c

√
B{k + s log(G/s)}

nτϑ2
,

where the infimum is taken over the set of all measurable functions ṽ of the data X.

The condition that
∑s

r=1 p(G−r+1) ⩾ k/2 is to ensure that the upper bound k on the

ℓ0-sparsity is not too loose in the sense that k is not too much larger than the cardinality
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of the union of the largest s groups. If we assume that log(G/s) ≍ log(n), τ ≍ 1 and

maxg∈[G] pg ≲ p∗, then the lower bound in Theorem 3.2 matches the upper bound of

Theorem 3.1 up to universal constants, when all groups are non-overlapping. We remark

that the upper and lower bounds in Theorems 3.1 and 3.2 do not match in their dependence

on the parameter τ . As Proposition 3.15 shows, this suboptimality is unlikely due to the

convex relaxation carried out in (3.6) since the same τ dependence appears in the risk

upper bound of the (computationally infeasible) optimiser of (3.4). We further remark

that if we derive this lower bound using Σ instead of BIp, ϑ
2 in the denominator would

become ∥Σ−1θ∥22 ⩽ λ2min/ϑ
2. This implies our derived bound in Theorem 3.1 may be

sub-optimal in the generic setting.

After obtaining guarantees on the quality of the projection direction estimator, we

now provide theoretical guarantees of the overall change-point procedure. We note that

the projection direction estimator v̂ is dependent on the CUSUM panel T . While this

dependence is observed to be very weak in practice, it creates difficulties in analysing the

projected CUSUM series v̂⊤T in Step 4 of Algorithm 6. As such, for theoretical conve-

nience, we will instead analyse a sample-splitting version of the algorithm. Specifically,

we split the data into X(1) and X(2), consisting of odd and even time points respectively,

as described in Algorithm 8. We use X(1) to estimate the projected direction v̂(1) and

then project X(2) along this direction to locate the change-point via a univariate CUSUM

procedure (Step 4 of Algorithm 6). Theorem 3.3 below provides a performance guaran-

tee for the estimated location of the change-point of this sample-splitting version of our

procedure.

Theorem 3.3. Given data matrix X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]), let ẑ be the

output from the Algorithm 8 with input X and λ ⩾ B1/2(1+
√
p−1
∗ 8 log(nG)). There exist

universal constants C, C ′ > 0 such that, if n ⩾ 12 is even, z is even, and

C
√
kλ

ϑτ
√
n

⩽ 1, (3.9)

then for any λ1 >
√
B, we have

P
{
1

n
|ẑ − z| ⩽ C ′λ21

nϑ2

}
⩾ 1− 8

n3
− (3λ1 + 1)e−λ

2
1/(4B) log n.
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Algorithm 8: Change-point estimation procedure: sample splitting version

Input: X ∈ Rp×n and λ > 0

1 Define X(1) as X
(1)
j,t = Xj,2t−1 and X(2) as X

(2)
j,t = Xj,2t.

2 Compute T (1) ← T (X(1)) and T (2) ← T (X(2)) as in (2.9).

3 Solve

M̂ (1) ∈ argmax
M∈S

{
⟨T (1),M⟩ − λ∥M∥grp

}
using either the closed-form solution in (3.7) if groups are non-overlapping, or

Algorithm 5.

4 Let v̂ be the leading left singular vector of M̂ (1).

5 Estimate z by ẑ = 2argmax1⩽t⩽n1−1 |(v̂(1))⊤T
(2)
t |, where T

(2)
t is the tth column of

T (2).

Output: ẑ

If we choose λ1 = C
√
B log log n for a sufficiently large absolute constant C > 0, then

Theorem 3.3 shows that the location estimator ẑ/n converges to z/n at a rate of B log logn
nϑ2

in probability. This rate is minimax optimal even for the problem of estimating a single

change in mean in a univariate series; see Proposition 3.10. While Theorem 3.3 concerns

primarily with the estimation task, we remark that the argument used in its proof can be

easily adapted to derive a testing procedure with good theoretical guarantees. Specifically,

given data matrix X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]), we are interested to test the null

hypothesis H0 : θ = 0 against the alternative H1 : θ ̸= 0. We can construct a test based

on the dual norm to the ∥ · ∥grp norm defined in (3.5). More precisely, for any R ∈ Rp×n

and a grouping (Jg)g∈[G] of [p], we define

∥R∥grp∗ = max
g∈[G]

max
t∈[n]

p−1/2
g ∥RJg ,t∥2. (3.10)

It can be seen from Lemma 3.11 that ∥ · ∥grp∗ is indeed dual to ∥ · ∥grp. For any λ > 0, we

define a test ψλ such that

ψλ(X) = 1{∥T (X)∥grp∗⩾λ}.

The following Corollary shows that with an appropriately chosen testing threshold λ,

the test ψλ defined above has good size and power controls.
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Corollary 3.4. Given data matrix X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]). Let k be the

total number of coordinates with change and ∥θ∥2 be the magnitude of the change. Fix

λ ⩾ B1/2
(
1 +

√
4p−1

∗ log(nG)
)
.

• If s = 0, then PP (ψλ(X) = 1) ⩽ 1/(nG).

• If ϑ ⩾
√
8kλ√
nτ

, then PP (ψ = 1) ⩾ 1− 1/(nG).

Our single change-point theory can be applied iteratively to show that the groupInspect

algorithm in in Algorithm 7 can consistently estimate both the number and the locations

of the true change-points. In line with Theorem 3.3, we consider a sample-splitting ver-

sion of Algorithm 7, which we call Algorithm Algorithm 7′, where we use Algorithm 8 in

place of Algorithm 6 in line 8 of Algorithm 7.

Theorem 3.5. Given data matrix X ∼ P ∈ P(ν)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]). Let Ẑ be the

output from the Algorithm 7′ with input X and λ = B1/2(1 +
√

8p−1
∗ log(nG)), Q and

β = nτ/10. Let τ
√
n ⩾ C ′B log n/ϑ2. There exist universal constants C, C ′ > 0 such

that, if n ⩾ 12 is even, z is even, and

C
√
Bk

ϑτ
√
nτ

(
1 +

√
8 log(nG)

p∗

)
⩽ 1, (3.11)

then,

P
(
ν̂ = ν and |ẑi − zi| ⩽

C ′B log n

ϑ2
∀ i ∈ [ν]

)
⩾ 1− νe−τ2M/36 − 1

nG3
− 7

nτ 3
.

Theorem 3.5 shows that under suitable assumptions about the spacings between con-

secutive change-points, our multiple change-point estimator ẑi/n converges to zi/n with

a rate of convergence B log n/(nϑ2). Up to a logarithmic factor, this rate is essentially

the same as the rate for single change-point estimation as proved in Theorem 3.3.

3.5 Numerical studies

In this section, we provide some simulation results to demonstrate the empirical perfor-

mance of the groupInspect method. In all our numerical studies, unless otherwise spec-

ified, we will assume that data are generated according to (3.1), (2.8), (3.2) and (3.3).
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In all simulations, we do not assume that the covariance matrix Σ is known. Instead,

we estimate the variance in each row using the mean absolute deviation of successive

differences of the observations. We then standardise the data by the estimated row stan-

dard deviation. The groupInspect procedure is then applied to the standardised data

assuming that Σ is a well-conditioned matrix with all diagonal entries equal to 1.

3.5.1 Theory validation

We first show that the practical performance of the groupInspect procedure is well cap-

tured by the theoretical results in Theorems 3.1 and 3.2. There are two related measures

of the signal sparsity in our problem, which are the total number of coordinates of change

k and the total number of groups with a change s. We conduct two sets of simulation

experiments fixing one of these sparsity measures and varying the other. Specifically, for

n = 1000, p ∈ {600, 1200, 2400} and ϑ ∈ {1, 2, 4, 8, 16} and Σ = Ip, we split the p coordi-

nates into disjoint groups of p∗ coordinates per group, where p∗ is allowed to vary over all

divisors of 60. In the first set of experiments, we fix k = 60 so that s = k/p∗ varies with

p∗, whereas in the second set of experiments, we fix s = 3 so that k = sp∗ varies with p∗.

The vector of change is constructed so that the magnitude of change is equal across all

coordinates of change. We will use the theoretical choice of tuning parameter λ for both

sets of experiments here. Figure 3.1 shows how the sin θ loss, averaged over 100 Monte

Carlo repetitions, varies with p∗, for different choices of p and ϑ in both settings.

In the left panel of Figure 3.1, where the number of signal coordinates k is fixed, we

see that the average loss decreases as p∗ increases. Furthermore, at a log-log scale, and

for relatively large signal sizes of ϑ ∈ {4, 8, 16}, we see the loss curves follow an initial

linear decreasing trend as p∗ increases before plateauing eventually. This is in agreement

with the two terms contributing to the loss described in Theorem 3.1. Specifically, for

small p∗, we expect the second term of (3.8) to dominate and the loss decreases at a

rate approximately proportional to 1/
√
p∗ initially. For large p∗, we expect the first term

of (3.8) to dominate and the loss will have minimal dependence on p∗. In the right panel

of Figure 3.1, where the number of signal groups s is fixed, the average loss increases
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Figure 3.1: Average loss (over 100 repetitions) of groupInspect for varying elements per

group p∗, plotted on a log-log scale. Left panel: k = 60 and s = k/p∗. Right panel: s = 3

and k = sp∗. Other parameter: n = 1000.

with p∗, as expected from our theory. It appears that for s = 3 studied here, the first

term of (3.8) is dominant and the average loss increases linearly at the log-log scale with

respect to p∗.

We further remark that in both panels of Figure 3.1, the average loss for large p∗ shows

equally spaced separation for the signal size ϑ in the dyadic grid {1, 2, 4, 8, 16}. This is in

good agreement with the 1/θ dependence of expected loss given in Theorem 3.1. Finally,

we note that the ambient dimension p has minimal effect on the loss curves, for all signal

strengths studied here. Again, this is predicted by our theory as the dimension p enters

the mean loss in (3.8) only through the log(nG) = log(pn/p∗) expression in the second

term.

3.5.2 Practical choice of tuning parameter

The theoretical choice of λ turns out to be conservative in practical use. In this subsection,

we will perform numerical simulations to suggest a suitable practical tuning parameter

choice. We fix n = 1000, z = 400, s = 3, G ∈ {10, 25} and assume Σ = Ip. The
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signal size ϑ is varied in {1, 2, 4, 8, 16} and p is chosen from {500, 1000}. All groups

are set to have equal size. We run the groupInspect algorithm for tuning parameters

λ = a(1 +
√

4p−1
∗ log(nG)), where a is chosen from a logarithmic sequence of values

between 0.1 and 3.

We plot sin θ loss against a in Figure 3.2. In most cases, the loss is minimised when

a ≈ 1/2, i.e. tuning parameter value is half of the theoretical value. This suggests that

when Σ = Ip, the choice λ = 2−1(1 +
√

4p−1
∗ log(nG)) leads to more accurate estimation

in practice. Theorems 3.1 and 3.3 suggest that for non-identity covariance structure,

the tuning parameter choice should scale proportional to the square root of the operator

norm of Σ. It is in general a challenging statistical problem to estimate the operator

norm of the covariance matrix in a high-dimensional setting. One can in principal use

the estimator proposed by Liu, Gao and Samworth (2021), though we observe that this

estimator typically incurs a large upward bias when the dimension is high in comparison

to the sample size. Moreover, an inspection of our proof reveals that the presence of the

additional factor B is used to capture some worst-case large deviation bound, which is

often too conservative for a generic covariance Σ. In view of the above, we recommend

that practitioners use the same λ = 2−1(1 +
√

4p−1
∗ log(nG)) when Σ is unknown.

3.5.3 Comparison between different methods

Now, we would like to compare our method with other existing change-point estimation

procedures. As groupInspect is a two-stage procedure that first estimates a projection

direction before localising the change-point on the projected series, we will investigate

its performance both in terms of its accuracy in estimating the projection direction and

the quality of the final change-point location estimator. For the former, we compare the

estimated projection direction from groupInspect with that from the Inspect algorithm.

We measure the accuracy in terms of the sine angle loss introduced in Section 3.2. We use

the recommended values for tuning parameters in both methods, i.e.,
√

2−1 log{p log n} in

Inspect as in Wang and Samworth (2018) and 2−1(1+
√

4p−1
∗ log(nG)) for groupInspect

as suggested in Section 3.5.2.
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Figure 3.2: Average loss (over 100 repetitions) of groupInspect for tuning parameter

λ = a(1 +
√

4p−1
∗ log(nG)) with varying choice of a. Left panel: G = 10. Right panel:

G = 25. Other parameter: n = 1000, s = 3.

We fix n = 1000, p = 1000, vary ϑ in {1, 2, 4, 8, 16} and set the covariance matrix to be

Σ = Ip. We consider settings with both non-overlapping groups and overlapping groups.

For the non-overlapping setting, we have G = 10 groups of equal size p∗ = 100, whereas

for the overlapping setting, we have G = 19 groups of size 100 each, where neighbouring

groups overlap in exactly 50 coordinates. Both methods have access to exactly the same

data sets and the performance is averaged over 100 Monte Carlo repetitions.

Figure 3.3 shows the comparison of the average sine angle loss between Inspect and

groupInspect over all signal sizes on a logarithmic scale, in both the non-overlapping and

overlapping settings. In both cases, groupInspect outperforms the Inspect algorithm.

From the left panel, we can see that the estimation accuracy of the projection direction

using groupInspect is substantially better even when the signal is small.

We now turn our attention to the overall change-point localisation accuracy of the

groupInspect procedure. To this end, we compare the mean absolute deviation of var-

ious high-dimensional change-point procedures over 300 Monte Carlo repetitions using

the same data sets. In addition to Inspect, we also compare against the ℓ2 aggrega-
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Figure 3.3: Average loss (over 100 repetitions) comparison between groupInspect and

Inspect. Left panel: non-overlap setting. Right panel: overlap setting

tion procedures of Horváth and Hušková (2012) (ℓ2-agg), the ℓ∞ aggregation procedure

of Jirak (2015) (ℓ∞-agg), the double CUSUM procedure of Cho (2016) (DC) and a mul-

tiscale testing procedure Pilliat et al. (2020). We set n = 1000, p ∈ {500, 1000, 2000},

ϑ ∈ {0.25, 0.5, 1, 2, 4} and Σ = (2−|j−k|)j,k∈[p]. The simulation results are presented in Ta-

ble 3.1. For simplicity, we have only shown the results for 10 equal-sized non-overlapping

groups here, but qualitatively similar results were obtained in other settings as well. We

see that groupInspect is very competitive over a wide range of dimensions and signal-to-

noise ratio settings, and groupInspect dominates the Inspect procedure in all simulation

settings by successfully exploiting the group-sparsity structure.

3.5.4 Multiple change-points simulation

The numerical studies so far have focused mainly on the single change-point estimation

problem. In this subsection, we investigate the empirical performance of groupInspect in

multiple change-point estimation tasks. We will compare its performance as implemented

in Algorithm 7 to that of the Inspect algorithms for estimating multiple change-points
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p ϑ groupInspect Inspect ℓ2-agg ℓ∞-agg DC pilliat

500 0.25 151 158 370 368 364 113

500 0.5 89.6 98.6 271 332 298 102.6

500 1 8.7 14.8 18.5 108 66.8 56.82

500 2 0.95 1.30 1.64 15.9 5.42 19.53

500 4 0.057 0.063 0.080 3.11 0.51 15

1000 0.25 116 147 368 344 385 115

1000 0.5 85 120 309 316 335 102

1000 1 23.4 32.6 41.0 194 110 67.2

1000 2 1.31 1.67 2.04 32.2 7.47 24.36

1000 4 0.09 0.14 0.123 6.29 0.850 15

2000 0.25 106 128 356 356 374 131

2000 0.5 89.6 118 321 344 341 119

2000 1 47.61 55.56 106 283 177 92.91

2000 2 2.91 3.23 3.39 63.3 10.4 39.141

2000 4 0.11 0.160 0.17 9.94 1.32 30.75

Table 3.1: Average mean absolute deviation (over 300 repetitions) comparison between

different methods. Other parameters used: n = 1000 with G = 10
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under different settings. We choose n = 1200, p ∈ {500, 1000}, s ∈ {3, 10}, G ∈ {50, 100}

and Σ = Ip. Each data series contains three true change-points located at 300, 600

and 900 with the ℓ2 norm of the change equal to ϑ, 1.5ϑ and 2ϑ respectively. We vary

ϑ in {0.6, 0.8, 1, 1.2, 1.4}. For simplicity, we further assume that the same s coordinates

undergo change in all three change-points and that all groups have 10 elements. The total

number of coordinates with change k is calculated as 10s. We use the λ tuning parameter

choice suggested in Section 3.5.2 for the groupInspect method and that suggested in

Wang and Samworth (2018) for the Inspect algorithm. For the thresholding parameter

ξ of the wild binary segmentation recursion used in both groupInspect and Inspect,

we choose via Monte Carlo simulation. More precisely, we randomly generate 1000 data

sets from the null model with no change-points and take the maximum absolute CUSUM

statistic from Algorithm 7 and Wang and Samworth (2018, Algorithm 4) as ξg and ξi

respectively. We compare the performance of two algorithms using the Adjusted Rand

index (ARI) of the estimated segmentation against the truth (Rand, 1971; Hubert and

Arabie, 1985).

From Figure 3.4, we see that the groupInspect algorithm generally performs much

better than the Inspect algorithm in the multiple change-point localisation tasks. The

advantage of groupInspect is more pronounced when the signal is sparser and when the

dimension of the data is higher.

To further visualise the output of the two procedures, we plot the estimated change-

point locations for one specific setting (s = 3 and ϑ = 1) of each of the two panels in

Figure 3.4. The resulting histograms in Figure 3.5 show that when p = 500, groupInspect

was better at picking out all three change-points with higher accuracy. When p = 1000,

Inspect was only able to pick out the change at t = 600 in most of the trials, whereas

groupInspect was still able to identify even the weakest change signal at t = 300 in a

substantial fraction of all trials.
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Figure 3.4: Average ARI comparsion between groupInspect and Inspect. Left panel:

p = 500, G = 50. Right panel: p = 1000, G = 100.

