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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Data Information integrated Neural 
Network (DINN) algorithm is proposed. 

• Loss function is augmented with the 
correlation present in the data of the 
variables. 

• DINN offers improved modelling per-
formance than ANN model. 

• DINN based interpretations are qualita-
tively backed by domain-knowledge. 

• Integrating the data information can 
enhance the machine learning’s 
interpretability.  
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A B S T R A C T   

Developing a well-predictive machine learning model that also offers improved interpretability is a key challenge 
to widen the application of artificial intelligence in various application domains. In this work, we present a Data 
Information integrated Neural Network (DINN) algorithm that incorporates the correlation information present 
in the dataset for the model development. The predictive performance of DINN is also compared with a standard 
artificial neural network (ANN) model. The DINN algorithm is applied on two case studies of energy systems 
namely energy efficiency cooling (ENC) & energy efficiency heating (ENH) of the buildings, and power gener-
ation from a 365 MW capacity industrial gas turbine. For ENC, DINN presents lower mean RMSE for testing 
datasets (RMSE_test = 1.23 %) in comparison with the ANN model (RMSE_test = 1.41 %). Similarly, DINN 
models have presented better predictive performance to model the output variables of the two case studies. The 
input perturbation analysis following the Gaussian distribution for noise generation reveals the order of signif-
icance of the variables, as made by DINN, can be better explained by the domain knowledge of the power 
generation operation of the gas turbine. This research work demonstrates the potential advantage to integrate the 
information present in the data for the well-predictive model development complemented with improved 
interpretation performance thereby opening avenues for industry-wide inclusion and other potential applications 
of machine learning.  
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Introduction 

The recent advancement in the information communication tech-
nologies (ICT) has revolutionized the way the data is generated, stored 
and made accessible [1]. The higher computational power and improved 
hardware capabilities enable the widespread exploitation of the avail-
able data for the data-driven modelling of the given system in various 
application domains which has led to the realization of fourth research 
paradigm often called Data-Driven Science we are living, and is followed 
by Computational Science (until 2010), Theoretical Science (until 1950) 
and Empirical Science (until 1600). Artificial intelligence-based tech-
nologies and machine learning (ML) algorithms remain the key drivers 
for the advancement in Data-Driven Science [2]. Large language models 
which are classified under the Generative Artificial Intelligence and its 
recent application called ChatGPT offers potential advantages on how 
we search the information and consume it for the tasks thereby indi-
cating the usefulness of the language models in the real life [3]. 

The advanced modelling algorithms of ML can construct the effective 
functional relationship with the hyper dimensional input space and the 
predictive accuracy of these models is significantly high compared with 
those of low-order regression models for nonlinear and complex func-
tion space [4]. The predictive mechanism of the ML models is essentially 
black-box and interpreting how the model predicts is a key challenge in 
the mass deployment of the ML models in various industrial sectors 
including chemical process industries, oil and gas and power generation 
systems. Generally, the physical knowledge is ignored or difficult to 
incorporate during the ML model development [5] and thus decision 
makers find the models untrustworthy for their deployment into the 
industrial environments where a slight mistake can be catastrophic [5]. 

The scientific community has devised techniques to explain the 
model’s predictions and has classified them into Ante-hoc and Post-hoc 
approaches [6]. The ML models built under the Ante-hoc class are 
interpretable by design but have low modelling accuracy [7]. On the 
other hand, post-hoc interpretable techniques are applied after the 
black-box model development to understand the significance / contri-
bution of the causal variables towards the prediction of output variables 
[8]. Since, the black-box models offer improved modelling accuracy 
compared with self-explanatory and low-order regression models, the 
scientific community is engaged in integrating the available knowledge 
during the model development for the improved predictive and inter-
pretable performance of the ML models. 

Physics informed neural network (PINN) is trained on the modified 
loss function that is augmented with the governing equations and 
physical laws [9]. Thus, during the development of PINN, the parame-
ters update is made after satisfying the applied constraints [10]. How-
ever, for many real-life applications, where the first-principle models are 
not available or the development of the mathematical model is quite 
difficult given the size and complexity of the considered system, pa-
rameters update can be made by integrating the information present in 
the dataset collected from the considered system. The patterns in the 
dataset are unique with respect to the state and operating constraints of 
the system which are sometimes difficult to model by the mathematical 
equations. Thus, integrating the information present in the data by some 
relevant statistical measures can be an effective method to guide the 
parameters update during the ML model development that may exhibit 
improved interpretability in the post-hoc interpretation analysis. 

