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Abstract
We investigate the quantum Zeno effect (QZE) in spin 1/2, spin 1 and spin 3/2
open quantum systems undergoing Rabi oscillations, revealing unexplored
features for the spin 1 and spin 3/2 systems. The systems interact with an
environment designed to perform continuous measurements of an observable,
driving the systems stochastically towards one of the eigenstates of the corres-
ponding operator. The system-environment coupling constant represents the
strength of the measurement. Stochastic quantum trajectories are generated by
unravelling a Markovian Lindblad master equation using the quantum state
diffusion formalism. These are regarded as a more appropriate representation
of system behaviour than consideration of the averaged evolution since the
latter can mask the effect of measurement. Complete positivity is maintained
and thus the trajectories can be considered as physically meaningful. The QZE
is investigated over a range of measurement strengths. Increasing the strength
leads to greater system dwell in the vicinity of the eigenstates of the measured
observable and lengthens the time taken by the system to return to that eigen-
state, thus theQZE emerges. For very strongmeasurement, the Rabi oscillations
resemble randomly occurring near-instantaneous jumps between eigenstates.
The trajectories followed by the quantum system are heavily dependent on the
measurement strength which other than slowing down and adding noise to the
Rabi oscillations, changes the paths taken in spin phase space from a circular
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precession into elaborate figures-of-eight. For spin 1 and spin 3/2 systems,
the measurement strength determines which eigenstates are explored and the
QZE is stronger when the system dwells in the vicinity of certain eigenstates
compared to others.

Keywords: the quantum Zeno effect, stochastic quantum trajectories,
quantum state diffusion, open quantum systems

1. Introduction

The quantum Zeno effect (QZE), also known as the Turing Paradox, is the suppression of the
unitary time evolution of a system brought about by repeated measurements. The first general
derivation of the QZE was performed by Degasperis et al in 1974 [1] but the effect was form-
ally characterised by Misra and Sudarshan [2], who showed in 1977 that the probability that
a system should remain in an initial state will approach unity as the frequency of projective
measurements made on it tends to infinity. The QZE was named after the Greek philosopher
Zeno’s paradox, which suggested that if an arrow were continuously observed, it would (argu-
ably) appear to be motionless and thus would never reach its target. Any disturbance in the rate
of change of a quantum system as a result of measurement can be considered to be a demon-
stration of the QZE or the quantum anti-Zeno effect, the latter corresponding to the opposite
of the QZE and manifesting itself as the speeding up of the system dynamics rather than the
slowing down. It has also been demonstrated that the QZE may be exhibited through a series
of frequent, partial, incomplete measurements, such that an incomplete wavefunction collapse
leads the system to be more likely to remain in its initial state [3, 4].

A notable motivation for understanding the QZE is that it might be used to stabilise quantum
systems in a particular state such that properties of the system such as entanglement and
coherence might be maintained [5, 6]. The stability of such properties is of great import-
ance in quantum error correction algorithms or quantum teleportation, as well as in many
other quantum computational fields [7–10]. A recent use of the QZE was demonstrated by
Blumenthal et al [11]. It was shown that the joint evolution of at least two non-interacting
qubits could be achieved through the continuous measurement of one qubit, such that the
operation becomes a multi-qubit entangling gate. A similar effect was found by Nodurft
et alwhereby polarisation entanglement could be generated between two initially unentangled
photons in coupled waveguides through the QZE [12]. Finally, the QZE has been frequently
studied in electron spins in quantum dots, trapped ions and nuclear spins, and Markovian and
non-Markovian open quantum system dynamics [13–16].

The conceptual difficulty with studying the QZE theoretically is that the conventional
quantum mechanical framework consists of two distinct regimes. The unitary time evolution
of the quantum system governed by the internal Hamiltonian is described by the deterministic,
time-reversal symmetric Schrödinger equation, whilst measurement of the quantum system is
introduced as an interruption of the unitary evolution of the quantum system in a discontinu-
ous, indeterministic and irreversible manner via the Born rule [17]. With the consequences of
measurement of the system being absent from the dynamical equation of motion and average
quantities masking the effect of measurement, it is not straightforward to characterise how the
unitary evolution is influenced by measurement [17, 18].

To reveal the effects of measurement on a system’s unitary evolution, an approach that
enables the study of single, physically realistic quantum trajectories is required. Many exper-
imental and theoretical works have investigated quantum trajectories [19–23]. Presilla et al
compared the experimental results of the QZE found by Itano et al on a two-level system
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with the theoretical predictions formulated through the path-integral and QSD formalisms [24,
25]. It was found that that the experimental results of Itano et al correspond to a high meas-
urement coupling strength between the system and the measuring apparatus. Snizhko et al.
recently illustrated, through the study of quantum trajectories, that the QZE includes a number
of transition stages leading to an increase in qubit survival probability [26]. Gambetta et al also
studied the QZE of a superconducting charged qubit coupled to a transmission line resonator
with a Rabi control drive, undergoing weak homodyne measurements, which illustrated the
competition between the measurement drive and the Rabi oscillation system dynamics [27].

Approaches exist where individual trajectories are employed to generate the evolution of the
(reduced) density matrix of a system averaged over environmental conditions, but often these
are not regarded as physically realistic: for example the Stochastic Liouville-von Neumann
Equation is based on an evolving ensemble of density matrices that do not preserve unit trace
and thus are not physically meaningful [28]. Quantum jump trajectories can also be generated
which consist of intervals of piecewise deterministic evolution interrupted by stochastic, dis-
continuous jumps [29, 30]. More recently, a new method of generating trajectories, namely
jump-time unravellings, has emerged whereby quantum trajectories are bundled together and
averaged over at specific points in time where jumps occur [31]. In this work, we instead turn to
quantum state diffusion (QSD), also known as weakmeasurement [32]. QSD offers continuous
stochastic quantum trajectories and a dynamical treatment of measurement instead of instant-
aneous wavefunction collapse. For example, near instantaneous jumps have been observed in
diffusive trajectories of a quantum system generated by QSD [33]. Bauer et al and Spiller
have demonstrated that the QZE is a phenomenon that naturally arises in a spin 1/2 system
treated within the QSD framework [34, 35]. We extend this by demonstrating the QZE, and
its dependence on the strength of measurement coupling, in spin systems higher than spin 1/2
and reveal novel features that emerge only in the higher spin systems.

QSD considers quantum systems that are in contact with an environment that causes the
system reduced density matrix to diffuse across its parameter space. Environmental effects in
QSD can drive phenomena such as decoherence and the (continuous) collapse of the system to
a particular eigenstate, all within a single dynamical framework. An average over all possible
diffusive trajectories then yields the evolution of the density matrix of the quantum system as
given by the Lindblad equation, at least for Markovian dynamics.

For our purposes, we consider the environment to represent a measuring apparatus, and
the strength of the interaction between the quantum system and environment to be a meas-
urement coupling that brings about the diffusion of the system towards a stochastically selec-
ted eigenstate. Rather than the system collapsing discontinuously to an eigenstate, as is the
case with projective measurements, the measurement process occurs in a continuous and non-
instantaneousmanner. An approximation to instantaneouswavefunction collapse is obtained in
the limit of infinitely strong system-environment coupling. Near-instantaneous quantum jumps
are recovered in this limit (not to be confused with the intrinsically discontinuous Poissonian
jump unravelling of a quantum master equation) [27, 29, 30]. The QSD evolution equation for
the system therefore contains not only the unitary time evolution brought about, for example,
by a system Hamiltonian, but also the effect of measurement.