3.5.5 Real data analysis

In this section, we apply groupInspect to an S&P 500 daily stock return dataset. The

data consists of the logarithmic daily returns (computed from the adjusted closing prices)

of S&P 500 stocks traded during the period of 1 January 2007 to 31 December 2011.

We only included the 257 stocks which have continuously traded throughout this period

to construct a multivariate time series of dimension p = 257 and length n = 1259. We

divided the 257 companies into G = 11 non-overlapping groups according to their Global

Industry Classification Standard sector memberships. For each stock logarithmic returns,

we fitted an AR(1) model, and then rescaled the residuals by their estimated standard

deviation according to the method described in Section 3.5.

Figure 3.6 displays the ten most significant change-points identified by our groupInspect

algorithm. For each change-point, we derived a sector-weighting vector from the esti-

mated projection direction by groupInspect. Specifically, given the projection direction

v̂ ∈ Sp−1 for each estimated change-point, and the grouping (Jg)g∈[G], we computed a

weight vector ŵ := (∥v̂Jg∥)g∈[G]. This vector gives us information about which sectors
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Figure 3.5: Histograms of estimated locations by groupInspect and Inspect under two

settings when P = 500, G = 50 and p = 1000, G = 100. Other parameter used: s = 3,

ϑ = 1 are fixed in both settings.
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Figure 3.6: Estimated change point locations (red dashed lines) by groupInspect applied

to the stock return data. For ease of illustration, we have plotted the ℓ2 norm of the returns

of all stocks within each of the 11 groups over time.

had driven the change for each change-point estimated. For instance, we see from Fig-

ure 3.6 that the change-point at 12 September 2008 was predominantly driven by price

fluctuations in financial stocks, which coincides with the Federal takeover of Fannie Mae

and Freddie Mac on 7 September 2008 and the bankruptcy of Lehman Brothers on 15

September 2008. The change-point identified at 10 February 2009, though still heavily

weighted on financial stocks, showed a broader impact across other sectors. This is con-

sistent with the passing of the American Recovery and Reinvestment Act of 2009 on 13

February 2009 sending a general positive signal to the entire economy.
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3.6 Extensions to sub-Gaussian distributions

In the previous sections, we assumed that Xi = µi + Wi, for W1, . . . ,Wn
iid∼ Np(0,Σ).

In this session, we discuss how the previous results can be generalised to settings where

W1, . . . ,Wn are independent sub-Gaussian random vectors. Adpoting notation from Zhu,

Wang and Samworth (2022), for any random vector U in Rp, we write

∥U∥ψ2 := sup
w∈Sp−1

sup
q∈N

E(|w⊤U |q)1/q
√
q

,

∥U∥ψ∗
2
:= sup

w∈Sp−1

∥w⊤U∥ψ2

(w⊤Var(U)w)1/2
= ∥Var−1/2(U)U∥ψ2 .

We say that a U is a p dimensional sub-Gaussian random vector if ∥U∥ψ∗
2
<∞.

For sub-Gaussian data, Lemma 3.21 can be used in place of Lemma 3.18 to derive

the equivalent result of Theorem 3.1 for the sub-Gaussian data. In this section we de-

note P(ν)
n,p(s, k, τ, ϑ, L,B, (Jg)g∈[G]) as the data generating mechanism, where the data is

generated in the same way as before except the noise Wi are drawn from sub-Gaussian

distributions with ∥Wt∥ψ∗
2
⩽ L. Theorem 3.6 gives the result for the projection direction

and Theorem 3.7 gives the result for the estimation accuracy of change-point location.

Theorem 3.6. For a given grouping (Jg)g∈[G], let p∗ = ming∈[G] |Jg| and suppose further

that there exists a universal constant C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ⩽ C1.

Let X ∼ P ∈ P (1)
n,p(s, k, τ, ϑ, L,B, (Jg)g∈[G]) be a p × n data matrix, let θ be the vector

of change and let v̂ be as in Step 3 of Algorithm 6 with input X, (Jg)g∈[G] and λ ⩾

C2LB
1/2(1 +

√
log(nG)/p∗). Then there exists C > 0, depending only on C1, such that

sup
P∈P(1)

n,p(s,k,τ,ϑ,L,B(Jg)g∈[G])

PP
{
sin∠(v̂, v) >

Cλk1/2

n1/2τϑ

}
⩽

1

nG
. (3.12)

The proof follows the same argument as in that of Theorem 3.1, but using Lemma 3.21

in place of Lemma 3.18.

Theorem 3.7. Given data matrix X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ, L,B, (Jg)g∈[G]), let ẑ be the

output from the Algorithm 8 with input X and λ ⩾ C2LB
1/2(1 +

√
log(nG)/p∗). There

exist universal constants C, C ′ > 0 such that, if n ⩾ 12 is even, z is even, and

C
√
kλ

ϑτ
√
n

⩽ 1, (3.13)
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then for any λ1 > L
√
CB log n, we have

P
{
1

n
|ẑ − z| ⩽ C ′λ21

nϑ2

}
⩾ 1− 8

n3
− 16 log n

n
.

The proof of this theorem follows from Lemma 3.23.

Theorem 3.6 and Theorem 3.7 show that we can obtain the similar theoretical guar-

antee results in terms of both projection direction and location estimation accuracy if the

data is consisting of sub-Gaussian random vectors. We remark that the main challenge in

the derivation of the theorems above here is how to bound the error terms, i.e, ∥E∥grp∗ ,

as the usual concentration bounds designed for normal distribution could not be applied

here. We instead considered Hoeffding-type inequality. Also, we define the sub-Gaussian

random variable in a way that it is invariant for linear transformation due to projection.

3.7 Extensions to temporal dependence

In this section, we consider the case when the columns of X are not independent across

time. We assume that W1, . . . ,Wn are stationary and let K(u) = Cov(Wt,Wt+u). We

further assume that the dependence is short-ranged in the sense that:∥∥∥∥n−1∑
u=0

K(u)

∥∥∥∥
op

⩽ B∗. (3.14)

The oracle projection direction maximises the signal-to-noise ratio after projection,

which does not change in the presence of temporal dependence. The main difference,

however, is that when the noise W1, . . . ,Wn are dependent across time, the CUSUM

matrix E will have columns whose covariance will be inflated as we are taking a weighted

average of correlated noise. Condition (3.14) ensures that the temporal correlation is

short-ranged and that the covariance of the noise CUSUM is inflated by at most a constant

factor, depending on B∗. The following theorems give the theoretical results on projection

direction (Theorem 3.8) and estimation accuracy (Theorem 3.9) in this case. In this

section we denote P(ν)
n,p(s, k, τ, ϑ,B∗, (Jg)g∈[G]) as the data generating mechanism, where

the data is generated in the same way as before except the noise Wi has the temporal

dependence structure as in 3.14.
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Theorem 3.8. For a given grouping (Jg)g∈[G], let p∗ = ming∈[G] |Jg| and suppose further

that there exists a universal constant C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ⩽ C1.

Let X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B∗, (Jg)g∈[G]) be a p × n data matrix, let θ be the vector

of change and let v̂ be as in Step 3 of Algorithm 6 with input X, (Jg)g∈[G] and λ ⩾
√
2B∗(1 +

√
8 log(nG)/p∗). Then there exists C > 0, depending only on C1, such that

sup
P∈P(1)

n,p(s,k,τ,ϑ,B∗,(Jg)g∈[G])

PP
{
sin∠(v̂, v) >

Cλk1/2

n1/2τϑ

}
⩽

1

(nG)3
. (3.15)

Theorem 3.9. Given data matrix X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B∗, (Jg)g∈[G]), let ẑ be the

output from the Algorithm 8 with input X and λ ⩾
√
2B∗(1 +

√
p−1
∗ 8 log(nG)). There

exist universal constants C, C ′ > 0 such that, if n ⩾ 12 is even, z is even, and

C
√
kλ

ϑτ
√
n

⩽ 1, (3.16)

then for any λ1 >
√
2B∗, we have

P
{
1

n
|ẑ − z| ⩽ C ′λ21

nϑ2

}
⩾ 1− 8

n3
− (3λ1 + 1)e−λ

2
1/(8B

∗) log n.

The proofs of two theorems above follow from Lemma 3.24.

3.8 Proof of main results

In this section, we will give the proof of our results in Chapter 3.

3.8.1 Proof of Theorem 3.1

Proof. From the definition of the CUSUM transformation in (2.9), we can explicitly write

the matrix A := E(T ) = (Aj,t)j∈[p],t∈[n−1] as

Aj,t =


√

t
n(n−t)(n− z)θj if 1 ⩽ t ⩽ z,√
n−t
nt
zθj if z < t ⩽ n− 1.

In particular, we have that A is a rank 1 matrix of the form

A = θγ⊤, (3.17)
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with

γ =
1√
n

(√ 1

n− 1
(n− z),

√
2

n− 2
(n− z), · · · ,

√
z(n− z),

√
n− z − 1

z + 1
z, · · · ,

√
1

n− 1
z
)⊤
.

By Wang and Samworth (2018, Lemma 3), we have ∥γ∥2 ⩾ nτ/4, so ∥A∥op = ∥θ∥2∥γ∥ ⩾

nτϑ/4. By Lemma 3.18 with δ = (nG)−4, we have

P(∥T − A∥grp∗ > λ) <
1

(nG)3
.

By Proposition 3.16, on the event {∥T − A∥grp∗ ⩽ λ}, we have

max
{
sin∠(v, v̂), sin∠(u, û)

}
⩽

32λ(C1k)
1/2

n1/2τϑ
,

as desired.

3.8.2 Proof of Theorem 3.2

Proof. We will use two different constructions to derive separate lower bounds of order√
Bs log(G/s)/(nτϑ2) and

√
Bk/(nτϑ2) respectively. Without loss of generality, we may

assume that z < n/2.

For the first bound, let s0 = s − 1, G0 = G − 1. By the Gilbert–Varshamov lemma

as stated in Massart (2007, Lemma 4.10) (applied with α = 3/4 and β = 1/3), we can

construct a set U0 of s0-sparse vectors in {0, 1}G0 , with cardinality at least (G0/s0)
s0/5,

such that the pairwise Hamming distance between any pair of vectors in U0 is at least

s0/2. Let ϵ ∈ (0, 1) to be chosen later, we can define a set

U =

{( √
1− ϵ2

s
−1/2
0 ϵu0

)
: u0 ∈ U0

}
⊆ SG−1.

We remark that for any pair of distinct u, u′ ∈ U , we have by construction that ϵ/
√
2 ⩽

∥u′ − u∥2 ⩽ ϵ. We then define a map ψ : RG → Rp such that for any u ∈ U and

j ∈ Jg, we have ψ(u)j = ugp
−1/2
g . Finally, let V = {ψ(u) : u ∈ U}. We note that

∥ψ(u′)− ψ(u)∥2 = ∥u′ − u∥2. Therefore, for distinct v, v′ ∈ V , we have

L(v′, v) =
√

1− (v⊤v′)2 =
∥v′ − v∥2√

2
⩾
ϵ

2
. (3.18)

58



Now, for each v ∈ V , we define a distribution Pv ∈ P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]), such that

the pre-change mean is −ϑv and the post-change mean is 0 (we check that Pv indeed

satisfies the conditions of P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G])). Then for any distinct v, v′ ∈ V , we

have

D(Pv∥Pv′) = zD(Np(−vϑ,B)∥Np(−v′ϑ,B)) ⩽
zϑ2

2B
∥v − v′∥22

⩽
zϑ2ϵ2

2B
. (3.19)

By (3.18) and (3.19), we can apply Fano’s lemma (Yu, 1997, Lemma 3) to obtain that

inf
ṽ

sup
P∈P(1)

n,p(s,k,τ,ϑ,B,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ⩾ inf
ṽ
sup
v∈V

EPvL(ṽ(X), v)

⩾
ϵ

4

{
1− zϑ2ϵ2/(2B) + log 2

(s0/5) log(G0/s0)

}
.

By the condition (s − 1) log(G/s) ⩾ 20, we have (s0/5) log(G0/s0) ⩾ 2 log 2. Moreover,

the choice of

ϵ =

√
Bs0 log(G0/s0)

10zϑ2

ensures that (s0/5) log(G0/s0) ⩾ 2zϑ2ϵ2/B. Therefore,

inf
ṽ

sup
P∈P(1)

n,p(s,k,τ,ϑ,B,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ⩾
ϵ

16
⩾

1

72

√
Bs log(G/s)

zϑ2
. (3.20)

For the second lower bound, let g1, . . . , gs be the indices of the s groups with largest

cardinalities. By the given condition of the Theorem, we have that k̃ =
∑s

r=1 pgr =∑s
r=1 p(G−r+1) ⩾ k/2. Let S = ∪sr=1Jgr , so |S| = k̃. By Massart (2007, Lemma 4.7),

we can construct a subset V0 of {−1, 1}k̃0 of cardinality at least ek̃/8, such that any two

points in the set are separated in Hamming distance by at least k̃/4. Construct

V =

{
v : vS =

√1− ϵ2
k̃
−1/2
0 ϵv0

 for some v0 ∈ V0 and vSc = 0

}
.

Therefore, for distinct v, v′ ∈ V , we have ϵ ⩽ ∥v′ − v∥2 ⩽ 2ϵ,then,

L(v′, v) =
√

1− (v⊤v′)2 =
∥v′ − v∥2√

2
⩾

ϵ√
2
.
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Following the same derivation as in (3.19), we have that

D(Pv∥Pv′) = zD(Np(−vϑ,Σ)∥Np(−v′ϑ,Σ))

⩽
zϑ2

2B
∥v − v′∥22 ⩽

2zϑ2ϵ2

B
.

Again, we can use Fano’s lemma (Yu, 1997, Lemma 3) to obtain that

inf
ṽ
sup
v∈V

EPvL(ṽ(X), v) ⩾
ϵ√
2

{
1− 2zϑ2ϵ2/B + log 2

k̃/8

}
⩾

ϵ√
2

{
1− 2zϑ2ϵ2/B + log 2

k/16

}
.

Now, choose ϵ = (kB)1/2z−1/2ϑ−1/4
√
6. Since k ⩾ 20, we have k/16 ⩾ 9 log(2)/5, so that

inf
ṽ

sup
P∈P(1)

n,p(s,k,τ,ϑ,B,(Jg)g∈[G])

EPL(ṽ(X), v(P )) ⩾ inf
ṽ
sup
v∈V

EPvL(ṽ(X), v)

⩾
ϵ

9
√
2
⩾

1

72
√
3

√
kB

zθ2
. (3.21)

The desired result follows by combining (3.20) with (3.21), and noting that z ⩾ nτ .

3.8.3 Proof of Theorem 3.3

Proof. Recall the definition of X(2) and let T (2) = T (X(2)). Define similarly µ(2) =

(µ
(2)
1 , . . . , µ

(2)
n1 ) ∈ Rp×n1 and a random W (2) = (W

(2)
1 , . . . ,W

(2)
n1 ) taking values in Rp×n1 by

µ
(2)
t = µ2t and W

(2)
t = W2t. Now, let A(2) = T (µ(2)) and E(2) = T (W (2)). We also write

X̄ = (v̂(1))⊤X(2), µ̄ = (v̂(1))⊤µ(2), W̄ = (v̂(1))⊤W (2), Ā = (v̂(1))⊤A(2), Ē = (v̂(1))⊤E(2) and

T̄ = (v̂(1))⊤T (2) for the one-dimensional projected images. Note that by linearity, we have

T̄ = T (X̄), Ā = T (µ̄) and Ē = T (W̄ ).

Now, conditional on v̂(1), the random variables X̄1, . . . , X̄n1 are independent with

X̄t | v̂(1) ∼ N(µ̄t, σ
2)

and the row vector µ̄ undergoes a single change at z(2) = z/2 with magnitude of change

θ̄ = µ̄z(2)+1 − µ̄z(2) = v̂(1)⊤θ.
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Finally, let ẑ(2) ∈ argmax1⩽t⩽n1−1 |T̄t|, so the first component of the output of the algo-

rithm is ẑ = 2ẑ(2). Consider the set

Υ = {u ∈ Sp−1 : sin∠(u, v) ⩽ 1/2}.

By Condition (3.9) and Theorem 3.1, we have that

P(v̂(1) ∈ Υ) ⩾ 1− 1

(n1G)3
. (3.22)

Moreover, on the event {v̂(1) ∈ Υ}, we have that |θ̄| ⩾
√
3ϑ/2. Noting that we have

Ēt | v̂(1) ∼ N(0, v̂(1)⊤Σv̂(1)), we have by Wang and Samworth (2018, Lemma 4) for any

λ1 ⩾
√
B that

P(∥Ē∥∞ ⩾ λ1) ⩽

√
2

π
⌈log n1⌉

(
λ1√
B

+ 2

)
e−λ

2
1/B ⩽ 3λ1e

−λ21/B log n. (3.23)

Define Ω0 := {v̂1 ∈ Υ, ∥Ē∥∞ ⩽ λ1}. From (3.22) and (3.23), we have P(Ω0) ⩾ 1− n−3
1 −

3λ1e
−λ21/B log n.

Notice that the procedure produces the same output if we replace v̂(1) by −v̂(1), hence

we may assume without loss of generality that θ̄ ⩾ 0, which implies that Āt ⩾ 0 for all

t ∈ [n1 − 1]. Condition (3.9) implies that

√
nτϑ ⩾ Cλ1, (3.24)

for sufficient large C. Therefore, by Lemma 3.20 and (3.24), if we choose C ⩾ 8/
√
3, then

for t satisfying |z(2) − t| ⩾ n1τ/2, we have

Az(2) =

√
z(2)(n1 − z(2))

n1

θ̄ ⩾

√
n1τ

2
θ̄ ⩾

√
3

4

√
nτϑ ⩾ 2λ1.

In particular, we must have on Ω0 that Tẑ(2) ⩾ Tz(2) ⩾ Az(2) − λ1 ⩾ −At + λ1 ⩾ −Tt for

any t ∈ [n− 1]. Hence, argmaxt∈[n−1] |T̄t| = argmaxt∈[n−1] T̄t.