There are numerous statistical terms that can exhibit the information 
availability and its nature present in the dataset in different ways. Out of 
them, Pearson correlation coefficient is a standard term to investigate 
the linear relationship between the two variables considering the 
available data associated with the variables. The data-driven informa-
tion as quantified by the Pearson correlation coefficient represents the 
behaviour of the system under different modes of operation that is useful 
to be integrated for building accurate functional map within the ML 

model. Further, the interactions that exist between the pair of variables 
are captured by the Pearson correlation coefficient that can support the 
modelling and interpretation performance of the ML model for the 
function space that is highly nonlinear and is difficult to be approxi-
mated for the applications. In some recent studies carried out on object 
recognition, image processing and other applications [11–16], the cor-
relation information is exploited for the improved predictive and 
interpretation performance of the ML models. However, integrating the 
correlation information during the artificial neural network (ANN) 
model development for regression-based problems is not reported in the 
literature. Furthermore, the impact of integrating the data-driven cor-
relation information on the modelling and interpretation performance of 
the model for the regression-based problems associated with the energy 
systems is also lacking in the literature that needs to be investigated to 
contribute to the potential solution for the black box nature of ANN 
model. 

In this work, we present Data Information integrated Neural Network 
(DINN) algorithm that attempts to integrate the data information in the 
form of correlation coefficient to enhance the model’s predictive and 
interpretation performance. Considering the potential benefits of inte-
grating the correlation information for the improved modelling perfor-
mance of the neural networks [13,15,16], it is hypothesized that the 
available correlation information, that captures the data-driven re-
lationships between the variables, may contribute to enhance the 
modelling and interpretation performance of the ML modelling algo-
rithms for the energy systems. Inspired by the working mechanism of 
PINN, the loss function of DINN is customized to integrate the available 
data information by Pearson correlation coefficient that contributes to 
the parameters (weights and biases) update mechanism during the 
model development. Further, a constraint is added on the stopping 
condition for the DINN training that minimizes the absolute deviation 
for the correlation computed between the input variable with those of 
true output variable and model-simulated observations for the output 
variable. Thus, it is expected that DINN trained over the customized cost 
function and stopping condition may offer the improved interpretability 
performance for the regression-based problems taken from the energy 
systems as investigated by the available post-hoc techniques. 

The proposed DINN algorithm is investigated on the two case studies 
from the energy systems – energy efficiency cooling & energy efficiency 
heating of buildings performance taken from University of California 
Irvine open-source dataset [17,18] and the other case study involves the 
modelling of power generation from a 395 MW capacity gas turbine by 
the real industrial dataset. The predictive performance of DINN is 
compared with a standard artificial neural network (ANN) to investigate 
the modelling efficacy of the DINN. Furthermore, the input 
perturbation-based approach, following the Gaussian distribution of 
sample creation, is implemented to qualitatively compare the inter-
pretability results for DINN and ANN. The qualitative interpretation 
approach incorporates the domain knowledge of the system to validate 
the model’s interpretation results and is potentially applied by the re-
searchers having the deep understanding of the working of their systems 
[19]. The novel aspect of this research is to incorporate the inclusion of 
data information in the form of correlation to guide the parameters 
update during the ML model development that can be helpful to achieve 
improved modelling and interpretability performance for energy sys-
tems from the ML models thereby advancing the research in the domain 
of machine learning. Note that this work does not propose a new 
approach or network for interpretability analysis and instead in-
corporates the data-based interpretation into the design of DINN, which 
once has been trained is used for interpretability analysis using tradi-
tional techniques. The incorporation of data-based interpretability 
analysis however typically leads to better model performance and hence 
improved interpretability. 
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Methods 

Mathematical expression for DINN 

Let us consider that X is the matrix of input variables, X = [X1, X2,.., 
Xm] having the dimension of m by N where ‘N’ represents the total 
number of observations associated with X. The set X is deployed to make 
the functional map with the output variable D (1 by N dimension) by the 
DINN model. The number of neurons in the input layer of DINN are 
specified by the elements in X. W1 is a matrix having the weight con-
nections from the input to hidden layer (size ‘h’) of DINN, and W1 has 
the dimension of m by h. Whereas, the weight connections from the 
hidden layer to output layer of DINN are enclosed in W2 and it has the 
dimension of 1 by h. The generic information flow and processing taking 
place along the architecture of DINN is shown graphically on Fig. 1. 
However, the mathematical computations occurring in DINN are as 
follows: 

p1 =
∑

W1 ⊙ XT + b1 (1)  

y1 = f1(p1) (2)  

here, b1 is the matrix of the bias values embedded at the hidden layer 
neurons of DINN and it has the dimension of m by 1; W1 ⊙ X is the 
elemental multiplication of X with the associated weight connections in 
W1 and the summation (p1 =