The probabilistic nature of the measurement process is represented as stochastic noise in the
QSD framework, generating dynamics described by stochastic differential equations (SDEs)
or Itô processes when the stochasticity is Markovian [32]. The origin of such a stochasticity
might be interpreted as pseudo-random rather than truly indeterministic since the noise that
is introduced into the system dynamics could be a reflection of the underspecified state of
the environment with which the system is interacting, rather like the noise experienced by
an open system like a Brownian particle in classical mechanics. Within such a framework
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we consider the stochastically evolving density matrix to be a physically real property of the
quantum system [36–43], instead of merely a tool to calculate the average evolution or repres-
enting the (subjective) state of our knowledge [44–52], which is still the subject of debate, also
in the context of quantum trajectories [17, 53–57]. Nevertheless, results obtained from QSD
are consistent with the Born rule, and are therefore compatible with the axioms of quantum
mechanics.

In this study of theQZE,we employQSD to study spin 1/2, spin 1 and spin 3/2 systems, each
undergoing Rabi oscillations while coupled to a measuring device that monitors the compon-
ent of spin along the z-axis. We derive SDEs for the expectation values of the three Cartesian
components of the spin operator, but reinterpret these quantities as stochastic properties of the
system associated with individual quantum trajectories as opposed to averages over multiple
realisations of the noise or equivalently over an ensemble of adoptable density matrices. The
quantum trajectories of each of these systems are used to observe the effects of increasedmeas-
urement coupling on the unitary dynamics of the system. In particular, the stochastic quantum
trajectories are analysed to calculate the probabilities of system residence in the vicinity of
z-spin eigenstates, the average time taken by the system to return to such an eigenstate, and
how these quantities depend on the measurement strength.

The plan for the paper is as follows. Section 2 summarises the key ideas of QSD and SDEs,
and section 3 provides a specification of the parametrisation and dynamics of the spin systems.
Section 4 describes the quantum trajectories obtained using such a framework and through
an analysis of such trajectories presents insights into the QZE. Our conclusions are given in
section 5.

2. Quantum state diffusion and a stochastic Lindblad equation

2.1. Open quantum systems and the Kraus operator formalism

Open quantum systems are ubiquitous since most systems can be found interacting with their
environment. The complexity of this interaction as well as uncertainty in the initial state of
the environment mean that an element of randomness enters into the description of the envir-
onment’s influence on a quantum system. This motivates a description of the open quantum
system using a randomly evolving (reduced) density matrix.

In order to develop these ideas, consider the commonly used evolution of the density matrix
ρ(t) defined through the action of the super-operator S in a time interval dt. Such a mapping
of states of the quantum system must preserve the unit trace and positivity for the quantum
state to be considered physically meaningful [58]. The action of the super-operator on ρ can
be expressed as

S [ρ(t)] =ρ(t+ dt) =
∑
j

Mj (dt)ρ(t)M
†
j (dt) . (1)

The Kraus operators Mj(dt) represent all possible transitions brought about by the system
dynamics together with system-environment interactions and can in principle be derived from
terms in the Hamiltonian. In order to preserve the trace of ρ they must satisfy the completeness
relation

∑
jM

†
j Mj = I. The Kraus operators depend on dt and, for continuous evolution of the

density matrix, must differ by a small perturbation from the identity operator I. For simplicity
we use the set of Kraus operators Ml ≡Mk±(dt) = 1√

2
(I+Ak±), where k labels a particular

Lindblad channel k, with the ± subscript representing two possible measurement outcomes
or transitions associated with the interaction. We employ Ak± =−iHsdt− 1

2L
†
kLkdt±Lk

√
dt
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where Hs is the system Hamiltonian and Lk the operator associated with the kth Lindblad
channel [18, 59–61]. The use of two Kraus operators per Lindblad channel is reminiscent of
the approach used by Wiseman, namely Kraus operators Ωk1 =

√
dtLk and Ωk0 = I− (iHs +

1
2L

†
kLk)dt [56], such that Ωk1 =

1√
2
(Mk+ −Mk−) and Ωk0 =

1√
2
(Mk+ +Mk−). Note that the

Kraus operators Ωk0,1 and Mk± yield the same Lindblad master equation but differ in their
stochastic realisations of the trajectories, where the former produces discontinuous, ‘jump-
like’ trajectories and the latter diffusive, continuous trajectories.

Such a positive map then results in the ubiquitous Lindblad master equation describing
the Markovian evolution of the reduced density matrix ρ averaged over the measurement
outcomes:

dρ=−i [Hs,ρ]dt+
∑
k

(
LkρL

†
k −

1
2

{
L†kLk,ρ

})
dt. (2)

The density operator ρmay be regarded as representing a statistical ensemble of the pure states
that could be adopted by an open quantum system after a measurement has been performed.
As such, the Lindblad master equation describes the average evolution of this ensemble under
the action of the Kraus operators.

Another possible interpretation of equation (1), when written as

ρ(t+ dt) =
∑
l

pl (dt)
Ml (dt)ρ(t)M

†
l (dt)

Tr
(
Ml (dt)ρ(t)M

†
l (dt)

) , (3)

is that the dynamics may be represented as stochastic transitions from ρ(t)
to Ml(dt)ρ(t)M

†
l (dt)/Tr(Ml(dt)ρ(t)M

†
l (dt)) that occur with a probability pl(dt) =

Tr(Ml(dt)ρ(t)M
†
l (dt)) that depends on the density matrix of the system at time t. Equation (1)

represents the average evolution of the density matrix as a result of the action of all the Kraus
operators on ρ(t). Stochastic quantum trajectories might then be generated through a series of
transitions employing a sequence of Kraus operators. This is a strategy that has been used in
studies of evolving quantum systems [56, 58].

Our strategy is to generate trajectories reflecting a single possible evolution path of ρ rather
than an averaged one, and so we take the stochastic interpretation just mentioned. We are
modelling measurement as an interaction between a system and its environment that affects
the system in a manner not dissimilar to the effect of a host medium on a Brownian particle.
Such an approach can make sense since the state of the environment is unknown, giving rise
to an evolving uncertainty in the state of the quantum system. To reflect such an uncertainty it
would be natural to consider an ensemble of density matrices at each point in time t, reflecting
the multiple possible states of the system as a result of lack of knowledge of the state of the
environment. Similarly to Matos et al [59], the average of such an ensemble of density operat-
ors may be denoted by the over-bar, ρ̄. The evolution of the ensemble averaged density matrix
over a time increment dt would then be expressed as [59]

ρ̄(t+ dt) =
∑
l

Ml (dt) ρ̄(t)M
†
l (dt) . (4)
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In contrast, the action of a single Kraus operator on a member ρ(t) of such an ensemble rep-
resents one of a set of possible system evolutions:

ρ(t+ dt) = ρ(t)+ dρ=
Ml (dt)ρ(t)M

†
l (dt)

Tr
(
Ml (dt)ρ(t)M

†
l (dt)

) , (5)

and a sequence of such transformations can generate a single, possible evolution path of ρ.
Note that the preservation of the trace and positivity of the standard Kraus operator map of
equation (1) is well-known [58]. Trace preservation is apparent also in equation (5). However,
preservation of positivity in the action of a single Kraus operator of the form Mk±(dt) =
1√
2
(I+Ak±) on one member of an ensemble of density matrices in equation (5) remains to be

demonstrated and will be shown in the following.
Consider a density matrix ρ(t) at a time t, specified to be completely positive and hence to

have only non-negative eigenvalues. The determinant of such a density matrix is det(ρ(t)) =∏
iλi where λi denote the eigenvalues of ρ(t). The determinant of ρ(t) is thus positive. Now

we consider the determinant of the density matrix at time t+ dt, namely ρ(t+ dt) generated
according to equation (5) by a Kraus operator of the form stated aboveM= C(I+A), where A
is infinitesimal (in the sense that A→ 0 as dt→ 0) and C is a constant, such that M̃=M/C=
I+A differs infinitesimally from the identity I. We write

ρ(t+ dt) =
M̃ρ(t)M̃†

Tr
(
M̃ρ(t)M̃†

) , (6)

and employ the identity det(expA) = exp(TrA) such that det(I+A)≈ 1+Tr(A) for infinites-
imal A, whereby

det(ρ(t+ dt)) =
det

(
M̃
)
det(ρ(t))det

(
M̃†)

Tr
(
M̃ρ(t)M̃†

)
≈

(1+Tr(A))det(ρ(t))
(
1+Tr

(
A†))

Tr
(
M̃†M̃ρ(t)

)
≈

(
1+Tr

(
A+A†))det(ρ(t))

Tr((I+A+A†)ρ(t))

=

(
1+Tr(A+A†))det(ρ(t))
1+Tr((A+A†)ρ(t))

≈ det(ρ(t))
[
1+Tr(A+A†)−Tr((A+A†)ρ(t))

]
. (7)

Next we note that an unacceptable map would produce a density matrix with at least one negat-
ive eigenvalue. We can therefore identify unphysical dynamics if a density matrix is generated
whose determinant passes through zero at some point in time. This includes cases where an
odd number of eigenvalues change sign simultaneously (such that the determinant becomes
negative) or where an even number do so (such that the determinant goes through a cusp at
zero).