Since T̄ = Ā + Ē and (Āt)t and (T̄t)t are respectively maximised at t = z(2) and

t = ẑ(2). We have on the event Ω0 that

Āz(2) − Āẑ(2) = (Āz(2) − T̄ẑ(2)) + (T̄z(2) − T̄ẑ(2)) + (T̄ẑ(2) − Āẑ(2)) ⩽ Ēẑ(2) − Ēz(2) . (3.25)
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Note that on Ω0, the right-hand side of (3.25) is bounded by 2λ1. Hence, applying

Lemma 3.20 to the left-hand side of (3.25), and using the unimodality of Ā, if C ⩾ 24,

on the event Ω0, we have that

|ẑ(2) − z(2)|
n1τ

⩽
3
√
6λ1

θ̄
√
n1τ

⩽
12λ1
ϑ
√
nτ

⩽
1

2
.

By Lemma 3.19, there exists an event Ω1 with probability at least 1 − e−λ21/(2B) log n on

which

|Ēz(2) − Ēẑ(2) | ⩽ 4λ1

√
|z(2) − ẑ(2)|

nτ
+ 16λ1

|z(2) − ẑ(2)|
nτ

. (3.26)

Substituting the improved bound of (3.26) into the right-hand side of (3.25), and again

applying Lemma 3.20 to the left-hand side of (3.25), we have on Ω0 ∩ Ω1 that

ϑ

3

|z(2) − ẑ(2)|√
nτ

⩽ 4λ1

√
|z(2) − ẑ(2)|

nτ
+ 16λ1

|z(2) − ẑ(2)|
nτ

.

When C ⩾ 96, from (3.9), we have 16λ1
|z(2)−ẑ(2)|

nτ
⩽ ϑ

6
|z(2)−ẑ(2)|√

nτ
. Consequently, on Ω0 ∩Ω1,

we have

|ẑ − z| ⩽ C ′λ21
ϑ2

,

as desired. Finally, we compute that the desired event occurs with probability

P(Ω0 ∩ Ω1) ⩾ 1− 1

n3
1

− (3λ1 + 1)e−λ
2
1/(2B) log n.

as desired.

3.8.4 Proof of Corollary 3.4

Proof. Define A := E(T ) and E := T−A. Under null hypothesis where there is no change

in the segment, by Lemma 3.18, we have that P(∥T∥grp∗ ⩾ λ) = P(∥E∥grp∗ ⩾ λ) < 1/(nG).

Under the alternative, we have:

∥T∥grp∗ = ∥A+ E∥grp∗ ⩾ ∥A∥grp∗ − ∥E∥grp∗ .

By (3.17), we have

∥A∥grp∗ = ∥θγ⊤∥grp∗ = ∥γ∥∞ max
g∈[G]

p−1/2
g ∥θJg∥2 ⩾

∥γ∥∞∥θ∥2√
k

.
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Also, by definition of γ, we have that ∥γ∥∞ =
√

z(n−z)
n

⩾
√
nτ/2. Therefore, for ∥θ∥2 ⩾

2
√
2kλ√
nτ

, combining with Lemma 3.17, we have that with probability at least 1 − 1/(nG)

that ∥T∥grp∗ ⩾ 2λ− λ = λ.

3.8.5 Proof of Theorem 3.5

Proof. Let {z1, . . . , zν} be the set of true change points, such that 0 =: z0 < z1 < · · · <

zν < n =: zν+1. For each i ∈ [ν], define intervals

ILi =
(
zi − nτ/3, zi − nτ/6

)
and IRi =

(
zi + nτ/6, zi + nτ/3

)
.

These intervals contain at least one integer for nτ ⩾ 6. For simplicity of exposition, we

have ignored various rounding issues in this proof. Now, define the following event:

Ω0 := {∀i ∈ [ν], ∃m ∈ [M ], s.t. (sm, em) ∈ ILi × IRi }.

Then, we have

P(Ωc
0) ⩽

ν∑
i=1

M∏
m=1

(
1− P((sm, em) ∈ ILi × IRi )

)
⩽ ν

(
1− τ 2

36

)M

⩽ νe−τ
2M/36.

On Ω0, for each change point zi, we can find an interval (sm, em] which only captures one

change-point, which is at least nτ/6 away from the endpoints sm and em of the interval.

We write X(s,e] for the submatrix of X obtained by extracting columns indexed in

(s, e]. Let T (s,e] := T (X(s,e]), A(s,e] := ET (s,e] and E(s,e] := T (s,e] − A(s,e]. Set

Ω1 :=
{

max
1⩽s<e⩽n

∥E(s,e]∥grp∗ < λ
}
.

By Lemma 3.18 and a union bound, we have that

P(Ωc
1) ⩽ n2 (n− 1)G

(nG)4
⩽

1

nG3
.

Now, for any interval (s, e], we write ẑ(s,e] to be the change-point estimate of Algo-

rithm 8 applied to data X(s,e]. We define the following set: O := {(s, e) : 0 ⩽ s <

e ⩽ n, zi−1 ⩽ s < zi < e < zi+1 for some i ∈ [ν]} and min{zi − s, e− zi} ⩾ nτ/10} to be

63



the set of intervals (s, e] that captures exactly one true change-point, which is at least

nτ/10 away from the boundaries. We then define the event

Ω2 :=

{
|ẑ(s,e] + s− zi| ⩽

C ′B log n

ϑ2
for all (s, e] ∈ O

}
.

For a sufficiently large C and C ′, by Condition (3.3) and Theorem 3.3 applied with

λ1 =
√
16B log(nτB), together with union bound, we have that

P(Ωc
2) ⩽

7

nτ 3
.

We will henceforth work on Ω0 ∩ Ω1 ∩ Ω2.

For any interval (s, e] ⊆ (0, n], we define Z(s,e] := {zi : i ∈ [ν] and zi ∈ (s, e]} and the

following subsets of Z(s,e]:

Z(s,e]
good := {z ∈ Z(s,e] : min{z − s, e− z} ⩾ nτ/3},

Z(s,e]
bad :=

{
z ∈ Z(s,e] : min{z − s, e− z} ⩽ C ′B log n

ϑ2

}
,

where C ′ is chosen to be the same constant as in the definition of Ω2. We note that Z(s,e]
good

and Z(s,e]
bad respectively contain change-points within (s, e] that are well-separated from the

boundary and close to the boundary. We will informally refer to these change-points as

“good” and “bad” change-points in (s, e]. On Ω0, for every i ∈ [ν], we can associate it

with an mi ∈ [M ] such that smi
∈ ILi and emi

∈ IRi . We claim that

{mi : zi ∈ Z(s,e]
good} ⊆ Rs,e. (3.27)

To see this, we first note that from the definition of ILi and IRi , and the condition min{zi−

s, e − zi} ⩾ nτ/3 that for every i with zi ∈ Z(s,e]
good we have (smi

, emi
] ⊆ (s, e]. On Ω1, by

Condition (3.11) with a sufficiently large choice of C > 0 and the proof of Corollary 3.4

we have

∥T (smi+β,emi−β]∥grp∗ ⩾ λ.

Hence mi ∈ Rs,e, establishing the claim. On the other hand, under Condition (3.11) for

sufficiently large C, we have C′B logn
ϑ2

< nτ/10 = β. Hence on Ω1, for any (s0, e0] ⊆ (s, e]

containing only “bad” change-points, i.e. (s0, e0] ∩ Z(s,e] ⊆ Z(s,e]
bad , we get:

∥T (s0+β,e0−β]∥grp∗ < λ,
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as there are no change points within the interval (s0 + β, e0 − β]. Thus,{
m ∈Ms,e : (sm, em] ∩ Z(s,e] ⊆ Z(s,e]

bad

}
∩Rs,e = ∅ (3.28)

Given a set Ẑ of estimated change-points, we can partition (0, n] into |Ẑ|+1 segments.

We call these the segments induced by Ẑ. We now prove by induction that throughout

the recursion of NOT, the following statement holds:

For any (s, e] induced by Ẑ, Z(s,e] = Z(s,e]
good ∪ Z

(s,e]
bad . (P)

For the base case, at the beginning of the algorithm, we have Ẑ = ∅, so the only induced

segment by Ẑ is (0, n]. The statement (P) is true since the cloest change-point from

the boundary is at least nτ away. Now assuming that (P) is true at some stage of the

recursion when Ẑ is the set of estimated change-points so far, we need to show that (P)

still holds when a new change-point is estimated by NOT. This new change-point must

be identified from running NOT on some (s, e] where (s, e] is one of the induced segments

by Ẑ. From the inductive hypothesis, we know that Z(s,e] = Z(s,e]
good ∪ Z

(s,e]
bad . We note that

Z(s,e]
good is necessarily nonempty for otherwise by (3.28) we haveMs,e ∩Rs,e = ∅ and hence

Rs,e = ∅, so no new change-point will be identified in (s, e]. Thus, there exists some i′

with zi′ ∈ Z(s,e]
good and by (3.27), mi′ ∈ Rs,e and hence em∗ − sm∗ ⩽ emi′

− smi′
⩽ nτ/3.

In particular, we have that (sm∗ , em∗ ] must capture exactly one change-point (it has to

capture at least one change-point by (3.28) and cannot capture more than one since two

consecutive change-points are spaced at least nτ away), say zi∗ . On the event Ω2, we

know that the change-point output ẑ of Algorithm 8 on X(sm∗ ,em∗ ] satisfies

|ẑ + sm∗ − zi∗| ⩽
C ′B log n

ϑ2
. (3.29)

We now check that the two new segments induced by Ẑ ∪ {ẑ + sm∗} still satisfy (P). For

this, it suffices to check that zi∗−1, zi∗ and zi∗+1 are either within C′B logn
ϑ2

of ẑ + sm∗ or

at least nτ/3 away from it. This can be seen by combining (3.29) with the fact that

min{zi∗ − zi∗−1, zi∗+1 − zi∗} ⩾ nτ . This completes the induction.

We remark that as a side product of the above inductive argument, we have shown

that if (s, e] ∩ Z(s,e]
good ̸= ∅, then Rs,e is non-empty and NOT will estimate a new change-

point. Hence, at the end of the recursion, we must have that all segments induced by
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Ẑ contains no change-point at least nτ/3 away from the boundaries. In other words, all

change-points z1, . . . , zν must be at most nτ/10 away from the endpoints of one of the

induced segments. This, together with the fact that consecutive change-points (including

z0 and zn+1) are spaced at least nτ away, means that there must be exactly ν estimated

change-points in Ẑ at the end of the algorithm. Let ẑ1 < ẑ2 < · · · < ẑν be elements of

Ẑ arranged in an increasing order. Then, since all change-points are “bad” at the end of

the NOT recursion, we must have

max
i∈[ν]
|ẑi − zi| ⩽

C ′B log n

ϑ2

as desired.

3.9 Ancillary results

We collect in this section all ancillary propositions and lemmas used in Chapter 3. For

all results in this section, we assume that we are given a grouping (Jg)g∈[G] of [p] and the

associated group norm ∥ · ∥grp.

Proposition 3.10. Fix n ∈ N. Let Pz,µL,µR denote the joint distribution of (Xi)i∈[n] such

that Xi ∼ N(µi, σ
2) are independent random variables with µi = µL1{i⩽z} + µR1{i>z}.

Then

inf
ẑ

sup
(z,µL,µR)∈[n−1]×R2

EPz,µL,µR
|ẑ − z|(µL − µR)

2 ⩾ cσ2 log log n.

Proof. Suppose n = 2L for some L ∈ N. For ℓ ∈ [L], we define µ(ℓ) ∈ R2n to be the vector

whose last 2ℓ entries are equal to
√
σ22−ℓ log log2(2n)/60 and the remaining entries are 0.

Gao et al. (2020, Theroem 2.2 and the argument immediately above its statement) shows

that for some universal constant c1 > 0, we have

inf
µ̂

sup
ℓ∈[L]

Eµ(ℓ)∥µ̂− µ(ℓ)∥22 ⩾ c1σ
2 log log(16n). (3.30)

Let c > 0 be a constant to be chosen later. We assume that the conclusion of the

proposition does not hold, which means that there exists an estimator ẑ such that for all
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z ∈ [n− 1] and µL, µR ∈ R, we have

EPz,µL,µR
|ẑ − z| < cσ2 log log n

(µL − µR)2
. (3.31)

Let (Zi)i∈[2n] be a sequence of 2n independent random variables such that Zi ∼ N(µL1{i⩽2z}+

µR1{i>2z}, σ
2). We can apply the estimator ẑ on data Zodd := (Z1, Z3, . . . , Z2n−1) of length

n to obtain a changepoint location estimate ẑ(Zodd), which for notational simplicity, we

will denote also as ẑ henceforth. Now, define

µ̂L :=
1

ẑ

ẑ∑
i=1

Z2i and µ̂R :=
1

n− ẑ

n∑
i=ẑ+1

Z2i.

Then the vector µ̂ := (µ̂L1{i⩽2ẑ} + µ̂R1{i>2ẑ})i∈[2n] is an estimator of µ := (EZi)i∈[2n].

Without loss of generality, we may assume that ẑ ⩾ z; the opposite case can be handled

symmetrically. This means that

∥µ̂− µ∥22 = 2z(µ̂L − µL)
2 + 2(ẑ − z)(µ̂L − µR)

2 + 2(n− ẑ)(µ̂R − µR)
2 (3.32)

Using independence between ẑ and (Z2i)i∈[n], we have µ̂L | Zodd ∼ N
(
z
ẑ
µL +

ẑ−z
ẑ
µR, σ

2/ẑ
)

and µ̂R | Zodd ∼ N
(
µR, σ

2/(n− ẑ)
)
. Hence, from (3.32), we have

E(∥µ̂− µ∥22 | Zodd) = 4σ2 + (µL − µR)
2

{
2z(ẑ − z)2

ẑ2
+

2z2(ẑ − z)
ẑ2

}
⩽ 4σ2 + 4(µL − µR)

2(ẑ − z).

Then, since EPz,µL,µR
|ẑ − z| < cσ2 log logn

(µL−µR)2
, we have

EPz,µL,µR
(∥µ̂− µ∥22) ⩽ 4σ2 + 4(µL − µR)2EPz,µL,µR

(ẑ − z)

< 4σ2 + cσ2 log log n.

Now, choosing c = c1/2, then for sufficiently large n, the above inequality contradicts

(3.30), which means that (3.31) cannot hold, thus establishing the desired conclusion.

Lemma 3.11. The norm ∥ · ∥grp∗ is a dual to ∥ · ∥grp with respect to the inner product

⟨·, ·⟩ on Rp×n.
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Proof. To prove the lemma, it suffices to show that ∥M∥grp = sup
∥R∥grp∗⩽1

⟨R,M⟩ for all

M ∈ Rp×(n−1). First, for any M ∈ Rp×(n−1), let MJg ,t be the tth column of MJg . Define

R̃ = R̃(M) such that

R̃Jg ,t =
p
1/2
g MJg ,t

∥MJg ,t∥2
.

By convention, we set R̃Jg ,t = 0 if ∥MJg ,t∥2 = 0 Then,

∥R̃∥grp∗ = max
g∈[G],t∈[n−1],
∥MJg,t∥2 ̸=0

p
−1/2
g ∥MJ ,t∥2
∥MJg ,t∥2

⩽ max
g∈[G],t∈[n−1],
∥MJg,t∥2 ̸=0

p−1/2
g p1/2g

∥MJg ,t∥2
∥MJg ,t∥2

= 1.

Hence,

sup
∥R∥grp∗⩽1

⟨R,M⟩ ⩾ ⟨R̃,M⟩ =
∑

g∈[G],t∈[n−1],
∥MJg,t∥2 ̸=0

p1/2g

⟨MJg ,t,MJg ,t⟩
∥MJg ,t∥2

=
G∑
g=1

n−1∑
t=1

p1/2g ∥MJg ,t∥2 = ∥M∥grp.

On the other hand, for any R such that ∥R∥grp∗ ⩽ 1, we have ∥RJg ,t∥2 ⩽ p
1/2
g for all g

and t. Consequently, by the Cauchy–Schwarz inequality,

⟨R,M⟩ =
∑
g∈[G]

∑
t∈[n−1]

⟨RJg ,t,MJg ,t⟩ ⩽
∑
g∈[G]

∑
t∈[n−1]

∥RJg ,t∥2∥MJg ,t∥2

⩽
∑
g∈[G]

∑
t∈[n−1]

p1/2g ∥MJg ,t∥2 = ∥M∥grp,

thus establishing the result.

Proposition 3.12. Let S = {M ∈ Rp×(n−1) : ∥M∥F ⩽ 1}. For T ∈ Rp×(n−1), λ > 0, we

have

argmax
M∈S

{
⟨T,M⟩ − λ∥M∥grp

}
=

T −R∗

∥T −R∗∥F
,

where R∗ satisfies R∗
Jg ,t

= TJg ,tmin
{ λp

1/2
g

∥TJg,t∥F
, 1
}
.

Proof. Define functions h : Rp×(n−1) × Rp×(n−1) → R and f, g : Rp×(n−1) → R such that

for M,R ∈ Rp×(n−1), h(M,R) = ⟨T − λR,M⟩ and f(M) = inf∥R∥grp∗⩽1 h(M,R) and

68



g(R) = supM∈S h(M,R). By (3.10) and Lemma 3.11, we have that

⟨T,M⟩ − λ∥M∥grp = ⟨T,M⟩ − λ sup
∥R∥grp∗⩽1

⟨R,M⟩

= inf
∥R∥grp∗⩽1

⟨T − λR,M⟩ = f(M).

By the minimax equality theorem (Fan, 1953, Theorem 1), we obtain that

sup
M∈S

f(M) = sup
M∈S

inf
∥R∥grp∗⩽1

h(M,R) = inf
∥R∥grp∗⩽1

sup
M∈S

h(M,R) = inf
∥R∥grp∗⩽1

g(R).

Observe that g(R) = ∥T−λR∥F. To find the R∗ ∈ argmin∥R∥grp∗⩽1 ∥T−λR∥F, we consider

the G groups individually. For each group g, and in the tth column, if ∥TJg ,t∥2 ⩽ λp
1/2
g ,

then R∗
Jg ,t

= TJg ,t/λ; and if ∥TJg ,t∥2 > λp
1/2
g , then R∗

Jg ,t
= p

1/2
g TJg ,t/∥TJg ,t∥2. Since the

minimiser of g(R) is unique, we have that

argmax
M∈S

f(M) = argmax
M∈S

h(M,R∗) =
T − λR∗

∥T − λR∗∥F
,

as desired.