∑
W1 ⊙ X + b1) is computed at the 

hidden layer neurons; f1 is the activation function applied on hidden 
layer and transforms p1 onto the scale of the activation function. In 
DINN, we have applied tangent hyperbolic activation function on the 
hidden layer that scales down p1 nonlinearly into -1 to 1 and stores it in 
y1. The information (y1) from the hidden to output layer of DINN is 
transmitted for further processing which is expressed as follows: 

p2 =
∑

W2 ⊙ y1 + b2 (3)  

Z = f2(p2) (4)  

Here, b2 is a bias matrix initiated at the output layer having the 
dimension of 1 by 1; W2 ⊙ y1 is the elemental multiplication between y1 
and W2 (weight connections from the hidden to output layer of DINN). 
The summation (p2 =

∑
W2 ⊙ y1 + b2) is calculated at the output 

layer of DINN and is transformed by the activation function f2 to produce 
the model-simulated response (Z) from DINN. In this work, we have 
applied linear activation function (f2) on the output layer of DINN. 

The loss function (L ) constructed in this work includes the mean 
square of error (true output variable (D) and model-simulated response 
(Z)), and the mean squared deviation between the Pearson correlation 

computed for the elements of Xi with respect to D (rXi |D) and Z (rXi |Z). The 
Pearson correlation coefficient measures the linear dependence between 
the two variables and integrating it in the loss function introduces an 
extra term to minimize deviation between the correlation value for the 
true and model-simulated responses. The significance of adding a cor-
relation coefficient term is two fold: (i) it steers the computation of 
model parameters so as to improve model predictions of the trained 
model by extracting and then incorporating the information that exists 
in the data, and (ii) the user already has some insight into the interde-
pendence of the input-output variables even before the network is 
trained and that insight is built into model training, resulting in DINN 
model that provides, after suitable analysis, a better interpretation than 
the traditional ANN. Thus, the model-simulated responses improve the 
correlation with Xi, that was initially present in the dataset, during the 
iterative training of the model. The customized loss function can lead to 
construct the efficient functional map between the input-output vari-
ables for the trained DINN algorithm which in turn may offer the 
improved interpretation performance in comparison with those of a 
standard ANN model that lacks the correlation information in its loss 
function. 

The Pearson correlation coefficient varies from +1 (strong positive 
correlation) to -1 (strong negative correlation). Whereas, zero value of 
Pearson correlation coefficient indicates the absence of any linear 
dependence between the two variables. It is important to mention here 
that the input variables, which are relevant to model the output variable, 
should be selected carefully considering the domain-knowledge or 
process expertise so that correlation information available for the pair of 
variables is relevant and can contribute to development of the well- 
performing model. The customized loss function for DINN is different 
from those of a traditional ANN model (ANN) which generally contains a 
single error term. However, integrating the correlation term in the 
customized loss function contributes to the parameters update in the 
iterative training of DINN which can enable the network to possess 
improved modelling as well as interpretation performance. The two 
terms in the proposed L are weighted by λ and are written as follows. 

L =

(
λ

1 + λ

)

.

∑
(D − Z)2

N
+

(
1

1 + λ

)

.

∑m
i=1

(
rXi |D − rXi |Z

)2

N
(5)  

λ is a hyperparameter that decides the contribution of 
∑

(D − Z)2

N and 
∑m

i=1
(rXi |D − rXi |Z)

2

N to compute the loss function. The two error terms in L 

are weighted by λ and the user can decide the weighted values for the 
two error terms based on the value of λ. The two terms augmented in L 

tends to minimize the deviation between the true and model-simulated 
responses and synergizes to minimize L for building a well-trained 
DINN model. The gradient descent with momentum algorithm is uti-

Fig. 1. The generic schematic on the information flow and processing taking place in DINN.  

W.M. Ashraf and V. Dua                                                                                                                                                                                                                     



Energy and AI 16 (2024) 100363

4

lized to achieve the optimum value of the parameters, i.e., weight and 
bias since the algorithm offers fast as well as stable error convergence in 
comparison with the performance of the gradient descent algorithm 
[20]. The partial derivative of L with respect to the parameter (W1,W2,

b1,b2) is taken, the information is propagated backward and integrated 
with the gradient descent with momentum algorithm for the parametric 
update in an iterative approach to achieve the minimum of L . 

The update for weight connections (W1) by gradient descent with 
momentum algorithm is given as: 

Wnew
1 = W1 − η VW1 (6)  

Where, η is the learning rate parameter and Vw1 is the velocity matrix 
that is defined as [21]: 

VW1 = βVW1 + (1 − β)
∂L

∂W1
(7)  

Here, β is the momentum parameter and VW1 is initialized as a zero- 
matrix having the same dimension as that of W1. ∂L

∂W1 
is computed 

using the chain-rule: 

∂L

∂W1
=

∂L

∂Z
∂Z
∂p2

∂p2

∂y1

∂y1

∂p1

∂p1

∂W1
(8)  

∂L

∂Z
=

∂
∂z

(∑
(D − Z)2

N
+

∑m
i=1
∑(

rXi |D − rXi |Z
)2

N

)

=
− 2(D − Z)

N
− rXi |Z.