So let us examine the dynamics represented by equation (7). It can be demonstrated that
the determinant of ρ(t+ dt) can never go to zero within a finite time-frame, under cer-
tain conditions. We express the change in the determinant of the density matrix ddet(ρ) =
det(ρ(t+ dt))− det(ρ(t)) as an Itô process: ddet(ρ) = det(ρ)(adt+ bdW), where dW is a
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Wiener increment and a and b are specified functions. Letting y= ln(det(ρ)), the following
SDE for y may be obtained:

dy=
1

det(ρ)
ddet(ρ)+

1
2
b2 det(ρ)2

(
− 1

det(ρ) 2

)
dt= adt+ bdW− 1

2
b2dt. (8)

The unacceptable behaviour det(ρ)→ 0 corresponds to y→−∞ and unless a or b possess
singularities it is clear that this can only emerge, if at all, as t→∞. Thus the dynamics of the
single Kraus operator map, equation (5), with M= C(I+A) and employing a non-singular,
infinitesimal A, are physically acceptable.

Employing the set of Kraus operators from before, Mk± = 1√
2
(I+Ak±) and Ak± =

−iHsdt− 1
2L

†
kLkdt±Lk

√
dt, [58–60] yields the following Lindblad equation:

dρ̄=−i [Hs, ρ̄]dt+
∑
k

(
Lkρ̄L

†
k −

1
2

{
L†kLk, ρ̄

})
dt, (9)

which explicitly describes the evolution of an average over the ensemble of density matrices.
We generate stochastic trajectories by unravelling equation (9) in the manner of equation (5)
such that an equation concerning a single member of the ensemble of density matrices ρ(t)
can be formulated. We next derive such an equation for ρ(t) in the form of an Itô process.

2.2. Unravelled stochastic Lindblad equation

We unravel the deterministic Lindblad equation by implementing the stochastic evolution of
ρ according to the set of available transitions

ρ(t+ dt) =
Mk± (dt)ρ(t)M†

k± (dt)

Tr
(
Mk± (dt)ρ(t)M†

k± (dt)
) , (10)

each adopted with probability pk±(dt) = Tr(Mk±(dt)ρ(t)M
†
k±(dt)). The outcome is an Itô

process for ρ involving independent Wiener increments dWk (in the case of more than one
Lindblad operator) [59]:

dρ=−i [Hs,ρ]dt+
∑
k

((
LkρL

†
k −

1
2

{
L†kLk,ρ

})
dt

+
(
ρL†k +Lkρ−Tr

[
ρ
(
Lk +L†k

)]
ρ
)
dWk

)
. (11)

Solutions to this equation describe possible stochastic quantum trajectories of the reduced sys-
tem density matrix ρ, each associated with a particular realisation of the environmental noises
{dWk} [62], or equivalently, an initial environmental state. The ensemble-averaged density
matrix ρ̄ then corresponds to taking an average over the noise and hence over all possible
trajectories and, as a result, equation (9) is recovered. If the system were closed instead of
open, interactions between the system and the environment would vanish and we would be
left with the first term on the right-hand side; namely the von Neumann equation. A sim-
ilar stochastic evolution equation for ρ has been derived by Jacobs by analogy with classical
measurement theory [18]. Under this approach, however, the noise is interpreted as a quantum
fluctuation stemming from the uncertainty in the measurement: a similar approach is taken by
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Gambetta et al [27]. In contrast, we consider such a noise to reflect the probabilistic nature of
interactions with an underspecified environment causing the quantum system to evolve in a
stochastic manner.

3. System specification

3.1. SDE parameters

We consider a spin system with a Hamiltonian given by

Hs = ϵSx, (12)

where ϵ is a positive constant and the operator Sx represents the x-component of the spin: for
example in the case of a spin 1/2 systemwe have Si = 1

2σi where σi denotes a Pauli spin matrix.
The spin operators satisfy the condition [Si,Sj] = iϵijkSk where ϵijk is the Levi–Civita symbol.
We shall consider cases of spin 1/2, spin 1 and spin 3/2 systems where the matrix representa-
tions of the Sx, Sy and Sz operators accordingly have dimensions 2, 3 and 4, respectively. The
Hamiltonian in equation (12) produces Rabi oscillations, as we shall see.

The desired effect of the environment on the system is that it should act as a measuring
apparatus. Diffusive evolution of the system’s z-component of spin, to be defined shortly,
towards one of the eigenstates of the Sz operator, can be achieved using a single Lindblad
operator in equation (11) of the form

L= αSz, (13)

where the constant α denotes the degree of coupling between the system and its environment
through the operator Sz and can be regarded as the strength of measurement. Figure 1 illustrates
the features of the system and its environment. Utilising the above expressions for the Lindblad
operator and the system Hamiltonian in equation (11), the following SDE is obtained for the
evolution of the reduced density matrix of the system:

dρ=−iϵ [Sx,ρ]dt+α2

(
SzρSz −

1
2

(
ρS2z + S2zρ

))
dt+α(ρSz + Szρ− 2⟨Sz⟩ρ)dW. (14)

The singleWiener increment dW is a Gaussian noise with a mean of zero and a variance dt, and
⟨Sz⟩ is the z-component of spin, defined by Tr(Szρ). Note that the latter is not to be confused
with the usual quantum expectation value of Sz which in our notation is Tr(Szρ̄), where ρ̄(t) is
the density matrix at time t averaged over all possible quantum trajectories. The expectation
value represents an average of a (projectively) measured system property taking into account
the quantummechanical randomness of measurement outcome as well as the range of quantum
states that might be adopted by an open system when coupled to an uncertain environment.
By extension, ⟨.⟩= Tr(.ρ) could be interpreted as a conditional average projective measure-
ment outcome given a specific stochastically evolving density matrix. But it could instead be
regarded simply as a property of the density matrix, and hence of the physical state, and indeed
it is spin components such as ⟨Sz⟩ that undergo Rabi oscillations.

Terms in equation (14) that depend on α represent the effects of measurement on the sys-
tem, brought about by its interaction with the environment. Notice that for ϵ= 0, the stationary
states for the measurement dynamics are ρ= |mz⟩⟨mz|, where the |mz⟩ are eigenstates of Sz
satisfying Sz|mz⟩= mz|mz⟩. Starting from an arbitrary initial state, the coupling to the envir-
onment captured by the Lindblad operator in equation (13) evolves the system towards z-spin
eigenstates as desired.
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Figure 1. An open quantum spin system interacting with an environment with a strength
defined by the coupling constant α. The environment acts as a measurement apparatus,
measuring the system’s spin along the z-axis.

3.2. Density matrix parametrisation

The density matrix of the open quantum system is to be parametrised by a set of variables {xi}
which evolve stochastically according to the general Itô processes [63]:

dxi = Aidt+
∑
k

BikdWk, (15)

where dWk denote the Wiener increments and the Ai and Bik are designated functions. The
number of parameters required to represent the density matrix depends on the system. Three
are required for a density matrix describing a spin 1/2 system. For a spin 1 system, eight
parameters are needed since this is the number of independent variables required to specify
a 3× 3 Hermitian matrix with unit trace. Through a similar reasoning, fifteen variables are
needed to parametrise the density matrix for a spin 3/2 system.