Lemma 3.13. For any A,B ∈ Rp×n, we have ⟨A,B⟩ ⩽ ∥A∥grp∥B∥grp∗.

Proof. By Cauchy–Schwarz inequality, we have that

⟨A,B⟩ =
∑
g,t

⟨AJg ,t, BJg ,t⟩ ⩽
∑

g∈[G],t∈[n]

∥AJg ,t∥F∥BJg ,t∥F

⩽

( ∑
g∈[G],t∈[n]

p1/2g ∥AJg ,t∥F
)(

max
g∈[G],t∈[n]

p−1/2
g ∥BJg ,t∥F

)
= ∥A∥grp∥B∥grp∗.

as desired.

Lemma 3.14. Let pg = |Jg| and suppose further that there exists a universal constant

C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ⩽ C1. Then, for any M ∈ Rp×n, we have

∥M∥grp ⩽ (C1n
∑

g pg)
1/2∥M∥F.

Proof. Definem withmJg ,t = ∥MJg ,t∥F. Then by applying the Cauchy–Schwarz inequality
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twice, we have

∥M∥grp =
∑
g∈[G]

p1/2g

n∑
t=1

∥MJg ,t∥2 ⩽
∑
g∈[G]

(npg)
1/2∥MJg∥F

⩽
√
n

(∑
g∈[G]

pg

)1/2(∑
g∈[G]

∥MJg∥2F
)1/2

⩽

(
C1n

∑
g∈[G]

pg

)1/2

∥M∥F,

as desired.

The following proposition establishes a sine angle loss upper bound for the (compu-

tationally infeasible) optimiser of (3.4). We see that the risk bound has essentially the

same form as that given in Theorem 3.1.

Proposition 3.15. For a given grouping (Jg)g∈[G], let p∗ = ming∈[G] |Jg| and suppose

further that there exists a universal constant C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ⩽

C1. Let X ∼ P ∈ P(1)
n,p(s, k, τ, ϑ,B, (Jg)g∈[G]) be a p × n data matrix, let θ be the vector

of change and let v̂ ∈ argmaxṽ∈Sp−1,∥ϕ(ṽ)∥0⩽s ∥ṽ
⊤T∥2. Let λ ⩾ B1/2(1 +

√
4 log(nG)/p∗).

Then, with probability at least 1− 1
nG

we have that

sin∠(v, v̂) ⩽
8
√
2C1λk

1/2

n1/2τϑ
(3.33)

Proof. Let A, γ be defined as in the proof of Theorem 3.1. Let u := γ/∥γ∥2 and û :=

T⊤v̂/∥T⊤v̂∥2. Then, by the basic inequality, we have that:

⟨v̂û⊤, T ⟩ = ∥T⊤v̂∥2 ⩾ ∥T⊤v∥2 ⩾ v⊤Tu = ⟨vu⊤, T ⟩.

Combining with Wang and Samworth (2018, Lemma 2), we have:

∥vu⊤ − v̂û⊤∥2F =
2

∥θ∥2∥γ∥2
(⟨A− T, vu⊤ − v̂û⊤⟩+ ⟨T, vu⊤ − v̂û⊤⟩)

⩽
2

∥θ∥2∥γ∥2
⟨A− T, vu⊤ − v̂û⊤⟩

⩽
2

∥θ∥2∥γ∥2
∥A− T∥grp∗∥vu⊤ − v̂û⊤∥grp
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Since vu⊤ − v̂û⊤ has at most 2k rows with non-zero entries, By Lemmas 3.14 and 3.18,

for the choice of λ in the proposition, we have with probability at least 1− 1/(nG) that

∥uv⊤ − v̂û⊤∥2F ⩽
2
√
2λ(C1nk)

1/2

∥θ∥2∥γ∥2
∥uv⊤ − v̂û⊤∥F.

Consequently, by the same argument as in the proof of Proposition 3.16 we have

sin∠(v, v̂) ⩽ ∥vu⊤ − v̂û⊤∥F ⩽
2
√
2λ(C1nk)

1/2

∥θ∥2∥γ∥2
⩽

8
√
2λ(C1k)

1/2

n1/2τϑ
,

as required.

Proposition 3.16. Let pg = |Jg| and suppose further that there exists a universal constant

C1 > 0, such that maxj∈[p] |{g : j ∈ Jg}| ⩽ C1. Let A be a rank one matrix with A = δvu⊤

for δ > 0, ∥v∥2 = ∥u∥2 = 1 and
∑

g:vJg ̸=0 pg ⩽ k. Suppose T ∈ Rp×(n−1) satisfies

∥T − A∥grp∗ ⩽ λ for some λ > 0, and let S = {M ∈ Rp×(n−1) : ∥M∥F ⩽ 1}. Then, for

any

M̂ ∈ argmax
M∈S

{
⟨T,M⟩ − λ∥M∥grp

}
,

we have

∥vu⊤ − M̂∥F ⩽
4λ(C1nk)

1/2

δ
,

and

max{sin∠(v, v̂), sin∠(u, û)} ⩽ 8λ(C1nk)
1/2

δ
.

Proof. Define G0 = {g : vJg ̸= 0}. Since vu⊤ ∈ S, from the basic inequality, we have

⟨T, vu⊤⟩ − λ∥vu⊤∥grp ⩽ ⟨T, M̂⟩ − λ∥M̂∥grp. (3.34)

When ∥A − T∥grp∗ ⩽ λ, or equivalently, p
−1/2
g ∥AJg ,t − TJg ,t∥2 ⩽ λ for all g ∈ [G] and

t ∈ [n− 1], we have by Wang and Samworth (2018, Lemma 2) and (3.34) that

∥vu⊤ − M̂∥2F ⩽
2

δ
⟨A, vu⊤ − M̂⟩ ⩽ 2

δ

(
⟨T, vu⊤ − M̂⟩+ ⟨A− T, vu⊤ − M̂⟩

)
⩽

2λ

δ

(
∥vu⊤∥grp − ∥M̂∥grp + ∥vu⊤ − M̂∥grp

)
=

4λ

δ

∑
g∈G0

∑
t∈[n−1]

∥(vu⊤ − M̂)Jg ,t∥2 ⩽
4λ(C1nk)

1/2

δ
∥vu⊤ − M̂∥F,
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where we used Lemma 3.13 in the penultimate inequality and Lemma 3.14 in the final

bound. This proves the first claim of the proposition, and the second claim follows from

the first by the same argument as used in Wang and Samworth (2018, online supplement

(18) and (19)).

Lemma 3.17. Suppose Σ ∈ Rd×d is a symmetric positive semidefinite matrix and let

E ∼ N(0,Σ). Then we have for any δ > 0 that

P
(
∥E∥2 > tr(Σ) + 2∥Σ∥F

√
log(1/δ) + 2∥Σ∥op log(1/δ)

)
⩽ δ.

Proof. Let Σ = U⊤ΛU be the eigendecomposition of Σ, such that U ∈ Rd×d is orthogonal

and Λ = diag(λ1(Σ), . . . , λd(Σ)) is a diagonal matrix with eigenvalues of E on its diagonal.

Hence, there exist Z1, . . . , Zd
iid∼ N(0, 1) such that ∥E∥22 = ∥UE∥22 =

∑d
j=1 λj(Σ)Z

2
j .

Applying Laurent and Massart (2000, Lemma 1), we have with probability at least 1− δ

that

∥E∥22 ⩽
d∑
j=1

λj(Σ) + 2

( d∑
j=1

λ2j(Σ)

)1/2√
log(1/δ) + 2

d
max
j=1

λj(Σ) log(1/δ)

⩽ tr(Σ) + 2∥Σ∥F
√
log(1/δ) + 2∥Σ∥op log(1/δ)

as desired.

Lemma 3.18. Suppose Σ ∈ Rp×p is a symmetric positive semidefinite matrix with ∥Σ∥op ⩽

B. Let W = (W1, . . . ,Wn) be an p × n random matrix with independent columns Wt ∼

Np(0,Σ). Define E := T (W ). Let pg = |Jg| with p∗ = ming∈[G] pg. Then for any δ ∈ (0, 1)

and λ = B1/2
(
1 +

√
2p−1

∗ log(1/δ)
)
, we have that

P(∥E∥grp∗ > λ) ⩽ (n− 1)Gδ.

Proof. By the definition of the CUSUM transformation T in (2.9), we have that EJg ,t ∼
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N(0,ΣJg ,Jg). By a union bound, we have

P(∥E∥grp∗ > λ) ⩽
∑
g∈[G]

∑
t∈[n−1]

P(∥EJg ,t∥22 > pgλ
2)

⩽
∑
g∈[G]

∑
t∈[n−1]

P
(
∥EJg ,t∥22 > Bpg

(
1 +

√
2 log(1/δ)

pg

)2)

⩽
∑
g∈[G]

∑
t∈[n−1]

P
(
∥EJg ,t∥22 > B

(
pg + 2

√
pg log(1/δ) + 2 log(1/δ)

))
⩽

∑
g∈[G]

∑
t∈[n−1]

P
(
∥EJg ,t∥22 > tr(ΣJg ,Jg) + 2∥ΣJg ,Jg∥F

√
log(1/δ)

+ 2∥ΣJg ,Jg∥op log(1/δ)
)

⩽ (n− 1)Gδ.

as desired, where we used the fact that ∥ΣJg ,Jg∥op ⩽ ∥Σ∥op ⩽ B in the penultimate

inequality and Lemma 3.17 in the final bound.

Lemma 3.19. Let W = (W1, . . . ,Wn) be a p × n random matrix with Wi
iid∼ Np(0,Σ)

and E = T (W ) = (E1, . . . , En−1). Suppose ∥Σ∥op ⩽ B and that min(z, n − z) ⩾ nτ and

|z − t| ⩽ nτ/2. For a deterministic vector v ∈ Rp and any λ1 > 0, there exists an event

Ω1 with probability at least 1− 16e−λ
2
1/(4B) log n such that on this event, we have

|v⊤Ez − v⊤Et| ⩽ 2
√
2λ1

√
z − t
nτ

+ 8λ1
z − t
nτ

.

Proof. Define event

Ω1 :=

{∣∣∣∣ s∑
r=1

v⊤Wr −
t∑

r=1

v⊤Wr

∣∣∣∣ ⩽ λ1
√
|s− t|, for 0 ⩽ t ⩽ n and s ∈ {0, z, n}

}
.

Since v⊤W1, . . . , v
⊤Wn

iid∼ N(0, v⊤Σv), with v⊤Σv ⩽ B, by Wang and Samworth (2018,

Lemma 5), for any u ⩾ 0, and m ∈ N, we have

P
(

max
1⩽t⩽m

∣∣∣∣ 1√
t

t∑
r=1

v⊤Wr

∣∣∣∣ ⩾ uB1/2

)
⩽ 4e−u

2/4 logm. (3.35)

Applying the above bound four times, we have

P(Ωc
1) ⩽ 4e−λ

2
1/(4B){2 log n+ log z + log(n− z)} ⩽ 16e−λ

2
1/(4B) log n.
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It hence suffices to show that on Ω1, the desired inequality holds. By symmetry, we

may assume without loss of generality that t < z. From the definition of the CUSUM

transformation in (2.9), we have

v⊤Ez − v⊤Et =
√

n

z(n− z)

(
z

n

n∑
r=1

v⊤Wr −
z∑
r=1

v⊤Wr

)

−
√

n

t(n− t)

(
t

n

n∑
r=1

v⊤Wr −
t∑

r=1

v⊤Wr

)
=

√
n

z(n− z)

(
z − t
n

n∑
r=1

v⊤Wr −
z∑

r=t+1

v⊤Wr

)

+

(√
n

z(n− z)
−
√

n

t(n− t)

)(
t

n

n∑
r=1

v⊤Wr −
t∑

r=1

v⊤Wr

)
. (3.36)

On the event Ω1,∣∣∣∣z − tn

n∑
r=1

v⊤Wr −
z∑

r=t+1

v⊤Wr

∣∣∣∣ ⩽ z − t
n

∣∣∣∣ n∑
r=1

v⊤Wr

∣∣∣∣+ ∣∣∣∣ z∑
r=t+1

v⊤Wr

∣∣∣∣
⩽
z − t
n

λ1
√
n+ λ1

√
z − t ⩽ 2λ1

√
z − t (3.37)

Similarly, we have on Ω1 that∣∣∣∣ tn
n∑
r=1

v⊤Wr −
t∑

r=1

v⊤Wr

∣∣∣∣ ⩽ λ1t√
n
+ λ1
√
t ⩽ 2λ1

√
t.

Noticing that t
n

∑n
r=1 v

⊤Wr−
∑t

r=1 v
⊤Wr =

n−t
n

∑n
r=1 v

⊤Wr−
∑n

r=t+1 v
⊤Wr, we can sim-

ilarly bound the left-hand side above by 2λ1
√
n− t. Therefore, on Ω1, we have∣∣∣∣ tn

n∑
r=1

v⊤Wr −
t∑

r=1

v⊤Wr

∣∣∣∣ ⩽ 2λ1min{
√
t,
√
n− t}

⩽ 2λ1min

{√
z,

√
n− z + nτ

2

}
. (3.38)

By the mean value theorem, there exists ξ ∈ [t, z] such that∣∣∣∣√ n

z(n− z)
−

√
n

t(n− t)

∣∣∣∣ ⩽ z − t
2

(
n

ξ(n− ξ)

)3/2

⩽

√
2(z − t)

min{(z − nτ/2)3/2, (n− z)3/2}
. (3.39)
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Combining (3.36), (3.37), (3.38) and (3.39), we have on Ω1 that

∣∣v⊤Ez − v⊤Et∣∣ ⩽ 2λ1

√
n(z − t)
z(n− z)

+
23/2λ1(z − t)min

{
z1/2, (n− z + nτ/2)1/2

}
min{(z − nτ/2)3/2, (n− z)3/2}

⩽ 2
√
2λ1

√
z − t
nτ

+ 8λ1
z − t
nτ

,

as desired.

Lemma 3.20. Suppose µ = (µ1, . . . , µn) has a single change point at z, in the sense that

µ1 = · · · = µz = µ(1) and µz+1 = · · · = µn = µ(2). Let A = T (µ) = (A1, . . . , An). Define

θ = µ(1) − µ(2). Then for any v ∈ Rp, and |z − t| ⩽ nτ/2, we have∣∣∣∣v⊤Az − v⊤At∣∣∣∣ ⩾ 2

3
√
6

|z − t|√
nτ

(v⊤θ).

Proof. Observe that A is a rank one matrix given by (3.17). Hence, v⊤A = (v⊤θ)γ⊤. The

desired result is then a consequence of Wang and Samworth (2018, Lemma 7).

Lemma 3.21. LetW = (W1, . . . ,Wn) be a p×n random matrix with independent columns

Wt satisfying ∥Wt∥ψ∗
2
⩽ L and ∥Var(Wt)∥op ⩽ B for t ∈ [n− 1]. Define E := T (W ). Let

pg = |Jg| with p∗ = ming∈[G] pg. There exists a universal constant C > 0 such that for

any δ ∈ (0, 1), we have

P
{
∥E∥grp∗ > CLB1/2

(
1 +

√
log(nG/δ)

p∗

)}
⩽ δ.

Proof. By the definition of the CUSUM transformation T in (2.9), we can write Et as

Et =
∑

s∈[n] asWs for a contrast vector a = (a1, . . . , an)
⊤ such that ∥a∥2 = 1. For each

t ∈ [n], Since ∥Wt∥ψ∗
2
⩽ L, we have for any v ∈ Sp−1 that ∥v⊤Ws/{v⊤Var(Wt)v}1/2∥ψ2 ⩽

L. Therefore, by Vershynin (2012, Proposition 5.10), there exists a constant C1 > 0 such

that for every t ∈ [n− 1] we have

∥Et∥ψ∗
2
= sup

v∈Sp−1

∥v⊤Et∥ψ2

(v⊤Var(Wt)v)1/2
= sup

v∈Sp−1

∥∥∥∥ ∑n
s=1 asv

⊤Ws

(v⊤Var(Wt)v)1/2

∥∥∥∥
ψ2

⩽ C1L.

Then, we can bound ∥Et∥ψ2 by:

∥Et∥ψ2 ⩽ ∥Et∥ψ∗
2
∥Σ∥1/2op ⩽ C1LB

1/2.
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Define Sp−1
g := {v ∈ Sp−1 : supp(v) ⊆ Jg} and let Ng ⊆ Sp−1

g be a 1/2-net of the set

Sp−1
g . By Vershynin (2012, Lemma 5.2), we can choose Ng such that |Ng| ⩽ 5pg . Obseve

that

∥EJg ,t∥2 = sup
v∈Sp−1

g

v⊤Et ⩽ sup
v∈Ng

v⊤Et + sup
u:∥u∥2⩽1/2,supp(u)⊆Jg

|u⊤Et|

= sup
v∈Ng

v⊤Et +
1

2
∥EJg ,t∥2 ⩽ 2 sup

v∈Ng

v⊤Et.

Hence, by a union bound and a tail bound of sub-Gaussian random variables, we have we

have for some universal constant C2 > 0 that

P(∥EJg ,t∥2 ⩾ x) ⩽ P
(
sup
v∈Ng

v⊤Et ⩾
x

2

)
⩽ 5pge−x

2/(C2
2L

2B).

By another union bound, we have

P
{
∥E∥grp∗ > 2C2LB

1/2

(
1 +

√
log(nG/δ)

p∗

)}
⩽

∑
g∈[G]

∑
t∈[n−1]

P
(
∥EJg ,t∥2 > C2LB

1/2
√

2pg + log(nG/δ)

)
⩽

∑
g∈[G]

(n− 1)5pge−2pg−log(nG/δ) ⩽ δ,

as desired.

Lemma 3.22. Let W1, . . . ,Wn be independent centered sub-Gaussian random variables

with maxt ∥Wt∥ψ2 ⩽ K for t ∈ [n]. Define Zt := t−1/2
∑t

r=1Wr. Then for n ⩾ 5 and

u ⩾ 0, we have for some universal constant C > 0 that

P(max
1⩽t⩽n

Zt ⩾ u) ⩽ 2e−u
2/(CK2) log n.