(
Xμ

i

B i
−

Zμ

M

)

(9)  

where, 

Xμ
i = Xi − Xi (10)  

Zμ = Z − Z (11)  

B i =
∑m

i
(Xi − Xi).(Z − Z) (12)  

M =
∑

(Z − Z)2 (13)  

∂Z
∂p2

=
∂p2

∂p2
= 1 (14)  

∂p2

∂y1
=

∂
∂y1

(W2 ⊙ y1 + b2) = W2 (15)  

∂y1

∂p1
=

∂
∂p1

(
ep1 + e− p1

ep1 − e− p1

)

= 1 − y2
1 (16)  

∂p1

∂W1
=

∂
∂W1

(W1 ⊙ X + b1) = X (17)  

Putting eq. (9-17) in eq. (8): 

∂L

∂W1
= −

(
2(D − Z)

N
+ rXi |Z.

(
Xμ

i

B i
−

Zμ

M

))

WT
2

(
1 − y2

1

)
XT (18) 

From eq. (7) and eq. (18), eq. (6) is written as: 

Wnew
1 =W1 + η (βVW1 + (1− β)

(
2(D − Z)

N
+ rXi |Z.

(
Xμ

i

B i
−

Zμ

M

))

WT
2

(
1− y2

1

)
XT ;

)

(19) 

Similarly, the update in the weight connections from hidden to 
output layer neuron of DINN is written as [21]: 

Wnew
2 = W2 − η VW2 (20)  

VW2 = βVW2 + (1 − β)
∂L

∂W2
(21)  

Here, VW2 has the same dimensions as W2 and is initialized as zero 
matrix. We can expand ∂L

∂W2 
by applying the chain rule as follows: 

∂L

∂W2
=

∂L

∂Z
∂Z
∂p2

∂p2

∂W2
= −

(
2(D − Z)

N
+ rXi |Z.

(
Xμ

i

B i
−

Zμ

M

))

y1 (22) 

From eq. (21) and eq. (22), eq. (20) is written as: 

Wnew
2 = W2 + η(βVW2 + (1 − β)

(
2(D − Z)

N
+ rXi |Z.

(
Xμ

i

B i
−

Zμ

M

))

y1

)

(23) 

Applying the same methodology, the bias update at the hidden (b1)

and output layer (b2) is expressed as: 

bnew
1 = b1 + η (βVb1 + (1 − β)

(
2(D − Z)

N
+ rXi |Z.

(
Xμ

i

B i
−

Zμ

M

)

WT
2

(
1 − y2

1

)
))

(24)  

bnew
2 = b2 + η (βVb2 + (1 − β)

(
2(D − Z)

N
+ rXi |Z.

(
Xμ

i

B i
−

Zμ

M

)))

(25) 

The parameters update is continued such that one of stopping con-
ditions is achieved, i.e., slope is less than 0.00000001, loss value on the 
testing dataset is less than goal value and the absolute deviation between 
rXi |D and rXi |Z, i.e., |rXi |D

⃒
⃒ − |rXi |Z

⃒
⃒ is minimized to zero. Minimizing the 

absolute deviation between rXi |D and rXi |Z steers the DINN algorithm to 
approximate the distribution profile of true observations of the output 
variable against the set of input variables that enhances the accuracy of 
the functional mapping between the input and output variables. The 
stopping constraint, i.e., |rXi |D| − |rXi |Z| can support the improved 
modelling and interpretability performance of the DINN model since the 
correlation information available from the dataset is explicitly exploited 
for the model development in comparison to ANN which does not have 
additional constraint to be satisfied prior to the training of model is 
finished. 

Evaluation criteria 

Two statistical measures, namely coefficient of determination (R2) 
and root-mean-squared-error (RMSE) are utilized to investigate the 
predictive performance of the DINN. The mathematical expression for 
R2 and RMSE are provided as follows: 

R2 = 1 −

∑N
i (Zi − Di)

2

∑N
i (Di − Di)

2 (26)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Zi − Di)

2

√
√
√
√ (27)  

here, Zi and Di are the model-simulated responses and true value of 
output variables respectively for i = 1,2,3,… N equal to total number of 
observations. R2 measures the predictive accuracy of the model and it 
varies from zero (poor predictive performance of the model) to one 
(perfect match between the true and model-predictive responses). On 
the other hand, RMSE indicates the mean deviation between the true and 
model-predicted responses and is made as low as possible to achieve the 
good functional map between the input and output variable of the DINN. 