3.2.1. Spin 1/2. The density matrix of a spin 1/2 system can be expressed using the Bloch
sphere formalism, namely ρ= 1

2 (I+ r ·σ) with coherence (or Bloch) vector r= (x,y,z) =
Tr(ρσ) = ⟨σ⟩ [64]. SDEs in the form of equation (15) can be derived starting from

dri = Tr(σidρ) , (16)

with the insertion of equation (14). For clarity of presentation, however, we shall employ a
one parameter representation for the special case of a pure state with Trρ2 = 1 or |r|= 1, with
coherence vector confined to the (y, z) plane, i.e.

ρ=
1
2
(I+ cosϕσz − sinϕσy) , (17)

namely x= 0, y=−sinϕ and z= cosϕ. The SDE for z arising from dz= Tr(σzdρ) and
equation (14) is

dz=−ϵsinϕdt+αsin2ϕdW. (18)

The Rabi angleϕ represents the angle of rotation of the coherence vector about the x axis. In the
absence of environmental coupling, the action of the system Hamiltonian 1

2ϵσx is to increase
ϕ linearly in time. In the presence of such coupling the evolution of the Rabi angle represents
the effect of measurement on the unitary dynamics of the system. The SDE for ϕ = cos−1 z
can be found through use of Itô’s lemma [63]:

dϕ =
dϕ
dz

dz+
1
2
β2 d

2ϕ

dz2
dt, (19)
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where β = αsin2ϕ. Inserting equation (18) produces

dϕ =

(
ϵ− 1

4
α2 sin2ϕ

)
dt−αsinϕdW. (20)

When α= 0 the Rabi angle increases at a constant rate, while for α ̸= 0 the Wiener noise dW
disturbs its evolution. The average rate of change of ϕ is given by

d⟨ϕ⟩
dt

= ϵ− 1
4
α2⟨sin2ϕ⟩, (21)

where the brackets again represent an ensemble average. The QZE will emerge if the term
proportional to α2 represents an average retardation of the rotation. In order to resolve this
matter we consider the Fokker–Planck equation for p(ϕ, t), the probability distribution function
(PDF) of the Rabi angle ϕ:

∂p
∂t

=−
∂
((
ϵ− 1

4α
2 sin2ϕ

)
p
)

∂ϕ
+

1
2
α2 ∂

2
(
sin2ϕp

)
∂ϕ2

. (22)

For small α, an approximate stationary PDF may be obtained:

pst (ϕ)∝ 1+
3α2

4ϵ
sin2ϕ, (23)

which shows that the PDF is disturbed from uniformity, in this regime, by increasing the envir-
onmental coupling α, or by reducing ϵ and hence slowing the rate of Rabi oscillation for an
isolated system. We shall investigate the shape of the stationary PDF numerically for a range
of α in section 4. For now, let us notice that using this approximation the average needed in
equation (21) is proportional to

ˆ 2π

0
dϕ

(
1+

3α2

4ϵ
sin2ϕ

)
sin2ϕ∝

ˆ 2π

0
dϕsin2 2ϕ > 0, (24)

showing that the effect of measurement at small α is indeed a mean retardation of the Rabi
oscillations, consistent with the quantum Zeno effect.

3.2.2. Spin 1. The generalised Bloch sphere formalism is used to represent the density mat-
rix of a spin 1 system. This permits any 3× 3 density matrix to be written in terms of the
Gell–Mann matrices λi through

ρ=
1
3

(
I+

√
3R ·λ

)
, (25)

where R= (s,m,u,v,k,x,y,z) is an eight dimensional coherence (or Bloch) vector and
the Gell–Mann matrices (see appendix A) form the elements of the vector λ=
(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8) [65]. The following densitymatrix emerges for the spin 1 system:

ρ=
1
3

1+
√
3u+ z −i

√
3m+

√
3s

√
3v− i

√
3k

i
√
3m+

√
3s 1−

√
3u+ z

√
3x− i

√
3y√

3v+ i
√
3k

√
3x+ i

√
3y 1− 2z

 . (26)

10
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Stochastic quantum trajectories can be produced from the equations of motion for the eight
variables parametrising ρ. As before, these are generated from

dRi =

√
3
2

Tr(dρλi) , (27)

using the properties of the Gell–Mann matrices, and are specified in appendix B. The com-
ponents of the coherence vector R are denoted Ri.

3.2.3. Spin 3/2. In order to construct the density matrix of the spin 3/2 system, an obvi-
ous representation would be to utilise SU(4) generators in the generalised Bloch sphere
representation:

ρ=
1
4
(I+ s ·Σ) . (28)

The 15 component coherence vector is s= (v,e, f,g,h, j,k, l,m,n,o,p,q,s,u) and the vector
of generators Σ has components Σk with k= 1,15. However, Aerts and Sassoli de Bianchi
discuss how such a representation beyond the SU(2) generators could potentially allow the
system to explore unphysical states [64]. Instead, we use equation (28) with generators Σk

constructed using the tensor product of two Pauli matrices: Σk = σi ⊗σj: full details are given
in appendix C. The following density matrix is then obtained for the spin 3/2 system:

ρ=
1
4


1+ f+ p+ u −ie+ q− is+ v g+ k− il− io h− ij− im− n
ie+ q+ is+ v 1− f+ p− u h+ ij− im+ n g− k− il+ io
g+ k+ il+ io h− ij+ im+ n 1+ f− p− u −ie− q+ is+ v
h+ ij+ im− n g− k+ il− io ie− q− is+ v 1− f− p+ u

 . (29)

As before, stochastic quantum trajectories can be produced from the equations of motion of the
15 variables parametrising the density matrix. SDEs for components of the coherence vector
sk are obtained through

dsk = Tr(dρΣk) , (30)

and the details can be found in appendix D.

3.3. Spin component SDEs

The stochastic trajectories of the variables parametrising the density matrices introduced for
the spin quantum systems enable us to describe the system dynamics exactly, but do not offer
much direct physical insight into the QZE. A more useful way of visualising the behaviour
of such systems is to consider the evolution of the time dependent quantities ⟨Sx⟩, ⟨Sy⟩ and
⟨Sz⟩. Recall that these could be interpreted as conditional average values under projective
measurements, hence a set of statistics of the dynamics, though we prefer to regard them as
actual physical properties of the current quantum state. It is these quantities that perform noisy
Rabi oscillations and we shall refer to them simply as spin components. Two methods exist to
determine their evolution.

The first method simply employs ⟨Si⟩= Tr(Siρ) such that the spin components can be writ-
ten in terms of the variables parametrising the density matrices in equations (17), (26) and (29).
Alternatively, by considering d⟨X⟩= Tr(Xdρ), where operators X are various functions of the
Si, the SDEs that govern the evolution of the spin components can be found using equation (14)
and solved. We consider these approaches for the three spin systems in turn.

11
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3.3.1. Spin 1/2. For the special case density matrix in equation (17) the spin components
⟨Sy⟩ and ⟨Sz⟩ can be written in terms of the Rabi angle ϕ(t) as follows:

⟨Sy⟩=−1
2
sinϕ, ⟨Sz⟩=

1
2
cosϕ, (31)

so the phase space explored by ⟨Sy⟩ and ⟨Sz⟩ is a circle of radius 1/2. We expect a typical
stochastic trajectory to dwell increasingly in the vicinity of the z-spin eigenstates at ϕ= 0 and
π as the measurement strength increases, and will demonstrate this in section 4.We also expect
the mean rate of passage between the two eigenstates to reduce as the measurement strength
increases.