Proof. Define St :=
∑t

r=1Wr. Then, (St)t is a martingle and (eSt)t is a non-negative

sub-martingle. Then, by a union bound, we have

P
(
max
1⩽t⩽n

Zt ⩾ u
)
⩽

⌈log2(n+1)⌉∑
j=1

P
(

max
2j−1⩽t<2j

Zt ⩾ u
)

76



Then by Doob’s martingle inequality and Vershynin (2012, Lemma 5.9), we have for some

universal constant C1 > 0 that

P
(

max
2j−1⩽t<2j

Zt ⩾ u
)
⩽

⌈log2(n+1)⌉∑
j=1

inf
λ>0

P
(

max
2j−1⩽t<2j

eλSt ⩾ e2
(j−1)/2λu

)

⩽
⌈log2(n+1)⌉∑

j=1

inf
λ>0

EeλS2j e−2(j−1)/2λu

⩽
⌈log2(n+1)⌉∑

j=1

inf
λ>0

eC1λ22j−1K2

e−2(j−1)/2λu

=

⌈log2(n+1)⌉∑
j=1

e−u
2/(4CK2) ⩽ 2e−u

2/(4C1K2) log n,

where in the final step, we used the fact that n ⩾ 5. The desired result follows by taking

C = 4C1.

Lemma 3.23. Let W = (W1, . . . ,Wn) be a p× n random matrix with columns satisfying

maxt ∥Wt∥ψ∗
2
⩽ L and E = T (W ) = (E1, . . . , En−1). Suppose min(z, n−z) ⩾ nτ and |z−

t| ⩽ nτ/2. For a deterministic vector v and λ1 = L
√
CB log n, we have with probability

at least 1− 16 logn
n

that

|v⊤Ez − v⊤Et| ⩽ 2
√
2λ1

√
z − t
nτ

+ 8λ1
z − t
nτ

Proof. By a similar argument as in the proof of Lemma 3.21, we have for all r ∈ [n] and

v ∈ Sp−1 that ∥v⊤Wr∥ψ2 ⩽ LB1/2. Define event

Ω1 :=

{∣∣∣∣ s∑
r=1

v⊤Wr −
t∑

r=1

v⊤Wr

∣∣∣∣ ⩽ λ1
√
|s− t|, for 0 ⩽ t ⩽ n and s ∈ {0, z, n}

}
.

Then, by Lemma 3.22, for any u ⩾ 0, and m ∈ N, we have

P
(

max
1⩽t⩽m

∣∣∣∣ 1√
t

t∑
r=1

v⊤Wr

∣∣∣∣ ⩾ λ1

)
⩽ 4e−λ

2
1/(CL

2B) logm.

Applying the above bound four times, we have

P(Ωc
1) ⩽ 4e−λ

2
1/(CL

2B){2 log n+ log z + log(n− z)}

⩽ 16e−λ
2
1/(CL

2B) log n ⩽
16 log n

n
.
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It hence suffices to show that on Ω1, the desired inequality holds. This deterministic

calculation follows verbatim from the proof of Lemma 3.19.

Lemma 3.24. Suppose Σ ∈ Rp×p is a symmetric positive semidefinite matrix. Let W =

(W1, . . . ,Wn) be an p×n random matrix with dependent columns Wt ∼ Np(0,Σ) satisfying

equation (3.14). Define E := T (W ). Let pg = |Jg| with p∗ = ming∈[G] pg. Then for any

δ ∈ (0, 1) and λ =
√
2B∗

(
1 +

√
2p−1

∗ log(1/δ)
)
, we have that

P(∥E∥grp∗ > λ) ⩽ (n− 1)Gδ.

Proof. Fix t ∈ [n − 1] and define κ = (κ1, . . . , κn)
⊤ ∈ Rn by κr = −

√
n−t
nt
1{r⩽t} +√

t
n(n−t)1{r>t} (for simplicity, we have suppressed the t dependence in the definition of

κ). Then we have Et =
∑n

r=1 κrWr ∼ N(0,Σ∗) for some positive semidefinite matrix

Σ∗ ∈ Rp×p. For any v ∈ Sp−1, we have

v⊤Σ∗v = Var(v⊤Et) =
n∑

r1=1

n∑
r2=1

κr1κr2v
⊤K(|r2 − r1|)v

⩽ 2
n−1∑
u=0

v⊤K(u)v
n−u∑
r=1

κrκr+u

⩽ 2
n−1∑
u=0

v⊤K(u)v

{
(n− t)(t− u)+

nt
+
t(n− t− u)+
n(n− t)

}
⩽ 2B∗.

Consequently, we have ∥Σ∗∥op ⩽ 2B∗. Then, following the proof of Lemma 3.18 and B

with 2B∗, we can obtaine the desired result.
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Chapter 4

High dimensional change-point

estimation under network structure

4.1 Introduction

In this chapter, we proposed a method, called SpreadDetect, to estimate the change-

points under network structure. Existing work on change-point analysis with network

structure includes Chen et al. (2022), Wang et al, (2017) which detect changes in the

network, Dette et al. (2022) which detects changes in covariance structure. Here, we

consider a different setting where the coordinates represent nodes of a graph/network

and the change, instead of occurring simultaneously in all coordinates of interest, may

initially appear in one coordinate (the source coordinate of change), and then spread

across the network gradually over time. Such a statistical model is useful to represent, for

instance, the spread of infectious disease between individuals over time. We are interested

in estimating both the source coordinate and the time point where the change occurs at

the source coordinate. Note that different coordinates will have a change occurring at a

different time point. To avoid ambiguity, we refer to the time of the change in the source

coordinate as the initial change-point, or simply the change-point of the model, and the

time point of change in any given coordinate as the time of spread to that coordinate,

which is typically later than the change-point. In such a setting, the change signal may be
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very small and sparse when it first appears, and increases as the change is spread across

the network. Thus, a naive application of a multivariate change-point procedure may

miss the initial part of the change and likely estimate a change-point with a positive bias.

Moreover, in many applications, the coordinate(s) where the change first appears may be

of separate interest. The task is to estimate both the source coordinate and the initial

change-point time in a statistical model where the change is spread across the network

via adjacent nodes.

The key idea here is to aggregate evidence of change, measured in terms of coordi-

natewise CUSUM statistics, across multiple coordinates with suitable time lags. We then

centre these aggregated CUSUM statistics so that under the null distribution, candidate

change-points near and far away from the boundary of the time window considered are

treated on equal footings. The method is explained in detail in Section 4.2. Depending on

whether the signs of the change in different coordinates are equal, we propose quadratic

and linear test statistics respectively, indexed both in time and over the coordinates. The

final estimator for the time and coordinate of initial change is obtained by maximising

these aggregated statistics.

In Section 4.3, we derive theoretical guarantees of our proposed SpreadDetectmethod.

For simplicity, we focus on the case where the change is spreading across the network at a

deterministic rate. We assume that if the change-point and source coordinate pair varies

from (z∗, j∗) to (t∗, k∗), at least m nodes in the network will witness a difference in their

time of spread at least proportional to the sum of the time difference between z∗ and t∗

and the graph distance between j∗ and k∗. We first derive a key result in Theorem 4.1,

saying that assuming that the change is bounded away from the endpoint, and provided

the magnitude of change is up to logarithmic factors above
√
p/(nm) + p/(nm2), then

both the source coordinate and initial change-point time can be accurately estimated.

Theorem 4.4 then shows that our estimation procedure can be turned into a test with

good size and power controls for testing the existence of a change-point of the above signal

size. Theorem 4.5 shows that when m ≍ p (a condition that can be verified in many

common graphs), the signal size required in Theorem 4.1 is in fact minimax optimal. In
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addition, we derive in Theorem 4.6 the result for the special case when we know the sign of

the signal so that the linear statistics in Algorithm 8 is used. In this case, the estimation

accuracy is guaranteed if the magnitude of change is above 1/
√
mnτ 2 up to logarithmic

factor.

In Section 4.4, we evaluate the empirical performance of the method through simulated

data and a COVID-19 real data example. We evaluate our method under two settings

when the signal spreads to the nearby coordinates in a fixed or random way using the

simulated data. Proofs of all theoretical results are deferred to Section 4.5, and ancillary

results and their proofs are given in Section 4.6.

4.2 Problem setup and methodology

Given a network represented by a connected graph G, with vertices V (G) := [p] and edges

E(G) ⊆ [p] × [p], let j∗ ∈ V (G) be the source coordinate and z∗ ∈ [n] the change-point

and write St ⊆ [p] for the set of “infected nodes”, i.e., coordinates that have undergone

a change at or before time t. We have St = ∅ for t < z∗, Sz∗ = {j∗} and we assume

that the change spreads from infected nodes to their neighbours at a constant rate in the

sense that at any time t > z∗, St := {j : (j, k) ∈ E(G) for some k ∈ St−1}. Suppose the

data X1, . . . , Xn ∈ RV (G) ∼= Rp follow multivariate normal distribution with an identity

covariance such that

E(Xt) = µ0 ◦ 1Sc
t
+ µ1 ◦ 1St , for t ∈ [n],

where µ0 and µ1 are respectively vectors of means pre- and post-change, and 1A :=

(1j∈A)j∈[p] for any A ⊆ [p].

Let dG(j, k) be the graph distance between nodes j and k, i.e., the length of the

shortest path from j to k on graph G. Then, the data consists of independent random

variables:

Xj,t ∼

N(µ0
j , 1) if t ⩽ z∗ + dG(j, j

∗)

N(µ1
j , 1) if t > z∗ + dG(j, j

∗),

for j ∈ [p] and t ∈ [n].
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We define Pj∗,z∗,µ0,µ1 to be the distribution of the data matrix X = (X1, . . . , Xn) ∈ Rp×n

given parameters (j∗, z∗, µ0, µ1) ∈ Θ := [p] × [n] × Rp × Rp. Our task is to estimate j∗

and z∗ given data X ∼ Pj∗,z∗,µ0,µ1 . Define θ = (θ1, . . . , θp)
⊤ := µ1 − µ0. We assume that

|θj| ⩾ a for some a > 0 for all j ∈ [p].

Writing µ = EX ∈ Rp×n, we have the decomposition X = µ+W , where W is a p× n

random matrix with independent N(0, 1) entries. we form T = T (X) to be the CUSUM

transform of matrix X as defined in equation (2.9). The CUSUM transformation is the

normalised difference before and after the change for a single entry in the data matrix.

Motivated by this meaning, and that in each coordinate, the CUSUM statistic is max-

imised at the time of spread, we propose to aggregate these CUSUM statistics in different

coordinates at appropriate lags. Specifically, given any candidate source coordinate and

change-point pair (j, t), we compute the time of spread to each coordinate k as t+dG(j, k)

and aggregate Tk,t+dG(j,k) over k ∈ [p] provided that t+ dG(j, k) ⩽ n. For each t ∈ [n− 1]

and k ∈ [p], we define Jj,t := {k ∈ [p] : t + dG(j, k) < n}. If we do not know the sign of

the signal, We form the following quadratic statistic

Qj,t :=
∑
k∈Jj,t

(T 2
k,t+dG(j,k) − 1). (4.1)

Here, we subtract 1 from the summands to make them mean-centred, so that candidate

change-points near the right boundary will not be disfavoured due to the set Jj,t being

smaller. We then estimate the location of the change-point z∗ and the source coordinate

of the spread via

(ĵ, ẑ) = argmax
j,t

Qj,t. (4.2)

Practically, the p×p distance matrix (dG(j, k) : j, k ∈ [p]) between every pair of vertices

can be pre-calculated from the adjacency matrix in O(p3) time using the Floyd–Warshall

algorithm (Floyd, 1962). The entire estimation procedure is summarised in Algorithm 9.

Figure 4.1 illustrates the working of Algorithm 9 in action. Here, we have a data matrix

X ∈ R200×200, which contains a change spreading from the source coordinate j∗ = 50 from

the change-point time z∗ = 50. The right panel displays the matrix (Qj,t)j∈[p],t∈[n−1] of

aggregated squared CUSUM statistics from equation 4.1. The darker colour indicates

82



Algorithm 9: Spreading change estimation procedure

Input: X ∈ Rp×n, graph G

1 Compute T ← T (X) as in (2.9).

2 Compute Qj,t for j ∈ [p] and t ∈ [n− 1] via Equation (4.1).

3 Estimate (ĵ, ẑ) = argmaxj,tQj,t.

Output: (ĵ, ẑ)

larger values of the Qj,t statistics. We can see that the aggregation proposed by 4.1

indeed helps us locate both the source coordinate and the true time of change-point.

In some practical applications, it is reasonable to assume additionally that signs of the

changes are the same across all coordinates. In such settings, we can modify the quadratic

aggregation proposed in (4.1) by using the following linear statistic instead:

Lj,t :=

∣∣∣∣ ∑
k∈Jj,t

Tk,t+dG(j,k)

∣∣∣∣. (4.3)

The source coordinate and the change-point are then correspondingly estimated via

(ĵ, ẑ) = argmax
j,t

Lj,t. (4.4)

4.3 Theoretical results

In this section, we derive theoretical guarantees of the change-point estimation procedure

proposed in Algorithm 9.

The main challenge here is that when the change first occurs, it is localised in a

small number of coordinates in a neighbourhood of the source node, making the change

signal relatively weak. Hence, to accurately identify the time that the change first started

and the associated source node, we need to use information further down the line to

infer back the origin of the change. However, this is not always possible, as can be seen

from the following example. Suppose that we have G = (V,E) is a path graph, where

V = {1, 2, . . . , p} and E = {(1, 2), (2, 3), . . . , (p − 1, p)}. Then the data generated from

P1,z∗,µ0,µ1 and P2,z∗+1,µ0,µ1 have exactly the same distribution in all times t except t = z∗.

83



Figure 4.1: Illustration of the SpreadDetect algorithm. The heatmap of the original data

matrix X is shown on the left panel, where data consist of p = 200 nodes in a cycle graph

measured over a period of n = 200 time points. A true change occurs at z = 50 from

coordinate 50 and spread across the graph following the model described in Section 4.4.

The right panel depicts the heatmap of the aggregated CUSUM statistics generated in

the SpreadDetect algorithm. The estimated time of change ẑ = 52 and the estimated

origin of change ĵ = 46 is where the matrix of the aggregated CUSUM statistics achieves

its maximum value.

In other words, knowledge of the later stage spread pattern is not helpful in testing apart

whether the source of the change is at j∗ = 1 or j∗ = 2. A closer inspection of the above

simple example reveals that an essential condition for consistent for any fixed t∗, k∗, we

define the following set:

Jt∗,k∗(C1) =

{
j ∈ V (G) : |z∗ + dG(j, j

∗)− (t∗ + dG(j, k
∗))| ⩾ C1(|z∗ − t∗|+ dG(j

∗, k∗))

}
.

(4.5)

This set counts the number of nodes that will witness a difference in their time of spread

at least proportional to the sum of the time difference between z∗ and t∗ and the distance

between j∗ and k∗ given that the change-point and source coordinate pair varies from

(z∗, j∗) to (t∗, k∗). We remark that Jt∗,k∗(C1) also depends on z∗ and j∗, though we will

suppress this dependence in the notation since in what follows, we will mostly treat z∗

and j∗ as fixed or can be inferred from the context. For consistent estimation to be

possible, we would require mint∗,k∗ |Jt∗,k∗(C1)| to be sufficiently large, as demonstrated in

the theorem below.
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Theorem 4.1. Suppose nτ ⩾ 2p and X ∼ Pj∗,z∗,µ0,µ1 with µ0 − µ1 ∈ {−a, a}p. Define

m = mG(C1) := mint∗,k∗ |Jt∗,k∗(C1)|. There exists a universal constant c > 0 such that if

a2 ⩾ c

{√
p+ log(2pn)

nτm
+
p log(2pn)

nτ 2m2

}
. (4.6)

then, the estimator (ĵ, ẑ) from (4.2) satisfies with probability at least 1− 1/(2pn) that

|ẑ − z∗|+ dG(ĵ, j
∗) ⩽

12
√
6

C1m

{√
p+ log(2pn)

a2
+

√
pn log(2pn)

a

}
.

The nτ ⩾ 2p condition is placed to ensure that the change happens early in the

time series to allow sufficient time to spread to all nodes in the network. This helps

simplifying our analysis and presentation. However, we note that a similar result can be

derived without this assumption; see Theorem 4.8. We remark also that Condition (4.6)

is mild in view of the conclusion of Theorem 4.1. Indeed, for the right-hand side of the

loss bound to be nontrivial (i.e. less than n + p), we would at least need a2 ≳ {√p +

log(2pn)}/(nm) + p log(2pn)/(nm2). Thus, (4.6) only requires a2 to be larger than a

factor of at most τ−2 than minimally what is required in Theorem 4.1. The final loss

bound is inversely proportional to C1mG(C1). In general, mG(C1) is a decreasing function

of C1 and by the triangle inequality, mG(C1) = 0 for all C1 ⩾ 1. Hence, the optimal loss

bound we can obtain involves a carefully chosen trade-off between C1 and mG(C1) in the

denominator of the final bound. In practice, in many applications, we have mG(C1) ≍ p

for some C1 ≍ 1. Under such assumptions, and if in addition log(n) = O(
√
p), the

conclusion of Theorem 4.1 simplifies to

|ẑ − z∗|
n

+
dG(ĵ, j

∗)

p
= O

(
1

p1/2∥θ∥22
+

√
n log(2pn)

p∥θ∥2

)
,

showing that both the location of change and the origin of change estimators are consistent

when ∥θ∥2 ≫ max{p−1/4, p−1
√
n log(2pn)}.

As mentioned above, the quantity mG(C1) plays an important role in our theoretical

control of the loss of change-point location and origin estimation. To get a sense of

the magnitude of this quantity, we compute mG(1/4) for grid graphs, binary trees and

random Erdős–Rényi graphs. Figure 4.2 shows that we have mG(1/4) ⩾ cp for some

constant c > 0 in all these simulation settings. Moreover, for each specific type of graph,
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Figure 4.2: mG(1/4)/p for different graphs.

mG(1/4)/p tends to be relatively stable when p is large. Theoretically, m(C1) needs to

be controlled in a case-specific manner. Below, we illustrate how this can be done in

the setting of a d-dimensional grid graph. For simplicity of exposition, we introduce

additional symmetry to require that the grid is ‘wrapped around the edges’, in the sense

that G =
∏d

r=1Gr, where each Gr is a p1-cycle Cp1 with p
d
1 = p. Working with the product

of cycles instead of paths makes all vertices of G equivalent. The following proposition

controls mG(1/(4d)) of such a graph G.