Results and discussion 

Case studies from energy systems 

The algorithm of DINN is applied on two case studies – one is taken 
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from a benchmark dataset on energy efficiency cooling (ENC) & energy 
efficiency heating (ENH), and the second case study involves modelling 
the power generation from an industrial-scale 395 MW capacity gas 
turbine. Thus, DINN has been implemented on the example datasets that 
are either benchmarked in literature and the modelling performance of 
the DINN is also investigated on industrial application as well. It is also 
important to mention here that modelling performance of DINN is 
compared with those of an ANN model which is trained on a loss func-
tion comprising on mean-squared-error terms. It allows to investigate 
the effect of modification of the loss function on the modelling perfor-
mance of the DINN for the case studies. Both DINN and ANN models are 
trained in MATLAB 2019 b software. The comparative performance re-
sults for DINN and ANN are provided in the following. 

Case study – 1: energy efficiency cooling & energy efficiency heating 

The energy efficiency cooling (ENC) and energy efficiency heating 
(ENH) datasets for the buildings consists of eight input variables namely 
relative compactness, surface area, wall area, roof area, overall height, 
orientation, glazing area and glazing area distribution. The dataset has 
768 observations associated with the variables. 80 % of data is deployed 
for training while remaining 20 % data is used for testing purpose during 
the models development for ENC and ENH. The number of neurons in 
the hidden layer are kept at 10 to compare the modelling performance of 
the DINN and ANN with those of feed forward neural network (FFNN) 
reported in literature [22] and are trained 20 times to average out the 
performance of the models considering the different parameters 
initialization. Whereas, different values of λ are explored in the range of 
0.1 to 0.2 for the training of DINN. 

Fig. 2 compares the modelling performance of DINN and ANN 
models to model ENC and ENH. The performance metrics are measured 
on the training and testing datasets for the two output variables. The 

range in variation in the RMSE computed for DINN and ANN on the test 
dataset for ENC and ENH are graphically visualized by box plot on Fig. 2 
(a). It is noted that mean RMSE of DINN on test dataset for ENC and ENH 
are 1.23 % and 0.56 % which are comparatively lower than those of 
ANN, i.e., 1.41 % and 0.65 % respectively. Furthermore, out of the 
trained ANN and DINN models, the performance metrics computed on 
true and model predicted responses for comparatively better model of 
ENC and ENH are presented on Fig. 2(b). In case of ENC, R2 remains 
quite comparable both on training and testing datasets for DINN and 
ANN models. However, DINN based RMSE for training and testing 
dataset are 1.04 % and 1.14 % respectively which are lower than those 
of ANN model, i.e., RMSE_train = 1.08 % and RMSE_test = 1.24 %. The 
similar observation can be noted for the modelling performance of DINN 
and ANN for ENH where R2 for training dataset is comparable for the 
models. However, DINN based predictions on training and testing 
dataset present lower RMSE in comparison with those of ANN. The 
modelling performance of the two models for ENH is summarized as 
follows: (RMSE_train = 0.46 %)DINN < (RMSE_train = 0.51 %)ANN and 
(RMSE_test = 0.43 %)DINN < (RMSE_test = 0.52 %)ANN. Furthermore, 
modelling performance of DINN are also compared with those of FFNN 
for ENC and ENH as reported in literature [22]. The authors trained the 
FFNN 20 times with the same architectural configuration of the model 
and reported the mean results for the repetitive training of models as 
follows: RMSE_test = 1.63 % and RMSE_test = 0.63 % for ENC and ENH 
respectively [22] which are comparatively higher than those of DINN as 
described above. Comparing the predictive performance of DINN with 
those of ANN and FFNN, it is found that DINN has superior modelling 
performance for the ENC and ENH that can be attributed to integrating 
the data information in the form of correlation between the input and 
output variable that might have helped to optimize the parameters 
effectively to achieve the better predictive performance of DINN. 