The following three SDEs describe the spin components:

d⟨Sz⟩= ϵ⟨Sy⟩dt+ 2α

(
1
4
−⟨Sz⟩2

)
dW

d⟨Sx⟩=−α2

2
⟨Sx⟩dt− 2α⟨Sz⟩⟨Sx⟩dW

d⟨Sy⟩=−ϵ⟨Sz⟩dt−
α2

2
⟨Sy⟩dt− 2α⟨Sz⟩⟨Sy⟩dW. (32)

For α= 0 we clearly see the emergence of Rabi oscillations in ⟨Sy⟩ and ⟨Sz⟩. Similarly, for
ϵ= 0 we identify stationary states at ⟨Sx⟩= ⟨Sy⟩= 0 and ⟨Sz⟩=±1/2, which correspond to
the measurement eigenstates.

It may be shown that the purity of the system defined by P= Tr(ρ2) satisfies

dP= α2
(
1− r2z

)
(1−P)dt+ 2αrz (1−P)dW, (33)

such that purity moves towards P= 1 and stays there under the given dynamics. Furthermore,
⟨Sx⟩= 0 is a fixed point of the dynamics of equation (32) so the special case considered in
equation (17) describes a more general asymptotic behaviour.

3.3.2. Spin 1. Similarly, the spin components ⟨Sx⟩, ⟨Sy⟩ and ⟨Sz⟩ can be written in terms of
the variables parametrising the density matrix in equation (26):

⟨Sx⟩=
√

2
3
(x+ s)

⟨Sy⟩=
√

2
3
(m+ y)

⟨Sz⟩=
u√
3
+ z. (34)

The purity P of the system can be written

P= Tr
(
ρ2
)
=

2
3

(
s2 +m2 + u2 + v2 + k2 + x2 + y2 + z2

)
+

1
3
, (35)

12
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and this evolves asymptotically to unity. The dynamics in terms of spin components and related
quantities take the form of eight coupled SDEs:

d⟨Sz⟩= ϵ⟨Sy⟩dt+ 2α
(
⟨S2z ⟩− ⟨Sz⟩2

)
dW

d⟨Sx⟩=−α2

2
⟨Sx⟩dt+α(⟨SzSx⟩+ ⟨SxSz⟩− 2⟨Sz⟩⟨Sx⟩)dW

d⟨Sy⟩=−ϵ⟨Sz⟩dt−
α2

2
⟨Sy⟩dt+α(⟨SzSy⟩+ ⟨SySz⟩− 2⟨Sz⟩⟨Sy⟩)dW

d⟨S2y⟩=−ϵ(⟨SySz⟩+ ⟨SzSy⟩)dt−α2
(
i⟨SxSySz⟩+ ⟨S2z ⟩+ ⟨S2y⟩− 1

)
dt

+α⟨Sz⟩
(
1− 2⟨S2y⟩

)
dW

d⟨S2z ⟩= ϵ(⟨SySz⟩+ ⟨SzSy⟩)dt+ 2α⟨Sz⟩
(
1−⟨S2z ⟩

)
dW

d(⟨SySz⟩+ ⟨SzSy⟩) = 2ϵ
(
⟨S2y⟩− ⟨S2z ⟩

)
dt− α2

2
(⟨SySz⟩+ ⟨SzSy⟩)dt

+α(⟨Sy⟩− 2⟨Sz⟩(⟨SySz⟩+ ⟨SzSy⟩))dW

d(⟨SzSx⟩+ ⟨SxSz⟩) =−α2

2
(⟨SxSz⟩+ ⟨SzSx⟩)dt+α(⟨Sx⟩− 2⟨Sz⟩(⟨SxSz⟩+ ⟨SzSx⟩))dW

d⟨SxSySz⟩= iϵ(⟨SySz⟩+ ⟨SzSy⟩)dt+ iα2
(
⟨S2z ⟩+ 2i⟨SxSySz⟩

)
dt

+ iα⟨Sz⟩(1+ 2i⟨SxSySz⟩)dW. (36)

Again, the regular Rabi dynamics around a circle in the phase space spanned by ⟨Sy⟩ and
⟨Sz⟩ is apparent when α= 0. When α ̸= 0 the trajectories are more complicated. For ϵ= 0 the
eigenstates of the z-spin are stationary: the relevant spin components being ⟨Sx⟩= ⟨Sy⟩= 0
and ⟨Sz⟩=±1,0.

3.3.3. Spin 3/2. Once again, the spin components can be written in terms of the variables
parametrising the density matrix for the spin 3/2 system in equation (29) as follows:

⟨Sx⟩=
1
2

(
h+ n+

√
3v
)

⟨Sy⟩=
1
2

(√
3e− j+m

)
⟨Sz⟩=

1
2
f+ p. (37)

The purity of the system P may be written

P=
1
4

(
1+ e2 + f 2 + g2 + h2 + j2 + k2 + l2 +m2 + n2 + o2 + p2 + q2 + s2 + u2 + v2

)
. (38)

For the spin 3/2 system a closed set of fifteen stochastic differential equations for the spin
components and related quantities could not be found. Thus equation (37) and the SDEs in
appendix D are the only way to solve the dynamics for this spin system.
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Figure 2. (a) The evolution of the Rabi angle ϕ for a spin 1/2 system at four values of α
with time-step 0.0005, ϵ= 1 and a duration of 300 time units. The mean rate of change is
reduced as the strength of measurement is increased. (b) Close-up of the evolution of ϕ
forα= 1 for a duration of 10 time units. Notice that for this strength of measurement the
Rabi angle tends to dwell in the vicinity of integer multiples of π, the z-spin eigenstates.

4. Simulations and results

4.1. Spin 1/2

The equations of motion for the variables parametrising the density matrices of the spin 1/2,
spin 1 and spin 3/2 systems, given by equations (20), (27) and (30), were solved numeric-
ally using the Euler-Maruyama update method [66]. From the evolution of these variables,
stochastic quantum trajectories in the phase space of the z-spin component ⟨Sz⟩ and the y-spin
component ⟨Sy⟩ were produced. For spin 1/2 we also generated stochastic trajectories of the
Rabi angle ϕ. We chose the x-spin component to be zero initially, where it remains.

The evolution of the Rabi angle with time for the spin 1/2 system for various strengths
of measurement is shown in figure 2. Figure 2(a) shows that the mean rate of change of the
Rabi angle, namely the mean frequency of Rabi oscillations, decreases with increasing meas-
urement coupling constant, as was suggested by equation (21). Such a decrease demonstrates
the slowing down of the unitary dynamics as a result of stronger, or equivalently, more fre-
quent measurement as is expected for the QZE. Figure 2(b) illustrates the dynamics on a finer
scale. Behaviour at high measurement strength resembles the quantum jumps conventionally
considered to occur between eigenstates of a monitored observable, brought about by an inter-
action present in the Hamiltonian.

Numerically generated stationary PDFs for the Rabi angle are shown in figure 3 for an isol-
ated system (α= 0) and for three nonzero measurement strengths. Initial states were selected
from a uniform probability density over ϕ. Angles ϕ= 0 and π correspond to the | 12 ⟩ and |−

1
2 ⟩

eigenstates of Sz, respectively. Values of ϕ from the trajectories are mapped into the range 0 to
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Figure 3. Stationary probability density functions for the Rabi angle in the spin 1/2
system, for a range of measurement strengths α, obtained over a duration of 300 time
units with a time-step of 0.0005 and ϵ= 1. (a) α= 0, (b) α= 0.5, (c) α= 1, (d) α= 3.
The eigenstates of Sz lie at ϕ= 0 and at ϕ = π. Notice the displacement of the peaks
above the eigenvalues, arising from the rotational pull of the system Hamiltonian.