Proposition 4.2. Suppose G =
∏d

r=1Gr with Gr
∼= Cp1 for all r ∈ [d] and p = pd1.

Assume further that nτ ⩾ 2p1. Then we have mG(1/(4d)) ⩾ p/8d.

Treating the dimension of the grid as fixed, we have the desired bound thatmG(C1) ≍ p

for some C1 ≍ 1. The following result is an immediate consequence of Theorem 4.1

together with Proposition 4.2.

Corollary 4.3. Under the same assumption as in Proposition 4.2. Suppose X ∼ Pj∗,z∗,µ0,µ1
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with µ0 − µ1 ∈ {−a, a}p. There exist c, C > 0, depending only on d, such that if

a2 ⩾ c

{√
p+ log(2pn)

nτp
+
pn log(2pn)

n2τ 2p2

}
, (4.7)

then with probability at least 1−1/(2pn), the estimator (ĵ, ẑ) defined in (4.2) satisfies that

|ẑ − z|+ dG(ĵ, j) ⩽ C

{√
p+ log(2pn)

a2p
+

√
pn log(2pn)

ap

}
.

While the focus of our discussion so far has been the estimation of a change-point

(both in terms of the time of change and location of the source of change), our method

can be easily modified for the related testing problem. More precisely, given the data X

described in Section 4.2, we are interest in testing H0 : θ = 0 against the alternative:

H1 : θ ̸= 0. We can construct a test based on the quadratic statistics computed according

to Algorithm 8 as follows:

ψλ(X) = 1{maxj∈[p],t∈[n−1]Qj,t⩾λ}. (4.8)

The following theorem shows that for an appropriate choice of λ, the test ψλ defined above

has small Type I and Type II errors.

Theorem 4.4. Given X ∼ P = Pj∗,z∗,µ0,µ1. For any δ ∈ (0, 1) and λ ⩾ 2
√
p log(pn/δ) +

2 log(pn/δ), the test ψλ defined in (4.8) has the following properties.

(a) If θ = 0, then

PP (ψλ(X) = 1) ⩽ δ.

(b) There exists a universal constant C > 0 such that if a2 ⩾ Cλ
nτ min{2p,nτ} , then

PP (ψλ(X) = 1) ⩾ 1− δ.

From Theorem 4.4 above, if p = O(nτ) and taking δ = 1/(pn), then the test ψλ defined

in (4.8) is able to detect a change when a2 ⩾
C
√

log(pn)
√
pnτ

. Note that when mG(C1) is of

order p and
√
pτ ≳ log(2pn), then the signal-size condition in (4.6) is equivalent to

a2 ≳
1

nτ
√
p
+

log(2pn)

nτ 2p
≳

1

nτ
√
p
.
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Hence, the signal strength needed here for testing is consistent, up to logarthmic factors,

with (4.6) in Theorem 4.1 in such a setting. However, the estimation problem is harder

comparing to the testing problem, when C1mG(C1) is much smaller than p for all choices

of C1 ∈ (0, 1). This can happen, for instance, in the case when there exists a t∗ close to z∗

such that the signal from z∗ needs to pass from t∗ to spread over the rest of the coordinate,

it is hard to tell which time point does the signal start. However, for the testing problem,

we only need to know whether there is a change regardless of the location.

To understand the optimality of the signal-size condition in (4.6), we derive a minimax

lower bound for testing the existence of a change-point. Let

Θ0 := {(j∗, z∗, µ0, µ1) ∈ Θ : µ0 = µ1,min(z∗, n− z∗) ⩾ nτ}

Θ1,a := {(j∗, z∗, µ0, µ1) ∈ Θ : µ0 − µ1 ∈ {−a, a}p,min(z∗, n− z∗) ⩾ nτ}

be two subspaces in the parameter space Θ. We consider the problem of testing the null

hypothesis (j∗, z∗, µ0, µ1) ∈ Θ0 against the alternative (j∗, z∗, µ0, µ1) ∈ Θ1 using data X.

Theorem 4.5. If nτ ⩾ 1, then for a2 ⩽
√
log 2√
2pnτ

, we have that

inf
ψ

{
sup

(j∗,z∗,µ0,µ1)∈Θ0

Pj∗,z∗,µ0,µ1(ψ = 1) + sup
(j∗,z∗,µ0,µ1)∈Θ1,a

Pj∗,z∗,µ0,µ1(ψ = 0)
}
⩾ 1/2,

where the infimum is taken over all measurable test functions ψ : Rp×n → {0, 1}.

In the setting described after Theorem 4.4, Theorem 4.5 shows that Condition (4.6)

in our estimation result is necessary for the even simpler task of testing the existence of

a change-point.

We then consider the special case when we know the sign of the changes in each

coordinate. Without loss of generality, we may assume that all changes are positive. In

this case, we can use the linear statistic defined in equation (4.3) and the following theorem

shows that this linear statistic achieves good performance in terms of the estimation

consistency:

Theorem 4.6. Suppose nτ ⩾ 2p and X ∼ Pj∗,z∗,µ0,µ1 with µ0 − µ1 ∈ {−a}p ∪ {a}p.

Define m = mG(C1) := mint∗,k∗ |Jt∗,k∗(C1)|. There exists a universal constant c such that
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if a ⩾ c
√

log(pn)/(mnτ 2), then the estimator (ĵ, ẑ) from (4.4) satisfies with probability

at least 1− 1/(2pn) that

|ẑ − z∗|+ dG(ĵ, j
∗) ⩽

C∗ log(pn)

a2m
.

From this result, we can see that the estimation accuracy of the estimator from the

linear statistic achieves the convergence rate of log(pn)/(a2p) and a2p in the denominator

is the ℓ2 norm of θ. Similar rates have also been observed in many change-point results

(Csörgö and Horváth , 1997). This condition is also the same as the second term in equa-

tion 4.6 in Theorem 4.1. The following result is an immediate consequence of Theorem 4.6

together with Proposition 4.2.

Corollary 4.7. Under the same assumption as in Proposition 4.2. Suppose X ∼ Pj∗,z∗,µ0,µ1

with µ0 − µ1 ∈ {−a}p ∪ {a}p. There exist c, C > 0, depending only on d, such that if

a ⩾ c
√

log(pn)/(pnτ 2), then with probability at least 1 − 1/(2pn), the estimator (ĵ, ẑ)

defined in (4.4) satisfies that

|ẑ − z∗|+ dG(ĵ, j
∗) ⩽

C log(pn)

a2p
.

We also present here a general result of Theorem 4.1 without the condition nτ ⩾ 2p:

Theorem 4.8. Suppose X ∼ Pj∗,z∗,µ0,µ1 with µ0 − µ1 ∈ {−a, a}p. Assuming

a2 ⩾ c

{√
p+ log(2pn)

nτ min(p, nτ)
+

pn log(2pn)

n2τ 2min(p, nτ)2

}
. (4.9)

Suppose we are using the quadratic statistics defined in equation (4.1), we have with

probability at least 1− 1/(2pn) that

|ẑ − z|+ dG(ĵ, j) ⩽ C

{√
p+ log(2pn)

a2min(p, nτ)
+

√
pn log(2pn)

amin(p, nτ)

}
.

4.4 Numerical studies

4.4.1 Deterministic spreading model

In this subsection, we compare our method with other possible ways to locate the change.

The first possible way is for each row of the data, we perform a one-dimensional change-

point testing, that is, pick out the time point with the largest absolute value of the CUSUM
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statistics for each coordinate. The earliest time and the coordinate corresponding to that

time is the desired change-point location. We try two different kinds of change-point

locations: in the middle and near the end of the boundary. For the first case, we set

n = 200 and vary p ∈ {100, 200, 500} and signal size µ1
j − µ0

j ∈ {0.1, 0.2, 0.5}. For the

second case, we set n = 500 and vary p ∈ {500, 800, 1000} and signal size µ1
j − µ0

j ∈

{0.2, 0.3, 0.4, 0.5}. We compare the mean absolute deviation between the estimated and

true location of z∗ and j∗ respectively. Columns ẑ∗SD and ĵ∗SD are mean absolute deviation

for z∗ and j∗ from Algorithm 9 respectively while columns ẑ∗coordwiseand ĵ∗coordwise are

results from testing procedure stated above. Table 4.1 shows that our method can locate

the change-point accurately especially when µ0
j , µ

0
j grows above 0.2 in both change-point

settings.

4.4.2 Stochastic spreading model

In this subsection, we consider the case when the spread of the change occur independently

with probability q each time from an infected node to each of its neighbours. In this case,

we can modify our existing methodology, which monitors for deterministic spreading of the

change as follows. If the probability q is known, then we can adjust the distance between

coordinates j and k as the expected time that a change spreading from source coordinate

j will reach k under this stochastic model. For a line graph G = Cp, this would simply be

dG(j, k)/q. When q is unknown, we may search over a grid Q of q values in [0, 1], compute

the test statistics maxj,tQ
(q)
j,t for each q as in (4.2) with this adjusted distance metric and

then choose the optimal q by q̂ := argmaxq∈Q maxj,tQ
(q)
j,t . The final estimator for the

source coordinate and the time of change-point is defined as (ĵ, t̂) := argmax(j,t)Q
(q̂)
j,t . In

Table 4.2, we compare the performance of the method described above (denoted by rSD)

and the vanilla SpreadDetect algorithm (denoted by SD), together with the baseline

coordinatewise procedure mentioned in Section 4.4.1. We set the true probability of

change spread to q = 0.5, and search over the grid Q = {0.1, 0.2, . . . , 0.9} and vary n, p,

z∗ and j∗. We see that the modified SpreadDetect algorithm described in this subsection

has the best performance over the wide range of parameter settings considered.
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n p z∗ signal size ẑ∗SD ẑ∗coordwise ĵ∗SD ĵ∗coordwise

200 100 100 0.1 25.1 92.24 20.79 46.08

200 100 100 0.2 2.07 61.44 2.35 33.35

200 100 100 0.5 0.06 28.78 0.07 14.91

200 200 100 0.1 23.34 85.28 33.12 87.6

200 200 100 0.2 1.72 59.36 1.69 62.19

200 200 100 0.5 0.01 29.78 0.01 19.92

200 500 100 0.1 59.84 87.24 77.93 204.56

200 500 100 0.2 4.14 60.92 4.05 110.07

200 500 100 0.5 0 34.61 0 26.35

500 500 400 0.2 10.4 106.24 10.36 101.2

500 500 400 0.3 0.2 98.02 0.16 31.39

500 500 400 0.4 0.04 121.48 0.03 30.65

500 500 400 0.5 0 131.16 0 30.18

500 800 400 0.2 51.59 161.95 51.9 142.05

500 800 400 0.3 0.18 160.9 0.15 97.21

500 800 400 0.4 0 179.76 0 86.56

500 800 400 0.5 0 171.38 0 87.75

500 1000 400 0.2 77.04 160.7 77.18 173.15

500 1000 400 0.3 0.22 158.25 0.2 104.48

500 1000 400 0.4 0.02 166.98 0 98.88

500 1000 400 0.5 0.01 171.3 0 94.17

Table 4.1: Average mean absolute deviation (over 100 repetitions) comparison between

different methods. Other parameters used: j∗ = p/2.
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n p z∗ j∗ signals ẑ∗SD ẑ∗rSD ẑ∗coordwise ĵ∗SD ĵ∗rSD ĵ∗coordwise

200 100 100 50 0.2 17.29 9.05 97.79 6.64 3.35 48.59

200 100 100 50 0.3 27.86 4.35 83.97 3.41 1.89 41.79

200 100 100 50 0.4 16.67 3.57 41.47 2.53 1.62 21.46

200 200 100 100 0.2 19.23 20.67 96.43 23.07 16.33 96.29

200 200 100 100 0.3 19.10 5.79 88.02 11.24 2.38 85.25

200 200 100 100 0.4 17.07 3.66 52.35 4.6 1.81 46.18

200 500 100 250 0.2 61.09 44.43 98.15 77.36 42.95 246

200 500 100 250 0.3 39.23 7.82 87.6 42.23 5.3 209.06

200 500 100 250 0.4 22.59 4.16 46.55 10.6 1.71 83.5

500 200 250 100 0.2 41.69 6.68 152.61 5 2.61 64.23

500 200 250 100 0.3 41.47 5.77 29.53 3.92 2.36 14.77

500 200 250 100 0.4 41.15 5.39 43.72 3.37 2.39 12.28

500 500 250 250 0.2 43.69 5.76 170.54 7.64 2.46 151.04

500 500 250 250 0.3 42.34 5.09 35.02 6.16 2.38 14.48

500 500 250 250 0.4 43.02 5.19 44.59 4.99 2.41 13.11

Table 4.2: Average mean absolute deviation (over 100 repetitions) comparison between

different methods for estimating the time of change-point and source coordinate under a

stochastic spreading model described in Section 4.4.2
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4.4.3 Real data example

We now apply Algorithm 9 to the data set of weekly deaths between January 2017 and

December 2020 in United States. The aim is to find the time of the change in the number

of deaths and state where the change first occurs. We exclude two states: Alaska and

Hawaii in our analysis as they have no adjacent states. To form the adjacency matrix,

if two states are adjacent to each other, then we assign the corresponding entry with 1,

otherwise, the entries are 0. Before applying Algorithm 9 to the data, we first remove

the seasonal trend from the data. Specifically, we use the data up to 30 June 2019 as the

training data and estimate the daily death by averaging the weekly total death and then

use a Gaussian Kernel with bin width of 20 to estimate the deaths on each day of a year.

As daily death follows Poisson distribution, we stabilise the variance by applying a square

root transformation. Then, we calculate the difference between the actual data and the

fitted data and standardize it using the mean and standard deviation of the calculated

difference.

We apply Algorithm 9 to the pre-processed data set. The resulting time is 7 March

2020, and the state which first started to change is Pennsylvania. The date matches the

actual situation, as during that time, death due to COVID-19 began to occur. Figure 4.3

shows the aggregated CUSUM statistics with the states arranged such that Pennsylvania

is in the centre and the graph distance increases as we move towards the top and bottom

of the plot. The heatmap shown in the figure is consistent with a change spreading

from Pennsylvania. However, we remark that the conclusion here should be treated with

caution for two reasons. Firstly, this is a weekly recorded data and the frequency of

recording is likely to be inadequate to capture the rapid spreading of the disease across

multiple states. Secondly, we computed the distance between states by the number of

state borders one needs to cross from one to the other. While this is a proxy for the

distance between states during the pandemic spread, a better measure would involve, for

instance, the number of passengers crossing from one state to another, though the latter

data are difficult to obtain.

Furthermore, as the assumptions in our model are quite simple here, we discuss some
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possible extensions to the model to fit this COVID-19 data. The first one is that we can

extend the model to allow spatial dependency, as each state is more likely to have some

correlation with other states in reality. Temporal dependency can also be considered as

it has also been observed in COVID-19 data (Jiang, 2022). In addition, it is unlikely

that all the coordinates undergo changes of the same size. One possible way to extend

this is by assuming that the signal for each coordinate is randomly drawn from a uniform

distribution.

4.5 Proof of main results

In this section, we give the proofs of main results in Chapter 4.

Proof of Theorem 4.1. Let Aj,t be the entries of A = T (µ) then for j ∈ [p], we have

Aj,t =


√

t
n(n−t)(n− z

∗ − dG(j, j∗))θj, if t ⩽ z∗ + dG(j, j
∗),√

n−t
nt

(z∗ + dG(j, j
∗))θj, if t > z∗ + dG(j, j

∗).

Since the test statistic is unchanged by flipping signs in any one row of the data, we may

assume without loss of generality that θj > 0 for all j.

Fix k∗ ∈ [p] and t∗ ∈ [n− 1], we define

Bk∗,t∗ :=
∑

j∈Jk∗,t∗

A2
j,t∗+dG(k∗,j).

For each j such that t∗ + dG(k
∗, j) < n, we have Tj,t∗+dG(k∗,j) ∼ N(Aj,t∗+dG(k∗,j), 1) and

obtain that Qk∗,t∗ + |Jk∗,t∗| ∼ χ2
Jk∗,t∗

(Bk∗,t∗). Therefore, by Birgé (2001, Lemma 8.1), for

each j ∈ [p] and t ∈ [n− 1], we have for any δ ∈ (0, 1) that

P
(
|Qk∗,t∗ −Bk∗,t∗ | > 2

√
(|Jk∗,t∗ |+ 2Bk∗,t∗) log(2/δ) + 2 log(2/δ)

)
⩽ δ.

Taking a union bound over k∗ ∈ [p] and t∗ ∈ [n− 1] of the above inequality, we therefore

obtain that with probability at least 1− δ,

Bj∗,z∗ − 2
√

(|Jj∗,z∗ |+ 2Bj∗,z∗) log(2pn/δ)− 2 log(2pn/δ) ⩽ Qj∗,z∗ ⩽ Qĵ,ẑ

⩽ Bĵ,ẑ + 2
√

(|Jĵ,t̂|+ 2Bĵ,t̂) log(2pn/δ) + 2 log(2pn/δ). (4.10)
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Figure 4.3: Aggregated CUSUM statistics as computed in (4.1) for the weekly COVID-19

excess death data in 46 US states during 2019-11-23 to 2020-04-04. Data are preprocessed

as described in Section 4.4.3.
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Notice that for every k∗ ∈ [p] and t∗ ∈ [n− 1], we have |Jk∗,t∗| ⩽ p and

Bk∗,t∗ ⩽
∑
j∈[p]

A2
j,z∗+dG(j,j∗) ⩽

∑
j

θ2j
(z∗ + dG(j, j

∗))(n− z∗ − dG(j, j∗))
n

⩽
n∥θ∥22
2

.

Thus, after rearranging (4.10), we have with probability at least 1− δ that

Bj∗,z∗ −Bĵ,ẑ ⩽ 4
√
(p+ n∥θ∥22) log(2pn/δ) + 4 log(2pn/δ). (4.11)

On the other hand, we can obtain a lower bound of Bj∗,z∗ − Bĵ,ẑ as follows. For each

j ∈ [p], the sequence (Aj,t)t is unimodal with a single peak at z∗ + dG(j, j
∗). Moreover,

since dG(j, j
∗) ⩽ p ⩽ nτ/2, we have

θjAj,z∗+dG(j,j∗) = θ2j

√
(z∗ + dG(j, j∗)(n− z∗ − dG(j, j∗))

n
⩾ θ2j

√
(nτ/2)(n/2)

n
⩾
θ2j
√
nτ

2
.