The input variables for ENC and ENH have inter-dependencies as 

Fig. 2. Comparison of modelling performance of the DINN with the ANN model for ENC, and b) ENH. The graphical visualization of variability in the RMSE on the 
test dataset computed for 20 times training of ANN and DINN models under same initial conditions for ENC and ENH is presented. (b) True vs predicted responses of 
DINN and ANN having the comparatively better performance metrics out of the 20 trained models. The performance metrics computed on testing dataset for DINN 
are appeared to be better than those of ANN for ENC and ENH thereby showing improved modelling performance of DINN. The bars along the edges of the graph 
represent the data-distribution density profiles for the training and testing dataset with respect to true and model-predicted responses. 
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represented in the dataset in the form of the operating levels of the 
variables. However, the two input variables namely orientation and 
glazing area have relatively fewer operating levels and interactions with 
the other input variables in the test dataset. This allows to study the 
variation in the two said input variables considering the test dataset of 
DINN and ANN on the ENC and ENH and compares the model predicted 
responses with the true responses. This parametric study explores the 
local regions of the test dataset to investigate the predictive performance 
of the models as well as the model’s ability to generalize the relation-
ships with the variables. DINN and ANN based responses for ENC and 
ENH on the variation in orientation and glazing area are presented on 
Fig. 3. DINN and ANN based responses are depicted by red and blue lines 
respectively while the true responses are shown by solid black lines. The 
responses as made by the DINN and ANN with respect to the variation in 
the two variables are closely related with the true observations that 
indicate the good modelling performance of the two models for the 
testing dataset. However, closely comparing the predictive performance 
of the two models, it is apparent that DINN has improved prediction 
profiles than those of the ANN. This demonstrates the better predictive 
and generalization ability of the DINN compared with the ANN model 
and depicts the competitive advantage to integrate the correlation in-
formation in the training of DINN model for the improved predictive 
analytics. Furthermore, an improved predictive performance of the 
DINN on the parametric variation in the two variables also contributes 
to understand the model’s interpretability and evaluating the accuracy 
of the model’s predictions by comparing with the true observations. 

Case study – 2: power generation from an industrial gas turbine 

The power production from an industrial-scale gas turbine is main-
tained under the operation management of a number of sub-systems 
integrated with the power generation operation. The variables have 
nonlinear and complex interactions and thus affect the power generation 
operation. In this work, we have selected the input variables based on 
the domain knowledge of the power plant operation and literature re-
view [23,24]. Therefore, compressor discharge air temperature (CDT), 
compressor discharge air pressure (CDP), fuel gas flow rate (GFR), 
performance heater gas outlet temperature (PHT), fuel gas temperature 
(FGT), ambient temperature (AT), ambient pressure (AP) and ambient 
humidity (AH) are deployed to construct the data-driven process model 
for the power generation. 

The dataset containing 578 observations is taken from the gas power 
plant and the data split ratio of 0.8 and 0.2 is applied for training and 
testing purpose respectively. The number of neurons in the hidden layer 
is a critical hyperparameter that controls the complexity embedded in 

the processing elements in the ANN to approximate the given function 
with reasonable accuracy. Thus, we have explored the design space for 
the hidden layer neurons varying from 1 × to 2.5 × times of the neurons 
in the input layer [25]. Whereas, λ is kept at 0.4 for training the DINN. 
The performance metrics are measured in the training and testing phase 
of the model development for DINN. Fig. 4 shows the modelling per-
formance of the DINN and ANN with respect to the effect of number of 
hidden layer neurons on the RMSE of the two models as presented on the 
spider web plots. Closely comparing the predictive performance of the 
models in the training and testing phase, it is apparent that DINN having 
10 hidden layer neurons achieves the lowest RMSE both for training and 
testing datasets in comparison of other DINN models having different 
number of hidden layer neurons. Similarly, the lowest RMSE is observed 
corresponding to 18 hidden layer neurons in ANN model. The mapping 
of true and predicted values of gas turbine power (GT Power) for optimal 
hidden layer configuration for DINN and ANN are presented on Fig. 4. 
Both DINN and ANN has comparable value of R2 in the training and 
testing datasets. However, the predictive performance of the two models 
differs significantly when measured by RMSE for training and testing 
datasets. For DINN, RMSE_train = 1.20 MW and RMSE_test = 1.25 MW is 
observed which is lower than those of the ANN model, i.e., RMSE_train =
2.0 MW and RMSE_test = 2.17 MW. The performance comparison of the 
DINN and ANN model reveals that DINN presents better predictive 
performance, both for training and testing datasets to model the power 
generation from a gas turbine. 

In the previous section, we have presented the modelling perfor-
mance of the DINN and ANN model during their development and the 
performance was measured both for training and testing datasets. 
Recently, researchers have also investigated the validation of the ma-
chine learning models by deploying them to predict the external vali-
dation dataset – potentially unseen dataset taken from the system under 
consideration. Thus, external validation test offers a rigorous testing 
step to evaluate the generalization of the trained machine learning 
models [26,27]. Therefore, the external validation dataset consisting of 
144 randomly selected observations from the power generation opera-
tion of the gas turbine are taken from the power plant and are deployed 
to be predicted from the trained DINN and ANN models. The predicted 
responses from the two models are compared with the true observations, 
performance metrics, i.e., R2 and RMSE are calculated, and the residuals 
are shown on Fig. 5(a). Comparing the performance metrics for the 
DINN and ANN, it is noted that the two models have comparable values 
of R2 for external validation dataset. However, RMSE measured for 
DINN is lower than that of ANN model (RMSE_DINN = 1.51 MW <
RMSE_ANN = 2.75 MW). Furthermore, 92.4 % and 76.4 % of the re-
siduals are distributed from -2.5 MW to 2.5 MW range for DINN and 

Fig. 3. Effect of varying orientation and glazing area on the ENC and ENH performance as studied by DINN and ANN model. The model predicted responses are 
compared with the true values to evaluate the predictive accuracy of the models. 
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ANN model respectively which depicts that DINN has relatively lower 
magnitude of the residuals in comparison with those of ANN for the 
reasonably-wide residual range. 