2π. It can be seen that as the measurement strength is increased, the stationary PDFs become
narrower since the measurement dynamics are better able to localise the system in the vicinity
of the eigenstates of Sz, resisting the pull of the unitary dynamics induced by the Hamiltonian,
which seek to drive the system into Rabi oscillations. In accordance with the Born rule, for
α> 0 the stationary PDFs contain two approximately equivalent peaks around the |− 1

2 ⟩ and
| 12 ⟩ eigenstates, since the system should have an equal probability of localising at either. The
PDF in figure 3(a) is uniform over ϕ since the trajectories represent the dynamics without
measurement, namely Rabi oscillations. Note that the stationary PDF in figure 3(b) is roughly
sinusoidal, as suggested by the PDF for small α given in equation (23). Indeed, that approx-
imate result suggested peaks at ϕ = π/4 and 3π/4: a consequence of the competition between
measurement-induced dwell near the eigenstates and the rotational pull of the Hamiltonian.
As measurement strength increases, the peaks are drawn closer to ϕ= 0 and π.

4.2. Spin 1

The evolution of ⟨Sz⟩ and ⟨Sy⟩ for a spin 1 system, for different values of the measurement
strength α, is illustrated in figure 4. The system was initialised in the |−1⟩ spin eigenstate
of the Sz operator. Figure 4(a) illustrates the dynamics when there is no measurement: the
Hamiltonian drives Rabi oscillations in ⟨Sz⟩ and ⟨Sy⟩ corresponding to the precession of the
spin vector around the orthogonal ⟨Sx⟩ axis. The |±1⟩ and |0⟩ eigenstates of Sz lie at ⟨Sx⟩= 0,
⟨Sy⟩= 0 and ⟨Sz⟩=±1 and 0, respectively. If the initial state of the system had been the |0⟩
eigenstate of Sz, then the spin vector would lie on the ⟨Sx⟩ axis and would be unable to precess
around it, and furthermore, ⟨Sz⟩ and ⟨Sy⟩ would be zero.

Disturbance of the circular trajectories can be seen in figure 4(b). As a result of the non-
zero measurement strength the system can now pass near the |0⟩ eigenstate of Sz, located at
the origin. As the α is increased further in figures 4(c), (d), a figure-of-eight pathway forms
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Figure 4. The path taken through ⟨Sy⟩, ⟨Sz⟩ phase space for a spin 1 systemwith varying
measurement strength α, for ϵ= 1, time-step 0.0001 and for a duration of 50 time units.
As α increases, the circular path corresponding to regular Rabi oscillations at α= 0
becomes disturbed, allowing visits to the |0⟩ eigenstate at the origin in addition to the
|±1⟩ eigenstates at the top and bottom of the phase space.

and the system dwells more often at the |0⟩ eigenstate until, in figures 4(e), (f), visits to this
state always occur in between visits to the |−1⟩ and |1⟩ eigenstates.

Note that the spin 1 system is not moving at a constant speed around these figure-of-
eight pathways. Instead, the system makes rapid jumps between the eigenstates, typically in
a counter-clockwise direction, separating periods of dwell in the vicinity of the eigenstates.
Movies of examples of the spin 1 [67] and spin 3/2 [68] system dynamics are available. The
behaviour is illustrated in plots of the relative probability of occupation of patches of the phase
space by the system, shown in figure 5. The behaviour is similar to that of the spin 1/2 sys-
tem: a greater tendency to localise near the eigenstates as α is increased, while the pull of the
Hamiltonian produces a counterclockwise displacement.
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Figure 5. Density plot (51 by 51 bins) illustrating stationary relative occupation in the
⟨Sy⟩, ⟨Sz⟩ phase space of the spin 1 system for four values ofα, obtained from trajectories
with a duration of 100 time units, a time-step of 0.0001 and ϵ= 1.

Figure 6 further illustrates how increasing the measurement coupling constant causes the
system to dwell for longer at the three eigenstates of Sz and transit more abruptly between them.
The behaviour at high measurement strength increasingly resembles the textbook behaviour
of a system making jumps between eigenstates.

In order to quantify the QZE, we consider the α dependence of two quantities derived from
the trajectories in figure 4. First, the residence probabilities, which characterise the fraction of
time spent in the vicinity of each eigenstate of Sz over a long simulation. The system is defined
to occupy an eigenstate if the ⟨Sz⟩ coordinate lies within ± 0.1 of the appropriate eigenvalue.
The second quantity considered is the mean return time. This is the average period from the
moment the system leaves a particular eigenstate (with occupation defined as above) to the
moment it returns to it having visited another eigenstate in between.
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Figure 6. Trajectories of ⟨Sz⟩ for the spin 1 system for (a)α= 0.5 and (b)α= 2. Slightly
noisy Rabi oscillations at low measurement strength are contrasted with fast jumps
between the eigenstates at ⟨Sz⟩=±1 and 0, with randomwaiting times, when the meas-
urement strength is increased.

Figure 7(a) illustrates how residence probabilities are small for low values of α, which is
a reflection of the only slightly disturbed oscillatory behaviour of ⟨Sz⟩ in figure 6(a). But as
the coupling strength is raised, so do the residence probabilities, and this can similarly be
understood by considering the trajectory shown in figure 6(b). Little time is spent in regions
far away from the eigenstates. Visits to the ⟨Sz⟩= 0 eigenstate are less frequent than to the±1
eigenstates for small α, which is a consequence of having started the trajectory at ⟨Sz⟩=−1,
but they occur with approximately equal probability at high values of α.

Figure 7(b) shows how the system takes longer times to return to an eigenstate for stronger
measurement. Again, this is consistent with the behaviour shown in figure 6(b). The mean
return time for a given eigenstate is dominated by the period of dwell at the eigenstate (or
eigenstates) to which it moves. The mean return time to the ⟨Sz⟩= 0 state initially decreases
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Figure 7. Colour. (a) Residence probabilities, and (b) mean return times for the eigen-
states of a spin 1 system, with varying measurement strength α, for ϵ= 1, time-step of
0.0001 and for a duration of 5000 time units.

with α but this is an artefact of the initial condition for the motion, which makes visits to
this eigenstate rare when α is small (as is apparent in figure 4). The mean return time for the
⟨Sz⟩= 0 eigenstate is typically less than the return times for ⟨Sz⟩=±1 (roughly half), possibly
because direct transitions between the ⟨Sz⟩= 1 and−1 states are unlikely. Return to the central
eigenstate is characterised by just one period of dwell at one of the two outer eigenstates, while
return to an outer eigenstate might require waiting while the system hops between the other two
states. The mean return times in figure 6(b) can be compared to the average time between two
jumps τ found from the analytical expression of the jump rates in Bauer et al [34]. Specifically,
for α= 7, the average time between two jumps for the | ± 1⟩ eigenstates is τ|±1⟩ = 49 and for
the |0⟩ eigenstate is τ|0⟩ = 24.5, showing good agreement with our results.

The definition of the vicinity of an eigenstate is, of course, open to debate. The choice we
make is simple but is sufficient to reveal the effects that characterise the QZE. It is natural that
the value of ⟨Sz⟩ should feature prominently in the definition, but there are other characteristics
of the eigenstates that could be taken into account. An eigenstate of the Sz operator corresponds
to a point in a multidimensional parameter space, and its vicinity could be defined by putting
conditions on a variety of parameters. We have investigated a more elaborate scheme along
these lines but the resulting residence probabilities and mean return times are broadly similar
to those shown in figure 7. In the interests of simplicity we therefore focus on the value of ⟨Sz⟩
alone, and the chosen range of ±0.1 about eigenvalues.
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Figure 8. Paths through the ⟨Sy⟩, ⟨Sz⟩ phase space explored by a spin 3/2 system with
varying measurement strength α, for ϵ= 1, time-step 0.0001 and duration 50 time units.

4.3. Spin 3/2

The effects of measurement on a spin 3/2 system, viewed in terms of the evolution of spin com-
ponents ⟨Sz⟩ and ⟨Sy⟩, is illustrated in figure 8 for different values of the measurement strength
α. The system was initialised in the |− 3

2 ⟩ eigenstate of Sz. When α= 0 there is no measure-
ment and, as with the spin 1 system, the Hamiltonian drives circular trajectories, as depicted
in figure 8(a), passing through the | 32 ⟩ and |−

3
2 ⟩ eigenstates of Sz at ⟨Sy⟩= 0 and ⟨Sz⟩=±3/2.