(4.12)

Therefore, by Wang and Samworth (2018, Lemma 7), we have for each j ∈ Jẑ,ĵ(C1) that

θj(Aj,z∗+dG(j,j∗) − Aj,ẑ+dG(j,ĵ)) ⩾
2θ2j

3
√
6nτ

min

{
|z∗ + dG(j, j

∗)− ẑ − dG(j, ĵ)|,
nτ

2

}
⩾

2θ2j

3
√
6nτ

min

{
C1(|z∗ − ẑ|+ dG(j

∗, ĵ)),
nτ

2

}
, (4.13)

where we have used the definition of Jẑ,ĵ(C1) from (4.5) in the final bound. Combin-

ing (4.13) with (4.12), we obtain that

Bj∗,z∗ −Bĵ,ẑ ⩾
∑

j∈Jẑ,ĵ(C1)

(A2
j,z∗+dG(j,j∗) − A2

j,ẑ+dG(j,ĵ)
)

⩾
∑

j∈Jẑ,ĵ(C1)

Aj,z∗+dG(j,j∗)(Aj,z∗+dG(j,j∗) − Aj,ẑ+dG(j,ĵ))

⩾
2a2m

3
√
6
min

{
C1(|z∗ − ẑ|+ dG(j

∗, ĵ)),
nτ

2

}
, (4.14)

where we have used the fact that |Jẑ,ĵ(C1)| ⩾ m in the final inequality. Combining (4.11)

and (4.14), and choosing δ = 1/(2pn), we have with probability at least 1− 1/(2pn) that

2a2m

3
√
6
min

{
C1(|z∗ − ẑ|+ dG(j

∗, ĵ)),
nτ

2

}
⩽ 4

√
p+ 2npa2 log(2pn) + 8 log(2pn). (4.15)

From condition (4.6), we have

a2 ⩾ max

{
c(
√
p+ log(2pn))

nτm
, a

√
cp log(2pn)

nτ 2m2

}
⩾
c
√
p+ c log(2pn) +

√
cnpa2 log(2pn)

2nτm
,
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which for sufficiently large c implies that the minimum on the left-hand side of (4.15) is

achieved by the first term. Consequently, we derive from (4.15) that with probability at

least 1− 1/(2pn),

|z∗ − ẑ|+ dG(j
∗ − ĵ) ⩽ 12

√
6

C1

{√
p+ log(2pn)

a2m
+

√
pn log(2pn)

am

}
,

as desired.

Proof of Proposition 4.2. Denote Gr to be the rth copy of Cp1 making up G, i.e. G =∏d
r=1Gr. Each vertex j ∈ G can be represented by a d-tuple of coordinates (π1(j), . . . , πd(j)),

where πr(j) ∈ V (Gr) = [p1]. Define ℓ(j) = ℓG(j) := (z∗ + dG(j, j
∗))− (t∗ + dG(j, k

∗)), by

Proposition 4.10, we have that each of the following set

Jr :=
{
j̃ : sgn(z∗ − t∗)ℓGr(j̃) ⩾

|z∗ − t∗|+ dGr(πr(j
∗), πr(k

∗))

4

}
,

has cardinality at least p1/8. Then, for all j ∈ J :=
∏d

r=1 Jr, when z∗ ⩾ t∗, we have:

z∗ − t∗ + dG(j, j
∗)− dG(j, k∗) =

d∑
r=1

{
z∗ − t∗

d
+ dGr(πr(j), πr(j

∗))− dGr(πr(j), πr(k
∗))

}

⩾
d∑
r=1

ℓGr(j)

d
⩾

d∑
r=1

z∗ − t∗ + dGr(πr(j
∗), πr(k

∗))

4d

⩾
z∗ − t∗

4d
+
dG(j

∗, k∗)

4d

Similarly, if t∗ > z∗, we have

t∗ − z∗ + dG(j, k
∗)− dG(j, j∗) ⩾

t∗ − z∗

4d
+
dG(j

∗, k∗)

4d
.

Overall, we have for j ∈ J that

|ℓG(j)| = |z∗ − t∗ + dG(j, j
∗)− dG(j, k∗)| ⩾

|z∗ − t∗|
4d

+
dG(j

∗, k∗)

4d
.

Hence, mG(1/(4d)) ⩾ |J | =
∏d

r=1 |Jr| ⩾ (p1/8)
d = p/8d as desired.

Proof of Theorem 4.4. If θ = 0, then Tj,t ∼ N(0, 1) for all t ∈ [n − 1] and j ∈ [p] and

hence Qj,t + |Jj,t| ∼ χ2
|Jj,t|. By Laurent and Massart (2000, Lemma 1) together with a
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union bound, we have that

P( max
j∈[p],t∈[n−1]

Qj,t ⩾ λ) ⩽
p∑
j=1

n−1∑
t=1

P(Qj,t ⩾ λ)

⩽
p∑
j=1

n−1∑
t=1

P
{
Qj,t ⩾ 2

√
|Jj,t| log(pn/δ) + 2 log(pn/δ)

}
⩽ δ.

This establishes part (a). For part (b), let Aj,t and Bj,t be defined as in the proof of

Theorem 4.1. Note that under the alternative hypothesis, Qj,t + |Jj,t| ∼ χ2
|Jj,t|(Bj,t).

Hence, by Birgé (2001, Lemma 8.1), we have

P
{
Qj∗,z∗ ⩾ Bj∗,z∗ − 2

√
(|Jj∗,t∗|+ 2Bj∗,z∗) log(1/δ)

}
⩾ 1− δ.

Under the assumption that Bj∗,z∗ ⩾ 8λ, we have

Bj∗,z∗ − 2
√
(|Jj∗,t∗|+ 2Bj∗,z∗) log(1/δ) ⩾ Bj∗,z∗ − 2

√
p log(1/δ)− 2

√
2Bj∗,z∗ log(1/δ)

⩾ Bj∗,z∗ − λ− 2
√
Bj∗,z∗λ

= (
√
Bj∗,z∗ −

√
λ)2 − 2λ ⩾ λ.

Since

A2
j,z∗+dG(j,j∗) = θ2j

(z∗ + dG(j, j
∗)(n− z∗ − dG(j, j∗))

n
⩾ θ2j

(nτ/2)(n/2)

n
⩾
θ2jnτ

4
,

there are at least nτ/2 points with dG(j, j
∗) ⩽ nτ/2,

Bj∗,z∗ =
∑

j∈Jj∗,z∗

A2
j,z∗+dG(j∗,j) ⩾ min

(
p,
nτ

2

)a2nτ
4

=
a2nτ min(2p, nτ)

8

Then, for a2 ⩾ 64λ/(nτ min{2p, nτ}), we have the desired result.

Proof of Theorem 4.5. Fix j∗ ∈ argminv∈V (G) maxw∈V (G) dG(v, w) and z
∗ = n−⌈nτ⌉. Let

π be the uniform distribution on {−a, a}p. For notational simplicity, define P0 := Pj∗,z∗,0,0

and P1 :=
∫
Pj∗,z∗,0,µ1dπ(µ1). Then, for any test function ψ, we have

sup
(j∗,z∗,µ0,µ1)∈Θ0

Pj∗,z∗,µ0,µ1(ψ = 1) + sup
(j∗,z∗,µ0,µ1)∈Θ1

Pj∗,z∗,µ0,µ1(ψ = 0)

⩾ P0(ψ = 1) + P1(ψ = 0) ⩾ 1− dTV(P0, P1)

= 1− 1

2

∫ ∣∣∣∣dP1

dP0

− 1

∣∣∣∣ dP0 ⩾ 1− 1

2

{∫ (
dP1

dP0

− 1

)2

dP0

}1/2

= 1− 1

2

{∫ (
dP1

dP0

)2

dP0 − 1

}1/2

. (4.16)
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Let µ be the conditional mean of X given µ1 under Pj∗,z∗,0,µ1 and let µ̃ be an independent

copy of µ. By Ingster and Suslina (2012), we have for some independent Rademacher

random variables ξ1, . . . , ξp that∫ (
dP1

dP0

)2

dP0 = E exp⟨µ, µ̃⟩ = E exp

( p∑
j=1

max{n− z∗ − dG(j, j∗), 0}a2ξj
)

=

p∏
j=1

[1
2
emax{n−z∗−dG(j,j∗),0}a2 +

1

2
e−max{n−z∗−dG(j,j∗),0}a2

]
⩽

p∏
j=1

emax{n−z∗−dG(j,j∗),0}2a4/2 ⩽ e2pn
2τ2a4 ⩽ 2,

where the first inequality follows from the fact that (ex+ e−x)/2 ⩽ ex
2/2 for all x ∈ R and

the second bound uses the fact that n−z∗−dG(j, j∗) ⩽ ⌈nτ⌉ ⩽ 2nτ . Finally, substituting

the above inequality into (4.16) we arrive at the desired conclusion.

Proof of Theorem 4.6. From the definition of (ĵ, ẑ), we have
∑

j∈Jẑ,ĵ(C1)
(Aj,z∗+dG(j,j∗) +

Ej,z∗+dG(j,j∗)) ⩽
∑

j∈Jẑ,ĵ(C1)
(Aj,ẑ+dG(j,ĵ) + Eẑ+dG(j,ĵ)), which can be combined with Propo-

sition 4.11 to obtain that for some universal constant C2 > 0, we have with probability

at least 1− 1/(pn) that∑
j∈Jẑ,ĵ(C1)

(Aj,z∗+dG(j,j∗) − Aj,ẑ+dG(j,ĵ)) ⩽ C2

{
|Jẑ,ĵ(C1)| log(pn)

|z∗ − ẑ|+ dG(j
∗, ĵ)

nτ

}1/2

.

(4.17)

On the other hand, by (4.13), we have∑
j∈Jẑ,ĵ(C1)

(Aj,z∗+dG(j,j∗) − Aj,ẑ+dG(j,ĵ)) ⩾
2a|Jẑ,ĵ(C1)|

3
√
6nτ

min

{
C1(|z∗ − ẑ|+ dG(j

∗, ĵ)),
nτ

2

}
.

(4.18)

Combining (4.17) and (4.18), we have with probability at least 1− 1/(pn) that

2a|Jẑ,ĵ(C1)|1/2

3
√

6 log(pn)
min

{
C1(|z∗ − ẑ|+ dG(j

∗, ĵ)),
nτ

2

}
⩽ C2

{
|z∗ − ẑ|+ dG(j

∗, ĵ)
}1/2

. (4.19)

We claim that when c ⩾ 6
√
3C2, the minimum on the left-hand side above cannot be

achieved at nτ
2
. Indeed, from the assumption on a, we have

2a|Jẑ,ĵ(C1)|1/2

3
√

6 log(pn)

nτ

2
⩾
c
√
n

3
√
6
⩾ C2

√
2n > C2

{
|z∗ − ẑ|+ dG(j

∗, ĵ)
}1/2

.
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Therefore, we have that

|z∗ − ẑ|+ dG(j
∗, ĵ) ⩽

27C2
2 log(pn)

2C2
1a

2|Jẑ,ĵ(C1)|
⩽
C∗ log(pn)

a2m
.

Proof of Theorem 4.8. Following the proof of Theorem 4.1 and Proposition 4.9, there

exists J ⊂ [p] such that |J | ⩾ min(p, nτ)/32, and for each j ∈ J , we have

|j − j∗| ⩽ nτ

2
and |z∗ + dG(j, j

∗)− (ẑ + dG(j, ĵ))| ⩾ min

(
nτ

16
,
|z∗ − ẑ|+ dG(j

∗, ĵ)

4

)
.

Combining equation (4.12) and Proposition 4.9, we have that

Aj,z∗+dG(j,j∗) − Aj,ẑ+dG(j,ĵ) ⩾
2θj

3
√
6nτ

min(|z∗ + dG(j, j
∗)− (ẑ + dG(j, ĵ))|, nτ/2)

⩾
2θj

3
√
6nτ

min

(
|z∗ − ẑ|+ dG(j

∗, ĵ)

4
,
nτ

16

)
.

Then

Bj∗,z∗ −Bĵ,ẑ ⩾
∑
j∈J

Aj,z∗+dG(j,j∗)(Aj,z∗+dG(j,j∗) − Aj,ẑ+dG(j,ĵ))

⩾
a2min(p, nτ)

96
√
6

min

(
|z∗ − ẑ|+ dG(j

∗, ĵ)

4
,
nτ

16

)
. (4.20)

Combining (4.11) in the proof of Theorem 4.1 and (4.20), and choosing δ = 1/(2pn), we

have with probability at least 1− 1/(2pn) that

a2min(p, nτ)

96
√
6

min

(
|z∗ − ẑ|+ dG(j

∗, ĵ)

4
,
nτ

16

)
⩽ 4

√
p+ 2npa2 log(2pn) + 8 log(2pn).

(4.21)

When c is sufficently large, we have from (4.9) that the minimum on the left-hand side

of (4.21) is necessarily achieved by the first term. Consequently, we derive from (4.21)

that with probability at least 1− 1/(2pn), we have

|z∗ − ẑ|+ dG(j
∗, ĵ) ⩽ C

{√
p+ log(2pn)

a2min(p, nτ)
+

√
pn log(2pn)

amin(p, nτ)

}
,

as desired.
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4.6 Ancillary results

In this section, we collect all ancillary propositions and lemmas used in Chapter 4. We

first show that when G = Cp, a cycle graph, for a nontrivial fraction of coordinates j ∈ [p],

the difference ℓ(j) = ℓG(j) := (z∗ + dG(j, j
∗))− (t∗ + dG(j, k

∗)) is large in absolute value.

Proposition 4.9. Let G = Cp be a p-cycle graph. Let τ = min{z∗/n, 1−z∗/n}. Assuming

that nτ ⩾ 16 and p ⩾ 4, the following set

J :=

{
j : |ℓ(j)| ⩾ min

(
nτ

16
,
|z∗ − t∗|+ dG(j

∗, k∗)

4

)
and dG(j, j

∗) ⩽
nτ

2

}
has cardinality at least min(p, nτ)/32.

Proof. Without loss of generality, we may assume by symmetry that j∗ = ⌈p/2⌉ and

k∗ ⩾ j∗. This choice is convenience since dG(j, j
∗) = |j − j∗|. With this choice, we can

write

ℓ(j) =



(z∗ − t∗) + (k∗ − j∗)− 2j 1 ⩽ j ⩽ k∗ − j∗

(z∗ − t∗)− (k∗ − j∗) k∗ − j∗ ⩽ j ⩽ j∗

(z∗ − t∗) + (k∗ − j∗)− 2(k∗ − j) j∗ ⩽ j ⩽ k∗

(z∗ − t∗) + (k∗ − j∗) k∗ ⩽ j ⩽ p.

(4.22)

We then prove the result by discussing the following four cases.

Case 1: assume k∗ − t∗ ⩾ j∗ − z∗ and k∗ + t∗ ⩽ j∗ + z∗. In this case, we have t∗ ⩽ z∗

and k∗ − j∗ ⩽ z∗ − t∗. Hence ℓ(j) ⩾ 0 for all j. Notice that ℓ(j) is an non-decreasing

function of j for j ⩾ j∗. Then for all j such that

j∗ +min{nτ/4, (k∗ − j∗)/4} ⩽ j ⩽ j∗ +min{nτ/2, p/4},

we have

ℓ(j) ⩾ min
{
ℓ(j∗ + ⌈nτ/4⌉), ℓ(j∗ + ⌈(k∗ − j∗)/4⌉)

}
⩾ min

{
(z∗ − t∗) + min

{
nτ

2
− (k∗ − j∗), k∗ − j∗

}
, z∗ − t∗ − 1

2
(k∗ − j∗)

}
⩾ min

{
nτ

2
,
|z∗ − t∗|+ |j∗ − k∗|

4

}
.
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Consequently, in this case, we have

|J | ⩾ min{⌊nτ/4⌋, p/8}.

Case 2: assume k∗ − t∗ ⩾ j∗ − z∗, k∗ + t∗ ⩾ j∗ + z∗ and z∗ ⩾ t∗. In this case,

k∗ − j∗ ⩾ z∗ − t∗ ⩾ 0. We define h∗ to be the point such that h∗ − j∗ = ⌈ (k
∗−j∗)−(z∗−t∗)

2
⌉.

Then j∗ ⩽ h∗ ⩽ k∗ and ℓ(h∗) ∈ {0, 1}.

We discuss three sub-cases. Case 2a: When k∗ − j∗ ⩽ nτ/4, let A = {j : k∗+h∗
2

⩽ j ⩽

min(j∗ + nτ
2
, p)}. Then, for all j ∈ A, we have that

ℓ(j) ⩾ ℓ

(⌈
h∗ + k∗

2

⌉)
⩾ ℓ(h∗) + 2

⌈
k∗ − h∗

2

⌉
⩾ ℓ(h∗) +

⌊
(z∗ − t∗) + (k∗ − j∗)

2

⌋
⩾

(z∗ − t∗) + (k∗ − j∗)
4

.

and

|A| = min

(
p, j∗ +

nτ

2

)
− k∗ + h∗

2
= min

{
p− k∗ + h∗

2
,
nτ

2
−
(
k∗ + h∗

2
− j∗

)}
⩾ min

(
p− k∗ + k∗ − h∗

2
, nτ/4

)
⩾ min

(
p− j∗

8
, nτ/4

)
⩾ min(p/32, nτ/4).

Case 2b: When h∗ − j∗ ⩾ nτ/8, let A = {j : j∗ ⩽ j ⩽ j∗+h∗

2
}. Then,

|ℓ(j)| ⩾
∣∣∣∣ℓ(⌊j∗ + h∗

2

⌋)∣∣∣∣ ⩾ 2

{
h∗ −

⌊
j∗ + h∗

2

⌋}
− ℓ(h∗) ⩾ nτ

16
,

and |A| ⩾ ⌊(h∗ − j∗)/2⌋ ⩾ ⌊nτ/16⌋ ⩾ nτ/32.