The predictive performance of the two models is also evaluated in the 
local space of gas turbine power considering the variation in ambient 
temperature and ambient humidity such that the other input variables 
are nearly constant on their operating values. Since, the ambient con-
ditions are changed independent of the other input variables during the 
power generation, therefore the impact of the ambient temperature and 
ambient humidity on the state of power generation is available in the 
dataset that serves as a ground truth. This allows us to investigate the 
predictive performance of the trained DINN and ANN model in the local 
regions of the output variable and compare it with the true values to 
evaluate the predictive performance of the trained models. Fig. 5(b) 
presents the mapping of the DINN and ANN based responses with the 
true power generation value under two different power generation mode 
of the gas turbine for a number of input conditions taken from the 
external validation dataset when ambient temperature and ambient 
humidity are changed and the remaining input variables are nearly 
constant. Comparing the distribution of the DINN and ANN model-based 
responses around the true gas turbine power under two power genera-
tion modes, it is noted that in general, DINN seems to have better pre-
diction profiles that lie close to the true observations. In some instances, 
ANN offers better predictive responses than those of DINN. However, 
overall DINN based predictive responses are appeared to be relatively 
closer to the true observations. Thus, the rigorous evaluation of the 
DINN is made on the external validation test and the predictive per-
formance is compared with those of ANN model to investigate the 
modelling accuracy of the DINN to predict the power generation from a 
gas turbine. 

Finally, it is important to investigate the variable significance 

towards the prediction of the output variable considering the black-box 
nature of the ANN model. The order of the significance of the input 
variable presents the relative importance of the variable towards the 
prediction. The strength of the functional map between the input and 
output variable which is built by the data-driven ML model and inves-
tigated by the variable significance analysis, thus the model based pre-
dictions can be interpreted [28]. Furthermore, the order of significance 
of the variables can be explained by the domain knowledge to confirm 
the correct interpretation of the model [29]. 

In this work, we have applied input perturbation method to analyse 
the variable significance and have utilized the qualitative approach to 
investigate the interpretation performance of the models [19]. The 
qualitative approach for the model’s interpretability analysis integrates 
the end-user intuitiveness and domain-knowledge to validate the 
model’s interpretation results. In input perturbation method, the vari-
able, whose significance is to be evaluated, undergoes parametric vari-
ation from its minimum to maximum operating level whereas the other 
input variables are kept at their mean value [30]. Other schemes for the 
construction of experiments can be followed for the input perturbation 
method. In the next step, input perturbation method introduces the 
noise for the given input condition and averages out the responses 
associated with the output variable to account for the variation in the 
operating level of the input variables. This offers an extensive investi-
gation at each operating level for the number of noise observations to 
find the significance of the variable. Thus, the process is repeated for the 
complete parametric variation in the variable and applied on all input 
variables to establish the normalized order of the significance. In this 
work, we have generated 10,000 observations of noise following the 
Gaussian distribution with respect to the one percent minimum value of 
the input variables and are deployed for input perturbation based var-
iable significance analysis to understand the model’s interpretability for 

Fig. 4. Predictive performance of DINN and ANN to model the power generation from an industrial-scale 395 MW capacity gas turbine. The performance metrics are 
measured for training and testing datasets to investigate the effectiveness of the functional map created between the input and output variables for DINN and ANN. 
The data-distribution density profiles for the training and testing dataset with respect to true and model-predicted responses are drawn along the edges of the graph. 
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the predictions. The Gaussian distribution for the noise observations is 
considered since the sensor measurements generally follow the gaussian 
distribution for the variables associated with the power generation from 
the gas turbine. 

Fig. 6 shows the order of significance of the input variables on the 
power generation by input perturbation method as carried out by using 

DINN and ANN model. The percentage significance of the input vari-
ables is computed by the two models for the comparative analysis. CDP 
and CDT are turned out to be the two most significant input variables 
affecting the power generation from the gas turbine and their percentage 
significance is 75.4 % & 12.5 % and 57.7 % & 18.3 % respectively. 
However, the third significant variable for DINN is GFR having 

Fig. 5. Predictive performance of DINN and ANN for the external validation dataset. (a) DINN and ANN model-based responses mapped against the true observation 
for the external validation dataset along with the residuals distributions are shown. (b) The predictive performance of DINN and ANN in the local space of gas turbine 
power built with the significant contribution of ambient temperature and ambient humidity is presented. The models-predicted responses are plotted against the true 
observations of the gas turbine power to show the predictive accuracy of the two models. 