The spin vector processes around the ⟨Sx⟩ axis. As α is increased (figures 8(b)–(f)), the circu-
lar trajectory is disturbed such that the system passes through further regions of phase space,
including the vicinities of the | 12 ⟩ and |− 1

2 ⟩ eigenstates of Sz at ⟨Sy⟩= 0 and ⟨Sz⟩=±1/2.
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Figure 9. Color. The residence probabilities andmean return times for the eigenstates of
a spin 3/2 system, with varying measurement strength α, for ϵ= 1, time-step of 0.0001
and for a duration of 5000 time units.

When the measurement strength is sufficiently high, a triple figure-of-eight trajectory emerges,
such that the | 12 ⟩ and |−

1
2 ⟩ eigenstates are encountered between visits to the | 32 ⟩ eigenstate and

the |− 3
2 ⟩ eigenstate, and visa-versa. The system dwells in the vicinities of all four eigenstates

of Sz for high enough α.
Similarly to the spin 1 case, figure 11 reveals how increasing α leads to longer dwell at the

eigenstates of Sz and more ‘jump-like’ behaviour in between.
Figure 9(a) illustrates how the residence probabilities for the spin 3/2 system depend on α.

As with the spin 1 case, the system is defined to occupy an eigenstate if the ⟨Sz⟩ coordinate lies
within±0.1 of the appropriate eigenvalue. At low values ofα, the Hamiltonian term dominates
and therefore occupation of the | 12 ⟩ and |− 1

2 ⟩ eigenstates of Sz is lower than for the | 32 ⟩ and
|− 3

2 ⟩ eigenstates. For higher values of α, the residence probabilities for all four eigenstates
increase and become roughly equal, in concord with the Born rule, and a triple figure-of-eight
trajectory is followed. For large α, the probability of occupying each eigenstate lies around
0.25, implying that the system is unlikely to occupy a point in the phase space outside the
vicinity of the eigenstates. Note that increasing the value of α amplifies the noise term in
equation (14), introducing greater statistical uncertainty into the simulation.

Figure 9(b) shows that as themeasurement coupling constant is raised themean return times
increase, hence demonstrating the QZE. Notably, the mean return times for the | 12 ⟩ and |− 1

2 ⟩
eigenstates of Sz are approximately half those of the | 32 ⟩ and |−

3
2 ⟩ eigenstates.When the system

resides at the | 12 ⟩ and |− 1
2 ⟩ eigenstates, and α is high enough, there are two states to which it

can transfer, as opposed to one when it resides at the | 32 ⟩ and |− 3
2 ⟩ eigenstates. The |±

1
2 ⟩ lie

within the ladder of eigenstates while the |± 3
2 ⟩ are its termini. Twice the number of paths for

a return to | 12 ⟩ compared with | 32 ⟩ suggests half the mean return time. The analytical average
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Figure 10. The evolving purity of a spin 3/2 system for a single quantum trajectory,
starting from a fully mixed state, with α= 3, ϵ= 1, time-step 0.0001 and for a duration
of 0.5 time units.

time between two jumps τ , found from the analytical jump rates in Bauer et al, also reflect
this trend. Namely, for α= 7, the average time between two jumps for the | ± 3

2 ⟩ eigenstates
is τ|± 3

2 ⟩
≈ 32.7 and for the | ± 1

2 ⟩ eigenstates is τ|± 1
2 ⟩
= 14 [34].

We speculate that higher spin systems will continue this pattern of behaviour. Systems with
large measurement strength will follow stochastic transitions along a multiple figure-of-eight
pathway in the phase space of ⟨Sz⟩ and ⟨Sy⟩. The behaviour will evolve from regular Rabi
oscillations towards a situation where the system (effectively) jumps stochastically between
eigenstates of the monitored observable.

Finally, the evolution of the purity of the spin 3/2 system under measurement was studied
to ensure it remained within the expected range of 1

4 ⩽ P⩽ 1, starting with the system in
the fully mixed state ρ= 1

4

(
|− 3

2 ⟩⟨−
3
2 |+ |− 1

2 ⟩⟨−
1
2 |+ | 12 ⟩⟨

1
2 |+ | 32 ⟩⟨

3
2 |
)
. In figure 10 it can be

seen that the effect of measurement is to cause the system to purify. The purification occurs
in a continuous but stochastic manner, taking approximately 0.4 time units for the parameters
chosen. The approximation of instantaneous projective measurements and apparent jumps in
purity emerges only in the limit α→∞.

It is worth noting that the dynamical framework we use has the effect that interaction brings
about a disentanglement of the system from its environment, namely an increase in purity,
which is the opposite of what is often supposed. However, this is an appropriate outcome for
measurement, where the idea is to convey the system into a (pure) eigenstate of the appropriate
observable. More general system-environment interactions might change the system purity in
different ways, but to take this into account would require a more explicit representation of
environmental degrees of freedom than that which we have employed.
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Figure 11. Trajectories of ⟨Sz⟩ for the spin 3/2 system for (a) α= 0.5 and (b) α= 2.
Similarly to the spin 1 system, noisy Rabi oscillations at low measurement strength are
contrasted with fast jumps between the eigenstates at ⟨Sz⟩=± 3

2 and ⟨Sz⟩=± 1
2 when

the measurement strength is increased.

5. Discussion and conclusions

The QZE has been studied in three open spin systems undergoing Rabi oscillations gener-
ated by Hamiltonian Hs ∝ Sx and coupled to an environment designed to act as a measure-
ment apparatus for the Sz observable. The interaction between the system and the environment
is characterised by a measurement strength α. The QSD approach allows the construction
of single, physical, stochastic quantum trajectories, and can take into account the effects of
measurement in a continuous and explicit manner. The evolution of an open quantum system
is therefore modelled using a stochastically evolving (reduced) density matrix, ρ, preserving
unit trace and positivity. The evolution of the quantum system resembles that of a Brownian
particle diffusing across a phase space, and the density matrix, at each instant, is interpreted
as a physical property of the system. The average over an ensemble of density matrices rep-
resented by the stochastic trajectories is captured by the noise-averaged Lindblad equation.

Stochastic quantum trajectories for the spin 1/2 system have been described in terms of the
evolution of the Rabi angle. For the spin 1 and spin 3/2 systems, the evolution of the ‘expect-
ation values’ ⟨Sy⟩= Tr(ρSy) and ⟨Sz⟩= Tr(ρSz) were studied. It is important to note that, in
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spite of the terminology just used, we regard these spin components as physical properties
rather than statistics of an ensemble and that they characterise a single stochastic evolution. To
demonstrate the QZE, the spin 1 and spin 3/2 trajectories were analysed to calculate the mean
return times under the dynamics, and the residence probabilities, for the various eigenstates
of Sz.

The stochastic trajectories for both the spin 1 and spin 3/2 systems (figures 4 and 8) reveal a
competition between the unitary dynamics which attempt to guide the system along a determ-
inistic trajectory in the ⟨Sy⟩, ⟨Sz⟩ phase space, and the non-unitary measurement dynamics
which seek to divert the system stochastically towards the eigenstates of Sz, and dwell in their
vicinity. For example, measurement can disturb a deterministic trajectory that passes through
eigenstates with the largest eigenvalues, allowing occasional visits to the other eigenstates of
Sz, such as the |0⟩ eigenstate in the case of the spin 1 system and | 12 ⟩ and |− 1

2 ⟩ in the case
of the spin 3/2 system. For high enough values of α, the system traverses a figure-of-eight
path in the case of the spin 1 system, and a triple-figure-of-eight path for the spin 3/2 system.
We speculate that a similar pattern will be found for higher spin systems, where for very high
values of α the system will simply appear to jump stochastically between the eigenstates. As
such, the transition pathways available to the quantum system appear to change according to
the strength of the measurement imposed upon it.