Case 2c: When k∗−j∗ > nτ/4 and h∗−j∗ < nτ/8, let A = {j : h∗+ nτ
16

⩽ j∗ ⩽ h∗+ nτ
8
}.

Then,

|ℓ(j)| ⩾ ℓ(h∗) + 2

⌈
nτ

16

⌉
⩾
nτ

8
,

and |A| ⩾ ⌊nτ/16⌋ ⩾ nτ/32.

Combining all subcases and noticing that A ⊆ J , we have the desired result.

Case 3: assume k∗ − t∗ ⩾ j∗ − z∗, k∗ + t∗ ⩾ j∗ + z∗ and t∗ > z∗. We define h∗ to be

the point such that h∗− j∗ = ⌊ (k
∗−j∗)+(t∗−z∗)

2
⌋. Observe that ℓ(h) ∈ {0,−1}. In this case,
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k∗− j∗ ⩾ t∗−z∗ ⩾ 0. Let A = {j : j∗−min{2j∗−k∗, nτ/2} ⩽ j ⩽ j∗+min{h∗−j∗
2

, nτ/2}.

Since ℓ(j) is negative and increasing for j ∈ [k∗ − j∗, h∗+j∗
2

], we have for all j ∈ A that

|ℓ(j)| ⩾
∣∣∣∣ℓ(⌊j∗ + h∗

2

⌋)∣∣∣∣ ⩾ 2

{
h∗−

⌊
j∗ + h∗

2

⌋}
+ |ℓ(h∗)| ⩾ ⌊h∗− j∗⌋ ⩾ k∗ − j∗ + t∗ − z∗

4
.

Finally, observe by the definition of h∗ and the condition t∗ > z∗ that h∗ − j∗ ⩾ ⌊(k∗ −

j∗ + 1)/2⌋ ⩾ (k∗ − j∗)/2. Hence,

h∗ − j∗

2
+ (2j∗ − k∗) ⩾ k∗ − j∗ + (2j∗ − k∗)

4
⩾
j∗

4
⩾

p

16
.

Consequently, we have |J | ⩾ |A| ⩾ min(p/16, nτ/2).

Case 4: assume k∗− t∗ ⩽ j∗− z∗ and k∗ + t∗ ⩾ j∗ + z∗. In this case, we have t∗ ⩾ z∗.

Let A = {j : j∗ −min{2j∗ − k∗, nτ/2} ⩽ j ⩽ j∗ +min{k∗−j∗
2
, nτ/2}}. Noticing that ℓ(j)

is negative and increasing for j ∈ [k∗ − j∗, k∗], we have

|ℓ(j)| ⩾
∣∣∣∣ℓ(⌊j + k

2

⌋)∣∣∣∣ ⩾ t∗ − z∗ ⩾ t∗ − z∗ + k∗ − j∗

2
.

We have (k∗ − j∗)/2 + (2j∗ − k∗) ⩾ j∗/2 ⩾ p/8. Hence |J | ⩾ |A| ⩾ min{p/8, nτ/2}.

With the addition assumption that nτ ⩾ 2p, for τ = min{z∗/n, 1 − z∗/n}, we may

establish the following improved version of Proposition 4.9 that can be used to prove

Theorem 4.1.

Proposition 4.10. Let G = Cp be a p-cycle graph and τ = min{z∗/n, 1− z∗/n}. Assum-

ing that nτ ⩾ 2p, the following set

J :=

{
j : sgn(z∗ − t∗)ℓ(j) ⩾ |z

∗ − t∗|+ dG(j
∗, k∗)

4

}
has cardinality at least p/8.

Proof. Following the proof of Proposition 4.9, we may assume without loss of genrality

that j∗ = ⌈p/2⌉ and k∗ ⩾ j∗, which imlpies that ℓ(j) takes the form given in (4.22). We

then prove the result by considering four cases as in the proof of Proposition 4.9.

Case 1: assume k∗ − t∗ ⩾ j∗ − z∗ and k∗ + t∗ ⩽ j∗ + z∗. In this case, we have t∗ ⩽ z∗

and k∗ − j∗ ⩽ z∗ − t∗. Hence ℓ(j) ⩾ 0 for all j. Notice that ℓ(j) is an non-decreasing

function of j for j ⩾ j∗. Then, for all j such that j∗ + (k∗ − j∗)/4 ⩽ j ⩽ p, we have

ℓ(j) ⩾ ℓ
(
j∗ + ⌈(k∗ − j∗)/4⌉

)
⩾ z∗ − t∗ + 1

2
(k∗ − j∗) ⩾ z∗ − t∗ + k∗ − j∗

4
.
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Consequently, in this case, |J | ⩾ p− j∗ − ⌈(k∗ − j∗)/4⌉+ 1 ⩾ p/4 as required.

Case 2: assume k∗ − t∗ ⩾ j∗ − z∗, k∗ + t∗ ⩾ j∗ + z∗ and z∗ ⩾ t∗. In this case,

k∗−j∗ ⩾ z∗−t∗ ⩾ 0. We define h∗ := j∗+⌈ (k
∗−j∗)−(z∗−t∗)

2
⌉, and observe that j∗ ⩽ h∗ ⩽ k∗,

k∗ − h∗ ⩾ (k∗ − j∗)/2 and ℓ(h∗) ∈ {0, 1}, and that ℓ(j) is increasing for j ∈ [h∗, p]. Then,

for all j such that (k∗ + h∗)/2 ⩽ j ⩽ p, we have

ℓ(j) ⩾ ℓ

(⌈
h∗ + k∗

2

⌉)
= ℓ(h∗) + 2

⌈
k∗ − h∗

2

⌉
⩾ ℓ(h∗) + (k∗ − h∗)

⩾ ℓ(h∗) +
z∗ − t∗ + k∗ − j∗ − ℓ(h∗)

2
⩾
z∗ − t∗ + k∗ − j∗

2
,

where in the penultimate inequality, we have used the property that ⌈ (k
∗−j∗)−(z∗−t∗)

2
⌉ =

(k∗−j∗)−(z∗−t∗)+ℓ(h∗)
2

. Consequently, in this case, |J | ⩾ p−⌈(k∗+h∗)/2⌉+1. The right-hand

side is a decreasing function of k∗. Hence, using the fact that k∗ ⩽ p and h∗ ⩽ (j∗+k∗)/2,

we have |J | ⩾ p/8 as desired.

Case 3: assume k∗ − t∗ ⩾ j∗ − z∗, k∗ + t∗ ⩾ j∗ + z∗ and t∗ > z∗. We define

h∗ := j∗ + ⌊ (k
∗−j∗)+(t∗−z∗)

2
⌋. Observe that ℓ(h∗) ∈ {0,−1} and h∗ = (k∗+j∗)+(t∗−z∗)

2
− ℓ(h∗)

2
.

In this case, k∗− j∗ ⩾ t∗− z∗ ⩾ 0. For all j such that k∗− j∗ ⩽ j ⩽ h∗+j∗

2
, ℓ(j) is negative

and increasing, satisfying

−ℓ(j) ⩾ −ℓ
(⌊

j∗ + h∗

2

⌋)
= 2

{
h∗ −

⌊
j∗ + h∗

2

⌋}
− ℓ(h∗)

⩾ h∗ − j∗ − ℓ(h∗) ⩾ k∗ − j∗ + t∗ − z∗

2
.

Finally, observe by the definition of h∗ and the condition t∗ > z∗ that h∗ − j∗ ⩾ ⌊(k∗ −

j∗ + 1)/2⌋ ⩾ (k∗ − j∗)/2. Hence, we have

|J | ⩾ h∗ + j∗

2
− (k∗ − j∗) ⩾ h∗ − j∗

2
+ (2j∗ − k∗) ⩾ k∗ − j∗ + (2j∗ − k∗)

4
⩾
j∗

4
⩾
p

8
.

Case 4: assume k∗− t∗ ⩽ j∗− z∗ and k∗ + t∗ ⩾ j∗ + z∗. In this case, we have t∗ ⩾ z∗.

For all j such that k∗ − j∗ ⩽ j ⩽ k∗+j∗

2
, we note that ℓ(j) is negative and increasing,

satisfying

−ℓ(j) ⩾ −ℓ
(⌊

j∗ + k∗

2

⌋)
⩾ t∗ − z∗ ⩾ t∗ − z∗ + k∗ − j∗

2
.

Hence, We have |J | ⩾ (k∗ + j∗)/2− (k∗ − j∗) ⩾ j∗/2 ⩾ p/4, completing the proof.
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For the case when we are using the linear statistics, we provide the following result

of the difference between the sum of Ej,z∗+dG(j,j∗) and Ej,t∗+dG(j,k∗) for coordinates in set

Jt∗,k∗(C1).

Proposition 4.11. Fix z∗ ∈ [n−1] and j∗ ∈ [p]. If nτ ⩾ 2p, then there exists a universal

constant C > 0 and an event with probability at least 1− 1/(pn), such that on this event,

for all t∗ ∈ [n− 1], k∗ ∈ [p] and Jt∗,k∗(C1) ⊆ [p] defined in (4.5), we have

∑
j∈Jt∗,k∗ (C1)

(Ej,z∗+dG(j,j∗) − Ej,t∗+dG(j,k∗)) ⩽ C

√
|Jt∗,k∗(C1)|(|z∗ − t∗|+ dG(k∗, j∗)) log(pn)

nτ
.

Proof. First, we claim that if |z∗ − t∗| + dG(k
∗, j∗) ⩾ nτ/2, then the conclusion holds

trivially. To see this, we note that
∑

j∈[p]Ej,z∗+dG(j,j∗) ∼ N(0, p) and
∑

j∈[p]Ej,t∗+dG(j,k∗) ∼

N(0, p). Taking a union bound over t∗ and k∗, there is an event with probability at least

1− 1/(pn) such that

max

{ ∑
j∈Jt∗,k∗ (C1)

Ej,z∗+dG(j,j∗), max
t∗∈[n−1],k∗∈[p]

∑
j∈Jt∗,k∗ (C1)

Ej,t∗+dG(j,k∗)

}
⩽ 2

√
p log(pn).

So it suffices to take C = 2
√
2 for the desired conclusion to hold. Hence, we may assume

without loss of generality that |z∗ − t∗|+ dG(k
∗, j∗) < nτ/2.

We control
∑

j∈Jt∗,k∗ (C1)
(Ej,z∗+dG(j,j∗) − Ej,t∗+dG(j,k∗)) for fixed t∗ ∈ [n − 1], k∗ ∈ [p].

For simplicity of notation, we denote zj := z∗ + dG(j, j
∗) and tj := t∗ + dG(j, k

∗). Note

that
∑

j∈Jt∗,k∗ (C1)
(Ej,z∗+dG(j,j∗)−Ej,t∗+dG(j,k∗)) is a sum of |Jt∗,k∗(C1)| independent normal

random variables. Hence, we start by controlling the variance of each summand. We

consider first the case where tj ⩽ zj. From the definition of the CUSUM transformation,
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we can write

Ej,zj − Ej,tj =
√

n

zj(n− zj)

(
zj
n

n∑
r=1

Wj,r −
zj∑
r=1

Wj,r

)

−
√

n

tj(n− tj)

(
tj
n

n∑
r=1

Wj,r −
tj∑
r=1

Wj,r

)

=

√
n

zj(n− zj)

(
zj − tj
n

n∑
r=1

Wj,r −
zj∑

r=tj+1

Wj,r

)

+

(√
n

zj(n− zj)
−

√
n

tj(n− tj)

)(
tj
n

n∑
r=1

Wj,r −
tj∑
r=1

Wj,r

)
.

(4.23)

By the mean value theorem, there exists ξ ∈ [tj, zj], such that(√
n

zj(n− zj)
−

√
n

tj(n− tj)

)
⩽ (zj − tj)

∣∣∣∣ ξn − 1

2

∣∣∣∣( n

ξ(n− ξ)

)3/2

⩽

√
2(zj − tj)

min(ξ, n− ξ)3/2

Also, we observe that:

tj
n

n∑
r=1

Wj,r −
tj∑
r=1

Wj,r =
n∑

r=t+1

Wj,r −
n− tj
n

n∑
r=1

Wj,r.

Since
∑n

r=1Wj,r and
∑zj

r=tj+1Wj,r are positively corrected with each other, we have

V(Ej,zj − Ej,tj) ⩽
2n

zj(n− zj)

(
(zj − tj)2

n
+ zj − tj

)
+

4(zj − tj)2

min(ξ, n− ξ)3
min

(
t2j
n
+ tj, n− tj +

(n− tj)2

n

)
⩽ 4(zj − tj)

(
1

zj
+

1

n− zj

)
+

8(zj − tj)2

min(tj, n− zj)2
max

(
1,
n− tj
n− zj

)
Since nτ ⩾ 2p, we have |zj − z∗| = dG(j − j∗) ⩽ p ⩽ nτ/2 and consequently nτ ⩽

zj ⩽ n − nτ/2. Also, by (4.22), we have zj − tj < |z∗ − t∗| + dG(k
∗, j∗) < nτ/2, so

nτ/2 ⩽ tj ⩽ n− nτ . Thus, for some universal constant C > 0, we have

V(Ej,zj − Ej,tj) ⩽
8(zj − tj)

nτ
+

4nτ(zj − tj)
(nτ/2)2

(
1 +

nτ/2

nτ/2

)
⩽
C(zj − tj)

nτ
⩽
C(|z∗ − t∗|+ dG(k

∗, j∗))

nτ
. (4.24)
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If zj > tj, a symmetric argument will show that the same variance bound as in (4.24)

holds. Therefore,

V

( ∑
j∈Jt∗,k∗ (C1)

(Ej,zj − Ej,tj)
)

⩽
C|Jt∗,k∗(C1)|(|z∗ − t∗|+ dG(k

∗, j∗))

nτ

Then, for a fixed t∗ and k∗, we have that

P
( ∑
j∈Jt∗,k∗ (C1)

(Ej,z∗+dG(j,j∗) − Ej,t∗+dG(j,k∗)) ⩾√
4C|Jt∗,k∗(C1)|(|z∗ − t∗|+ dG(k∗, j∗)) log(pn)

nτ

)
⩽

1

(pn)2
.

The desired conclusion then follows by taking a union bound over t∗ ∈ [n − 1] and

k∗ ∈ [p].
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Chapter 5

Discussion

In this thesis, we considered high-dimensional change-point estimation problems under a

group sparsity structure and network structure. We proposed the estimation procedures

for both cases. We also provided theoretical guarantees for the two algorithms and demon-

strated the good performance using simulation studies. We can see that some structural

assumptions that appeared in high-dimensional problems, such as regression, can also be

adapted to change-point estimation problems. In this thesis, we mainly use the structural

information to seek an optimal way to aggregate the data.

In groupInspect, we used the grouping information between coordinates to seek an

optimal projection direction so as to aggregate the data. In SpreadDetect, we aggregate

the CUSUM statistics along potential spreading direction according to the network infor-

mation from coordinates. In both cases, the prior information about structures helps us

to find a better estimator for the change-point location. Further work can also be done to

extend two algorithms. For the groupInspect algorithm we proposed in this thesis, our

sparsity assumption is on the groups but not within the group. In reality, there may be

cases when there is sparsity within each group. A similar extension appears from group

lasso by Yuan and Lin (2006) to sparse group lasso by Simon et al. (2013). In this case,

we can use a similar idea to modify equation (3.6) by adding an ℓ1 penalty for each group

to form a convex combination between group norm and ℓ1 norm. That is, we can solve
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the following modified optimisation problem:

M̂ ∈ argmax
M∈S

{
⟨T,M⟩ − λ∥M∥grp + (1− λ)∥M∥1

}
, (5.1)

where λ ∈ [0, 1]. One possible way to solve this optimisation is by coordinate descent.

For SpreadDetect algorithm proposed in Chapter 4, we have assumed that the data

is of independent normal vectors with deterministic spread of signals. The model assump-

tions are quite simple here, we discuss some possible extensions. First of all, it is more

realistic to assume that there are some dependence structures with the data. We can use a

single covariance matrix Σ := Cov(vec(X)) ∈ Rnp×np to capture both spatial and tempo-

ral dependence in the data matrix X, where vec(X) denotes the vectorised version of X.

For instance, one possibility is to model Σ = ΣS ⊗ ΣT, where ΣT captures the temporal

dependence of an individual coordinate series and ΣS captures the cross-sectional depen-

dence over the graph. When ΣT = In, columns of W consist of n independent N(0,ΣS)

random vectors. When ΣS = In, rows ofW are independent and generated from N(0,ΣT).

We can assume that both the temporal and spatial dependence are short-ranged in the

sense that ∥Σ∥op ⩽ B in order to control the magnitude of the noise series. In addition,

it may be more realistic to assume that the change magnitudes of the signal in different

coordinates are not fixed to ±a. To handle this, we may model the magnitudes of change

as drawn from some random distribution (e.g.uniform distribution over a pre-determined

interval). Under the above spatially and temporally correlated noise condition, as well

as possible randomly drawn change magnitude size, the current theoretical results will

remain qualitatively unchanged, for the following two reasons. Firstly, we expect that

with a high probability, there are at least order p number of coordinates with a change

signal that is large enough (e.g, ⩾ a/2). Therefore, the main results will only change with

a constant factor here. Secondly, both temporal and spatial dependence affect only the

noise part of the CUSUM series. As long as our covariance matrix is well-conditioned,

our main results will differ at most a constant factor.

Furthermore, the algorithm is based on the case when the spread of the signal is

deterministic, when the signal will definitely spread to the next coordinate at the next

time point. In reality, there is likely some randomness in the spreading of the signal. For
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example, at each time point, the corresponding coordinate changes with a probability q. In

this case, one possible way is to first estimate q and use the expected time of spreading from

the source coordinate to a specific coordinate as the distance matrix. We have described

the modified algorithm and demonstrated its good performance in Section 4.4.2. Although

it works well under simulation study, the theoretical result remains an open question.

Although we roughly modified the algorithm to adapt to this case in the simulation

study, theoretical guarantees for this modified algorithm still need to be derived.

Finally, it is also possible to extend the algorithm in order to solve epidemic change-

point problems. The difference is that, the mean will change for a time period of length

l and then go back to the original values. In this case, given t∗, k∗, we need to aggregate

the CUSUM statistics along all possible length l and then find the maximum.
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