Fig. 6. The significance of the input variables to predict the power generation from the gas turbine. The variables significance analysis presents the importance of the 
variable towards the prediction of the response variable thereby contributes to the model interpretation. 
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percentage significance of 5.1 %. On the other hand, FGT is the third 
significant variable for ANN model with percentage significance value of 
7.1 %. The first three input variables, namely CDP, CDT and GFR con-
tributes around a total of 95 % significance towards the prediction of gas 
turbine power by DINN. Whereas, CDP, CDT, FGT, AT and GFR adds up 
to approximately 95 % significance towards the prediction of gas turbine 
power. CDP and CDT are the variables that indicate the conditions of the 
air at the discharge of compressor. Similarly, GFR represents the gas 
flow rate entering the combustion chamber. 

The fuel combustion in the presence of air produces high- 
temperature flue gas that expands in the gas turbine to produce 
power. Thus, the power generation is sensitive to the operating condi-
tions of air and fuel that produces the flue gas for the power production 
as it is an established working principle for the power generation 
operation from the gas power plant. Thus, third order of GFR, as 
established by DINN, is well aligned with the operational and domain 
knowledge of the power generation from the gas turbine in terms of 
variable’s significance to predict the power generation and thus DINN 
has improved interpretation performance to predict the power genera-
tion with reference to variable’s significance order. On the other hand, 
GFR occupies the fifth place in the order of significance, whereas FGT is 
termed out to be third significant variable for ANN based interpretation 
analysis which is not well aligned with the domain-knowledge and 
expertise for the power generation from the gas power plant. The input 
perturbation approach for the exploration of model’s interpretability 
indicates the advantage of integrating the correlation information for 
the parameters update during the DINN development that is represented 
in the form of improved interpretability towards the model-based pre-
dictions. The industrial community and practitioners can benefit from 
the improved interpretability of the DINN to better formulate the 
operating strategies for the effective operation management of their 
industrial complexes, informed decision making and making the simu-
lators for the training of operators and entry-level engineers to better 
understand the behaviour of system under different operating condi-
tions. Thus, deploying the data information into the modelling algo-
rithm can be helpful to achieve better predictive performance and 
domain-knowledge backed model’s interpretations that contributes to 
Industry-4.0 vision for smart operation of industrial systems. 

Conclusion 

The information present in the data can be helpful to achieve the 
better predictive performance and improved interpretability of the 
machine learning models. In this paper, we propose a modelling algo-
rithm that integrates the correlation information present in the dataset 
of the variables and deploys it to train an effective Data Information 
integrated Neural Network (DINN). The loss function of DINN is 
augmented with mean squared deviation between the Pearson correla-
tion computed for true and model-simulated responses with the input 
variables. The parameters update is thus guided by the modified loss 
function through the gradient descent with momentum algorithm. 

The proposed DINN algorithm is applied on two case studies 
considered from energy systems namely energy efficiency cooling (ENC) 
and heating (ENH) of buildings, and power generation from a 395 MW 
capacity gas turbine. The modelling performance of DINN is compared 
with a standard ANN model. For ENC, DINN presents lower mean RMSE 
for testing datasets (RMSE_test = 1.23 %) in comparison with the ANN 
model (RMSE_test = 1.41 %). Furthermore, DINN based predictive 
performance is found to be lower than those of literature reported results 
for ENC ((RMSE_test = 1.23 %)DINN < (RMSE_train = 1.63 %)FFNN). 
Similar results indicating the better predictive performance of the DINN 
are observed for the case studies. 

The external validation test is carried out on the DINN and ANN 
models for the gas turbine power to investigate the generalization ability 
of the models. DINN presents the lower prediction error ((RMSE_DINN =
1.51 MW < RMSE_ANN = 2.75 MW) and residuals distribution on a tight 

residual range than those of ANN. Furthermore, input perturbation- 
based variables significance analysis is carried out to establish the 
order of significance for the input variables affecting the power gener-
ation from the gas turbine. DINN based variables significance order can 
be better explained by the domain knowledge of the power generation 
from the gas turbine. 

This research presents the benefits of augmenting the loss function to 
guide the parameters update for the development of a well-predictive 
DINN model that also presents improved interpretability. Thus, inte-
grating the data information in the working algorithm of the ML models 
can potentially improve the model’s predictive and interpretation 
performance. 
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