The stochastic trajectories generated for all three spin systems for a range of values of the
measurement strength α have clearly demonstrated the QZE. With increasing α, the mean
rate of change of the Rabi angle for the spin 1/2 system decreases (figure 2(a)). Since the
Rabi angle describes rotation of the coherence/Bloch vector about an axis specified by the
Hamiltonian, such a decrease of its mean rate of change demonstrates a slowing down of the
unitary dynamics. Suppression of the unitary dynamics was also illustrated by the increased
mean return time to eigenstates in the spin 1 and spin 3/2 systems (figures 7(b) and 9(b).
Increased measurement strength causes the system to dwell for longer at each eigenstate, a
clear manifestation of the QZE. The stationary PDFs of the spin 1/2 system (figure 3) show
that an increase in α narrows the PDFs around the eigenstates of Sz.

Probabilities of residence near the eigenstates of Sz for both spin 1 and spin 3/2 systems
rise to a ceiling with increasing measurement coupling constant (figures 7(a) and 9(a). At
low values of α, the system spends significant time exploring phase space away from the
eigenstates of Sz, but this behaviour becomes rarer as α increases: for example, the spin 3/2
residence probabilities for the four eigenstates rise to about 0.25 for α> 6. Such a localisation
is also demonstrated by the pattern of stationary probability densities over ⟨Sz⟩ and ⟨Sy⟩ for
spin 1 (figure 5) such that, for high values of α, the density is almost exclusively confined to
regions of phase space in the vicinity of the three eigenstates. The non-unitary measurement
dynamics appear to dominate, localising the system near the eigenstates and supporting the
conventional picture of wavefunction collapse.

Notably, in the spin 1 and spin 3/2 systems, the QZE does not manifest itself in the sameway
for each of the eigenstates of the corresponding Sz observable. Figures 7(b) and 9(b) demon-
strate that there is an asymmetry in the dwell and return behaviour for each of the eigenstates
of the measured observable. For the eigenstates at the extremities (such as the | ± 1⟩ eigen-
states of the spin 1 system or the | ± 3

2 ⟩ eigenstates of the spin 3/2 system), the mean return
time is roughly double that of the middle eigenstates (for example, the |0⟩ eigenstate of the
spin 1 system or the | ± 1

2 ⟩ eigenstates of the spin 3/2 system) when α= 7, thus the QZEmani-
fests itself more strongly for the eigenstates at the extremities. In Bauer et al, the jump rates
in a strong measurement regime can be calculated, with the inverse yielding an average time
between two jumps [34]. Utilising their analytical result for the jump rates, we have found that

24



J. Phys. A: Math. Theor. 57 (2024) 175301 S M Walls et al

the average time between two jumps out of the spin 1 | ± 1⟩ eigenstates or the | ± 3
2 ⟩ eigen-

states of the spin 3/2 system was roughly double that of the spin 1 |0⟩ eigenstate or the spin
3/2 | ± 1

2 ⟩ eigenstates, confirming our results for high measurement strength in figures 7(b)
and 9(b). Moreover, the measurement strength changes the eigenstates available to the spin 1
and spin 3/2 systems such that in figures 4 and 8, for a low measurement strength only the
| ± 1⟩ or | ± 3

2 ⟩ respectively are frequently visited. Both of these features could be of use in
quantum state control protocols.

Aside from demonstrating the QZE in an open quantum spin system, the QSD framework
for generating stochastic quantum trajectories could be used to shed light onto other fea-
tures of quantum systems such as entanglement, decoherence and measurement back-action.
It could also reveal behaviour in more complex systems such as those possessing a memory of
past environment-system interactions. Whilst the dynamics of some quantum systems might
be well approximated by Markovian stochastic trajectories, future work could consider non-
Markovian unravellings or non-Markovian master equations generating stochastic trajectories
that are not constrained by the Born-Markov approximation, enabling the study of complex
environments with non-negligible correlation times.
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Appendix A. Gell–Mann matrices

The Gell–Mann matrices used to form the spin 1 density matrix in equation (25) are:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (A1)
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Appendix B. Spin 1 SDEs

Itô processes for the variables parametrising the spin 1 density matrix are as follows:

ds= ϵ
k√
2
dt−α2 s

2
dt−α

s
3

(
−3+ 2

√
3u+ 6z

)
dW

dm=−ϵ
2u+ v√

2
dt−α2m

2
dt−α

m
3

(
−3+ 2

√
3u+ 6z

)
dW

du= ϵ
2m− y√

2
dt+α

1√
3

(
1− 2u2 +

√
3u(1− 2z)+ z

)
dW

dv= ϵ
m− y√

2
dt− 2α2vdt− 2

3
αv

(√
3u+ 3z

)
dW

dk= ϵ
−s+ x√

2
dt− 2α2kdt− 2

3
αk

(√
3u+ 3z

)
dW

dx=−ϵ
k√
2
dt− 1

2
α2xdt− 1

3
αx

(
3+ 2

√
3u+ 6z

)
dW

dy= ϵ
u+ v−

√
3z√

2
dt− 1

2
α2ydt− 1

3
αy

(
3+ 2

√
3u+ 6z

)
dW

dz= ϵ

√
3
2
ydt− 1

3
α(−1+ 2z)

(
3+

√
3u+ 3z

)
dW. (B1)

Appendix C. Spin 3/2 generators

The SU(2)⊗SU(2) generators used to form the spin 3/2 density matrix in equation (28)
are as follows: Σ1 = I2 ⊗σx, Σ2 = I2 ⊗σy, Σ3 = I2 ⊗σz, Σ4 = σx ⊗ I2, Σ5 = σx ⊗σx, Σ6 =
σx ⊗σy,Σ7 = σx ⊗σz,Σ8 = σy ⊗ I2,Σ9 = σy ⊗σx,Σ10 = σy ⊗σy,Σ11 = σy ⊗σz,Σ12 = σz ⊗
I2, Σ13 = σz ⊗σx, Σ14 = σz ⊗σy and Σ15 = σz ⊗σz, where I2 is a 2× 2 identity matrix.
Explicitly:

Σ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 Σ2 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0



Σ3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 Σ4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



Σ5 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 Σ6 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0



Σ7 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 Σ8 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0
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Σ9 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 Σ10 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0



Σ11 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 Σ12 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



Σ13 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 Σ14 =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0



Σ15 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (C1)

Appendix D. Spin 3/2 SDEs

Itô processes for the variables parametrising the spin 3/2 density matrix are as follows:

dv=−ϵodt− 1
2
α2vdt+α(2q− v( f+ 2p)dW

de= ϵ(
√
3f+ k)dt− 1

2
α2edt+α(2s− e( f+ 2p))dW

df =−ϵ(
√
3e+ j−m)dt−α(−1+ f 2 + 2fp− 2u)dW

dg=−ϵsdt− 2α2gdt+α(k− g( f+ 2p))dW

dh=−1
2
α2(5h− 4n)dt−αh( f+ 2p)dW

dj = ϵ( f+
√
3k− p)dt− 1

2
α2(5j+ 4m)dt−αj( f+ 2p)dW

dk=−ϵ(e+
√
3j)dt− 2α2kdt+α(g− k( f+ 2p))dW

dl= ϵqdt− 2α2ldt+α(o− l( f+ 2p))dW

dm= ϵ(−f+ p)dt− 1
2
α2(4j+ 5m)dt−αm( f+ 2p)dW

dn= ϵ
√
3odt+α2

(
2h− 5n

2

)
dt−αn( f+ 2p)dW

do= ϵ(−
√
3n+ v)dt− 2α2odt+α(l− o( f+ 2p))dW

dp= ϵ( j−m)dt+α(2− p( f+ 2p)+ u)dW

dq=−ϵldt− 1
2
α2qdt−α( fq+ 2pq− 2v)dW

ds= ϵ(g+
√
3u)dt− 1

2
α2sdt+α(2e− s( f+ 2p))dW

du=−ϵ
√
3sdt+α(2f+ p− u( f+ 2p))dW. (D1)
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